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Continuous Phase Denoising via Deep Learning
Based on Perlin Noise Similarity in Digital
Holographic Microscopy

Jianjun Tang *“, Benyong Chen

Abstraci—Deep learning (DL), as a powerful tool for
image processing by learning from data, brings signifi-
cant advantages for solving the noise in phase images of
digital holography. However, due to the inaccurate repre-
sentation of the features of the actual digital holographic
hybrid phase noise (DHHPN), most DL-based denoising
strategies that use a Gaussian noise model to generate
simulated datasets for training have unsatisfactory per-
formance. Here, to explore the characteristics of actual
DHHPN, we evaluate the correlations between the DHHPN
obtained from different DH/DHM experiments and five types
of noise (Uniform, Normal, Pink, Brown and Perlin) in terms
of maximum information coefficient and Pearson corre-
lation coefficient. For the first time, to the best of our
knowledge, we have revealed an extremely high similarity
between DHHPN and Perlin noise. Based on this discov-
ery, a continuous phase denoising method via deep learn-
ing based on Perlin noise similarity is proposed. Without
needing to collect and label experimental training data at
high cost, a dataset consisting only of computer-generated
clean sample images and Perlin noise images can be easily
obtained. This simulated dataset is then used to train our
designed convolutional neural network. Simulation and ex-
perimental results show that the denoising performance of
the proposed method far exceeds the other two classical
methods, and the standard deviation of the measurement
results is reduced by an order of magnitude, reaching the
sub-nanometer level. The proposed method has significant
application in the fields of digital holographic precision
measurements.

Index Terms—Deep learning (DL), digital holography
(DH), microstructure measurement, phase denoising.
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[. INTRODUCTION

IGITAL holography (DH) interferometry, with the ad-
D vantages of noncontact, high sensitivity, and real-time
quantitative phase measurements (QPM), has been widely ap-
plied in microfluidic imaging, live cell detection, microelectro
mechanical system (MEMS) measurements, and other fields.
However, due to the characteristics of the image recording sen-
sor, the diffuse reflection and scattering of the sample surfaces,
kinds of noises, such as photon noise, electronic noise, quan-
tum noise, and speckle noise, are introduced into the recorded
digital interferograms [1]. These noises with different features
are superimposed on the sample phase, seriously affecting the
measurement accuracy.

Currently, numerical denoising algorithms have been widely
studied and can generally be categorized into three types:
1) spatial domain-based methods [2], [3], [4], [5]; 2) trans-
form domain-based methods [6], [7], [8] and 3) learning-based
methods [9], [10], [11], [12], [13], [14], [15], [16], [17]. With
the development of deep learning (DL), an increasing number
of DL-based denoising methods are applied to QPM, demon-
strating robust denoising performance. However, acquiring large
and effective datasets remains a significant challenge for these
DL-based denoising algorithms. First, collecting a substantial
amount of experimental training data is a labor-intensive task.
Currently, no universal denoising algorithm can completely sup-
press real noise and provide clean learning labels for training [1].
Second, for computationally generated datasets, no model has
been demonstrated that can accurately characterize the real
experimental noise [18]. Presently, most DL-based denoising
methods use a Gaussian noise model to create datasets for
training convolutional neural networks (CNN) to reduce speckle
noise in wrapped phase maps. For instance, two CNN-based
methods [9] and [10] achieved denoising performance compa-
rable to 2-D windowed Fourier transform filtering (WFT2F).
WEFT2F is a popular and powerful high-frequency speckle noise
suppression algorithm, but it requires high computational costs
and experience in parameter tuning, and residual nonspeckle
noise still remains in the phase maps after filtering.

