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Abstract—A niche genetic algorithm (GA) based on a novel twin-
space crowding (TC) approach is proposed for solving multimodal
manufacturing optimization problems. The proposed TC method is
designed in a parameter-free paradigm. That is, when cooperatively
exploring solutions with GAs, it does not require prior knowledge
related to the solution space to design additional problem-dependent
parameters in the evolutionary process. This feature makes the
proposed TC method suitable for assisting GAs in solving real-world
engineeringoptimizationproblems involving intractable solution land-
scapes. A set of numerical benchmark functions is used to compare
effectiveness and efficiency in the proposed TCGA, in different niche
GAs, and in several evolutionary computationmethods. The TCGA is
then used to solve multimodal joint-space inverse problems in serial-
link robots to compare its convergence performance with that of
conventional methods that apply the sharing function. Finally, the
TCGA is used to solve iterative collision-free design problems for
linkage-bar robotic hands to demonstrate its effectiveness for generat-
ing diverse solutions during the design process.

Index Terms—Crowding method, joint-space, multimodal
optimization, niche genetic algorithm (GA).

I. INTRODUCTION

E NGINEERING problems usually contain multiple optima
in the solution space. Particularly, joint-space inverse

problems encountered when designing robots with multiple
degrees of freedom (DOFs) have been validated as multimodal
problems [1], [2]. In some multimodal optimization problems, a
simple genetic algorithm (GA) [3] cannot efficiently and simul-
taneously maintain multiple global or local optima. Therefore,
the population is easily trapped in a limited number of solutions,
which is a condition that results in premature solutions with no
capability to obtain better results. Therefore, niche methods [4]

have been developed to reduce genetic drift effects resulting from
the replacement operator in the simple GA.

By adding scaling fitness or by changing the fitness compe-
tence rule, niche methods modify the simple GA by guiding
convergence so that multiple peak solutions can bemaintained in
the search space [5]. The capability to locate multiple loci often
gives niche GAs the robustness and effectiveness needed to
explore optima in various multimodal optimization problems
[6]–[8]. When used to solve optimization problems, however,
most niche methods require prior knowledge such as the niche
radius or the distance threshold [9], [10].

To address these limitations, this study proposes twin-space
crowding (TC), a novel niche method designed in a parameter-
free paradigm; that is, it does not require prior knowledge of
practical optimization problems, and the proposed crowding
mechanism does not require additional customized parameters.
This feature makes the proposed TC method suitable for com-
bined use with GAs for solving real-world optimization pro-
blems, in which the solution landscapes are often intractable. To
evaluate its performance in solving multimodal problems, the set
of numerical benchmark functions presented in Ratnaweera et al.
[11] and Bakwad et al. [12] is used to compare convergence
performance between the proposed TC genetic algorithm
(TCGA) and other methods.

Additionally, to evaluate its applicability for solving practical
engineering problems, the TCGA is used to solve joint-space
inverse kinematics problems in two different mechanisms cur-
rently used in robotic manufacturing systems: serial-link robots
(SLRs) and linkage-bar robotic hands. An SLR has an open-loop
structure with multiple DOFs, whereas a linkage-bar robotic
hand has a closed-loop structure with only a single DOF. Since
these mechanisms have very different kinematical characteris-
tics, solving their inverse problems provides a convincing vali-
dation of the solution capabilities of the proposed approach.

Compared with path planning problems, which have been
intensively studied in the past [13]–[15], joint-space inverse
problems in serial-link or linkage-bar robots are very different
and harder to solve because the inverse problems specified in the
world coordinates must be solved in the joint space where the
mappingbetween the joint space andCartesian space isnonlinear,
singular, andmultimodal [16], [17]. However, a literature review
[2] shows only a few studies of the evolutionary solution multi-
plicityof inverseproblemsoriginatingfrommultimodalmapping.

Therefore, the proposed TCGA is used to explore multiple
inverse solutions for SLRs, and its convergence performance is
compared with that of the algorithm developed in Kalra et al. [2],
in which the sharing function [5] is applied. This study also
considers the engineering design problem of a six-bar robotic
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hand. The problem is to obtain a synthesis design for a six-bar
structure that can consider obstacles in the manufacturing envi-
ronment. In contrast with the relatively simple synthesis design
for low-order four-bar linkage structures [18]–[20], the design
problem considered here is to synthesize a high-order, highly
constrained, and collision-free coupler for a single-DOF mecha-
nism. Such problems are usually solved using classic precise-
point methods [21], [22] to guide the coupler along the desired
path, which limits design flexibility. The iterative design method
proposed here uses TCGA to enable iterative exploration of
multiple inverse collision-free solutions.

