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Conditional Weighted Linear Fitting for
2D-LiDAR-Mapping of Indoor SLAM
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José Alberto Benítez-Andrades , Francisco Carro-De-Lorenzo , and Carmen Benavides

Abstract—The ability to map an unknown environment is
a fundamental milestone for autonomous robotic vehicles.
Solutions in this field must combine efficiency, accuracy,
and precision. We propose a novel methodology for map
feature extraction in indoor environments. The mathemat-
ical model and its implementation are designed to oper-
ate with 2-D light detection and ranging (LiDAR) measure-
ments. Map parameters and associated uncertainty levels
are determined through bivariate linear regression. The fi-
nal step is experimental validation, using a low-cost com-
mercial LiDAR sensor. The main contributions of the pro-
posed methodology lie in the domains of computational
efficiency and uncertainty. In addition, the results prove the
ability of our methodology to handle large volumes of data
while maintaining restrained growth in computational time.
This outcome suggests considerable potential for real-time
applications with limited hardware resources. A second
methodology, extracted from the current state of the art, is
used in parallel for benchmarking purposes.

Index Terms—Bivariate linear regression mapping, com-
putational efficiency, feature extraction, light detection and
ranging (LiDAR), simultaneous localization and mapping
(SLAM).
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I. INTRODUCTION

AUTONOMOUS robotic systems in industrial, civil, and
military applications are experiencing a fast-paced evo-

lution in their information acquisition capabilities. They are
increasingly required to perform repetitive or dangerous tasks
with a substantial degree of autonomy. Such paradigm requires
many process subsystems, including autonomous mapping, po-
sitioning, and navigation in unknown and, sometimes, hostile
environments.

In this context, simultaneous localization and mapping
(SLAM) [1] plays an important role. Robotic elements are
usually equipped with a large number of sensors. These must
provide the highest possible level of environment awareness.
Sensor information allows the robot to map the environment
while positioning itself and navigating in it. The objective is
to attain the least possible erratic driving, thus evolving toward
greater autonomy of the robotic elements.

Light detection and ranging (LiDAR) sensors [2] transmit
coherent light signals in the near-infrared spectrum [3]. They
perform triangulation or time-of-flight (TOF) measurements of
the reflected signal [4]. The wavelength in the visible spec-
trum surroundings and the use of coherent signals allow higher
resolutions than any other ecometric, radioelectric, or acoustic
systems [5], [6]. This technology can replace or coexist with
other systems, such as global positioning system—a system of
limited use in indoor environments—LiDAR odometry [7], [8],
inertial systems [9], or conventional cameras and radar [2], [3].

These sensors can be used in the mapping stage. Mapping
an environment requires the identification of real references,
which can be rigorously included in the representation. Accu-
racy in a representation implies scaling and dimensioning. This
is achieved through the reduction of uncertainties, which are
heavily linked to the quality with which the real measurements
have been obtained and processed. Measurements are obtained
by instruments of known accuracy. The uncertainty of the mea-
suring instrument and the processing approach is transferred to
the map in a process of uncertainty propagation. The resulting
map uncertainty levels can be reduced by obtaining redundant
measurements from different positions. However, this leads to
an increase in the complexity of the process in terms of time,
memory and computational cost. In a robotic vehicle, all of
these are scarce. Real-time processing, weight, size, and power
consumption, among others, impose a balance between mapping
resources and the quality of the result.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0003-2974-7426
https://orcid.org/0000-0001-6296-9632
https://orcid.org/0000-0001-6510-479X
https://orcid.org/0000-0002-4450-349X
https://orcid.org/0000-0002-0485-6987
https://orcid.org/0000-0002-6514-6858
mailto:nprif@unileon.es
mailto:sfernb03@estudiantes.unileon.es
mailto:100505928@alumnos.uc3m.es
mailto:jbena@unileon.es
mailto:carmen.benavides@unileon.es
mailto:fcarro@tresca.es
https://doi.org/10.1109/TII.2024.3384626


2 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Real-time mapping seeks to reduce the cartographic repre-
sentation to a plane with geometric primitives that simplify
reality. The amount of data involved in the mapping stage can
be extremely high. Real-time applications require a reduction
of its volume. One of the proposed solutions is feature-based
mapping, which is very useful in indoor environments where
features can be observed from different positions over large areas
and are repeated with a certain frequency. These keypoints are
usually symbolized by straight sections, curved sections, and
their intersections [10]. Typically, keypoints in the environment
are detected and then defined by their characteristic parameters
and uncertainties [11]. This idealization of the real environment
reduces raw data to a few characteristic points of the environment
that define the mapped area as closely as possible. This stage is
crucial for the subsequent positioning of the robotic element.

