
10488 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

Combining Compressed Sensing and Neural
Architecture Search for Sensor-Near

Vibration Diagnostics
Edoardo Ragusa , Member, IEEE, Federica Zonzini , Member, IEEE, Paolo Gastaldo , and Luca De

Marchi , Member, IEEE

Abstract—Compressed sensing (CS) for sensor-near vi-
bration diagnostics represents a suitable approach for the
design of network-efficient structural health monitoring
systems. This article presents a solution for vibration analy-
sis based on deep neural networks (DNNs) trained on com-
pressed data. The envisioned maintenance system con-
sists of a network of sensing nodes orchestrated by a very
constrained centralizing unit. The latter is equipped with
a microcontroller unit (MCU) that predicts the health state
using the aggregated information. As a major contribution,
the DNN architectures are generated automatically from the
data through a procedure inspired by hardware-aware (HW)
neural architecture search (NAS), called as HW-NAS-CS,
which is uniquely refined with additional constraints that
consider both the peculiarities of CS parameters and the
limitation of embedded devices. The proposed approach
has been validated using two real-world SHM datasets for
vibration damage identification and eventually deployed on
a low-end computing platform (the STM32L5 MCU). Re-
sults demonstrate that DNNs combined with adapted CS
schemes can attain classification scores always above 90%
even in case of very huge compression levels (higher than
64x): these performances significantly improve the ones
attained by state-of-the-art approaches in the field, with the
utmost advantage of being portable on embedded devices.

Index Terms—Compressed sensing (CS), neural archi-
tectural search (NAS), tiny convolutional neural networks
(CNNs), vibration-based diagnostics.

Manuscript received 1 June 2023; revised 30 October 2023 and 6
March 2024; accepted 17 April 2024. Date of publication 13 May 2024;
date of current version 5 August 2024. This work was supported in
part by PNRR—M4C2—Inv. 1.3, PE00000013 - “FAIR” project—Spoke
8 “Pervasive AI,” funded by the EU under the NextGeneration EU pro-
gramme. Paper no. TII-23-1977. (Edoardo Ragusa and Federica Zonzini
contributed equally to this work.) (Corresponding author: Edoardo Ra-
gusa.)

Edoardo Ragusa and Paolo Gastaldo are with the Department of
Electrical, Electronic, Telecommunications Engineering, and Naval Ar-
chitecture (DITEN), University of Genoa, 16126 Genova, Italy (e-mail:
edoardo.ragusa@unige.it; paolo.gastaldo@unige.it).

Federica Zonzini and Luca De Marchi are with the Department
of Electrical, Electronics, and Information Engineering (DEI) and Ad-
vanced Research Center on Electronic Systems (ARCES), University
of Bologna, 40126 Bologna, Italy (e-mail: federica.zonzini@unibo.it;
l.demarchi@unibo.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2024.3395648.

Digital Object Identifier 10.1109/TII.2024.3395648

I. INTRODUCTION

THE integrity condition of technical assets is constantly
jeopardized by aging, environmental, and/or man-made

hazards. As such, it is not surprising that building “resilient
infrastructure, promoting inclusive and sustainable industrial-
ization and fostering innovation” has been stated as one of the
sustainable development goals to be attained by 2030.1

Permanently installed structural health monitoring (SHM)
systems can provide a viable means in the pursuit of this ob-
jective, paving the way to the development of smart structures
[1], [2], i.e., facilities equipped with intelligent sensors capable
to perform advanced data analytics in a self-contained manner.
Intelligent-embedded systems can indeed revolutionize the field
thanks to their low-power and sensor-near functionalities, with
the promise of overcoming the limitations of current cloud-based
solutions in terms of costs and long-term performances. The
latter can be reached via ad hoc data management/processing
policies running on edge/extreme edge nodes, such as those
implementing data compression that is mandatory to handle the
potential data deluge problem [3].

To address the aforementioned challenge, this article presents
a solution based on smart sensing nodes placed on different
areas of the structure under analysis. These extreme edge sensors
collect, compress, and transmit structural measurements, which
are then forwarded to a low-end centralizing node featuring a
resource-constrained microcontroller unit (MCU). The latter is
in charge of data aggregation and damage identification directly
from compressed data. Accordingly, the goal is to maximize
the accuracy of the health assessment process while minimiz-
ing the amount of information transmitted over the monitoring
network. The transmission of data toward the aggregation unit
impacts, in fact, the network’s energy consumption [4]. Placing
the aggregation unit far from the sensors implies power-hungry
long-range communications, encouraging configurations where
the centralizing node is as close as possible to the sensing
devices. As a consequence, computing constraints similar to the
ones proper of sensing nodes hold for the aggregator that should
be hosted on energy-efficient and battery-supplied low-end com-
puting platforms. Eventually, this positively reduces the overall
cost of the system too.

1[Online]. Available: https://sdgs.un.org/goals

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more
information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5527-6325
https://orcid.org/0000-0002-2429-1469
https://orcid.org/0000-0002-5748-3942
https://orcid.org/0000-0003-0637-9472
mailto:edoardo.ragusa@unige.it
mailto:paolo.gastaldo@unige.it
mailto:federica.zonzini@unibo.it
mailto:l.demarchi@unibo.it
https://doi.org/10.1109/TII.2024.3395648
https://sdgs.un.org/goals

RAGUSA et al.: COMBINING CS AND NAS FOR SENSOR-NEAR VIBRATION DIAGNOSTICS 10489

Despite being highly desirable, there are still some limitations
hampering the full exploitation of data reduction algorithms
in SHM systems: these are mostly linked to the fact that all
the classification methods available to date strongly depend on
structural parameters, which can only be estimated once the
original, uncompressed time series are reconstructed. This is the
case of vibration-based monitoring, that is the typical inspection
methodology for structures in dynamic regime (e.g., mechani-
cal rotors, bridges, residential buildings, wind turbines, etc.),
where the structural status is assessed by extracting the so-called
modal parameters (e.g., natural frequencies) [5]. Nevertheless,
this modal-dependent approach inherently implies several draw-
backs, primarily linked to the following facts:

1) it introduces much longer computation time due to the
need of decompressing the acquired time-series, a proce-
dure that usually involves solving complex optimization
problems not apt for extreme edge deployment [6];

2) the compression rate should be kept low to ensure suffi-
cient quality in the reconstructed structural features.

Consequently, different alternatives capable of retrieving
health indicators directly in the compressed domain must be
developed to bypass these issues.