II. TWIN-SPACE CROWDING GENETIC ALGORITHM

The literature showed many improvements in evolutionary
optimization and the development of efficient solvers for engi-
neering problems [23]–[27]. In the niche family of GAs, popu-
lation diversity is improved using a set of algorithms to change
the genetic schema in the population replacement phase.

Like a simple GA, a general niche GA first initializes
and evaluates the population to select the best fitting
chromosomes for the mating pool. It then applies crossover and
mutation operators to generate and evaluate the new offspring.
When it evolves a new generation, the general niche GA
does not merely reserve individuals with the best fitness. It
usually applies a specific replacement operator to assist in
selecting new parents.

A. Niche Family

One of the earliest niche mechanisms is preselection [28], in
which an offspring can only replace one of its parents. A
crowding schema [29] called niche crowding (NC) was then
proposed for improving the preselection process during which
an offspring replaces the most similar individual taken from a
randomly selected subpopulation based on the crowding factor
(CF) value. In this schema, the measurement of similarity
between two real-code chromosomes is usually based on the
Euclidean distance. The NC tends to cause a large genetic shift
in multimodal functions, especially when the selection subpop-
ulation size is small.

Another well-known niche method is the sharing function,
which reduces the fitness of highly similar individuals within the
population based on the specified niche radius [5]. A practical
difficulty of the sharing functionmethod is choosing an adequate
radius value, which is usually problem-dependent and implies
that the numbers and shapes of peaks must be known. A similar
condition applies to the selection of specific parameter values in
various niche algorithms, e.g., the selection of clearing radius
(distance) in the clearing method [30], [31] and the selection of
species distance in the species conservation method [32]–[34].
However, in most industrial applications, very little a priori
knowledge about the fitness landscape is available during
parameter setting. Therefore, some crowding methods apply a
parameter-free paradigm in algorithm design.

Mahfoud [35] proposed a deterministic crowding (DC) meth-
od for designing a competence rule in Algorithm 1.

Algorithm 1: DC Algorithm (Mahfoud [35])

Step 1: Randomly select two different parents, and .

Step 2: Apply crossover, mutation and other operations to
generate two offspring, and .

Step 3: If
Then

If Fitness( ) is better than Fitness( ) Then
replace with

If Fitness( ) is better than Fitness( ) Then
replace with

Else

If Fitness( ) is better than Fitness( ) Then
replace with

If Fitness( ) is better than Fitness( ) Then
replace with

End.

In Algorithm 1, the DC method uses a deterministic replace-
ment operator to group the closest offspring and parent, and a
parent can be replaced only by better offspring that are grouped
together. However, although the DC reduces selection errors,
genetic shift problems can still prevent the algorithm from
efficiently locating multiple loci. Additionally, DC rarely out-
performs NC when . These issues are further addressed
by the experiments discussed in Section III below.

Ling et al. [7] proposed a cluster crowding (CC) method in
which a temporary tree structure is used to maintain the cluster-
ing relationship between parents and offspring. The CC method
sets the parents as the roots and then classifies and inserts all
offspring under the parent root according to the Euclidean-
distance measurement. After completing the classification, the
CC treats the coverage of each sub-tree as a niche range and uses
the best individual as the niche center. When it enters a new
generation, the CC sorts all cluster centers and then adds them to
a parent pool one at a time according to the following rule: if the
centers of the newly added niches are not locatedwithin the niche
range formed by the individuals in the parent pool, add them to
the pool; otherwise, hold another competence tournament to
determinewhether the new center can be added; if thefinal parent
pool size is still insufficient to form the new parent population,
generate and initialize chromosomes to obtain the complete
parent population.

Although the CC can locate multiple loci, its limitation is its
slow convergence speed. Therefore, its solution quality is sub-
stantially poorer compared with those of both the NC and DC
methods under the same evolutionary conditions. This issue is
discussed further in Section III.