This article describes a novel methodology, conditional
weighted linear fitting (CWLF), for feature extraction in in-
door environments. We propose a rectification of the profile
by fitting it to linear segments using conditional regression. A
bivariate distribution-based model is introduced to characterize
the uncertainty of raw data. The uncertainty of each sensor
point is propagated to the intersections of the obtained segments
(corners). Eventually, these intersections are characterized by
their position and their uncertainty matrix, and constitute the
characteristic points of the mapped environment.

The model is validated using a commercial 2D-LiDAR sensor.
The experimental results demonstrate increased computational
efficiency compared to traditional SLAM methods, coupled with
higher levels of accuracy. Consequently, the main contribution
of this approach is to achieve higher accuracy at reduced com-
putational cost.

The rest of this article is organized as follows. In
Section II, a revision of related work is presented. Section III
introduces the measurement error mathematical model,
from which measurement weighting factors are derived. In
Section IV, CWLF methodology is developed in analogy with
another classical feature extraction method, for comparison pur-
poses. Section V contains the results of the 2D-LiDAR-mapping
as well as the comparative analysis of both methodologies.
Finally, Section VI concludes this article.

II. RELATED WORK

Characterization of an indoor profile requires the unambigu-
ous identification of recognisable reference points. This function
is efficiently fulfilled by corners. These keypoints can be defined
as intersections of line segments. The natural procedure for
their characterization starts with the identification of the points
corresponding to the segments of a polygonal contour, followed
by the determination of their intersections.

Nyugen et al. [5] analyzed the different segmentation methods
available for the first step of the process. Siadat et al. [12] proceed
with a similar revision. From the suggested alternatives, iterative
end point fit (IEPF) is our choice for segmentation purposes.

Several authors discuss on the extraction of line parameters
from segmented data. Arras and Siegwart [13] define a line
using its slope and distance to the origin. These parameters

are directly calculated in polar coordinates, given the natural
translation of LiDAR measurements from a fixed station to this
environment. Vandorpe et al. [14] suggested the characterization
of the line using its slope and intersection, obtained through
linear regression in Cartesian coordinates. The process is per-
formed in both axes, so as to avoid tangent numerical overflows
in the vicinity of π/2. Some authors, such as Zhi-yu et al. [15]
or Premebida and Nunes [16] follow this methodology. Siadat
et al. [12] identified the line using a normalized linear expression.
Cartesian coordinates of the line points are defined by a set
of coefficients, which in turn define the entire line. Parameter
uncertainties can be obtained through least squares fitting.

Some authors, such as Arras and Siegwart [13] or Diosi and
Kleeman [17] have suggested a hypothesis consisting on full
error accumulation in the radial direction. This implies that
angular error is discarded. Essentially, this approach is equal to
regression on the radial axis, neglecting angular uncertainty. Un-
fortunately, each scan of the sensor only provides one distance
(radial) value per point, and subsequent scans do not necessarily
reproduce the same set of points.

All the aforementioned approaches involve management of
large amounts of data, which are ultimately reduced to simple
environmental features. High-resolution technology provides
this volume of information with large robustness and precision
levels. However, this comes at the expense of slower processing
and more demanding storage requirements. In order to mitigate
these hindrances, we propose a novel methodology, CWLF,
which combines a higher computational efficiency in the map-
ping phase of SLAM with a decrease in the uncertainty of the
resulting maps.

In forthcoming sections, the efficiency of CWLF will be
tested against a reference. The methodology of choice is de-
veloped in [13] by Arras and Siegwart (from now on, cited
as Arras-Siegwart). For the purpose of homogenization in the
benchmarking process, we will complement certain aspects of
the original formulation following existing literature or our own
developments.

