
6844 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

RRPDG: A Graph Model to Enable AI-Based
Production Reconfiguration and Optimization

Sebastiano Gaiardelli , Student Member, IEEE, Michele Lora , Member, IEEE,
Stefano Spellini , and Franco Fummi , Member, IEEE

Abstract—This article introduces the regionalized re-
source process dependence graphs (RRPDGs): a manufac-
turing processes representation inspired by the regional-
ized value state dependence graphs traditionally used in
software compilers. An RRPDG is an ordered sequence of
nodes, each characterized by stereotyped input and output
parameters, encapsulating a transformation of the process
state (e.g., a manufacturing operation). RRPDG allow defin-
ing complex transformations by composing a set of nodes
(i.e., regions), hiding the internal details. Then, RRPDGs
are used to automatically reasoning over dynamic recon-
figuration and process optimization: an instance of the A-
star search algorithm is used to search for possible trans-
formations while pursuing an optimization function. The
rules defined in this article over RRPDG models enforce the
transformations’ correctness. We use RRPDGs to model a
real production system while the transformation rules are
applied to optimize the system’s processes. The proposed
representation reduced the search complexity in each ex-
periment, allowing to reach an optimal solution also in the
case for which classical approaches were unable to com-
plete before reaching the timeout. In all the experiments,
the cost of the solution produced by using the regionalized
representation is minor than the the solution produced by
using the classical representation.

Index Terms—Modeling, smart manufacturing, process
control in manufacturing automation.

I. INTRODUCTION

AMONG the technical innovations of modern manufac-
turing, service-oriented architectures for manufacturing

Manuscript received 11 April 2023; revised 27 September 2023; ac-
cepted 1 January 2024. Date of publication 25 January 2024; date
of current version 4 April 2024. This work was supported in part by
the European Union’s Horizon 2020 research and innovation program
through the Marie Skłodowska-Curie grant under Grant 894237, in part
by the European Union Next-GenerationEU (Piano Nazionale di Ripresa
e Resilienza (PNRR) “Missione 4 Componente 2, Investimento 1.5”
D.D. 1058 23/06/2022) through the PNRR research activities of the
consortium iNEST under Grant ECS_00000043, and in part by the PRIN
2022T7YSHJ SMART-IC-Next Generation EU project. Paper no. TII-23-
1274. (Corresponding author: Sebastiano Gaiardelli.)

Sebastiano Gaiardelli, Michele Lora, and Franco Fummi are with the
Department of Engineering for Innovation Medicine (DIMI), University
of Verona, 37134 Verona, Italy (e-mail: sebastiano.gaiardelli@univr.it;
michele.lora@univr.it; franco.fummi@univr.it).

Stefano Spellini is with the FACTORYAL S.r.l., 37057 San Giovanni
Lupatoto, Italy (e-mail: stefano.spellini@factoryal.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2024.3352645.

Digital Object Identifier 10.1109/TII.2024.3352645

systems stand out to make production processes more flexible
and efficient: functionalities are organized in “services” [1], [2]
and distributed through manufacturing components and agents.
A manufacturing service is a minimal manufacturing operation
executed from a specific piece of equipment (e.g., the pick and
place operation carried out by a robotic arm). Each service is
exposed to other pieces of software (e.g., supervisory control)
through a communication infrastructure and a compatible soft-
ware architecture [3]. To specify the production process, a recipe
can be represented as an ordered composition of manufacturing
services [4]. To meet the flexibility of modern market trends,
the complexity of the functionality implemented by services
is constantly increasing [5], [6]. Therefore, a lot of research
effort has been spent in the past two decades on developing
modeling [7] and system verification [8] approaches.

To support the reconfiguration of modern manufacturing sys-
tems, the first condition to meet is a production process modeling
strategy: it should provide the ability to represent process de-
pendencies and the input/output constraints. Furthermore, a set
of models’ manipulation rules is needed to guide the process
optimizations (e.g., makespan reduction) while guaranteeing
that the same functionality is preserved.

To cope with such requirements, this article proposes re-
gionalized resource process dependence graphs (RRPDGs): a
region-based production processes representation inspired by
regionalized value state dependence graphs (RVSDGs). The
representation exploits the concept of “region,” which is the im-
plementation of a sequence of production services (i.e., nodes).
Furthermore, regions may be composed of other subregions, to
hierarchically structure a complex service.