Deep neural networks (DNNs) could offer an optimal so-
lution for data mining from compressed coefficients, thanks
to their generalization and learning capabilities circumventing
the limitations of standard statistical approaches. The use of
DNNs has the potential to discriminate damaged from healthy
configurations [7] by learning the pattern hidden in the residual
coefficients even if the original time information is not fully pre-
served; in turn, higher compression rates could be attained. Nev-
ertheless, selecting the best-performing DNN model is a function
of the problem under analysis and requires advanced skills [8].
Tight constraints imposed by embedded devices further compli-
cate the design process. Unfortunately, it is impossible to set a
priori the best architecture. Currently, neural architecture search
(NAS) represents the most reliable solution to address this issue.
NAS automatizes the procedure of designing a DNN for a given
task, thus avoiding time-consuming and error-prone processes.

This article explores the interaction between compressed
sensing (CS) and DNNs, providing a novel CS-informed strat-
egy for DNN-driven vibration monitoring at the edge. The
approach is strengthened by a suitable NAS design procedure
that, when needed, automates the network definition using pre-
cious domain-specific information. In particular, the proposed
approach selects simultaneously the CS settings and the network
architecture, jointly optimizing the two most important sets of
parameters for the envisioned application.

Thereby, the main contribution of this work can be summa-
rized as follows.

1) We propose a novel approach to sensor-near vibration-
based SHM, demonstrating that vibration inspection can
be performed directly in the compressed domain. Hence,
it is possible to overcome the need to reconstruct time-
domain signal, as required by state-of-the-art CS-driven
methodologies.

2) To pursue the goal in 1), we resort to a DNN framework
built on convolutional neural networks (CNNs), which

requires CS-processed vibrations as input and returns a
binary classification (i.e., safe versus damaged structure)
as output.

3) We introduce a novel hardware-aware (HW)-NAS strat-
egy exploiting the properties of CS, called as HW-NAS-
CS, to select the most effective CNN solution for vibration
data processing at the edge. Note that, to the best of the
authors’ knowledge, this is the first time in which NAS is
used in conjunction with CS for SHM applications.

4) We thoroughly validate the performances of the devised
workflow on two well-known benchmarks for vibration
monitoring, reaching state-of-the-art classification scores
(i.e., compression level as high as 64x and classification
metrics always above 90%).

The rest of this article is organized as follows. The theoretical
background behind CS and NAS is outlined in Section II,
while Section III depicts an overview of the state-of-the-art.
In Section IV, the core of the novel HW-NAS-CS framework
is described, while its validation on two relevant SHM bridge
use cases can be found in Section V. Results are extensively
discussed in Section VI; and Finally, Section VII concludes this
article.

II. PRELIMINARIES

In this Section, basic concepts instrumental to the algorithmic
solutions adopted in this work are provided.

A. Compressed Sensing (CS)

CS is a compression strategy that relies on the assumption that
the information to be processed is sparse in a given representa-
tion domain [9]. This condition is typically valid for vibration
data, since the spectral profile is dominated by a reduced batch of
components located at specific frequencies [10]. Let us suppose
that most of the overall vibration energy is captured, once the
signal is projected in the Fourier domain, by the topmost k
spectral values: in this case, an N -long signal x is defined to
be k-sparse. Then, the CS theory states that the informative
content can be collapsed in a vector x̂ of dimensions M � N .
The latter can be obtained by selecting of a proper compression
matrix Φ ∈ RM×N , via a simple matrix-vector multiplication:
x̂ = Φx.

Despite its simple algebraic formulation, a critical step in CS
implementation is the selection of the optimal sensing matrix.
This operator can have a crucial impact on the quality of the
retrieved temporal information after completing the recovery
procedure. The reason is related to the lossy nature of CS, which
ensures accurate, but still not perfect, reconstruction upon the
satisfaction of tight constraints on the analytical properties of
the compression scheme. To this end, multiple strategies have
been proposed, which can be categorized into two main groups:
nonadaptive and adaptive methods [11]. The former aim at
designingΦ from a normal Gaussian distribution, and hence, are
also known as random compression (RND); the latter approach
the problem from a physics-informed perspective, meaning that
a priori information about the sparsity pattern of the signals is
exploited for better adaptation to the target scenario.

10490 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

B. Neural Architecture Search (NAS)

NAS is an optimization problem where an algorithm
sets the architecture of a DNN automatically using labeled
data [12], [13]. Given a search space A that sets the admissible
candidates and a dataset D, the goal is to find an architecture
a ∈ A that scores the lowest validation loss Lval when trained
using dataset D.

Beside A, dedicated search algorithms S are used to drive
the selection process, i.e., the approaches to the optimization
problem, since a complete exploration of A is computationally
impossible. To this end, the formulation of the optimization
problem, and the specific metrics used to evaluate the best archi-
tecture, also called evaluation criteria EC, are used to compare
different instances; eventually, they lead to the optimal model
among all the possible realizations of S .

For example, HW-NAS involves specifically designed op-
timization problems [12] that reflect the limitations imposed
by the target devices. HW-NAS can use specialized loss func-
tions L as evaluation criteria, or include additional constraints
ψ(a,HW) that model the requirements of a when deployed on
the hardware HW as follows:

min
a∈A

Lval(w
∗(a), a)

s.t. w∗(a) = argminwLtrain(w, a)

ψ(a,HW) < Thr (1)

where w is the set of weights optimized during the training
procedure and Thr are the thresholds that highlight the limitation
of the device and Ltrain is the training loss.

III. RELATED WORKS

A. Pattern Recognition From Compressed Data

Systematic methodologies capable of mining information
directly in the compressed domain are still an open field of
research. The literature accounts just a few attempts, which are
primarily built on conventional Eigen-based approaches com-
bined with residual thresholding mechanisms, either exploit-
ing high-order statistical metrics or low-level energy features.
Successful evidence of such methods is provided, for example,
in [14], in which authors performed anomaly identification by
tracking outliers in the magnitude of the total residual signal
energy yielded by projecting CS-processed data onto a lower
dimensional subspace. The motivation supporting this is that,
in a common subspace-based framework, the residual should
capture noise-related features, whereas the effect of anomalies
usually translates in a different distribution of the spectral prop-
erties of the signal, but keeping unaltered its overall power.
Therefore, a small variation in the principal subspace should
cause a corresponding change in the residual energy. This strong
assumption, however, should be verified case by case [15]. In
addition, residual thresholding mechanisms exhibit poor robust-
ness against noise and rounding effects.

A comprehensive selection of methods for pattern recognition
from compressed measurements is offered in [16] focusing on
both unsupervised and supervised solutions, and exploring the

potential of artificial intelligence (AI) strategies built on fully
connected neural networks. Despite reaching good prediction
capability, the results obtained in this study cannot be gen-
eralized because only one type of abnormalities was consid-
ered; moreover, performance of the detectors was tested on
numerically simulated data that cannot reproduce completely
the variability induced by real-field operational conditions. Al-
ternatively, the effectiveness of wavelet packet transform applied
on compressed signals was shown in [17], but on a different
application scenario related to through-wall human detection.