B. Twin-Space Crowding

Generally, two key operations are implicitly implemented in
various crowding methods: the first operation ensures that in-
dividuals with the best fitness in the population are usually
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invested with the highest survival probabilities; the second
operation is a competence tournament among the population
individuals located in the same niche. However, due to the
insufficient knowledge of the real solution space, erroneous
judgments about niche locations can prevent perfect implemen-
tation of the two operations in the crowding algorithms.

To overcome the difficulty of locating niches, this study
proposes a new mechanism for dynamically tracking niche
coverage by performing several competence tournaments to
increase the survival probabilities of high-fitness individuals
and to remove redundant individuals within a pair of niches.
The pseudo steps of Algorithm 2 are specified as follows.

Algorithm 2: TC Algorithm

Definition:

: dominates ( has better fitness compared to ).

Input:

(1) The whole parent population with
size .

(2) The whole offspring population
with size .

(3) Dimension number of any population member. (or
number of genes in any chromosome).

Output: Updated parent population .

Initialization: Define a temporary variable , where .

[Phase One]

Step 1: Find where .

Step 2: If then and go to step 9.

[Phase Two]

Step 3: Compute the set
.

Step 4: If then go to step 9 (i.e. ignoring this offspring).

Step 5: Define a temporary member .

Let , .

Step 6: If , then , and go to step 9.

Step 7: If , then go to step 9 (i.e. ignore this offspring).
[Phase Three]

Step 8: Randomly choose a member from , and let .

Step 9: Let . If , then go to step 1 (next offspring).
Otherwise, stop the algorithm.

The proposed TC algorithm has three main phases. For each
offspring member, e.g., , the first phase finds the closest
parent, which is designated . If dominates , is directly
replaced by . Notably, the competence rule used in this phase
resembles that used in NC method. However, the offspring that

are lost in the first phase but have better fitness values than the
other parents, have another opportunity to enter the later phases.

The second phase uses a modified version of the hill–valley
(HV) function [36]. The HV function is first performed to obtain
a temporary member and to judge whether members and
are located at different loci (niches). The modified algorithm
replaces with if is better than (since is also better
than in this situation). If is not better than and , the
third phase is performed.

The third phase determines the competence between and
the parents located in the circled area where the circle center is
and the radius is . In the area, one parent that is poorer than

is randomly chosen and replaced by . This step is required
because, under this condition, the chosen parent is not only
poorer but also closer (more crowding) to in comparison with

. The third phase can be viewed as a self-adaptive niche
explorationmethod, and the competence is held in a dynamically
circled area. That is, the proposed algorithm dynamically selects
the crowding space range for the survival competence and does
not require specific niche radius information.

Fig. 1 shows the classic genetic flow of a general niche-based
GA. That is, when incorporated in the GA, the proposed niche
method (TC) is inserted into the flow as the replacement operator
to generate a new parent population before a new generation is
executed.

III. COMPARATIVE STUDY SOLUTIONS FOR MULTIMODAL

BENCHMARK FUNCTIONS

Multimodal optimization problems have been intensively stud-
ied in the literature (e.g., [5]–[12], [37]). Although niche methods
were originally designed for use in combination with GAs, some
studies have applied them in other evolutionary algorithms (EAs).
Examples includedifferential evolution (DE) [38] series containing
the crowding DE (CDE) [39], the sharing DE (SDE) [39], and the
species-based (SBDE)DE [40]. Notably, the CDEmethod is also a
parameter-free approach. Its extension of DE with a crowding
scheme enables it to track and maintain multiple optima. Further-
more, some hybrid approaches have also extended EAs by includ-
ing local search methods (e.g., gradient-descent search [41]) or the

Fig. 1. Flowchart of a general niche-based genetic algorithm. The th parent set is
denoted by , and the th offspring set is denoted by .
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locality principle [42] for solving multimodal optimization pro-
blems. However, these hybrid approaches usually include new
parameters to cooperate with the locality mechanisms (for a
detailed review, see [41]). Additionally, some studies [e.g., particle
swarm optimization (PSO)-based [43] approaches] have applied
self-tuning techniques automatically adjusting specific parameters
during the evolutionary loops [11], [44]. Even though these
approaches may still need to design customized constants, for
example, the precision in distance [44], these constants can be
properly chosen in most practical applications. These self-tuning
approaches thus approximate the parameter-free paradigm. Our
study also compares convergence in various parameter-free and
self-tuning evolutionary methods for solving multimodal optimi-
zation problems.