III. PRELIMINARY FUNDAMENTALS

The proposed instrumentation combines a 2D-LiDAR sensor
with a rotatory base featuring an encoder. Measurements are,
thus, characterized by two parameters: distance and angle. Both
parameters stem from an independent sensor, resulting in no
correlation between them.

Measurements have an associated uncertainty. This uncer-
tainty is zero-mean and defined by the standard deviations in
angle and distance, σθ and σρ, respectively, [17], [18], [19].
In this article, we will assume that the overall error, in terms
of radial and transverse distances, corresponds to a bivariate
probability distribution derived from two independent normal
distributions [20]. It can be expressed as

f(εθ, ερ) =
1

2πρσθσρ
e
−

1
2

⎡
⎣ ε2

θ

(ρσθ)2
+

ε2
ρ

σ2
ρ

⎤
⎦
. (1)
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The constant probability density contour is an ellipse defined
by the exponent of the previous expression

k =
ε2
θ

(ρσθ)2
+

ε2
ρ

σ2
ρ

(2)

where k is a constant.
In the methodology proposed in this work, CWLF, we perform

a rotation of the cross-radial system, considering the uncertainty
of each observed point after translation to the Cartesian plane.
In this new environment, the uncertainties are correlated. We
perform linear regression in both axes, considering the accumu-
lated uncertainty in a single axis, conditioned by its orthogonal
counterpart. The weighting factors for each measurement are
defined by the inverse of the conditioned uncertainty distribu-
tion. Similarly, the Arras-Siegwart methodology will be com-
plemented with weighting factors equal to the inverse of the
bivariate distribution. We will now expand on the formulation
of these factors.

A. Bivariate Distribution for Arras-Siegwart

The Arras-Siegwart methodology description in [13] includes
suggestions regarding weighting factor choice. However, none
of them are suitable for a low-cost 2D-LiDAR sensor implemen-
tation. To overcome this handicap, we make use of the inverse
of the covariance matrix determinant at each profile point as
weighting factor

ω =
1

σ2
ρ(ρσθ)2

. (3)

This choice is justified expressing the bivariate distribu-
tion [21] as

f(εθ, ερ) =
1

2π
√|Σ|e

−
1
2
[[εθ ερ]Σ

−1[εθ ερ]
T ]

(4)

|Σ| =
∣∣∣∣(ρσθ)

2 0
0 σ2

ρ

∣∣∣∣ = 1
π2

S2 (5)

where S = πρσθσρ represents the surface of the constant prob-
ability density contour for k = 1 and |Σ| represents the deter-
minant of covariance matrix Σ. In short, points with higher
dispersion (represented by the surface of the ellipse) have less
prevalence.

B. Bivariate Distribution for CWLF

CWLF defines lines by means of linear regression. This is an
error minimization mechanism in the ordinate axis, provided the
abscissa value can be considered true. As suggested by Vandorpe
et al. [14], regression is performed on the abscissa axis in the
vicinity of π/2. Inverting the role of the axes prevents numerical
overflows.

Assuming a point set (xi, yi), variance Vx and covariance
Cxy are zero if xi data is assumed as true. Unfortunately, this
is not the case, since, in our implementation, Cartesian data
is obtained from measurements expressed in the polar plane.
This coordinate change introduces correlation between both
dimensions and their uncertainties.

Fig. 1. This error ellipse represents the constant probability den-
sity contour of a single point of the environment, associated to laser
rangefinder uncertainties σρ and σθ .

As mentioned before, we assume zero-mean Gaussian dis-
tributions in the radial and transverse dimensions of the polar
representation. The joint uncertainty distribution corresponds to
a bell-shaped bivariate distribution. The horizontal section of this
function yields an elliptical constant probability density contour.
We can express this distribution in the Cartesian system [20] as

f(x, y) =
1

2πσxσy

√
1 − p2

e
−

λ

2(1 − p2) (6)

where λ =
(

x−x
σx

)2
+
(

y−y
σy

)2
− 2p(x−x)(y−y)

σxσy
and p is the

correlation factor, related to covariance by

Cxy = p · σx · σy. (7)