We define a set of formal rules over RRPDGs to structurally
manipulate models of production processes. The defined rules
guarantee that a modified production process carries equivalent
functionality with respect to the original model. Then, the set of
transformation rules and the region-based process representation
can be exploited to guide reconfiguration. Fig. 1 summarizes
the entire contribution with an example: a production system
made of four machines, i.e., Ma, Mb, Mc, and Md, and each
machine implements a set of services, i.e., a set of base manu-
facturing operations. For instance, Ma implements the services
S1 and S2. The system carries on the production according
to the production recipe depicted above, and represented by a
RRPDG. Let us suppose Mb fails, triggering the reconfiguration
of the production as the serviceS3 becomes unavailable and thus
making the red region in the figure unfeasible. The optimization

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9451-1957
https://orcid.org/0000-0002-6224-4313
https://orcid.org/0000-0002-4989-5832
https://orcid.org/0000-0002-4404-5791
mailto:sebastiano.gaiardelli@univr.it
mailto:michele.lora@univr.it
mailto:franco.fummi@univr.it
mailto:stefano.spellini@factoryal.it
https://doi.org/10.1109/TII.2024.3352645

GAIARDELLI et al.: RRPDG: A GRAPH MODEL TO ENABLE AI-BASED PRODUCTION RECONFIGURATION AND OPTIMIZATION 6845

Fig. 1. Overview of contribution: RRPDGs, along with the proposed
transformation rules, support AI-based reconfiguration and optimization
of production processes. A manufacturing system composed of four
machines Mi, each one exposing a set of services Sj , must implement
the depicted production recipe. Suppose a failure of machine Mb: the
red region can no longer be executed due to the unavailability of S3. The
optimization engine exploits the composition rules defined for RRPDGs
to generate a set of candidate regions. The A* algorithm is used to
search the optimal solution. In this example, the algorithm identifies
the green region as the best candidate to replace the red region in the
production recipe, thus guiding reconfiguration.

engine can exploit the rules defined over the proposed formalism
to build new regions functionally equivalent to the red region.
Then, the engine relies on the A-star (A*) algorithm to find the
best-suited region to replace the original one. In Fig. 1, the green
region is chosen to replace the red region triggering the system
reconfiguration.

The main contribution of this article is the definition of the
RRPDG formalism, and the definition of the formal transforma-
tion over the proposed models. We advocate that the proposed
formalism is well-suited to support different process reconfig-
uration and optimization techniques based on a set of well-
known artificial intelligence (AI) techniques, such as informed
search and automated reasoning over the composition rules.
Furthermore, it is worth noticing that the hierarchical structure
of RRPDGs allows to efficiently decompose the reconfiguration
problem and reduce the time required to explore the state-space.

We evaluate the proposed representation effectiveness by
modeling a case study based on a real manufacturing process.
We assess the efficiency of the region-based representation in
a search context carried out by an informed search algorithm:
we compare the results produced by the search procedure using
RRPDGs with a state-of-the-art process modeling approach.
The proposed graph model is more efficient in providing near-
optimal reconfiguration solutions.

The rest of this article is organized as follows. Section II
introduces the main concepts used in this work. Then, Section III
defines the proposed formalism, i.e., the RRPDG, and the main

Fig. 2. Production recipes in the context of SOM. The agents com-
posing the system expose a set of manufacturing services (bottom). A
recipe, typically specified as a partially ordered set of production tasks
(on the left) is interpreted as a partially ordered set of services (on the
right) provided by the agents available in the production system. For
instance, Task T2 is implemented by executing the service S1 provided
by the agent Ma, and the service S7 provided by the agent Mc; the Task
T2 is implemented by agent Mb executing service S3 after agent Ma has
executed the service S2.

relations and operations defined over the formalism. Section IV
describes a process optimization technique using the RRPDG
formalism. Section V presents the case study, as well as the
results achieved in our experimental setting. Finally, Section VI
concludes this article.

II. PRELIMINARIES

The proposed specification formalism can be used to spec-
ify production recipes in any production process. Still, it is
specifically tailored for industrial scenarios implementing the
service-oriented manufacturing (SOM) paradigm [1], [2]. The
main idea of SOM is summarized in Fig. 2. The production
process is intended as a set of services carried out by the agents
operating in the production system. Each agent exposes the set
of services that the agent can provide. Borrowing computer
engineering concepts, we may say that in SOM the production
system is seen as an application programming interface exposing
all the functions performed by the agents in the system. An
agent providing services may be either a piece of machinery
physically executing a manufacturing operation, a piece of the
computational infrastructure gathering or providing data, as
well as a human–machine interaction device interacting with a
human operator who concretely performs the actions necessary
to implement the service. Thus, a SOM system may comprehend
manufacturing and computation equipment, as well as human
operators.

A. Regionalized Value State Dependence Graphs

An RVSDG [9] is an acyclic hierarchical multigraph con-
sisting of nodes. A node represents a computational block that
applies a transformation function from its inputs to its outputs.

6846 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

There are two main categories of nodes: simple (i.e., representing
primitive operations), and structural (i.e., containing internal
RVSDGs, called regions). An RVSDG is a structural node itself.
Edges model data flow between two nodes, connecting a node’s
output to another node’s input.

A structural node NR is a quadruple (I,O,N,E), where the
following relationships hold.