In SHM-oriented scenarios, there is a lack of practical evi-
dence about the applicability of the mentioned methodologies.
A CNN was applied in the context of a vision-based monitoring
dataset for the binary classification of defects from vibration
data, compressed in the form of discrete histograms [18]. The
main problem of this approach is due to the nature of the
processed time series, which require costly and high precision
vision sensors, incompatible with low cost installations. A re-
cent work [19] addressed damage identification using statistical
features of the compression coefficients for vibration data to
reduce communication bandwidth between sensing nodes and
the aggregation unit. This method led to smaller payloads at the
expense of a slight deterioration of the overall accuracy of the
system and the impossibility to reconstruct the original signals.

B. Tiny Deep Networks

The deployment of deep learning algorithms at the extreme
edge requires ad hoc optimization strategies [20], [21]. Cur-
rently, the state-of-the-art is based on software-hardware coop-
timization [22]. This brings the design strategies to a new level,
where resource-constrained nodes locally mine sophisticated
information [23]. The latest research trend uses NAS to au-
tomatically select the DNNs architecture [24]. The literature,
indeed, offers specialized search spaces [25] based on the target
application. The major limitation in the application of NAS is
the computational cost of the search procedure. Supernetworks
that contain all the possible architectures envisioned by a search
space [26], [27] represent a promising method. However, it can
prove suboptimal when compared with iterative strategies [12].

After the selection of the DNNs architecture, the deployment
on the embedded devices requires additional precautions [21].
Different devices do not necessarily achieve the same latencies
when implementing networks with the same number of Flops
and parameters [28] because they support different software
inference engines. ARM microprocessors, for example, ben-
efit from optimized libraries for inference [29], biasing the
performance of optimization techniques [30]. When hardware
resources fail to support optimization techniques, they can even
worsen the performance. For example, quantization can slow
down models run on MCUs if the instruction set fails to sup-
port this representation [31]. To address such challenges, the
MCUnet uses a unique optimization procedure for the selec-
tion of the architecture and the setup of the computing layer,
obtaining excellent scores [32], [33], [34]. Unfortunately, the
custom software layer makes it difficult to use and customize
the model [35].

RAGUSA et al.: COMBINING CS AND NAS FOR SENSOR-NEAR VIBRATION DIAGNOSTICS 10491

Fig. 1. Proposed framework for vibration-based damage identification
from compressed data.

The proposed approach differs from state-of-the-art solutions
as it includes CS parameters in the optimization problem; in turn,
this leads to an adaptive search space. Eventually, one can sig-
nificantly improve the tradeoff between the performance of the
generated networks and their computational cost by exploiting
the peculiarities of CS.

IV. PROPOSAL: JOINT DESIGN OF DNN AND SIGNAL

COMPRESSION

A. Monitoring Framework

This article targets the hierarchical monitoring system de-
picted in Fig. 1, in which several extreme edge sensors (i.e.,
sensing units) are divided into a few clusters, each of them
mastered by an edge unit featuring a low-end computing plat-
form built on an MCU. Even if, in principle, more powerful
computing capabilities could be allocated to the aggregator, a
resource-constrained platform has been selected to account for
worst-case inspection scenarios in which one of the extreme
edge nodes can act as a centralizing unit. This solution offers
the following two additional advantages:

1) low-cost, hence promoting large scale installations with
a minimal economic impact on the structural assessment
process;

2) ultralow-power consumption, thus reducing the power
budget and favoring prolonged sensor life cycle, which
is mandatory for long-term analysis.

Noteworthy, this network topology is preferable over purely
centralized and cloud-based schemes, since the latter can barely
deal with data flooding while suffering from poor scalability,
modularity, and security issues [36].

Let us suppose that every cluster includes Ns devices. In
this case, each centralizing unit receives W consecutive acqui-
sitions of CS-processed measurements x̂i(i=1,...,Ns) ∈ RM×W ,

which are globally aggregated in a tensor X̂ = [x̂1, . . . , ˆxNs
] ∈

RM×W×Ns before being passed to the DNN implementing struc-
tural health assessment. Accordingly,W consecutive messages,
each of them consisting of M compressed coefficients, are
transmitted from NS extreme edge sensors to the centralizing
unit. This corresponds to a data bandwidth, which isN/M times
lower with respect to compression-free scenarios.

While the clustering scheme is of paramount importance in
view of defining the best sensor arrangement which can meet
the quality of service in terms of electrical connectivity and
mechanical constraints, this aspect is expected to have limited
impact on the inference stage. Indeed, vibrations reflect the
macroscopic behavior of the target structure (or of its major
building blocks), whose dynamic response is uniquely deter-
mined by the geometrical and material properties, which are
common to all the measurement points. Coherently, in the most
simplistic scenario, the same DNN can be deployed on different
clusters. Even if doable, this solution might-be suboptimal in
those circumstances in which sensors are installed on poorly
sensitive locations: in these cases, a better choice would be
to design a preliminary DNN model, and then, fine tune it
on a cluster basis taking into account the peculiarities of the
associated sensors.

B. HW-NAS-CS Design

In this setup, two major aspects bias the selection of the best
architecture a, henceforth referred to as CNN*. First, the flash
and RAM memory available on the computing device limits the
set of solutions because low-end MCUs feature memory sizes in
the order of a few hundred of Kilobytes. The inference time could
be more relaxed due to the slow duty-cycles typical of vibration
monitoring, where inspection is performed on an hourly basis.
Second, CNN* is a function of the compression parameter cs
(i.e., the size of the sensing matrix), since higher levels of com-
pression could require more demanding configurations, making
the solution nontrivial when HW constraints are involved. To
model these aspects, the optimization problem in (1) has been
updated as follows:

min
a∈A,cs∈CS

Lval(w
∗(a), a, cs)

s.t. w∗(a, cs) = argminwLtrain(w, a, cs)

|a| < FTh

|T | < RTh (2)

where the two constraints model memory requirements, while
CS remarks the role of compression settings. |a| is defined as
the number of parameters of the architecture a, while |T | is the
number of elements of the largest tensor propagated through
the architecture. Network parameters are constant and saved on
the flash memory, whose constraint is indicated as FTh. These
values require the largest portion of data memory to store a
DNN. Conversely, tensor values T are computed at runtime as a
function of the specific input, therefore, they have to be stored in
the RAM memory of maximum size RTh. Given the sequential
nature of DNNs, memory reusage strategies allow sizing RAM

10492 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

to be proportional to the amount of memory required to store
the largest tensor.