Fig. 1 illustrates the denoising performance of WFT2F and
DnCNN [19] on experimental data from digital holographic
microscopy (DHM) and simulated Gaussian noise phase data.
Initially, datasets of wrapped phase (including real and imag-
inary parts) and continuous phase with added Gaussian noise
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Denoising performance of WFT2F and DnCNN. Columns 1, 2, 5, and 6: Simulation data with added Gaussian noise. Columns 3, 4, 7,

and 8: Experimental data from the DHM system. (a1) and (c1) Denoised wrapped phase maps obtained by DnCNN trained on simulation data with
added Gaussian noise for the real and imaginary parts. (b1) and (d1) Denoised wrapped phase maps obtained by WFT2F. (e1) and (g1) Original
wrapped phase maps without denoising. (f1) and (h1) Continuous phase maps obtained by phase unwrapping and aberration compensation from
(e1) and (g1), respectively. (a2)—(d2) Continuous phase maps obtained by phase unwrapping and aberration compensation from (a1)—(d1). (e2)
and (g2) Denoising results obtained by DnCNN trained on continuous phase data with added Gaussian noise for (f1) and (h1), respectively. (f2) and
(h2) Denoising results by WFT2F for (f1) and (h1), respectively. (a3)—(h3) Profiles at the red dashed lines in (a2)—(h2).

were generated. DnCNN was then separately trained to denoise
different forms of phase maps. From the simulation data in
Fig. 1(a2), (b2), (e2), and (f2) and their corresponding profiles in
Fig. 1(a3), (b3), (e3), and (f3), it can be seen that the denoising
effect is quite good no matter the WFT2F or DnCNN method is
used, and no matter the denoising is performed on the wrapped
phase maps or continuous phase maps. From the experiment
data in Fig. 1(d2) and (h2) and their corresponding profiles in
Fig. 1(d3) and (h3), the denoising effect of WFT2F for wrapped
phase maps and continuous phase maps are nearly identical.
Obviously, it can be seen from Fig. 1(h1) and (h3) (blue line)
that the original continuous phase of sample includes not only
high-frequency speckles, but also low-frequency fluctuations.
This shows that the noises introduced into DH is a kind of
hybrid noise with a wide spectrum, which we define as digital
holographic hybrid phase noise (DHHPN). In addition, from the
red lines in Fig. 1(d3) and (h3), whether WFT2F is performed
before or after phase unwrapping, only high-frequency speckle
noise can be suppressed, resulting in residual wave-like noise
in the phase result, which affects the measurement accuracy.
From the experiment data in Fig. 1(c2) and (g2) and their
corresponding profiles in Fig. 1(c3) and (g3), the denoising effect
of DnCNN for continuous phase map is better than its denoising
effect for wrapped phase map. Although the denoising effect of
DnCNN on the wrapped phase map appears similar to that of
WFT?2F, there is still significant noise present in the recovered
sample phase. Compared to WFT2F, although DnCNN achieves
relatively good suppression of background noise in the denoised
result of continuous phase map (this may be attributed to the
generalization ability of neural networks), noise in the sample
region is hardly removed, which still affects the measurement
accuracy. According to previous study [20], the point spread

function of digital holographic imaging systems will make the
noise in the phase data not follow Gaussian statistics. Therefore,
for CNN-based DH denoising algorithms, generating a training
dataset by simulating the noise with a single Gaussian model
has limited denoising effect for such DHHPN. In addition, the
wrapped phase maps of DHM usually contain a large amount of
phase aberrations, obscuring the low-frequency noise. Wrapped
phase maps with aberrations make it challenging for CNN to ex-
tract comprehensive features of low-frequency noise, resulting
in limited denoising performance.

In this article, continuous phase denoising via deep learning
based on Perlin noise similarity in DHM is proposed. The corre-
lations between the DHHPN obtained from different DH/DHM
experiments and five types of noise (Uniform, Normal, Pink,
Brown, and Perlin (UNPBP) [21] in terms of maximum infor-
mation coefficient and Pearson correlation coefficient, and the
characteristic similarity between DHHPN and Perlin noise is
revealed. Inspired by this research, Perlin noise is employed
to simulate the real DHHPN, and a CNN trained solely on
the simulated Perlin dataset achieves effective denoising of
DHHPN. The following sections will introduce the principles
of the proposed method, the implementation of CNN training,
simulation validation, and measurement experiments on two
different samples.