In the Cartesian system, the uncertainty variable is correlated
because elliptical contours are not in their primary axes (ρ, θ). In
Fig. 1, the ellipse lies on the polar system (ρ, θ)of the 2D-LiDAR
sensor. In order to be able to operate with each of the error
ellipses of the environment, a base change is performed to the
Cartesian system. Thus, all point uncertainties are referenced on
the same axis system. The Cartesian system forms an angle α
with the polar system. The error density function is defined by

f(εx, εy) =
1

2πσxσy

√
1 − p2

e
−

k

2(1 − p2) (8)

where k =

[(
εx
σx

)2

+

(
εy
σy

)2

− 2pεxεy
σxσy

]
.

and the covariance matrix is given by

CE =

[
Vx Cxy

Cxy Vy

]
= A · Cρθ ·AT (9)
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where Cρθ is the covariance of distance ρ and angle θ. The
sensitivity matrix A is now the change-of-basis matrix from the
radial-transversal system to the Cartesian system.

Fig. 1 shows an ellipse whose axes are on the radial-transverse
system, forming an angle α = π/2 − θ with the Cartesian
system. For the ith point, we may write

CE

=

[
σ2
ρ cos

2 θi + ρ2
iσ

2
θ sin

2 θi
(
σ2
ρ − ρ2

iσ
2
θ

)
sin θi cos θi(

σ2
ρ − ρ2

iσ
2
θ

)
sin θi cos θi σ2

ρ sin
2 θi + ρ2

iσ
2
θ cos

2 θi

]
.

(10)

Variance Vx is the quadratic addition of the deviations of both
ellipse axes on the horizontal axis. In analogy, variance Vy is
the quadratic addition of the deviations of both ellipse axes on
the vertical axis. Geometrical analysis indicates that the length
of the sides of the rectangle in which the ellipse is inscribed
is equal to twice the deviations (2σεx , 2σεy ) in the respective
parallel axes, as shown in Fig. 1.

where

σεx =
√

σ2
ρ cos

2 θi + (ρiσθ)2 sin2 θi (11a)

σεy =
√

σ2
ρ sin

2 θi + (ρiσθ)2 cos2 θi. (11b)

The assumption of no error in the abscissa values yields a
conditioned probability [20] for the error in the ordinate axis.
For εx = 0, we can express it as

f(εy|εx) = f(εx, εy)

f(εx)
=

1√
2πσy

√
1 − p2

e
−

ε2
y

2σ2
y(1 − p2)

(12)
where f(εx) is the marginal distribution for εx. The result is a
Gaussian distribution with a variance defined by

V c
εy

= σ2
y(1 − p2) = σ2

y −
(
Cxy

σx

)2

=
σ2
ρ(ρσθ)

2

Vx
(13)

where subindex c indicates its nature as conditioned variance. In
parallel, for the purpose of regression on the abscissa axis, we
consider conditioned probability f(εx|εy), given by

f(εx|εy) = f(εy, εx)

f(εy)
=

1√
2πσx

√
1 − p2

e
−

ε2
x

2σ2
x(1 − p2)

(14)
where f(εy) is the marginal distribution for εy . The result is,
again, a Gaussian distribution with a variance defined by

V c
εx

= σ2
x(1 − p2) = σ2

x −
(
Cxy

σy

)2

=
σ2
ρ(ρσθ)

2

Vy
. (15)

The inverses of V c
εy

and V c
εx

will be used as weighting factors in
their respective regression algorithms.

Constant probability contour representation allows for the
assessment of the balance between radial and transversal
uncertainties.

IV. METHODOLOGY

In this section, we discuss the parameter extraction from
geometric primitives in indoor environments. We also present
the procedure for propagating uncertainties from laser teleme-
ter data to the final characteristics using the two considered
methods. The weighting factor used for both methodologies
is the inverse of the dispersions corresponding to a bivariate
distribution.

A. Straight Line Characterization

1) Arras—Siegwart Method for Line Fitting: The parameters
defining the line in the reference method [13] are (r, α). These
values correspond to the polar parameters of the intersection
point of the straight line with its perpendicular passing through
the origin

r =

∑
wiρi cos (θi − α)∑

wi
(16)

tan(2α)

=

2∑
j wj

∑
i

∑
j wiρiwjρj sin θi cos θj −

∑
i wiρ

2
i sin 2θi

1∑
j wj

∑
i

∑
j wiρiwjρj cos(θj + θi)−

∑
i wiρ2

i cos 2θi
.