The definition of A heavily influences the global perfor-
mances. On the one hand, too broad search spaces lead to
long search times and may produce suboptimal results. On
the other hand, very tight search spaces induce bias that ex-
cludes valuable solutions. For the target application, geometrical
information about the input data can be exploited to reduce
the search space without compromising the generality of A.
For this reason, it is advisable to focus on CNNs, which can
merge and aggregate local and global information. In principle,
multidimensional convolutions could be employed. However,
for the specific application context considered in this work, it is
expected that anomalies are strongly associated with changes
in the relative amplitude and distribution of the compressed
coefficients over time: for this reason, 1-D convolutional ker-
nels applied along the time dimensions would be most suited
for implementation of the CNNs in A, being the most com-
patible with the physical nature of the observed structural
dynamics.

The compression setting cs plays a major role in the task
addressed by the CNN because it sets the amount of processed
information: reducing the compression level dramatically in-
creases RAM requirements, since the dimension of the input
features increases; in fact, the size of the input tensor in single
branch tiny DNNs is typically the bottleneck for RAM con-
sumption leading to the violation of constraint RTh for small
values of compression. This constraint, in practice, has a positive
effect on the overall amount of energy spent in communication,
penalizing implicitly the transmission of large size arrays. In
addition, a smaller input size promotes a reduced number of
parameters, for example, in architectures where fully connected
layers are included; in turn, this means increasing the number
of architectures fulfilling constraint FTh. Conversely, increasing
cs could lead to larger networks to compensate for the loss of
information, and in some cases, it could lead to lower accuracy.
For this reason, in the proposed solution, cs parameters are
encapsulated into the network definition treating them as an
architectural parameter.

These observations led to a block-wise search space com-
posed of building blocks with a 1-D convolution layer possibly
followed by a max pooling layer and a dropout regulariza-
tion. Accordingly, each building block admits four parameters,
namely the number of filters Nf , the kernel size Ks, pooling
operations Pool, and dropout operations Dr. The number of
blocks Nb, their configuration, and cs quantities set the com-
plete architecture. A standard evolutionary algorithm as the
one implemented in Algorithm 1 allows a wide exploration of
the search space. It explores the possible combination of the
pairs (a, cs) starting from a preset initial configuration (a0, c0).
Then, the procedure iteratively generates a set of new pairs
(ac, cc) by applying random mutations to the parent architec-
ture. Finally, for all pairs, a training procedure generates a
classifier: eventually, the network that scores the best result on
the evaluation procedure becomes the new parent architecture.
The procedure ends when the preset number of iterations is
reached.

Algorithm 1: Evolutionary NAS With CS Settings Selec-
tion.

Dataset Training set XT = {Xi, yi}i=1...n with Xi raw
data and yi the corresponding health state.

Validation set XV = {Xi, yi}i=1...m.
Hypothesis Architectures search space A, Compression
settings C∫ , Parent configuration (ap, cp), Child
generator function (ac, cc) = Rm((ap, cp)), Nc number
of Child architectures, Ng number of generations,
Evaluation function E(a,XV), Compression function
Cf (X, cs)

Pseudocode
0. Init: (ap, cp) = (a0, c0)
for g in Ng do

for c in Nc do
1. Mutation: (ac, cc) = Rm((ap, cp))
2. Training: Train ac on Cf (XT)

end for
3. Selection: (ap, cp) =

argmin(E((ac, cc))j=1...Nc
, Cf (XV))

end for

V. EXPERIMENTAL VALIDATION

Experimental verification of the proposed methodology was
performed on two well-known benchmarks for vibration-based
inspections.

A. Dataset Description

1) Z24 Bridge: Built in Switzerland in the early 60s, the
Z24 bridge was at the center of an important highway viaduct
between Bern and Zürich. The serviceability of the structure was
interrupted in 1999 for modernization. Before its demolition,
it has been artificially damaged via a rigorous experimental
protocol, moving from slight flaws to very severe disruption ac-
tions [37]. A large monitoring network consisting of acceleration
and environmental sensors was installed and data were gathered
over one year: a total amount of 5651 time series was collected,
the first 4922 related to healthy conditions, while the remaining
ones pertain to the structure under progressive damage tests.
Each instance contains data acquired by eight force-balance-type
FBA-11 accelerometer sensors by Kinemetrics working at a
sampling frequency of 100 Hz (acquisition time of nearly 5 min
every hour).

2) KW51 Bridge: Currently in operation, the KW51 is a
relatively new steel bowstring railway bridge in Leuven, Bel-
gium. A dataset has recently been released [38], which contains
heterogeneous measurements obtained over a monitoring period
of 15 months (from October 2018 to January 2020). Even if
not threatened by any evident damage, the facility has been
retrofitted during the inspection period to resolve a construction
error. Coherently, 1787 time series have in total been measured,
the first 1239 of which being related to the preretrofitting status.
A total of 12 uniaxial accelerometers of type PCB 393B04
was installed, gathering 5 min data at a sampling frequency of
1.6 kHz per hour.

RAGUSA et al.: COMBINING CS AND NAS FOR SENSOR-NEAR VIBRATION DIAGNOSTICS 10493

B. Compression Matrix Design

The model-assisted rakeness-based (MRak-CS) strategy [10]
has been chosen among the adaptive CS mechanisms for the
following two main reasons:

1) it demonstrated better robustness against the perturba-
tions induced by environmental and operational param-
eters, hence being able to discriminate between real and
spurious anomalies;

2) it attained superior performances, i.e., a deeper compres-
sion level with negligible loss in the accuracy of the
reconstructed damage sensitive features.

More in detail, MRak-CS forces an analytical bandpass-like
correlation profile to the sensing matrix, with spectral bands
centered around the expected dominating modes of the struc-
ture [39].

For the two considered bridges, the spectral characteristics
discussed in [37] and [38] were exploited to design Φ according
with the MRak-CS procedure. A total of four frequency compo-
nents were identified for the Z24 bridge in the [0, 20] Hz band
(i.e., kZ24 = 4), while previous works suggest that kKW51 = 12
is reasonable for the KW51. Finally,N = 512 has been selected
for the window size. Note that, this quantity cannot be arbitrarily
increased since it strongly impinges on the dimension of the
compression matrix (Φ = O(N 2)), hence rapidly saturating all
the memory slots available in the sensing units. In this work,
we have considered also a nonadaptive RND alternative. In this
case, the entries of the sensing matrix were randomly sampled
from a multivariate Gaussian distribution.

C. NAS-CS Training

The code was implemented in Python using Keras and Ten-
sorflow libraries. A standard fivefold cross validation was con-
sidered during the experiments. For each fold, a validation set
was extracted from the training set selecting a random subset of
20% of the training data.

All the architectures were trained for a maximum of
100 epochs with an initial learning rate of 10−3, the learning rate
reduction on the plateau, and early stopping using the validation
loss as metric. In addition, all the networks were trained five
times using a multistart approach. The best architecture was
selected based on the validation set.