The hardware and software specifications for the development
and execution environment in the experiments were an Intel P4
3.2GCPU(single-core)with1Gmemory,XPSP2OS, andVisual
C++ 6.0 compiler. For each benchmark problem, optimization
results were obtained for each crowding method using the same
call numbers and the same genetic operators, including selection,
crossover, and mutation. The customized genetic parameters for
all test functionswere set as follows: population size 50, offspring
size 40, crossover rate 1.0, and mutation rate 0.05. The call
numbers in different dimensional problemswere set as suggested
in the literature. In the sections, the comparison resultswere listed
in tables for 100 independent runs of each method. Some poor
solutions (larger than 1000) were indicated by dashes, and best
solutions were indicated by bold type. Furthermore, a minimum
value lower than 0.000001 was recorded as 0.

A. Genetic Operators and Parameters

The genetic operators applied in our experiments can be
summarized as follows.

1) Selection and Constraint Handling: Tournament selection
with size 2 is used in all experiments. A binary tournament with
the following constraint domination relation developed by Deb
[45] is used to handle constraints in the evolutionary schema: for
two chromosomes, and , dominates if the following
conditions are satisfied:

1) is feasible, but is infeasible;
2) both and are infeasible, but has smaller constraint

value;
3) both and are feasible, but has better fitness.
2) Crossover and Mutation: Here, a one-cut-point (1X)

crossover operator is integrated with an arithmetical operator.
The proposed method generates new offspring in the following
steps: randomly choose two parents, select one cut-point, swap
the genes before or after the cut-point for probability, and
compute the linear combination of the gene at the cut-point.
For example, the selected parents are specified as

and . Suppose the cut-point is . The
probabilistically generated offspring are

where , , and .
To increase diversity, both interpolation and extrapolationmethods
are used to obtain the linear combinations used in the crossover.

Mutation is performed by randomly selecting two genes and
then normalizing and swapping them.

B. Numerical Benchmark Functions

To evaluate its solution capability, the proposed TCGA is
compared with different methods using a set of benchmark
functions.

1) Locating Multiple Loci: The first experiment evaluated the
capability to locate optima in the solution space of the Shubert
function, which is specified as follows:

For the specified range, which includes nine optima, Fig. 2
shows the population distribution after several loops are
executed. This figure shows that only the NC, CC, and TC
methods can locate all optima. Thus, the DC method is a
relatively unsuitable solver for exploring solution multiplicity
in multimodal problems.

Fig. 2. Results obtained by niche GAs for Shubert function. The red circles
indicate the locations of the optima, and the black asterisks indicate the locations
of the population members. (a) Initialized population. (b) Population of 300th
generation.

TABLE I
BENCHMARK FUNCTION LIST
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2) Solving Numerical Benchmark Functions: In many
engineering applications, the computational cost of objective
functions ismuch higher than that of niche operations. Therefore,
the efficiency comparison of the studied methods was performed
using the same number of fitness function calls in each method.
Table I shows the studied benchmark functions containing the
equations, the dimensions of input parameters, and the
initialization and domain ranges.

In this table, the Sphere and Rosenbrock functions are unim-
odal, and the other four functions are multimodal. The Sphere
function is a simple, smooth, and convex function. The global
optima of the Rosenbrock function are within a very narrow, flat,
parabola-shaped valley. Converging to the global minimum is
very difficult when the parameter dimension is high. The Ras-
trigin function is a very difficult problem because of its numerous
local minima. In the Griewank function, local minima increase
exponentially as the number of dimensions increases. The
Ackley function also has many local minima but only one global
minimum. The Schaffer is a two-dimension function with many
circular valleys surrounding the global minimum. In these diffi-
cult search spaces with numerous local optima, good optimiza-
tion performance cannot be ensured if the proposed methods
cannot explore and preserve multiple stable niches to assist the
algorithms in escaping from the local optima.

In the literature, these functions arewidely used to characterize
optimization algorithms. The parameters were set according to
relevant works reported in the literature (see [11] and [12]).

For these benchmark functions, Table II compares the solu-
tions obtained by different crowding methods implemented by
the authors. The cells show the mean minimum value and the
standard deviation after 100 independent runs.