1) I is the set of typed inputs of the region.
2) O is the set of typed outputs of the region.
3) N is the set of internal nodes composing the region.

Internal nodes may be either simple or structural.
4) E is the set of edges connecting the nodes in N . Each

edge e ∈ E is defined as the tuple e = (g, u), where g is
the origin node and u is the user node.

A simple node can be defined as a structural node whose set
of internal nodes is empty. Structural nodes represent complex
constructs (e.g., root region, tail-controlled loops, conditional
statements, functions, recursive functions, and global variables).
RVSDGs define the following structural nodes.

1) γ-node describes a conditional statement. It contains
multiple regions R0, . . . Rn, with n > 0, one for each
possible decision path. The first input of this node must
be a predicate, which determines the region to traverse.

2) θ-node depicts a tail-controlled loop. It contains a single
region with the loop’s body. Its first output is a Boolean
condition, which determines the loop iteration.

3) λ-node represents a function. It contains a single region
with the function body. Its inputs are the function parame-
ters, and its single output represents the λ-node itself. The
outputs of its internal region specify the function result.

4) δ-node models a global variable. It contains a single
region containing a constant value as output. Its inputs
represent the variables on which the constant depends.

5) φ-node characterizes a mutually recursive environment.
It contains a single λ-node within its internal region.

6) ω-node is the top-level of an RVSDG. It contains a single
region without inputs and outputs.

RVSDGs allows creating acyclic hierarchical structures, thus
allowing to partition of the analysis into smaller regions that are
easier to analyze.

B. State-of-the-Art

An unexpected event stopping a production causes a cascad-
ing effect on the other processes, then directly impacting the
overall plant efficiency. As such, production processes’ opti-
mization, and reconfiguration are increasingly gaining interest in
the research community and among manufacturing companies,
and so it is the representation of the information necessary to sup-
port such features [10]. The problem of modeling manufacturing
processes while supporting process optimization and reconfigu-
ration has been addressed following two main approaches. The
first approach relies on graph-based models, such as resource
task networks (RTNs) [11] and state task networks (STNs) [12].
RTNs and STNs formalize production recipes as direct graphs
specifying the process’s parameters and constraints. A STN
expresses the sequence of material states associated with tasks,

an RTN explicitly specifies the allocation of tasks and resources
to physical machines. However, both RTNs and STNs do not
support either compositional or hierarchical modeling. There-
fore, while they enable reasoning when assuming the expected
behavior for the complete production system, they lack support
for task-level or finer reasoning [13].

A second kind of approach formalizes the machine’s function-
alities, often relying on ontologies [14], [15], [16]. Most models
formalize the machine’s atomic functionalities (i.e., services)
through a set of capabilities and constraints [17] describing their
effects on the environment. Production recipes are defined as the
ordered composition of atomic functionalities [10]. However,
the structure of the recipes is usually fixed, and the reconfigura-
tion is done simply by selecting the machine and tools best suited
for a given operation. These approaches do not allow modifying
the set or the order of operations to complete the production
process. Thus, limiting the set of available optimizations when
reconfiguring the system. While these methodologies perform
well in their low-level vision of the production processes, they
are not suitable for addressing higher-level process optimization
due to their fixed structure. This limitation is mitigated in [15]
by considering a production process as a multiagent system.
However, the proposed approach is limited to “plug and pro-
duce” production plants, which are still not the state of the
practice in manufacturing. Meanwhile, our contribution aims
at also applying to production processes carried out by legacy
production systems.

III. MANUFACTURING-ORIENTED REGION-BASED

REPRESENTATION

In this section, we propose a representation inspired by RVS-
DGs to represent production processes. We first present the
terminology that will be used in all the subsequent sections.
Then, we use the terminology to introduce the definitions and
compare our representation with RVSDGs.

A. Basic Concepts

A manufacturing process P is represented as a tuple
(R,S, I,O,N,E), where the following relationships hold.

1) R := M ∪ C is the set of resources used by the produc-
tion process. A resource r ∈ Rmay be either nonconsum-
able, such as the machinery in the production system, or
consumable, such as materials and machine tools. M is
the set of nonconsumable resources, while C is the set of
consumable resources, such that M ∩ C = ∅.

2) S :=
⋂|M |+|C|

i=1 Si is the state-space of the production
system. Each resource rk ∈ R is characterized by a state-
space Sk, while sk,t ∈ Sk is the state of the resource rk
at time t. �st = [s1,t, . . .s|R|,t]

′ is the production system’s
state at time t, given by the vector of the states of the
resources in R. The state of a resource r ∈ R is charac-
terized by a set of attributes. We refer to the attribute i of
the resource r as r.i.