The NAS executed 500 generations, using a search space with
tight constraints, which are necessary to derive the most effective
CNN architecture in compliance with typical MCU storage
capabilities: a maximum flash size of 512 kB and RAM size of
256 kB have been imposed, respectively. Due to the small size
of the tested networks, local minima can affect generalization
performance, and therefore, standard proxy training strategies
fail to provide reliable descriptions of the network’s behavior.
Each generation was composed of ten children obtained from a
mutation of the parent network and a change in the compression
settings. Random mutation function considered the insertion,
deletion, or modification of one block of the network. The
modification was performed through the change of the value of
one of the block parameters. Compression settings were changed

acting on the compression rate CR = N/M , keeping constant
the window size.

The resulting CNNs* were finally deployed on the target
board, i.e., the STM32L522ZE-Nucleo board, which hosts an
STM32L5 MCU based on the ARM Cortex-M33 core. This
device was selected for prototyping purposes since it offers valu-
able features in terms of power management, security, and digital
processing functionalities, making it a class-leading micropro-
cessor for embedded applications. Deployment was achieved via
the following pipeline. First, the network was converted into a
MCU-compliant format by means of the API made available by
the TensorFlow Lite library;2 then, the STM32 X-Cube-AI suite
was exploited to optimize the model. Data representation was set
to 32-bit because STM32 X-Cube-AI supports 8-bit representa-
tion only for fully connected layers. Therefore, one can consider
that the measured performance corresponds to the worst-case
analysis considering that quantization can additionally reduce
memory requirements. All the measurements necessary for the
DNN assessment were performed by using the STM32 design
suite utility for testing.

D. Evaluation Metrics

The classification performance has been measured for all the
models on the testing fold that have never been involved in
any parameter or hyperparameter tuning. In all the experiments,
accuracy, precision, recall, and F1 have been adopted as metrics.
The joint usage of the four scores is a well-established procedure
to evaluate classifiers without the risk of pathological measures
that could happen when basing the analysis only on one metric.
For example, when using an unbalanced dataset, a classifier
could exhibit very high accuracy paired with unsatisfactory
precision or recall [40].

VI. RESULTS

Results are reported in this section, pursuing the following
four objectives.

1) Prove that 1-D convolution through time is the most
appropriate form of convolution for the CNN architecture
(see Section VI-A).

2) Assess the damage identification capability of the CS-
based CNN detector as a function of increasing CR and
of the adopted compression scheme (MRak versus RND)
(see Section VI-B).

3) Demonstrate the superiority of the identified HW-NAS-
CS configuration (CNN*) in terms of classification scores
and model complexity when compared to existing meth-
ods (see Section VI-C).

4) Test and verify the performances of CNN* when deployed
on a general-purpose MCU (see Section VI-D).

A. Search Space Analysis

The optimal convolution type has been investigated first to
restrict the loci of viable architectures to be considered during

2[Online]. Available: https://www.tensorflow.org/lite?hl=it

https://www.tensorflow.org/lite{?}hl=it

10494 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

Fig. 2. Classification scores for various CR and different sensing matrix (MRak-CS, red-shaded bars; RND, green-shaded histograms) when
processing the Z24 (first row) and the KW51 (second row) data.

TABLE I
PERFORMANCE OF CNNS WITH DIFFERENT VERSIONS OF CONVOLUTION
TYPE APPLIED ON THE Z24 AND KW51 DATASET COMPRESSED VIA THE

MRAK-CS MECHANISM WITH CR = 4

the search space analysis. To this end, data from the Z24 and
KW51 structure were processed, keeping constant both the CR
(equal to 4) and all the remaining hyperparameters of the CNN,
except from the kernel size and direction. To maximize the role
of the convolution, a baseline architecture has been selected,
hereinafter BASE_CNN, which consists of the following blocks:
a first convolutional layer with five filters and max pooling,
receiving aggregated compressed data X̂ , a second convolu-
tional layer with three filters followed by global average pooling,
extracting a second set of features, and a final fully connected
layer predicting the (binary) class of the input datum.

Table I summarizes the results given as standard classifi-
cation scores (accuracy, precision, recall, and F1) when us-
ing MRak-CS compression at the sensing stage. The upper
part of the table summarizes results for Z24 data, while the
lower depicts the results for KW51. The outcome confirms
that structural information is extracted by convolutions over
the time dimension, i.e., by training the network to recognize
specific trends and patterns in the values of the compressed
coefficients. Proof is the fact that all measures for Z24 (apart
from recall where a slight reduction can be noticed) largely
exceeds 96%, which is at least 10 points percentage higher
than those attained by 2-D convolution or 1-D convolution along
the coefficient dimension. Similarly, results on KW51 prove the
advantage of convolution through time. Accordingly, 1-D CNN
with convolution over time will be used in all the remaining
analyses.

B. Compression

The impact of the compression rate has then been evaluated to
verify the capability of the network to discriminate healthy from
damaged patterns. This goal has been fulfilled by measuring the
classification metrics for different values of CR, while using
the same BASE_CNN architecture described in the previous
section. Results are summarized in Fig. 2 for the two distinct CS
schemes: MRak-CS and RND with red- and green-shaded bars,
respectively.

1) Z24: The reported scores (first block row) show that clas-
sification remains considerably above 90% for all the metrics
even when CR increases significantly above the theoretical
boundaries dictated by the CS theory, which prescribes M =
O(k log(N)) to accurately preserve spectral data: assuming
kZ24 = 4 andN = 512 as stated before, CRmax

Z24 < 21 is implied.
However, our outcome proves that the proposed DNN solution
could yet return accurate predictions even when this limit is
overcome. This is ensured by the superior learning abilities
of CNN in understanding patterns from residual information,
i.e., when not all the structural properties are retained after
compression. More in detail, when CR increases considerably
over this theoretical bound, the performance deteriorates by 3%,
still remaining acceptable (> 90%) even for the extreme case of
CR = 256.

In addition, it is worth mentioning that the adopted sensing
matrix can play a significant role, as demonstrated by the aver-
agely higher performance indicators of the MRak-CS methods
with respect to RND, which is a consequence of the inherent
information-preserving nature of the adapted rakeness-based
strategy.

2) KW51: The same setup was replicated for the KW51
bridge use case, properly adapting the MRak-CS to the spectral
signature of the novel bridge, while doubling the CR at integer
steps from 2 to 64. Results are depicted in the second block
row of Fig. 2 and reveal that the CNN-based solution can
obtain accurate classification scores for compression rates higher
than the theoretical boundary, which imposes CRmax

KW51 = 6. This
discrepancy between the theoretical compression depth for the

RAGUSA et al.: COMBINING CS AND NAS FOR SENSOR-NEAR VIBRATION DIAGNOSTICS 10495

two bridges is mostly related to the much denser spectral profile
(kKW51 = 12 versus kZ24 = 4) of the KW51 bridge in the fre-
quency band of interest, as a consequence of its geometrical
(material, span length, etc.) properties. Both MRak-CS and
RND attain very high accuracy at moderately low compression
levels (CR < 16), without significant differences between the
two compression approaches. Contrariwise, for the deepest CR,
the performance of all networks deteriorates and is more pro-
nounced for the MRak-CS setting. This outcome can be justified
by the fact that, compared to the Z24 use case whose spectral
signature is dominated by four well-spaced modes, the KW51 as-
set is characterized by the presence of tightly-coupled vibration
components, which impose a flatter (i.e., less peak-like) spectral
profile of the MRak-CS sensing matrix. In turn, this might lead
to a lower adaptation level for this particular kind of spectral
profiles, if compared to the totally agnostic RND mechanism.