Comparisons of the results in Table II show that compared
with all other crowding methods, the solution quality of the
proposed TCGA is superior or at least comparable. However,
when compared with the DC method, although the NC method
obtains superior solutions in several test instances, it gives an
inferior solution to the DC method for test function f6. From the
above comparison, obtaining a solution clearly superior to those
obtained by other solvers is extremely challenging.

The experimental results clearly show that the proposedmethod
obtains the best solutions when used to explore global optima in
different solution landscapes. However, regardless of the solution
quality, the comparisons in Table II(b) show that DC is the fastest
method followed by, in order of speed, NC, TC, and CC.

However, since the criterion for the performance comparisons
is the same fitness call number, the main performance gaps are
overheads except for the fitness evaluations. In the studied
crowding algorithms, suppose the parent number is and the
offspring number is . The DC method performs a competence
tournament between two randomly selected parents for each
offspring; hence, its complexity is . The NCmethod must
search the closest parent for each offspring; hence, it is a
algorithm; in theworst case, the TCmethodmust search the parent
population twice for each offspring in order to find the closest
parent and the poorest parent at the specified distance from the
(estimated) niche range; hence, it is a algorithm. The
CCmethod involves more steps. It first finds the tree root (closest
parent) and makes the tree for each offspring. The
algorithm in this part reserves simple trees. It then explores
the tree center and radius by estimating the tree members. In the
worst case, this part is a algorithm. Finally, it sorts the
tree centers and inserts and compares each tree
center into the new parent pool one by one

; to sum up, the CC is a
algorithm. In terms of complexity, different

algorithms shown in Table II(b) have reasonable time costs.
However, the fitness evaluations inmany practical evolutionary

applications are very time-consuming (compared with other ge-
netic operators). For example, the iterative design case in this paper
requires approximately 546 s in 10 000 generations but the genetic
operators (excluding fitness calls) take approximately 6.6 s. If the
niche operator is replaced by another, the overall execution time
improves byonly 1–3 s (i.e., less than 1%) and the accuracymaybe
sacrificed. The overhead of the genetic operators is not a major
consideration because of their relatively short execution time. For
most practical applications, the additional execution time is ac-
ceptable if the solutions are sufficiently accurate.

3) Comparison With Other Evolutionary Computation
Methods: The same benchmark functions were then used to
compare solution capability with that in a set of evolutionary
computation methods, including DE [38], PSO [43], CDE [39],
self-organizing hierarchical particle swarm optimizer with

TABLE II
PERFORMANCE COMPARISON OF CROWDING GA METHODS IN TERMS OF

SIX BENCHMARK FUNCTIONS. (A) CAPABILITY TO EXPLORE GLOBAL OPTIMA.
(B) EXECUTION TIME OF EACH INDEPENDENT RUN
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time-varying acceleration coefficients (HPSO-TVAC) [11],
gregarious particle swarm optimizer (GPSO) [44], affine shaker
(AS) [46], and synchronous bacterial foraging optimization
(SBFO) [12]. These methods are either the original versions (in
this case, DE, PSO, and AS) or the extended versions, which are
parameter-free or have self-tuning parameters. In addition to the
CDE implementedby the authors, the results of theother algorithms
are obtained directly from works by [11], [12], and [44].

Table III shows the computation results obtained by these
methods for all test functions under the same execution criteria.
Again, the solution quality of the proposed TCGA is superior or
at least comparable.

4) Comparison With Global Simplex Methods: Earlier, [47]
proposed a Globalized Bounded Nelder–Mead (GBNM)
algorithm for solving engineering multimodal problems. In
the GBNM method, globalization is achieved by probabilistic
restart in which the spatial probability of starting a local search is
determined by an improved Nelder–Mead (simplex) algorithm.
In [48], the probability density schema used in the GBNM
method was replaced with a Variable Variance Probability
(VVP). The resulting VVPNM method obtained better
performance and solution quality compared with the GBNM
method. To realize global capability, theVPPNMmethod is used
to solve the benchmark functions in Table I. Table IV shows the
comparison results for the VPPNMmethod and the proposed TC
method, which revealed that the proposed TCGA method
outperforms the VPPNM method in all test instances and that
when the number of dimensions reaches 20 or above, the
efficiency of the VPPNM method in solving the benchmark
problems substantially decreases.