[l. PRINCIPLE AND REALIZATION
A. Characteristics Analysis of Noise

First, to study the characteristics of real DHHPN, the back-
ground region in continuous phase map of a USAF1951 positive
resolution target obtained from DHM system was analyzed and
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Characteristic analysis and comparison of DHHPN and UNPBP. (a1)—(f1) Noise images of Uniform, Normal, Pink, Brown, Perlin, and

DHHPN. (a2)—(f2) 2-D Fourier spectra amplitudes of (a1)—(f1). (a3)—(f3) Normalized amplitudes of 1-D Fourier spectra of the 256th row data in
(a1)—(f1). (a4)—(f4) Normalized values of autocorrelation functions of the 256th row data in (a1)—(f1).

compared with UNPBP. As shown in Fig. 2, Uniform and Nor-
mal were generated using the “rand” and “randn” functions in
MATLAB, respectively. Pink and Brown were generated using
the method from [22], setting the spectral density factor 3 to
—1 and -2, respectively. Perlin was generated according to the
method in [23]. The width and height of all noise images in
Fig. 2(al)—(f1) are 512 pixels, with an average value of 0 rad
and a standard deviation of 0.13 rad. The red curve plots the data
distribution of the 256th row of each noise image.

From the 2-D Fourier spectra in Fig. 2(a2)—(f2), the frequency
components of Uniform and Normal are relatively uniformly
distributed, whereas the frequency components of Pink, Brown,
Perlin, and DHHPN are dominated by low frequencies (located
at the center of the Fourier spectrum), and the high-frequency
components gradually decrease. Furthermore, the normalized
amplitude of the 1-D Fourier spectra in Fig. 2(a3)—(f3) show
that the amplitudes of Uniform and Normal fluctuate around
a certain value in the whole frequency domain, with average
values of 0.75 and 0.60, respectively. All the amplitudes of
Pink, Brown, Perlin, and DHHPN exhibit a main peak near
zero frequency, with Pink and Brown containing more high-
frequency components, fluctuating around values of 0.40 and
0.10, respectively. Clearly, Perlin and DHHPN have relatively

fewer high-frequency components and exhibit a similar decreas-
ing trend. In addition, the autocorrelation functions were also
calculated and compared [24]. As shown in Fig. 2(a4)—(f4), Uni-
form, Normal, and Pink have almost no autocorrelation, whereas
Brown, Perlin, and DHHPN exhibit noticeable autocorrelation,
indicating noncompletely random signals. Among them, the
autocorrelation functions of DHHPN and Perlin are the most
similar. Therefore, from the comparisons of noise distributions,
spectra, and autocorrelation functions, it can be intuitively ob-
served that the characteristics of DHHPN and Perlin are highly
similar.

To more accurately demonstrate the highest similarity be-
tween DHHPN and Perlin, we separately calculated the Pear-
son correlation coefficients (Pearson’s r) [25] for the spectra
and autocorrelation functions of DHHPN relative to UNPBP.
Pearson’s r describes the strength and direction of the linear
relationship between two quantitative variables, which can be
used to test whether a significant relationship exists between
two variables. The formula for calculating Pearson’s 7 is

) ey

Y, -Y

gy

e - w3 () (



8710

[Jto Uniform ["Jto Normal to Pink [_Jto Brown [__Jto Perlin
03 1 1

: & F)2
EASERIL

r
b

MIC
o

Pearson Coefficient
—
——

H-ooo
He

)
o

e e Te o o Te T
Spectrum Autocorrelation
@ ®) ©

Distribution
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where X and Y represent two different datasets, N denotes the
data sizes, X and Y denote the means of X and Y, and o x and
oy represent the standard deviation of X and Y, respectively.
The Pearson’s r is a numeric value ranging from —1 to 1. The
correlations are defined as strong when 0.5 < r < 1.0or—1.0 <
r < —0.5, moderate when 0.3 < r < 0.50r —0.5 <r < —0.3,
and weak or no correlation when —0.3 < r < 0.3.

We also evaluate the similarity of the distribution charac-
teristics of DHHPN relative to UNPBP. As Pearson’s 7 can
only calculate linear relationships and is highly sensitive to
noise, it cannot directly explore the relationships between noise
distributions. Therefore, we employed the more robust maxi-
mum information coefficient (MIC) [26] to study the correlation
between noise distributions. MIC is a nonparametric exploration
of maximum information, calculating the linear or nonlinear cor-
relation between two random variables. The MIC is calculated
using the formula

1Y) = 0 Y bl log, 2522

S (z)p(y)

- I(X,Y)
X "
1x|ly|<B log, min(|X], [Y])

@)

MIC(X,Y) =

where [ represents the mutual information of random variables
X and Y, p(x,y) is the joint probability mass function of X
and Y, and p(z) and p(y) are the marginal probability mass
functions of X and Y, respectively. B is typically 0.6 power of
the data size N.