3) Energy versus Compression: In addition, an analysis of
the energy consumption vs compression has been performed
from an extreme edge perspective to prove the benefit of on-
sensor data compression in industrial Internet of Things (IoT)
scenarios. More in detail, the total energy consumption spent
by an extreme edge sensor for processing and transmitting data
has been measured. To this end, the open source IoT analyzer3

has been exploited since it allows for a realistic simulation of
transmission costs associated with enabling wireless technolo-
gies. Specifically, experiments involving the BLE 5.0, LoRa,
802.15.4, and 802.11 ah protocol have been considered. On the
computing side, the electrical characteristics of the STM32L5
MCU were selected, supposing monitoring is performed once
per hour: 15 mA and 7 μA current consumption in normal
operating mode and sleep mode, respectively, a clock frequency
of 110 MHz, and a voltage supply equal to 3.3 V.

Results are reported in Fig. 3 (CR varying from 1 to 256)
and clearly demonstrate that the energy demand decreases for
increasing compression levels. This energy gain is particularly
pronounced for the LoRa and the 802.11 ah protocols, which un-
dergo a significant reduction (up to three orders of magnitudes)
when moving from compression-free configurations (CR = 1,
i.e., no compression applied) to very huge data compression
(CR = 256). Beside, such gain is less pronounced for BLE
5.0, the usage of which does not introduce substantial energy
saving for ratios higher than 16. This is due to the specific
handshake transmission mechanism, and the power requirement
of the individual modules.

C. HW-NAS-CS

1) Z24: Table II summarizes the result of the NAS-generated
architecture (first row) with those pertaining to forefront com-
petitors. The columns summarize the model and the possibility
to deploy it on the target MCU (gray rows indicate models not
portable on embedded devices), the compression rate, and the
four classification descriptors. The second and third rows are,
instead, referred to the best networks explored in the preceding
CR analysis: BASE_CNN with CR = 4 is the one yielding

3[Online]. Available: https://gitlab.imag.fr/morine/iot-analyzer

Fig. 3. Total energy consumption in 1-h monitoring under various
CR configurations for different IoT technologies: BLE 5.0 (triangle-light
blue), 802.15.4 (circle-blue), 802.11 ah (diamond-magenta), and LoRa
(squared-pink).

TABLE II
COMPARISON BETWEEN NAS AND OTHER SOLUTIONS FOR DATASET Z24

the best absolute scores but without MCU compatibility, while
BASE_CNN with CR = 8 indicates the best accurate archi-
tecture that can also accommodate the target microcontroller
constraints.

Beside, one class classifier neural network (OCCNN) and
autoassociative neural network (ANN) are two supervised neural
models proposed in [39] for Z24 vibration assessment. These
networks were used for damage detection in a framework in-
volving a bulky CS encoding–decoding procedure, according
to which data were first compressed, and then, reconstructed in
the time domain; once retrieved, damage sensitive features (i.e.,
frequencies) were extracted, and finally, passed as input to the
neural detector. OCCNN is based on a one-class classifier neural
network consisting of two fully connected dense layers, while
ANN models an autoencoder. RF [19] refers to a recent solution
based on the use of a random forest classifier that processes
statistical features extracted by the compressed coefficients. As
can be observed, the CNN*-Z24 architecture is superior in that it
delivers at least 1.1% more accurate results while increasing the
compression ratio (CRNAS−Z24 = 8 versus CROCCNN/ANN = 6).
Compared with other approaches, RF obtains high transmission

https://gitlab.imag.fr/morine/iot-analyzer

10496 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

TABLE III
SUMMARY OF THE NAS-GENERATED CNN FOR DATASET Z24

TABLE IV
COMPARISON BETWEEN NAS AND BASELINE FOR DATASET KW51

efficiency, at the expense of a drop in the generalization per-
formance larger than 2% in terms of accuracy and a complete
loss of any residual information about the spectral content of
the original data for a compression rate identical to the one of
CNN*-Z24. Finally, it is worth highlighting that the proposed
solution behaves comparatively better than alternative strategies,
such as the principal component analysis (PCA), kernel PCA
(KPCA), and Gaussian mixture model (GMM) documented
in [41], which can be treated as state-of-the-art unsupervised
classifiers for the considered dataset while working with uncom-
pressed data. Our analysis proves that the HW-NAS-CS-driven
approach can increment the detection metrics up to 6%, with the
uttermost benefit of working with a data payload 8x lower and
full MCU-compatibility.

The NAS procedure led to the network with the best results.
Noteworthy, even if prediction improvements over BASE_CNN
with CR equal 4 are limited, it is paramount to emphasize
that CNN*-Z24 can, moreover, be successfully deployed on
the target class of low-end computing platforms. In addition,
when comparing CNN*-Z24 with the other architectures that
meet deployment requirements (OCCNN, ANN, and PCA), the
overall gain is significant in almost all indicators.

Details about the DNN architecture obtained through the
NAS procedure are given in Table III. Each row is a summary
of a building block where we show the kernel size (Ks), the
number of filters (Nf), and the presence/absence of max pooling
(pool) and/or dropout layers (Dr). The algorithm selected a
nontrivial configuration composed of six blocks. A peculiarity is
the selection of kernels with very tight sizes, in many cases equal
to 1. Eventually, the network deployment requires 2.55 MFlops
for a single inference phase, with an estimated memory con-
sumption of 82.740 kB and a RAM peak of 131.072 kB. In
addition, CNN*-Z24 is characterized by CR = 8 as optimal
compression level, hence confirming that the best solution does
not necessarily coincide with the smallest CR.

2) KW51: Table IV summarizes the results for dataset
KW51. It compares the performance of the CNN*-KW51 model
returned by the NAS with the configuration of BASE_CNN
reaching the best scores between those explored in the analysis
of the compression level.

The NAS procedure converged to a validation score of 1 for all
four metrics in only three generations. This result confirms that
KW51 is a simpler learning problem than Z24 and the role of the

TABLE V
SUMMARY OF THE GENERATED ARCHITECTURE FOR DATASET KW51

architecture is less relevant to designing effective predictors, but
still leads to a slight improvement of 0.2% in the classification
capabilities. Notably, this result is a function of the selected
search space (see Table I). For example, it is expected that, in
case nonoptimal forms of convolution had been chosen (e.g.,
2-D convolution), the role of the NAS procedure would have
had larger relevance to the final result.