3) I ⊆ M ∪ C is the set of the input of the region, i.e., the set
of consumable resources (e.g., material to be used) being

GAIARDELLI et al.: RRPDG: A GRAPH MODEL TO ENABLE AI-BASED PRODUCTION RECONFIGURATION AND OPTIMIZATION 6847

Fig. 3. Example of nodes composing the proposed representation. State transformations are highlighted with bold style. (a) Depicts two atomic
nodes modeling machine services; (b) depicts two composed nodes: the Composed node is the composition of the two atomic nodes in (a); the
MoveAndPick node is a node providing a functionality equivalent to the Composed node. The reported values have been measured in the research
facility, the ICE laboratory, used in Section V to evaluate and validate the proposed approach. (a) Atomic Nodes. (b) Composition of atomic nodes.

input to the production process, and the nonconsumable
resources being used.

4) O ⊆ M ∪ C is the set of the output of the region, i.e.,
the set of consumable resources created by the production
process, and the nonconsumable resources made available
by the process.

5) N := A ∪ Z is the set of nodes representing the tasks im-
plementing the production process. A task may be either
atomic and represented as a simple node, or composed
by subservices and represented as a structural node. A
is the set of nodes modeling atomic tasks, while Z is
the set of the nodes modeling structured tasks, such that
A ∩ Z = ∅. A node is recursively defined as a manufac-
turing process. Given a node n ∈ N , In is its input set,
and On is its output set; if n is atomic, then Nn = ∅ Each
node n ∈ N implements a function fn : S → S, which
modifies the state S of the production system P .

6) E ⊆ N ×N is the set of edges connecting the nodes in
N , as defined for classic RVSDGs.

The first main difference between RVSDGs and our proposed
representation RRPDGs resides in atomic nodes. RRPDGs
use machine instruction (e.g., arithmetic instruction, bit-
wise operations, and memory operations) as atomic nodes,
whereas RRPDGs uses manufacturing services (e.g., pal-
let movement), embedding their functionality into atomic
nodes.

Fig. 3 exemplifies the proposed representation for produc-
tion processes. In Fig. 3(a), MovePlt represents a service
that moves a resource Pallet:MU from an initial position
to the destination position identified by the constant value 4.
Furthermore, each node has some internal attributes specifying
the physical features of the physical process described by the
node, such as the processing time or the energy it consumes.
These attributes allow both modeling additional constraints (e.g.,
maximum time to complete) and node comparison. It is also
possible to define costs functions based on these attributes,
selecting the best nodes carrying out the functionalities. We refer
to the internal attribute i of the node n with n[i].

RVSDGs do not allow modeling race conditions between
multiple processes. Still, manufacturing resources could require
lock policies on certain resources, to avoid dangerous situations
in which multiple production recipes act on the same resource. In
our representation, producer and consumer nodes model reserve
and release policy on a resource r, introducing the possibility
to manage race conditions. A producer node reserves a resource
of the production system and produces it within the represented
production process. Such nodes have an output with the resource
r but do not have an input with the same resource r (r /∈ In,
and r ∈ On). The second atomic node in Fig. 3(a) produces
C1:Mater as output. A consumer node is the opposite of a
producer node: it consumes the resource r and releases it to the
production system. Such nodes have an input with the resource
r and do not have an output with the same resource (r ∈ In and
r /∈ On).

From the definitions of producer and consumer node, we
define the lock on a resource r as follows.

Definition 3.1 (Lock): Given two nodes n1 and n2, respec-
tively, producing and consuming a resource r, the lock Lr on r
is defined as the tuple Lr = (n1, n2).

Nodes consuming and producing a resource r model a func-
tion transforming the state of the resource sr,t into a new state
s′r,t. We define the transformation and identity node as follows.

Definition 3.2 (Transformation node): Given a node n, with
a set of inputs In and outputs On, n is a transformation node
for the input resource r if and only if both of the following
conditions stand:

1) r ∈ In, r ∈ On, and
2) exists an attribute i of r, such that In,r.i 	= On,r.i.

Thus, a transformation node modifies an input resource r by
producing the same resource r, with at least one of its attributes
modified. An identity node consumes and produces a resource
r with the same attributes, and it is defined as follows.

Definition 3.3 (Identity node): Given a node n, with a set of
inputs In and outputs On, n is an identity node for the input
resource r if and only if both of the following conditions stand:

1) r ∈ In, r ∈ On, and

6848 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

2) it does not exist an attribute i of r, s.t. In,r.i 	= On,r.i.
Based on these definitions, we can define a set of properties

and transformations that allow to safely manipulate a production
process implementation while keeping its results unaltered.

B. Equivalence, Consistency, and Transformations

To ensure that process manipulations preserve the overall
result, it is necessary to define an equivalence relation for the
proposed representation. Two manufacturing resources can have
total or partial overlapping functionalities, meaning that both
of these resources can be used within a manufacturing pro-
cess to obtain the same objective result. For instance, consider
two pallets with their sets of admissible destinations partially
overlapping with each other. The two pallets can be equally
used to reach any destination belonging to the intersection. At
the same time, there are some destinations reachable only by
one of the two pallets. This definition of equivalence better
suits manufacturing processes as it defines when two resources
can replace each other. The semantic equivalence between two
resources is defined as follows.