5) Comparison of Different Crossover Patterns: This study
compared the effects of three different crossover patterns: one-
cut-point (1X), two-cut-point (2X), and uniform (U). Except for
their mating patterns, the 2X and uniform crossovers are similar
to the 1X crossover. Similar to the definitions of (1) and (2), the
2X crossover probabilistically generates two offspring for two
selected parents and

For the same parents, the uniform crossover generates

The relationship between and is defined by (1).
TableV shows the computation results obtained by the studied

crowdingmethods for different crossovers where each combined
method is designated by crowding method-crossover pattern.
The computation results show that TC-1X and TC-2X dominate
TC-U in all test instances, but TC-1X and TC-2X cannot
dominate each other. That is, the uniform-based crossover is
less suitable for the proposed TC crowding,which is also the case
in the NC and DC methods. However, when combined with 1X
and 2X crossovers, the TC method is superior or at least
comparable in all test instances compared with the crowding
methods. The TC method also obtains superior or at least very
close results in all test instanceswhen combinedwith the uniform
crossovers. Generally, comparedwith the crowdingmethods, the
proposed TC method generates superior or at least very close
results when combined with various crossovers.

Furthermore, for functions in which the number of dimensions
is high ( or 60), the TC-1X method dominates all others
despite the crossover patterns.

IV. PERFORMANCE OF TCGA IN SOLVING JOINT-SPACE
INVERSE PROBLEMS

Since the proposed TC method does not need additional
parameters, use of the TCGA is identical to that of the simple
GA. To verify its use in industrial applications, the proposed
TCGA was used to solve joint-space inverse problems in two
manufacturing robots, including an inverse problem in an SLR
and the design problem of collision-free six-bar robotic hands
with a planar linkage structure.

A. Joint-Space Inverse Problems in SLRs

In SLRs, a set of links is connected by various revolute or
prismatic joints [49]. By assigning coordinate frames to each link
of an SLR, joint motion can be analyzed and obtained through a
coordinate transformation. The Denavit–Hartenberg (D–H)

TABLE III
PERFORMANCE COMPARISON OF VARIOUS EVOLUTIONARY COMPUTATION METHODS

IN TERMS OF SIX BENCHMARK FUNCTIONS

aThe minimal value of the specified Schaffer function ( ) should be 0.002456.

TABLE IV
COMPARISON OF THE TCGA METHOD AND THE VPPNM METHOD
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convention is typically used to select transformations in robot
links [49]. In the D–H convention, each transformation between
links and is represented as a composite homoge-
neous matrix . The matrix is a product of four basic
transformations typically designated link length, link skew
(twist) angle, link offset, and joint angle ( , , , and ,
respectively). Using the chain product of successive coordinate
transforms, the homogenous matrix represents the forward
(kinematic) transformof the th coordinate systemwith respect to
the base coordinate system. For the end-effector of a robot with
the th joint variable, the position relative to the base coordinate
system can be obtained from the last column of the transform
matrix, and the orientation can be converted from the first three
columns.

1) Optimal Manipulation Problem in SLRs: Although
industrial robots generally operate in the joint-variable space,
manipulated objects are expressed in the world coordinate
system. To reach an object, inverse kinematic solutions are
needed to control the position and orientation of the end
effectors. However, when operating SLRs, the position errors
are accumulated and nonlinearly amplified from link to link [49].

That is, a small difference in joint values may have a large impact
on the positioning task of an end-effector. Therefore, sufficiently
accurate values are essential when setting joint angles in robotic
manipulation applications [1], [50]. As in previous evolutionary
approaches [2], this study optimized a general position-error goal
function that obtains inverse kinematic solutions for SLRs by
including the above forward kinematics in the optimization
process. For an industrial manufacturing robot with joints
with at least three intersecting axes, the DOF can be reduced to
“ ” by decoupling the wrist position solution from the
variables used to represent hand joint orientation. Therefore,
this and previous works find the optimal solution for the inverse
problem mainly by improving the capability to locate joints 1 to

. This problem is formulated as follows:

where is the expected locating position of the ( )th joint
and where is the Euclidean norm function, is the position
after completing the evaluation of the coordinate transform

TABLE V
PERFORMANCE COMPARISON OF CROWDING GA METHODS WITH DIFFERENT CROSSOVERS
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function according to the regular D–H formulation,
and , are the lower and upper bounds, respectively, of the
th joint value.
2) Experiments and Comparative Results: The same

manipulation problems studied in Kalra et al. [2] were used
for experimental evaluation of solution performance in a GA
embedded with the sharing function method in two different
SLRs, a PUMA 560 and a SCARA. Figs. 3 and 4 show the draft
structures and theD–Hconvention parameters for the two robots.