By randomly selecting 64 rows of data and 64 columns of
data from the DHHPN image in Fig. 2(f1), we create a dataset
Xs12x128, comprising 128 vectors. Similarly, we obtain five dif-
ferent datasets Yy, 5124128 (for k = a, b, ¢, d, e) from the UNPBP
images in Fig. 2(al)—(el). For each pair (X, Y}), we calculate
the MIC with (2) and obtain 128 coefficients. Fig. 3(a) shows
the boxplot of MIC for DHHPN relative to UNPBP. Compared
to the other four types of noise, DHHPN is closer to Perlin in
terms of noise distributions. Likewise, for each pair (X, Y}, ), the
1-D Fourier spectra and autocorrelation functions are first cal-
culated. Then, the spectra Pearson’s r (751 ) and autocorrelation
functions Pearson’s 7 (7. ) are calculated with (1) and two sets
of 128 coefficients are obtained for each kind of UNPBP images.
Fig. 3(b) and (c) show boxplots of Pearson’s r of spectra and
autocorrelation functions for DHHPN relative to UNPBP. It can
be seen that, both the correlations between DHHPN and Perlin
and between DHHPN and Brown are strong, with median 7,
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and median 7. being 0.72 and 0.56, and median ;4 and median
req being 0.66 and 0.54, respectively. However, DHHPN is
more correlated with Perlin. As for Uniform, Normal, and Pink,
the median Pearson’s r values of spectra and autocorrelation
functions are below 0.32 and 0.33, respectively.

From the above analysis, it can be seen that DHHPN exhibits
the highest feature similarity with Perlin, which means that
Perlin noise can simulate the characteristics of DHPN to a certain
extent and provide a reliable noise model for subsequent digital
holographic denoising methods.

To further investigate the feature similarity between DHHPN
and Perlin in real sample measurements, we extracted data from
the background regions of six original phase maps correspond-
ing to four different samples without any denoising for analysis.
In the first row of Fig. 4, from left to right, the phase maps
correspond to: Reflective coaxial DHM measuring standard
microstructure; reflective off-axis DHM measuring standard
microstructure; reflective off-axis DHM measuring USAF1951
positive resolution target; transmissive off-axis DH measuring
USAF1951 negative resolution target; transmissive off-axis DH
measuring roughness sample; and transmissive coaxial DH mea-
suring roughness sample. The illumination light source for the
first image is a femtosecond laser with a wavelength of 780 nm,
and the others are illuminated with a frequency-stabilized He-Ne
laser with a wavelength of 633 nm. The standard microstructure
is made of silicon, and the positive/negative resolution targets
are made of chrome-on-glass, and the roughness sample are
made of glass with grooved structures. The image sensors used
for recording holograms in the second to fourth experiments
are Basler acA2040-90 m, and the other three experiments use
another image sensor HIKROBOT MV-CA016-10UM.

In Fig. 4, for each phase maps, the phase data along the
horizontal (red) and vertical (green) dashed lines are extracted
to generate X, 51242 (for n =1,2,...,6). The characteristics
of phase noise are analyzed by calculating the MIC of the
data distribution, as well as the Pearson’s r for the spectra and
autocorrelation functions. Each set of data along the dashed lines
is paired with the aforementioned Y} and the MIC and Pearson’s
r calculations are performed for each vector in Yj. In other
words, each dashed background data obtains 128 coefficients,
and each experimental image obtains 256 coefficients for each
noise type Y.

It can be seen from Fig. 4 that no matter what illumination
light is adopted, what DH/DHM systems are adopted, what
image sensors are used, and what samples are measured, the
noise characteristics of the phase maps obtained in DH/DHM
systems are surprisingly similar to that of Perlin noise. In the
experiments, all the median values of MIC and Pearson’s r
relative to Perlin for DHHPN are the highest, and all the median
values of Pearson’s r exceeding 0.50. From the experimental
analysis results, it can be seen that there is a strong similarity
between the features of DHHPN and Perlin. Therefore, in this
article, Perlin noise model is used to generate phase noise
to simulate the DHHPN. Combining with the phase maps of
different sample randomly generated by simulation, a simulated
dataset can be easily obtained to train the CNN designed for
denoising continuous phase maps of DH/DHM.
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Fig. 4. Feature analysis and comparison of DHHPN in phase maps from four samples obtained with different DH/DHM systems. Row 1 shows the