Definition 3.4 (Semantic Equivalence): Given two resources
r1 and r2, respectively, in a state sr1,t and sr2,t of a production
system state �st, r2 is semantically equivalent to r1, with respect
to a target production system state �sf ′

t reachable exploiting the
resource r1 if and only if both the following conditions stand:

1) for each transformation node n1 that can be applied to
r1, transforming its state sr1,t in s′r1,t′

and the production

system state in �s′t′ , it exists a transformation node n2 that
can be applied to r2 and it transforms its state sr2,t in s′r2,t′′

and the production system state in �s′t′′ ;

2) �s′t′ is semantically or strictly equivalent to �s′t′′ (�s′t′ � �s′t′′).
Given two resources r1 and r2, we can check whether they

are semantically equivalent as follows. Let us assume r1 is in an
initial state sr1,t, and r2 is in an initial state sr2,t, both included
in a production system state �st. Let us consider a sequence of
transformation nodes T transforming �st in the objective state
�sf ′
t. For each transformation node n ∈ T is applied to r1 and

transforming the production system state �st in �s′t′ that can be

also applied to r2 transforming �st in �s′t′′ , we have the following
conditions.

1) �s′t′′ is strictly equivalent to �s′t′ or to an intermediate state
�s′t+k (with a distance k from the initial state �st) in the

sequence that transforms �st in �sf ′
t. Then, we can state

that r2 is semantic equivalent to r1.
2) �s′t′′ is not equivalent to �sf ′

t or to an intermediate state �s′t+k,

then we can check �s′t′′ � �st with the objective state �sf ′
t.

If the search terminates without finding a chain of nodes for
r2 that transforms the production system’s state �st in �sft′ , then
r1 and r2 are not semantically equivalent. Briefly, a resource
is semantically equivalent to another if both resources have
a chain of transformation nodes able to transform the initial
state �st into the same objective final state �sft′ . This definition
implies that whenever two resources are semantically equivalent,

a production system can choose to replace one with the other,
to reach the same target state. Therefore, we introduce the
following Lemma.

Lemma 3.1 (Resource Replaceability): If a manufacturing
process p uses a resource r1 to reach a production system state
�sft′ from the state �st, and r1 is semantically equivalent to a

resource r2, then the process p can replace the resource r1 with
the resource r2 to reach the same state.

Proof: Suppose that r1 is semantically equivalent to r2 with
respect to the target state �sft′ , which can be reached from
the current state �st only by exploiting the resource r1. This
implies that for each node n acting on the resource r2 and
transforming the current state in a state �s′t′ such that �s′t′ 	� �st.
This contradicts our hypothesis that r1 is semantically equivalent
to r2, invalidating the conditions of the Definition 3.4. �

Resources preemption is also trivial in manufacturing pro-
cesses. Since preempted resources in an initial state are modified
by the external process and return in an unknown state, such
a state must be semantically equivalent to the initial one, to
enable a well-formed preemption. By exploiting the equivalence
definition, we define when a lock is well-formed as follows.

Definition 3.5 (Lock consistency): Given a resource r, a lock
Lr and two states sr,t and s′r,t′ of r (respectively, before and
after Lr), the lock Lr is “well-formed” if and only if sr,t � s′r,t′
and s′r,t′ � sr,t′ .

This means that for each node n that can be applied to r, and
modifies its state sr,t, there must be an opposite noden1 that can-
cels the side-effect of n. Therefore, a process P lock-consistent
with respect to a resource r can safely preempt the resource r
from another process, guaranteeing that the resource is returned
in a state semantically equivalent to the state, in which the
resource has been preempted. The advantage of manufacturing
services is that they can be assembled to create more complex
services. Moreover, production processes comprise a sequence
of services in a specific order that implements the represented
functionality. By exploiting the node characterization introduced
previously, we define the composition of two nodes as follows.

Definition 3.6 (Node composition): Given two nodes n1 and
n2, their composition n1 ◦ n2 is defined as the structural node z,
such as follows:

1) Iz = In1 ∪ (In2 \On1), and
2) Oz = (On1 \In2) ∪On2 .