Indeed, as reported in Table V, the NAS algorithm selected
CR= 8 for CNN*-KW51, which is almost double the theoretical
limit and that achievable by BASE_CNN, confirming once
again that, in the compressed domain, high accuracy can be
obtained even when compression introduces important losses in
parts of the original signal information. The resulting network
is similar to BASE_CNN, coherently with the fact that the
algorithm converged after a small number of generations: the
final CNN*-KW51 architecture uses 1.2 MFlops for a single
inference, with a memory requirement of 103 kB and a RAM
usage peak of 37 kB.

D. Deployment

STM-32 Xcube-AI measured a requirement of 81 kB for flash
memory and 130 kB for RAM for the Z24 case, which are
totally compliant with the memory constraints of the prototyping
embedded system. When embedded on the STM32L5 MCU,
the deployed model generated for KW51 (CNN*-KW51) was
hosted on 101 kB of flash memory and the largest RAM require-
ment reached 43 kB. In both cases, the prediction performed
by the deployed network matched the results obtained on the
desktop computer confirming the suitability of the approach.

The verified portability of the algorithmic methodologies
on low-end devices is essential in the transition toward the
realization of smart structures working in the dynamic regime,
which could be endowed with self-diagnostic functionalities
and capable of promptly reacting to changes in the surrounding
environment. This is the case, for example, of electrical motors
that experience a well-defined pattern of rotation, similar to that
defining wind blades and other rotating machines.

VII. CONCLUSION

This article presented a novel approach for SHM based on
a DNN trained on CS-processed data. In the proposed config-
uration, a simple microcontroller can act as a centralizing unit
and performs the inference phase using compressed information
from various sensing nodes. The result was achieved using an
NAS-inspired procedure, named after as HW-NAS-CS, that op-
timized the network architecture based on the peculiarities of CS
and the memory limitations of embedded devices. The empirical
results scored state-of-the-art performances on two real-world
and well-known benchmarks for vibration inspection. The gen-
erated architectures were deployed on a STM32L522ZE-Nucleo
board. In future works, more complex scenarios dominated by

RAGUSA et al.: COMBINING CS AND NAS FOR SENSOR-NEAR VIBRATION DIAGNOSTICS 10497

a denser sensor grid will be investigated to analyze the effect
of the sensor clustering procedure on the damage detection
performance. Alongside, in-depth analysis of the effect of noise
on the inference performance of the model will be evaluated
in view of real-field installations, which will be expanded to
consider alternative industrial settings (e.g., motors and wind
turbines).

REFERENCES

[1] K. Haricha, A. Khiat, Y. Issaoui, A. Bahnasse, and H. Ouajji, “Recent
technological progress to empower smart manufacturing: Review and
potential guidelines,” IEEE Access, vol. 11, pp. 77929–77951, 2023.

[2] M. Compare, P. Baraldi, and E. Zio, “Challenges to IOT-enabled predictive
maintenance for industry 4.0,” IEEE Internet Things J., vol. 7, no. 5,
pp. 4585–4597, May 2020.

[3] C. Caione, D. Brunelli, and L. Benini, “Distributed compressive sampling
for lifetime optimization in dense wireless sensor networks,” IEEE Trans.
Ind. Inform., vol. 8, no. 1, pp. 30–40, Jan. 2011.

[4] A. Elouali, H. Mora, and F. J. M. Gimeno, “Data transmission reduction
model for cloud-based IOT systems,” in Proc. IEEE Int. Conf. Smart
Internet Things, 2021, pp. 252–256.

[5] F. Zonzini, A. Girolami, L. De Marchi, A. Marzani, and D. Brunelli,
“Cluster-based vibration analysis of structures with GSP,” IEEE Trans.
Ind. Electron., vol. 68, no. 4, pp. 3465–3474, Apr. 2020.

[6] Y. Zhang, P. Guo, X. Liu, and K. Zhang, “In-network processing or
feature compressive sensing? Case study of structural health monitoring
with wireless sensor networks,” IEEE Internet Things J., vol. 10, no. 8,
pp. 7051–7061, Aug. 2022.

[7] B. Du, C. Lin, L. Sun, Y. Zhao, and L. Li, “Response prediction based on
temporal and spatial deep learning model for intelligent structural health
monitoring,” IEEE Internet Things J., vol. 9, no. 15, pp. 13364–13375,
Aug. 2022.

[8] J. Long, S. Zhang, and C. Li, “Evolving deep echo state networks for
intelligent fault diagnosis,” IEEE Trans. Ind. Inform., vol. 16, no. 7,
pp. 4928–4937, Jul. 2019.

[9] M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From
theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4053–4085, Sep. 2011.

[10] F. Zonzini, M. Zauli, M. Mangia, N. Testoni, and L. De Marchi, “Model-
assisted compressed sensing for vibration-based structural health monitor-
ing,” IEEE Trans. Ind. Inform., vol. 17, no. 11, pp. 7338–7347, Nov. 2021.

[11] M. Mangia, F. Pareschi, V. Cambareri, R. Rovatti, and G. Setti, Adapted
Compressed Sensing for Effective Hardware Implementations: A. Design
Flow for Signal-Level Optimization of Compressed Sensing Stages. Berlin,
Germany: Springer, 2018.

[12] C. White et al., “Neural architecture search: Insights from 1000 papers,”
2023, arXiv:2301.08727.

[13] C. Yan et al., “ZeroNAS: Differentiable generative adversarial networks
search for zero-shot learning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 12, pp. 9733–9740, Dec. 2021.

[14] S. Budhaditya, D.-S. Pham, M. Lazarescu, and S. Venkatesh, “Effective
anomaly detection in sensor networks data streams,” in Proc. IEEE 9th
Int. Conf. Data Mining, 2009, pp. 722–727.

[15] A. Moallemi, A. Burrello, D. Brunelli, and L. Benini, “Model-based
vs. data-driven approaches for anomaly detection in structural health
monitoring: A case study,” in Proc. IEEE Int. Instrum. Meas. Technol.
Conf., 2021, pp. 1–6.

[16] A. Marchioni, A. Enttsel, M. Mangia, R. Rovatti, and G. Setti, “Anomaly
detection based on compressed data: An information theoretic characteri-
zation,” IEEE Trans. Syst. Man, Cybern.: Syst., vol. 54, no. 1, pp. 23–38,
Jan. 2024.

[17] W. Wang, D. Lu, X. Zhou, B. Zhang, and J. Mu, “Statistical wavelet-based
anomaly detection in Big Data with compressive sensing,” EURASIP J.
Wireless Commun. Netw., vol. 2013, no. 1, pp. 1–6, 2013.