phase maps obtained from the six experiments. Row 2 displays the MIC of the dashed regions relative to UNPBP. Row 3 presents the normalized
amplitude of the 1-D Fourier spectra of the dashed regions. Row 4 shows the spectra Pearson’s r of the dashed regions relative to UNPBP. Row 5
displays the normalized value of the autocorrelation functions of the dashed regions. Row 6 presents the autocorrelation functions Pearson’s r of

the dashed regions relative to UNPBP.

B. Design of CNN and Dataset Generation

Generally, after aberration compensation, the phase map
obtained by the DH/DHM systems can be expressed as
follows:

© = Psample T Proise €))

where Qgmple and @noise represent the sample phase and noise
phase, respectively. CNN-based denoising methods essentially

separate the sample phase from the deformed phase and output
the former. The mapping relationship between the input and
output of CNN can be expressed as @gample = CNN(¢). DnCNN
has the advantages such as fewer parameters and lower compu-
tational costs, but its performance is limited when fitting highly
complex DHHPN datasets. Therefore, in this article, an end-
to-end CNN structure is designed based on DnCNN. By intro-
ducing dilation convolutional layers, residual connections, and
subspace attention mechanism, the network is more effectively
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to fit DHHPN datasets. Due to the autocorrelation in DHHPN,
the continuous features span a larger pixel range, requiring a
network with an expanded receptive field to effectively extract
these features. To address this requirement, we employ larger
convolutional kernels in the input layer and incorporate dilation
convolutional layers in the hidden layers to enhance the net-
work’s receptive field. Given the intricate nature of the noise, the
network requires deeper convolutional layers for proper fitting
of the dataset. To improve stability and accelerate the training
procedure, we introduce residual connections. The attention
mechanism primarily utilizes the subspace projection method of
algebraic calculations. This mechanism projects feature maps of
different dimensions extracted by the network, facilitating the
separation of noise components. The structure of the proposed
CNN is illustrated in Fig. 5.

First, 32 convolutional kernels of size 7 x 7 are employed
to extract low-dimensional feature maps from the input phase
images containing noise. Subsequently, the feature maps are
fed into 19 Dilation Convolutional Residual Modules to extract
high-dimensional feature maps. This module consists of a resid-
ual structure composed of two convolutional layers with kernel
sizes of 3 x 3, enhancing the stability and convergence speed
of CNN training. The first layer uses a regular convolutional
kernel, and the second layer uses a dilation convolutional kernel
to enhance the receptive field and feature extraction capability
of CNN. The LeakyReL. U is used as activation function for each
convolutional layer. The low-dimensional and high-dimensional
feature maps are fed into the subspace attention [27], [28] mod-
ule for noise separation. Two convolutional layers with kernel
sizes of 3 x 3 and 1 x 1 are further used to generate the noise
phase map. At last, by subtracting the noise phase map (©noise)
from the original input phase map (), the denoised sample phase
map (Psample) can be obtained.

The simulated dataset is generated according to (3). In order
to simulate different sample structures, in an image matrix of
512 pixels in both width and height, 8 to 64 rectangles are
randomly filled with 1, and the overlapping regions and regions
without rectangle are filled with 0. This image matrix is then
multiplied by arandom value in the range of 0 to 7 to simulate the
height of sample. Thus, the sample phase maps can be obtained.
For the noise phase maps generated by Perlin noise model, the
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Fig. 6. Simulation evaluation of the proposed method. (a1) Original
2-D phase map obtained by adding the DHHPN shown in Fig. 2(f1) to
the ideal sample phase shown in (g1). (b1)—(f1) 2-D phase maps after
denoising using the proposed CNN trained on the UNPBP datasets,
respectively. (g1) Simulated ideal sample phase map. (a2)-(g2) 3-D
phase distributions corresponding to (a1)—(g1). (h) Evaluation of PSNR,
SSIM, and MAE for the phase maps before and after denoising.

mean values are set as O rad and the standard deviation (STD)
values are in the range of 0.05 to 0.26 rad based on experimental
statistics. Finally, the noise phase is added to the sample phase to
obtain the input data for training the CNN. In the training stage of
CNN, the learning rate is initially set to 0.0001 and its decreasing
strategy is cosine annealing function, and the root mean square
error (RMSE) is chosen as the loss function. The network
weights are optimized using Adam optimization algorithm with
parameters of 5; = 0.9, 8, = 0.999, and ¢ = 1078, The training
process takes 40 000 pairs of data and performs 20 iterations.