The composition operation is noncommutative. Therefore,
n1 ◦ n2 can be different from n2 ◦ n1. The resulting node z is
a complex node, enclosing the functionalities of both nodes.
Its inputs are the input of the first node and the input of the
second node, which are not produced from the first node. Its
outputs are the output of the second node and the output of
the first node, which are not consumed by the second node.
The internal parameters of the resulting node z are computed
differently based on the parameter. For example, consider the
internal parameter “time” t: z[t] is equal to n1[t] + n2[t] if
an input i ∈ On1 ∧ i ∈ In2 exists, max(n1[t], n2[t]), otherwise.
Now let us take the internal parameter “energy consumption”
ec: z[ec] is always equal to n1[ec] + n2[ec]. In Fig. 3(b), the top
node is the composition of the two nodes of Fig. 3(a). Note that

GAIARDELLI et al.: RRPDG: A GRAPH MODEL TO ENABLE AI-BASED PRODUCTION RECONFIGURATION AND OPTIMIZATION 6849

if the intersection On1 ∩ In2 is not empty, then the composition
produces a new complex node z ∈ Z for each permutation of the
association tuples (on1 , in2), where on1 , in2 ∈ On1 ∩ In2 and on1

is semantically equivalent to in2 .
Lemma 3.2 (Composition Equivalence): The execution of

a complex node z = n1 ◦ n2 in a production system state �st
produces a new plant state �st

′ equivalent to the state �st
′′ obtained

by executing the ordered sequence of the two atomic nodes n1

and n2 in �st.
To support nodes replaceability we must define how the nodes

of a manufacturing process P can be replaced while preserving
the overall functionality of the process. Before introducing
replaceability, it is necessary to define compatibility between
nodes first.

Definition 3.7 (Node Compatibility): Given two nodesn1 and
n2, n2 is compatible with n1 if and only if In2 ⊆ Onp

, where
np is a region obtained from the composition of all the nodes
preceding n1 in the topological order.

That is, a node n2 is compatible with a node n1 if its inputs
are in the output of the environment that contains the node n1.
The environment of n1 consists of the composition of all the
nodes that are topological predecessors for the replaced node.
We define node replaceability as follows.

Definition 3.8 (Node Replaceability): Given two nodes n1

and n2, n2 can replace n1 (n2 ≈ n1) in the state �st if and only if
the following conditions hold:

1) n2 is compatible with n1, and
2) n2 transforms the state �st in a state �s′t′′ semantically equiv-

alent to the state �s′t′ obtained by applying n1 (�s′t′′ � �s′t′).
Lemma 3.3: Given a manufacturing process p using the node

n1 to transform the state �st into a state �s′t′ and a node n2 such
that n2 ≈ n1, the replacement of the node n1 with the node n2

preserves the functionality of the process.
Therefore, to keep the process functionality unaltered, the re-

placing node must have at least all of its output to be semantically
equivalent to the inputs of the replaced node. This guarantees
that the subsequent nodes of the original node n1 can still be
applied after the node n2. For example, in Fig. 3(b) the lower
node can replace the upper one if C1:Mater is available in the
environment. On the other hand, the upper node cannot replace
the lower node.

IV. AI-BASED PROCESS OPTIMIZATION

In the previous section, we have defined the structure of
the proposed representation. Real-world production processes
are characterized by constraints and requirements that must be
satisfied within their entire sequence of services. For example,
let us take a pallet and a service that picks the material placed
on the pallet. This service should be executed only if the pallet
effectively has material on top of it. Therefore, we need to add
rules that enable defining when a node n ∈ N can be executed
in a particular state s, avoiding transitions toward invalid states.
We define a constraint on a node n as follows.

Definition 4.1 (Constraint): Given a node n with a set of in-
puts In and a set of outputsOn, a constraint v is defined as a func-
tion v : R → {0, 1}, where the following relationships hold.

1) R ⊆ In ∪On.
2) 0 identifies an unsatisfied constraint.
3) 1 identifies a satisfied constraint.

A constraint v is a function that maps the inputs and outputs
of a node n into the value 0 or 1. This allows specifying a set of
constraints describing when a node can be applied in a certain
state. We identify the set of all the constraints of a node n with
Vn. Using Definition 4.1, we can declare when a node n is able
to produce a transition from a state �st to a valid state �s′t′ . We
define a “safe transition” as follows.

Rule 4.1 (Safe transition): Given a state �st, a node n, and
a set of constraints Vn associated to n, we say that the node n

produces a “safe transition” to the state �s′t′ if and only if ∀v ∈ Vn

v(In ∪On) == 1.
This rule prevents transitioning toward invalid states, reducing

the total number of neighbors in a state �st to the ones satisfying
the specified set of constraints Vn. Moreover, it reduces the
total number of states that must be evaluated to find a certain
solution. Thus, from Definition 4.1, we can extend Definition 3.6
previously introduced as follows.

Rule 4.2 (Node v-composition): Given two nodes n1 and n2,
each possessing a set of constraints (Vn1 and Vn2 , respectively),
their compositionn1 ◦v n2 is defined as the complex node z such
that

1) z = n1 ◦ n2, and
2) Vz = Vn1 ∪ Vn2 .