[18] M. Azimi and G. Pekcan, “Structural health monitoring using extremely
compressed data through deep learning,” Comput.-Aided Civil Infrastruc-
ture Eng., vol. 35, no. 6, pp. 597–614, 2020.

[19] E. Ragusa, F. Zonzini, L. De Marchi, and P. Gastaldo, “Vibration moni-
toring in the compressed domain with energy-efficient sensor networks,”
IEEE Sens. Lett., vol. 7, no. 8, Aug. 2023, Art. no. 6004604.

[20] C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang, “DS-Net
: Dynamic weight slicing for efficient inference in CNNs and vision
transformers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4,
pp. 4430–4446, Aug. 2022.

[21] L. Capogrosso, F. Cunico, D. S. Cheng, F. Fummi, and M. Cristani, “A
machine learning-oriented survey on tiny machine learning,” IEEE Access,
vol. 12, pp. 23406–23426, 2024.

[22] H. Shi, H. You, Z. Wang, and Y. Lin, “NASA+: Neural architecture search
and acceleration for multiplication-reduced hybrid networks,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 70, no. 6, pp. 2523–2536, Jun. 2023.

[23] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning for
microcontroller-class hardware—A review,” IEEE Sensors J., vol. 22,
no. 22, pp. 21362–21390, Nov. 2022.

[24] H. Benmeziane, K. E. Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba, and
N. Wang, “A comprehensive survey on hardware-aware neural architecture
search,” 2021, arXiv:2101.09336.

[25] M. Tan et al., “MnasNet: Platform-aware neural architecture search for
mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2019,
pp. 2820–2828.

[26] Z. Guo et al., “Single path one-shot neural architecture search with uniform
sampling,” in Proc. Euro. Conf. Comput. Vis., 2020, pp. 544–560.

[27] M. Zhang et al., “One-shot neural architecture search: Maximising diver-
sity to overcome catastrophic forgetting,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 43, no. 9, pp. 2921–2935, Sep. 2020.

[28] L. L. Zhang, Y. Yang, Y. Jiang, W. Zhu, and Y. Liu, “Fast hardware-aware
neural architecture search,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. Workshops, 2020, pp. 692–693.

[29] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” 2018, arXiv:1801.06601.

[30] M. Li et al., “The deep learning compiler: A comprehensive survey,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 708–727, Mar. 2020.

[31] C. Li et al., “HW-NAS-Bench: Hardware-aware neural architecture search
benchmark,” 2021, arXiv:2103.10584.

[32] J. Lin et al., “MCUNet: Tiny deep learning on IOT devices,” Adv. Neural
Inf. Process. Syst., vol. 33, pp. 11711–11722, 2020.

[33] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “MCUNetv2: Memory-
efficient patch-based inference for tiny deep learning,” in Proc. Annu. Conf.
Neural Inf. Process. Syst., 2021.

[34] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-device
training under 256 kb memory,” in Proc. Annu. Conf. Neural Inf. Process.
Syst., 2022.

[35] C. Banbury et al., “Micronets: Neural network architectures for deploying
tinyml applications on commodity microcontrollers,” Proc. Mach. Learn.
Syst., vol. 3, pp. 517–532, 2021.

[36] Z. Zhang, A. Mehmood, L. Shu, Z. Huo, Y. Zhang, and M. Mukherjee,
“A survey on fault diagnosis in wireless sensor networks,” IEEE Access,
vol. 6, pp. 11349–11364, 2018.

[37] B. Peeters and G. De Roeck, “One-year monitoring of the z24-bridge:
Environmental effects versus damage events,” Earthq. Eng. Struct. Dyn.,
vol. 30, no. 2, pp. 149–171, 2001.

[38] K. Maes and G. Lombaert, “Monitoring railway bridge kw51 before,
during, and after retrofitting,” J. Bridge Eng., vol. 26, no. 3, 2021,
Art. no. 04721001.

[39] F. Zonzini, A. Carbone, F. Romano, M. Zauli, and L. De Marchi, “Ma-
chine learning meets compressed sensing in vibration-based monitoring,”
Sensors, vol. 22, no. 6, 2022, Art. no. 2229.

[40] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine
Learning, vol. 4, no. 4. Berlin, Germany: Springer, 2006.

[41] E. Favarelli and A. Giorgetti, “Machine learning for automatic processing
of modal analysis in damage detection of bridges,” IEEE Trans. Instrum.
Meas., vol. 70, Nov. 2020, Art. no. 2504013.

Edoardo Ragusa (Member, IEEE) received the
master’s (cum laude) degree in electronic engi-
neering and the Ph.D. degree in electronic en-
gineering from the University of Genoa, Genoa,
Italy, in 2015 and 2018, respectively.

He is currently a Researcher with Depart-
ment of Electrical, Electronic, Telecommunica-
tions Engineering and Naval Architecture, Uni-
versity of Genoa, where he teaches digital sys-
tems electronics and machine learning. He has
coauthored more than 50 refereed papers in

international journals and conferences. His research interests include
machine learning in resource-constrained devices, convolutional neural
networks, and deep learning applications.

10498 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 8, AUGUST 2024

Federica Zonzini (Member, IEEE) received the
B.S. and M.S. degrees in electronic engineering
and the Ph.D. degree in structural and envi-
ronmental health monitoring and management
from the University of Bologna, Bologna, Italy, in
2016, 2018, and 2022, respectively.

She is Junior Research Assistant in electron-
ics with the University of Bologna. Her research
interests include the design of intelligent sensor
systems and edge computing in the context of
structural health monitoring, encompassing ad-

vanced signal processing, and tiny machine learning.

Paolo Gastaldo received the Laurea degree
in electronic engineering and the Ph.D. degree
in space sciences and engineering from the
University of Genoa, Genoa, Italy, in 1998 and
2004, respectively.

He is currently an Associate Professor with
Department of Electrical, Electronic, Telecom-
munications Engineering and Naval Architec-
ture, University of Genoa, where he teaches
computer architectures and sensors. His main
research interests include embedded machine

learning, computational intelligence, embedded systems for advanced
signal processing in robotics and prosthetics, and cybersecurity.

Luca De Marchi (Member, IEEE) received
the M.Sc. and Ph.D. degrees in electronics
engineering from the University of Bologna,
Bologna, Italy, in 2002 and 2006, respectively.

He is currently an Associate Professor in elec-
tronics with the University of Bologna. He has
authored more than 200 articles in international
journals or the proceedings of international con-
ferences. He holds two patents. His research
interests include multiresolution and adaptive
signal processing, with a particular emphasis on

structural health monitoring applications.

Open Access funding provided by ‘Università degli Studi di Genova’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