(17)

The distance and angle parameters considered in the method
described in [13] are not uncorrelated. Their covariance matrix
is given by CL

CL =

[
Vα Crα

Crα Vr

]
= Jrα ·

[
σ2
ρ Cρθ

Cρθ σ2
θ

]
· JT

rα (18)

where the covariance Cρθ between the radial and angular de-
viations is zero and Jrα is the Jacobian matrix of the partial
derivatives of line parameters (r, α) with respect to data sensor
(ρi, θi). The obtained covariance matrix is defined by

CL = σ2
ρ ·

∑
i

⎡⎢⎢⎢⎣
(
∂α̂

∂ρi

)2
∂α̂

∂ρi

∂r̂

∂ρi

∂α̂

∂ρi

∂r̂

∂ρi

(
∂r̂

∂ρi

)2

⎤⎥⎥⎥⎦

+ σ2
θ ·

∑
i

⎡⎢⎢⎢⎣
(
∂α̂

∂θi

)2
∂α̂

∂θi

∂r̂

∂θi

∂α̂

∂θi

∂r̂

∂θi

(
∂r̂

∂θi

)2

⎤⎥⎥⎥⎦ . (19)

2) CWLF for Line Fitting: CWLF performs a linear regres-
sion alternatively on the ordinate or abscissa axes, following
the criterion suggested by Vandorpe et al. [14]. The rationale
behind this axis choice is based on the density of the point set
alongN1 andN2. This solves the problems associated with linear
regression on a single axis

N1 = Rxxn−R2
x = n

∑
(xi − x)2 (20)

N2 = Ryyn−R2
y = n

∑
(yi − y)2 (21)
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where Rxx =
∑

i x
2
i , Ryy =

∑
i y

2
i , Rx =

∑
i xi y Ry =∑

i yi. If N1 is greater than N2, the line has a horizontal trend.
The point cloud given by the yi values accumulates around y.
Therefore, the optimal regression is y as function of x [14].

Once the uncertainty of the yi values is known, weighted
regression can be applied using expression

y = mx+ c. (22)

Each vertical error term is weighted using the inverse of its
uncertainty ωi

ωi =
1
V c
εy

=
cos2 θi
(ρiσθ)2

+
sin2 θi
σ2
ρ

. (23)

The quadratic value of the Euclidean norm ‖ε‖2 of the
weighted error vector can be expressed as∑

i

[
ωi(yi −mxi − c)2

]
=

∑
i

ωiε
2
i . (24)

From the previous expression, the slope m̂ and the intersection
ĉ are estimated

m̂ =

∑
ωixiyi − 1∑

ωi
(
∑

ωixi) (
∑

ωiyi)∑
ωix2

i −
1∑
ωi

(
∑

ωixi)2
(25)

ĉ =

∑
ωiyi∑
ωi

− m̂

∑
ωixi∑
ωi

. (26)

The uncertainties of m̂ and ĉ are not uncorrelated. To decouple
them, we perform a displacement of the axis to the centroid

ξi = xi − x (27)

where x is the weighted average of xi points.
Adding the displacement to (22) results in

y = m(x− x) + b. (28)

Now the expressions of the slope and the intersection estima-
tors result in

m̂ =

∑
ωiξiyi∑
ωiξ2

i

(29)

b̂ =

∑
ωiyi∑
ωi

. (30)

The variances of estimators m̂ and b̂ are now independent [20]
and can be obtained by propagating the uncertainties

Vm̂ =
∑(∑

ωiξi∑
ωiξ2

i

)2

· V c
εy

=
1∑
ωiξ2

i

(31)

Vb̂ =
∑(

ωi∑
ωi

)2

· V c
εy

=
1∑
ωi

. (32)

In the case of vertical lines, N2 is greater than N1. In this
case, the point set defined by the values of xi accumulates in
the vicinity of x. The value of

∑
ωiξ

2
i tends to zero and the

computational result is undefined. As advocated in [14], the
regression over the line can be done

x = sy + t. (33)

The weighting factor used here is ω′
i

ω′
i =

1
V c
εx

=
sin2 θi
(ρiσθ)2

+
cos2 θi
σ2
ρ

. (34)

Following the same approach as previously, the ordinate axis
will be displaced to the centroid. This prevents the dependence
between s and t and provides two independent parameters s and
h

x = s(y − y) + h. (35)

The variances Vŝ and Vĥ follow their counterparts Vm̂ and Vb̂,
respectively, replacing references to x by references to y.