In particular, the new set of constraints Vz will have: 1) all the
constraints associated to a resource r not shared between n1 and
n2 (r ∈ On1 ∧ r ∈ In2); 2) the resulting constraints associated to
each resource r, shared between n1 and n2 and obtained by solv-
ing the systems of equations Vz,r = {Vn1,r = 1 ∧ Vn2,r = 1}.
This allows expressing each constraint v ∈ Vz only on its inputs
Iz and outputs Oz . To represent optimization choices between
two nodes and to enable multiobjective search procedures, we
extend Definition 3.8, defining the α-replaceability as follows.

Rule 4.3 (Node α-Replaceability): Given two nodes n1 and
n2, n2 can α-replace n1 (n2 ≈α n1) with respect to an internal
parameter i if and only if the following conditions hold:

1) n1 ≈ n2, and
2) α ≥ n2[i]

n1[i] .
The scaling factor α specifies a deterioration that is tolerated

with respect to an attribute. This enables optimization policies
and dynamic reconfiguration under some constraints. As an
example, in Fig. 3(b) the lower node is α-replaceable with
respect to the upper node and the internal attribute time where
α ≥ 1, 4 for the lower bound and α ≥ 1, 5 for the upper bound.
By combining the rules above, we define the following theorem.

Theorem 4.1 (Process manipulation): Let us consider a set of
nodesN representing the manufacturing services of a production
system, and a manufacturing process p defined using a sequence
of nodes ni ∈ T such that ni ∈ N . The application of the rules
safe transition, v-composition, and α-replaceability transforms
the process p into a new process p′, which produces a final state
�sp′t semantically equivalent to the final state �spt produced by

the process p (�spt � �sp′t).
Rules 4.1–4.3, respectively, extend Definitions 4.1, 3.6, and

3.8, restricting their applicability to a smaller subset of the

6850 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

items satisfying the extended definitions. As such, they are
supported by the same Lemmas 3.1–3.3, on which the definitions
are based, guaranteeing the semantic equivalence of the rule’s
result.

A. Automated Reasoning Over Production Processes

When reasoning over production processes, both the gener-
ation and manipulation aim to find the answer for the same
question: “which sequences of nodes allow transforming an
initial state �sit into a final state �sft?”. While the initial state �sit is
usually known (�sit = �st, where �st identifies a generic state), the
final state can be partially defined. This allows defining a set of
all the possible final states SF , such that each state �sft ∈ SF is
a valid final state. Such a set can be represented through different
constraints that identify a valid final state �sft.

Let �sit be the initial state and �sft ∈ SF the target final state.
Let T = n1, . . ., nk be the set of tasks that allows moving from
the state �sit to the state �sft. Let Vn be the set of constraints
associated to a task n. We want to find the sequence of tasks that
allows reaching the final state �sft with the minimum cost.

To find such sequence, we exploit the A* algorithm. The A*
algorithm is a well-known method in path planning [18]. The
classical algorithm uses a cost function F (�st) = g(�st) + h(�st),
in which g(�st) is a function that returns the cost to reach the
state �st from the initial state �sit, while h(�st) is a function that
returns the estimated cost to reach the target state �sft from the
state �st. This function allows finding and selecting the nodes
with the lowest value, guiding the search to the most promising
states. The cost (g(�st)) to reach a certain state is given by the sum
of the costs of each node n in the sequence of nodes realizing
the transition from �sit to �st. To compute h(�st) we estimate the
distance from the current state �st to the goal state �sft and return
a proportional value based on the current g(�st).

The algorithm used in this scenario differs from the classical
version specifically in how it computes the available neighbors.
In our case, the list of neighbors is computed by applying all
the tasks t ∈ T that produce a “safe transition” from the current
state �st. We note that, in a certain state �st, a task n is able to
produce multiple “safe transitions,” generated by applying n
on all the permutations on the inputs In in the current state �st
that satisfy the constraints Vn. To ensure that A* only selects
the nodes necessary to reach the goal state for each transition
from a state �st to a new state �s′t′ , g(�st) must be lower than

g(�s′t′). If this condition is not satisfied, the algorithm will always
choose the transition with a cost of 0 as the next state to eval-
uate. Therefore, each task t ∈ T must have a cost greater than
zero.

The cost of each node is computed on the internal parameters
i. This allows defining the objective function that A* minimizes
(e.g., execution time). For all the tasks that reserve a resource, we
set their cost equal to the cost of the most expensive task, to avoid
reserving useless resources. Similarly, the release of a resource
must happen only we the resource is no longer necessary. In this
case, the cost of a task that releases a resource is proportional
to the last time that the resource has been used in another
node, decreasing to zero after a certain time. This principle also

enables satisfying Definition 3.5, avoiding keeping the reserved
resources.

The proposed representation also enables optimizing the so-
lutions found by the algorithm. For example, after a solution has
been found, the reserve and release operations can be optimized
to avoid keeping unnecessary resources in a busy state. Thus,
the edges between the nodes allow specifying dependencies
between tasks and also identifying tasks that can be concurrently
executed.