The experiment compared the results obtained by different
approaches when using the same genetic parameters except for
the niche mechanisms. In terms of chromosome representation,
the proposed TCGAmethod solved the optimal inverse problem
by including the position-error objective in (4) in the fitness
evaluation. Figs. 3 and 4 show that, because of the variables in the
D–H forms, the chromosomes are encoded to contain two and
three real-coded genes in each of the two robots. That is, the gene
number is equal to the number of variables in the D–H forms.

For a fair comparison, the same genetic operators used inKalra
et al. [2] were applied, including tournament selection, simulated
binary crossover (SBX) crossover [51], and mutation. Mutation
was formulated as the following equation:

where is the mutation of variable , , and are the upper
and lower bounds, respectively, and is a perturbance factor
derived as described in Deb and Goyal [52]. This study also
applied the same manufacturing points used in Kalra et al. [2].

As in previousworks, population size and call numberwere set
to 80 and 7200 in the SCARA case and to 150 and 40 500 in the
PUMA case, respectively. Tables VI and VII show the experi-
mental results, which confirm that the proposed TCGA method
accurately located all configurations, and its position location
accuracy was much higher than methods reported in previous
works within the same number of fitness function calls.

B. Inverse Problems for Six-Bar Robotic Transferring Hands

The following problems were motivated by the need for a
practical manufacturing system (http://www.techbasecorp.com/)
in which a six-bar robotic transferring hand can be combined with

other equipment to perform a transferring task of liquid metal.
When such a system is operated in a practical industrial envi-
ronment, related equipment located in the manufacturing area
may become obstacles. Fig. 5 shows the real-world manufactur-
ing environment and a conceptualization of the six-bar structure.
A manufacturing curve is also given for the example of an
essential equipment item (here, a boiler) that becomes an
obstacle.

1) Iterative Design Method: The classic design problem is to
arrange several precise-points such that the coupler can be guided
to avoid collisions with obstacles. This study applies a collision-
free designmethod [22] that formulates the positions of obstacles
and can evolutionarily explore the design solutions. Fig. 6
compares the performance of the two methods. Fig. 6(a)
shows that the precise-point method is clearly inadequate
because it does not include all solutions obtained by the
collision-free design method shown in Fig. 6(b). The diagram
also shows that the collision-free design problem is multimodal
and highly constrained.

In the previous work, the authors solved the collision-free
design problem by multiobjective solution approach, in which
the objectives must be revealed in the initial stage. The design
approach proposed here, however, is applicable if some objec-
tives and constraints must be explored through iterative discus-
sion and analysis, i.e., if only the problem itself must be specified
in the initial stage. The proposed TCGA method is then used in
subsequent stages to solve solution multiplicity under several
progressively strict design rules.

2) Iterative Design Flow: For the structural design problem, a
draft design [see example in Fig. 5(b)] is conceptualized to
include the loading and injecting positions in the basic
structure. When the structure operates, input angle changes
from to while the end point of the last bar changes from

to . The structure contains two pivot points and several
linkage bars. The constant pivot point is directly set at the
origin of the coordinate system, but another pivot point and the
bar lengths denoted as a set

are reserved as design variables.
The optimization problem for the design problem can be

formulated as follows:

where , is a

customized constant, and is a function for computing the
position of the end point at the specified angle, which can be
derived by the kinematic equations applied in earlier studies of
four linkage bars [19], and is a function for computing the
collision values (for the derivation steps, see [22]). According to
the kinematical characteristics of planar linkages, function
can be derived and entered into the equations by using only
variables , , and . Therefore, variables , , and BR are
encoded into chromosome genes. Since pivot point contains
two components and , and set BR contains seven compo-
nents, the chromosome contains ten real-coded genes. This study
also applies the genetic operators specified in Section III-A.

Fig. 3. SCARAB and its D–H form for the first two joints.