[ll. SIMULATION EVALUATION

To validate the denoising effectiveness of the proposed CNN
trained on the Perlin dataset for DHHPN, two simulation ex-
periments were implemented. In the first experiment, the de-
noising performances of different noise models for DHHPN
reduction were compared. First, a simulated ideal sample phase
is generated as shown in Fig. 6(g1). It includes some cylindrical
and rectangular steps with a height of 2 rad, and the phase of
background region is set to 0 rad. By adding the DHHPN shown
in Fig. 2(f1) to this sample phase map, an original phase map con-
taining noise is obtained, as shown in Fig. 6(al). Then, other four
datasets corresponding to the noise models of Uniform, Normal,
Pink, and Brown were generated using the same routine as the
Perlin noise dataset mentioned above. The CNN was trained on
those four datasets and Perlin noise dataset, respectively, and
performed denoising on Fig. 6(al) in turn. The output results
of CNN are shown in Fig. 6(b1)—(f1) and their corresponding
3-D phase distributions are shown in Fig. 6(b2)—(f2). It can be
seen that, the denoising performances of the CNN trained on
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TABLE |
SCALABILITY OF THE PROPOSED CNN AT DIFFERENT NOISE LEVELS

PSNR (dB) SSIM (%)

Groups Noise STD (rad)

Original Proposed Original Proposed

1 0.05 21.85 30.07 87.11 96.31
2 0.10 17.21 30.41 74.19 95.84
3 0.20 13.89 31.49 55.73 95.74
4 0.30 11.87 26.99 46.78 94.26
5 0.40 11.09 19.71 39.78 62.59

datasets of Uniform, Normal, and Pink are poor. On the contrary,
the denoising performances of the CNN trained on datasets
of Brown and Perlin are much better. In Fig. 6(b1)—(f1), the
STD values of two different background regions are calculated
to quantitively evaluate the denoising performance. Obviously,
the denoising result of CNN trained on Perlin dataset has the
best performance with smallest STD values of 0.006 rad for
horizontal line and 0.005 rad for vertical line. Furthermore,
comparing with the ideal sample phase shown in Fig. 6(gl), the
peak signal-to-noise ratio (PSNR), structural similarity (SSIM),
and mean absolute error (MAE) of Fig. 6(al)—(fl) are also
calculated by (4), (5), and (6), respectively, and their results
are shown in Fig. 6(h). The PSNR, SSIM, and MAE isgiven,
respectively, by

“

2
PSNR:lo.logm< MAX; )

MSE(¢,, ¢)
(2Mfu7' + Cl)(zgfr + 02)
(17 + p2 4 C1) (0} + 02 + )

SSIM(f,r) = (5)

1 m n
MAE= — SO lerig) = en(in i)l (©)

i=1 j=1

where MAX; is the maximum pixel value of the phase map,
MSE stands for mean squared error, and ¢ and ¢, denote the
filtered phase map and the reference phase map, respectively.
The local mean, standard deviation, and cross covariance of
phase map ¢y and ¢, are denoted as puy, p,, oy, 0y, and
osr, respectively. C and C are constants. It can be seen that,
before denoising, the original phase map has the lowest PSNR
and SSIM, which are 15.3 dB and 68.0%, respectively. After
denoising using CNN trained on different datasets, both PSNR
and SSIM are improved. Obviously, the denoising result of CNN
trained on Perlin dataset has the highest PSNR and SSIM, which
are 28.6 dB and 95.6%, respectively, and the lowest MAE, which
is 3.5 x 1072 rad. Therefore, these experimental results indicate
that the CNN trained on the Perlin dataset performs best in
reducing the DHHPN.