B. Corner Extraction

The methods presented in this section focus on the extraction
of corners as the intersection of two consecutive straight lines.
The first one is based on the polar parameters of the lines, while
the second one uses the parameters extracted from the linear
regression.

1) Arras-Siegwart for Corner Extraction: The method pro-
posed in [13] considers the corner coordinates (xc, yc) from the
intersection of two straight sections, (rj , αj) and (rj+1, αj+1)

xc =
rj sin (αj+1)− rj+1 sin (αj)

sin (αj+1 − αj)
(36)

yc =
rj+1 cos (αj)− rj cos (αj+1)

sin (αj+1 − αj)
. (37)

The uncertainty propagation of the straight line parameters to
the corner [19] is reflected by the matrix Cc

Cc =

[
Vxc

Cxcyc

Cxcyc
Vyc

]
= Jc · Crjαjrj+1αj+1 · JT

c (38)

where Jc is the Jacobian matrix of the partial derivatives
of corner parameters (xc, yc) with respect to (rj , αj) and
(rj+1, αj+1)). The covariance matrix associated to the parame-
ters of both lines is given by Crjαjrj+1αj+1

Crjαjrj+1αj+1 =

⎡⎢⎢⎢⎣
Vrj Crjαj

0 0

Crjαj
Vαj

0 0

0 0 Vrj+1 Crj+1αj+1

0 0 Crj+1αj+1 Vαj+1

⎤⎥⎥⎥⎦
(39a)

Jc =

⎡⎢⎢⎣
∂xc

∂rj

∂xc

∂αj

∂xc

∂rj+1

∂xc

∂αj+1
∂yc
∂rj

∂yc
∂αj

∂yc
∂rj+1

∂yc
∂αj+1

⎤⎥⎥⎦ . (39b)

2) CWLF for Corner Extraction: Once the parameters of the
straight lines and their uncertainties have been obtained, the cor-
ners are calculated as the intersection point of two consecutive
lines. Depending on the type of regression used to define each
of the lines, different estimators are used. The three possible
alternatives are presented hereafter.
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Fig. 2. Indoor environments have been acquired with RPLiDAR S1 sensor. The red star corresponds to the laser rangefinder position. The
black data shows the mapped environment while corners are represented by blue circles. Relevant corners have been numbered according to the
clockwise direction of the data acquisition.

Case a) Both lines are derived from y = m(x− x) + b
regression

xc =
mj+1xj+1 −mjxj + bj − bj+1

mj+1 −mj
(40)

yc =
mjmj+1(xj+1 − xj) +mj+1bj −mjbj+1

mj+1 −mj
. (41)

The corner covariance matrix Cca, function of (mj , bj) and
(mj+1, bj+1) parameters, is given by

Cca =

[
Vxc

Cxcyc

Cxcyc
Vyc

]
= Jra · Cmjbjmj+1bj+1 · JT

ra (42)

where Jra is the Jacobian matrix of the partial derivatives
of corner parameters (xc, yc) with respect to (mj , bj) and
(mj+1, bj+1) and Cmjbjmj+1bj+1 is the diagonal matrix with
the variances associated to line parameters.

Case b) Both lines are derived from x = s(y − y) + h regres-
sion

xc =
sjsj+1(yj+1 − yj) + sj+1hj − sjhj+1

sj+1 − sj
(43)

yc =
sj+1yj+1 − sjyj + hj − hj+1

sj+1 − sj
. (44)

The covariance matrix Ccb for (xc, yc) point, function of
(sj , hj) and (sj+1, hj+1), is given by

Ccb =

[
Vxc

Cxcyc

Cxcyc
Vyc

]
= Jrb · Csjhjsj+1hj+1 · JT

rb (45)

where Jrb is the Jacobian matrix of corner parameters (xc, yc)
and Csjhjsj+1hj+1 is the diagonal matrix with the variances
associated to line parameters.