Fig. 4. PUMA560 and its D–H form for the first three joints.
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When the TCGA method is used to explore the solutions,
Table VIII lists the customized genetic parameters obtained in the
designphase, andTable IX lists all solutions explored in the loops.
Based on these solutions, Fig. 7(b)–(d) shows the examples of
coupling curves for several structures. The designer can analyze
and refine the first design by adding requirements and rules to
obtain improved solutions in the subsequent design phase. For
example, in the studied system, the practical controller must
ensure that the liquid surface is parallel to the horizon during the

Fig. 5. Real-world manufacturing environment where the loading position is
and the injecting position is . (a) Real-world manufacturing environment.
(b) Conceptual design under collision-free requirements.

Fig. 6. Comparison of results obtained by two different design methods.
(a) Results obtained by classic precise-point method. (b) Results obtained by
collision-free design method.

TABLE VI
COMPARISON OF KALRA ET AL. [2] AND THIS WORK IN TERMS OF SOLUTION PERFORMANCE IN SCARAB JOINT-SPACE INVERSE PROBLEM

TABLE VII
COMPARISON OF KALRA ET AL. [2] AND THIS WORK IN TERMS OF SOLUTION PERFORMANCE FOR PUMA 560 JOINT-SPACE INVERSE PROBLEM

TABLE VIII
PARAMETERS OF DESIGN PROBLEM OF ROBOTIC TRANSFERRING HAND. (A) SPATIAL

AND GA PARAMETERS. (B) PARAMETERS OF DESIGN PROBLEM
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transfer process. Therefore, the designers in the manufacturing
company must maintain the vertical orientation of the initial
loading motion (here, the loading is performed in liquid) in order
to decrease the swing angle and to simplify the controller.

Table X(a) shows the additional customized parameters in-
cluded in the final design requirements. Table X(b) lists all
solutions explored in the final case, and Fig. 8(b)–(d) shows
examples of structures and coupling curves decoded from some
solutions.

The results show that the proposed iterative design first
explores multiple diverse solutions that satisfy the collision-free
constraints. The design framework then refines the design

requirements by progressively adding acceleration value limita-
tions and (initially) vertical loading requirements. Because of the
multi-loci locating capabilities of the proposed TCGA, the
conceptual design progressively improves and increasingly
comprehensive design cases can be considered.

Furthermore, in our empirical study, the multiobjective meth-
od should take about 100 000 generations to explore the Pareto
front in the design problem, whereas the TCGA can explore
the expected partial Pareto front in about 10 000 generations.
Although this reveals the potential time savings of a single
objective scheme, the proposed approach still requires additional
(iterative) design time to complete the task.

TABLE IX
SOLUTIONS EXPLORED IN THE FIRST DESIGN PHASE

Fig. 7. Coupling curves for initial solutions: (a) All solutions, (b) Case #1,
(c) Case #2, and (d) Case #3.

Fig. 8. Coupling curves for final solutions obtained by iterative design method.
The rectangular areas indicate the bounds of the initial loading operation. (a) All
solutions, (b) Case #1, (c) Case #2, and (d) Case #3.

TABLE X
ADDITIONAL PARAMETERS AND THE SOLUTIONS EXPLORED IN FINAL DESIGN PHASE.

(A) ADDITIONAL PARAMETERS. (B) SOLUTIONS EXPLORED IN THE FINAL PHASE

aDuring laboratory testing, was operated at a constant speed to verify the relative
position acceleration of point F.
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V. CONCLUSION

This work developed a new TC NC method of solving
numerical multimodal optimization problems. Since the pro-
posed algorithm does not require prior knowledge of the solution
space to assist the crowding mechanism, the proposed TCGA is
suitable for solving engineering problems in which the solution
space is intractable.

The effectiveness and efficiency of the proposed TCGA were
verified using a set of numerical benchmark functions, and the
joint-space inverse problem in SLRs was used to compare
solution performance between the TCGA and other methods.
The experimental results show that the proposed TCGA obtains
better solutions within the same number of evolutionary function
calls. Another experimental application of the TCGA for solving
an iterative collision-free design problem involving a six-bar
robotic transferring hand further confirmed that, by effectively
and progressively exploring diverse solutions, the TCGA can
provide designers with a wide selection of solutions.
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