In the second experiment, denoising performances of phase
maps with different Perlin noise levels were evaluated. First, as
shown in Table I, five different Perlin noise phase maps with
mean values being 0 rad and STD values, respectively, being
0.05 rad, 0.10 rad, 0.20 rad, 0.30 rad, and 0.40 rad are added
to the simulated sample phase map shown in Fig. 6(gl). Then,
the original phase maps of each group are denoised using the
proposed CNN trained on the Perlin dataset. For quantitative
evaluation, the PSNR and SSIM of the phase maps before and
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after denoising are compared. From groups 1 to 3 in Table I,
When the noise level falls within the range of the noise level
of the training dataset, the denoising performances are very
convincing, with PSNR higher than 30.07 dB and SSIM higher
than 95.74%. Surprisingly, for group 4 in Table I with initial
noise level exceeding that of training dataset (maximum of
0.26 rad), its denoising result is also acceptable, with PSNR
and SSIM being greatly improved from 11.87 to 26.99 dB and
46.78% to 94.26%, respectively. From group 5 in Table I, where
the noise level increases to nearly twice the maximum noise level
in the training dataset, the denoising performance significantly
decreases but not completely fails, with PSNR and SSIM being
improved only from 11.09 to 19.71 dB and from 39.78% to
62.59%. These results demonstrated the proposed CNN has good
scalability for different noise levels.

[V. EXPERIMENTAL MEASUREMENT RESULTS

To evaluate the practical denoising performance of the pro-
posed CNN based on Perlin noise similarity, a standard mi-
crostructure with a nominal step height of 65 nm and a MEMS
chip were measured in the experiment. A reflective off-axis
DHM optical setup using He-Ne laser (wavelength A = 633 nm)
as illuminating light was constructed to record the holograms
of two samples. By implementing +1 term spectrum extraction,
angular spectral diffraction, phase unwrapping [29], and phase
aberration compensation, the continuous phase maps ¢ contain-
ing DHHPN can be obtained. Then, the images and profiles
of the samples before and after denoising can be calculated
according to h = @A /41 or h = Yumpler/4m. The unfiltered
(Original) measurement results of microstructure and MEMS
chip and their corresponding results after denoising using WFF-
BM3D [30], DnCNN trained on Perlin dataset, and the proposed
method are shown in Fig. 7. Similarly, the STD values of the
background and structure regions labeled with white curves in
Fig. 7(al)-(d1) and (a3)—(d3) are calculated to quantitively
evaluate the denoising performances of different methods. As
summarized in Table II, for the two samples, the average values
of the STD values of two regions before denoising are 4.64 nm
and 5.27 nm, respectively. After applying the WFF-BM3D algo-
rithm, the noise of the two samples are partially suppressed, with
average STD values of 3.37 nm and 2.20 nm, respectively. After
performing DnCNN denoising, the noise suppression effects
in different regions are quite different. The noise suppression
performance is quite good in the background region and a slight
poor in the sample region, with average STD values of 1.80 nm
and 2.30 nm, respectively. Inspiring, the overall noise suppres-
sion performance of the proposed method far exceeds the other
two methods. The denoising performance in the background and
sample areas is highly consistent, with the STD values in both
areas reduced by an order of magnitude to 0.22 nm and 0.38 nm,
respectively. In addition, these experimental results are in good
agreement with the simulation results shown in Fig. 6(f1), where
0.006 rad corresponds to 0.30 nm.

To evaluate the actual measurement accuracy, the profile
curves along the red dashed lines obtained by Original, WFF-
BM3D, DnCNN, and the proposed method were compared
with the results measured using a white light interferometer
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TABLE Il
EXPERIMENTAL EVALUATION OF DENOISING PERFORMANCE FOR DIFFERENT METHODS

Standard microstructure MEMS chip
Methods
STD (nm) Time (s) STD (nm) Time (s)
Background Sample Average values Background Sample Average values

Original 3.82 5.46 4.64 - 5.04 5.51 5.27 -
WFF-BM3D 2.23 4.50 3.37 23.72 2.64 1.75 2.20 18.18

DnCNN 0.19 3.42 1.80 1.40 0.14 4.46 2.30 1.09

Proposed 0.11 0.34 0.22 1.75 0.32 0.44 0.38 1.23
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Fig. 7. Measurement results of the standard microstructure and
MEMS chip. (a1)—(a4) Original 2-D images of the samples and their
corresponding 3-D distributions. (b1)—(b4) Denoising results obtained
using the WFF-BM3D algorithm. (c1)—(c4) Denoising results obtained
using the DnCNN trained on Perlin dataset. (d1)—(d4) Denoising results
obtained using the proposed method. (e) Profiles of red dashed lines in
(a1)—(d1) and measurement profile obtained using WLI. (f) Profiles of
red dashed lines in (a3)—(d3) and measurement profile obtained using
SP.