Case c) A straight line comes from x regression and another
from y regression

xc =
−msx+ sb− sy + h

1 −ms
(46)

yc =
−msy +mh−mx+ b

1 −ms
. (47)

The covariance matrixCcc for (xc, yc), function of (m, b) and
(s, h), is given by

Ccc =

[
Vxc

Cxcyc

Cxcyc
Vyc

]
= Jrc · Cmbsh · JT

rc (48)

where Jrc is the Jacobian matrix of corner parameters (xc, yc)
and Cmbsh is the diagonal matrix with the variances associated
to line parameters.

V. EXPERIMENTAL RESULTS

The algorithms proposed in Section IV, Arras-Siegwart and
CWLF, have been executed on a laptop computer equipped
with Intel Core i7-8565 U processor CPU and 8 GB RAM.
SLAMTEC RPLIDAR S1 laser rangefinder has been used for
extraction of raw data from the environments. This low-cost
device allows 360-degree laser scanning within a 40-m range and
5 cm of range uncertainty. Based on TOF principle, the sensor
captures distance and angle data approximately every 0.391◦.
The graphical representation of this data yields a polar plot of
the mapped profile, centered on the sensor (see Fig. 2). The
scanning frequency of the sensor is variable. The measurements
used in our experimentation phase were acquired at a rate of
10 Hz.

The LiDAR profile is segmented into straight sections in
order to extract the features that define the environment. As
we already mentioned, the IEPF method has been adopted for
this purpose [12]. It is a particular application of the classic Split
and Merge. The algorithm defines a line passing through the first
and last points of the obtained point cloud. The distance of each
point to the line is calculated. Should it exceed a certain threshold
value, the most distant point is defined as a breaking point. This
divides the data into two sets, in which the previous steps are
performed recursively. The process ends when no more breaking
points can be generated [12]. We have fixed the IEPF threshold
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TABLE I
CORNER UNCERTAINTIES OF ENVIRONMENT A IN MM: CWLF AND

ARRAS-SIEGWART

distance at 50 mm for our experiments. The fitting is done
according to Arras-Siegwart and CWLF methods, described in
Section IV.

Fig. 2 shows the indoor environments mapped with the RPLi-
DAR S1 laser rangefinder. These environments are characterized
by a large number of straight sections, obstacles, and hidden
areas that prevent the profiles from being fully visible. We
have tested the behavior of both methods in environments of
different dimensions by analyzing two profiles. The largest one,
which we have deemed environment A, is approximately 9 m
× 8 m in size. Environment B, which is comparatively smaller,
is 3.5 m × 6 m. In environments of this size, one laser sweep
yields approximately 1000 measurements. This amount of data
must be reduced in order to process and store it efficiently.
First, we apply IEPF segmentation method to split raw data into
straight sections. Afterwards, we estimate the parameters and the
uncertainties of each straight section. To this end, both feature
extraction methods (Arras-Siegwart and CWLF) are employed.
The final result is environment A being characterized by 23 real
corners and 36 straight sections, while environment B features
15 real corners and 18 straight sections, as shown in Fig. 2.

Both methodologies present qualitatively equivalent results
in terms of corners and straight sections. However, uncertainty
levels and computational times differ significantly. Evidence of
the former can be found in Tables I and II and Fig. 3. Save one
outlier in each environment, corner uncertainties obtained from
CWLF are more accurate than their Arras-Siegwart counterparts.
Regarding the latter, comparative computational efficiency be-
tween Arras-Siegwart and CWLF methods is analyzed hereafter
as a function of the number of measurements involved in the
calculations.

The corners selected for assessment are 20 (environment
A) and 4 (environment B). The first one is a nonorthogonal

TABLE II
CORNER UNCERTAINTIES OF ENVIRONMENT B IN MM: CWLF AND

ARRAS-SIEGWART

Fig. 3. CWLF and Arras-Siegwart computational times are plotted as
a function of the number of measurements employed for corner 20 (en-
vironment A) extraction. The red line reflects the computational cost of
the CWLF method with respect to the weighted Arras-Siegwart method.
Please note the logarithmic scale for the time axis is measured in μs.

corner, defined by a 130◦ angle, while 4 is an orthogonal
corner, very common in indoor environments. Fig. 3 further
expands on the computational efficiency difference for corner
20 of environment A. The behavior of the remaining corners,
in both environments, is analogous. The blue bars represent the
processing time required using Arras-Siegwart methodology;
the black bars represent the same magnitude using CWLF. The
red line shows the ratio between the two. Computational times
for CWLF are systematically lower, remaining in the order of
μs. In the case of Arras-Siegwart method, the order of ms is
reached when 90 or more measurements are involved.

Figs. 4 and 5 show a global comparison of methods, in terms
of computational times and uncertainties. For each method, the
two aforementioned corners have been studied at measurement
dataset sizes equal to 50 and 100. In Arras-Siegwart, the un-
certainty in both axes (σxc

, σyc
) increases with the distance of

the observed points to the intersection of the perpendicular from
the origin. This relation is not present in CWLF, resulting in
a reduction of uncertainty levels. This decrease corresponds to
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Fig. 4. Comparative graph of uncertainties and computational times of
Arras-Siegwart and CWLF for the extraction of corner 20 of environment
A. Both methods are benchmarked at 50 and 100 available measure-
ments. Please note the scale is logarithmic.

Fig. 5. Comparative graph of uncertainties and computational times of
Arras-Siegwart and CWLF for the extraction of corner 4 of environment
B. Both methods are benchmarked at 50 and 100 available measure-
ments. Please note the scale is logarithmic.

approximately 30% on the x-axis and 15% on the y-axis for
environment A, whereas in environment B the decrease is about
78% on the x-axis and 68% on the y-axis. Furthermore, the in-
verse relation between number of measurements and uncertainty
is easily verifiable.

The computational times associated to corner extraction in-
clude four computational steps: extraction of the straight lines
that define the corner, estimation of their uncertainties, extrac-
tion of the corner parameters, and estimation of their uncer-
tainties. The distribution for each method is shown in Figs. 4
and 5. The uncertainties represented correspond to σxc

and
σyc

, as introduced in Section IV, and the computational times,
separating the four steps necessary to obtain the corners and their
uncertainties. The main difference between both corners lies in
time allocation. The nonorthogonal corner 20 requires more time
than the orthogonal 4 for the extraction of corner parameters. On
the other hand, the Arras-Siegwart algorithm consumes 70%

of its computational time in calculating the line uncertainty,
whereas the CWLF algorithm spends 60% on the extraction of
line parameters. Overall, CWLF significantly reduces the feature
extraction times of a profile and the uncertainties associated with
its keypoints.

VI. CONCLUSION

In this article, we have presented a new LiDAR-based 2-D
mapping methodology. The outcome of this article revolves
around two major aspects: uncertainty and computational time.

The introduction of measurement weighting factors based
on a bivariate distribution has successfully led to uncertainty
levels in the order of those of the instrument. Considering the
same starting dataset, uncertainty is consistently reduced with
reference to similar SLAM methodologies.

The ability to perform regression on both coordinate axes
precludes the risk of numerical instabilities associated to ex-
treme geometries. Similarly, assuming correlation between ax-
ial uncertainties adds to the overall uncertainty realism of the
methodology.

The main contribution of CWLF resides in its capability to
manage large volumes of raw data without significantly increas-
ing computational times. This indirectly conditions the quality of
the resulting map: uncertainty levels become increasingly deter-
mined by sensor error, rather than by available resources. Indeed,
for a given computational timestep, CWLF can process a larger
number of measurements, thus featuring lower uncertainties.

Future lines of work have the potential to further increase the
efficiency of this methodology by reducing repetitive steps or
exploring specific computational implementations. For instance,
while the method successfully avoids numerical overflow in the
vicinity ofπ/2 by choosing the regression axis, it requires a prior
analysis of the point cloud density parameters. This limitation
will be addressed in future research by exploring an alternative
solution that does not require preanalysis.
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