(WLI) (Zygo, NewView 9000) and using a stylus profilometer
(SP) (S1910DX3; ACCRETECH), respectively. As shown in
Fig. 7(e) and (f), for the Original and WFF-BM3D results,
the height errors in both the background and sample areas
ranged from several to tens of nanometers, especially at the
edges of structures. For the DnCNN results, the background
area is relatively flat, but the sample area is less ideal, showing
differences of tens of nanometers compared to the measure-
ments obtained using WLI and SP. The results of the pro-
posed method exhibited a very flat background area, and the
height values in the sample area were more consistent with
those of WLI and SP. In addition, when training DnCNN

with the Perlin dataset, the network’s loss function only con-
verged to 0.04, and the training process exhibited instability.
In contrast, training the proposed CNN achieved a lower loss
function convergence of 0.01. Therefore, the proposed CNN
has higher fitting accuracy, and the training process is more
stable.

In addition, as shown in Table II, despite having a more
complex network structure than the DnCNN, the time consump-
tion of the proposed method is still very close to DnCNN and
much shorter than WFF-BM3D. Therefore, the proposed CNN
based on Perlin noise similarity has a significant potential for
denoising DHHPN in DHM experiment. All data processing
was performed on a Dell PC running Windows 10 operating
system, with an Intel(R) Xeon(R) Gold 5118 CPU @2.30 GHz
processor.

V. CONCLUSION

In summary, accurate representation of actual DHHPN is
the key prerequisite to realize phase denoising and improve
measurement accuracy. We experimentally demonstrated a con-
tinuous phase denoising via deep learning based on Perlin noise
similarity. First, Fourier spectra and the autocorrelation func-
tions of background region in a continuous phase map obtained
from DHM experiment and UNPBP noises were analyzed and
compared, and their correlations were calculated. To the best of
our knowledge, the characteristic similarity between DHHPN
and Perlin noise was revealed for the first time in this paper.
Second, the noise features of other six phase maps obtained with
different illumination light, different DH/DHM systems, and
different samples were studied, which further verified the char-
acteristic similarity between DHHPN and Perlin noise. Then,
inspired by this discovery, Perlin noise was used to simulate the
real DHHPN. And the CNN was trained using a dataset con-
sisting only of computationally generated clean sample phase
maps and Perlin noise phase maps. This not only solves the
problems of collecting and labeling experimental data, but also
improves the universality of the trained CNN model for dif-
ferent DH/DHM systems. Simulation and experimental results
validated that: 1) compared with other noise models, the CNN
trained using dataset generated by Perlin noise model has the best
denoising performance for DHHPN, with STD values of phase
in the background regions achieving 0.005 rad and 0.006 rad,
respectively; 2) the proposed CNN has good scalability for
different noise levels; and 3) the denoising performance of the
proposed method is superior to classical algorithms, where the
measurement accuracy of standard microstructure and MEMS
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chip are improved by an order of magnitude, with average values
of STD achieving 0.22 nm and 0.38 nm.

The primary aim of this article is to address the challenge
of hybrid noise affecting the accuracy in digital holographic
microstructure measurement. The task involves not only effec-
tively suppresses noise, but also maintains the inherent structure
of the sample. This work strikes a balance between these two
objectives. It should be noted that if the sample phase dis-
tribution exhibits characteristics similar to Perlin noise, such
as some biological tissues and cells, the sample profiles may
be excessively smoothed. Therefore, the proposed method is
more suitable for samples with distinct structures or step-like
distributions. In addition, the parameters of Perlin need guidance
from a small amount of experimental statistical data, such as
means, standard deviation values, and spectral ranges. When
the statistical estimation of noise parameters in the experiment
is inaccurate or there are too many outliers, the Perlin noise will
fail to accurately simulate real DH noise.
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