V. EVALUATION

To demonstrate the feasibility and the soundness of the pro-
posed representation, we model through RRPDG a case study
based on a real manufacturing process. Then, we discuss the
results obtained by executing A* on two scenarios with four
different heuristics. Finally, we compare the results obtained
by using A* with those obtained by using other two search
algorithms, i.e., enforced hill climbing (EHC) [19] and single
player Monte Carlo tree search (SP-MCTS) [20].

A. Case Study: Bricks Assembly

The case study has been developed in the Industrial Computer
Engineering (ICE) laboratory, a research facility equipped with
a full-fledged production line.1 The case study consists of a
production process that must assemble three plastic components.
As depicted in Fig. 4, two out of three pieces are raw materials
retrieved from the warehouse. Such pieces are loaded onto
pallets, moved to the assembly station, and composed together
to create the first semifinished material C1. The third piece
(C2) is a semifinished product created with a fused deposition
modeling (FDM) 3-D printer. The FDM technology is prone to
defects, especially on the surface. Therefore, the material C2

is processed by a quality control cell: it verifies that the piece
meets all the requirements to be identified as the material C2,
such as dimensions, finishing, and color. Then, the materials C1

and C2 are assembled to create the final product C3. Finally, C3

is moved toward the warehouse to be stored.
The interaction between the abstract representation and the

physical process can be accomplished by comparing the ex-
pected output of the nodes and the actual data coming from the
production system. However, in a typical scenario, the system
does not guarantee the availability of information related to the
state of the physical process. For example, in Fig. 4, QltyCtrl
allows determining the material characteristics and checking the
physical state with the represented expected state. Moreover, in
Fig. 4, if this node returns a different value, the production pro-
cess is not feasible because the following nodes expect a specific
state. For example, suppose that the output of QltyCtrl is a
materialC4. In this case, there are two possibilities: 1) re-execute
all the nodes that produced C2; 2) generate a new process that
leads to the same result.

In the first case, the solution is straightforward: the material
C4 is removed from the process with a consumer node and the
previous nodes that produced C2 are re-executed. The second

1The ICE laboratory: https://www.icelab.di.univr.it/

https://www.icelab.di.univr.it/

GAIARDELLI et al.: RRPDG: A GRAPH MODEL TO ENABLE AI-BASED PRODUCTION RECONFIGURATION AND OPTIMIZATION 6851

Fig. 4. Schematic representation of the case-study manufacturing process. It consists of different operations to retrieve materials from the
warehouse and from a 3-D printer producing a missing piece. Then, the materials are assembled together to produce the final material C3. Time
and energy data have been collected from the real manufacturing system available in our research facility and further described in Section V.

Fig. 5. Two semantic equivalent and replaceable transformation
chains that are based on different resources (i.e., milling and drilling).
On the left, there is a chain with less energy consumed. On the right, a
chain with a smaller time upper bound.

Fig. 6. Results of the first case study. (a) Shows the “execution time”
necessary to find a solution. (b) Compares the “cost” of the solution
found with the optimal value.

case requires generating a node that allows fixing the unexpected
state, transforming C4 into C2 (e.g., nodes in Fig. 5). Therefore,
the algorithm searches for a node n whose inputs equal the
unexpected state, and whose output equals the desired state. This
step can be achieved by exploiting the definition of semantic
equivalence 3.4. Specifically, it checks that C4 � C2, where the
objective state isC2. Therefore, the initial and objective states of
Definition 3.4 are equal. A more expensive alternative consists
in generating the portion of the process that has not already been

Fig. 7. Results of the second case study. (a) Shows the “execution
time” necessary to find a solution. (b) Compares the “cost” of the solution
found with the optimal value.

executed. In this case, A* searches for a replaceable node: the
procedure searches for a node n with its inputs equal to all the
node outputs not already consumed, and its output equals to the
process output.

The search for a transformation noden can also be guided by a
cost function. For example, in Fig. 5, there are two possible trans-
formation chains that transform the materialC4 into the material
C2. However, these nodes differ in their internal parameters. For
example, the left sequence has a better lower bound but a worse
upper bound for the time parameter. Meanwhile, it has better
lower and upper bounds for the power consumption parameter.
To choose between one of the two implementations, Rule 4.3
for α-replaceability can be exploited, searching between the left
and right sequence and choosing the nodes with the desired α
parameter. In this case, the outcome is α ≥ 1, 16 for the time
lower bound and α ≥ 0, 89 for the time upper bound. Similarly,
it outputsα ≥ 1, 15 for the power consumption lower bound and
α ≥ 1, 17 for the upper bound. Therefore, the right sequence
guarantees a lower maximum time but the other values favor the
left one.

B. Experimental Results

The proposed methodology has been numerically evaluated
in two instances of the case study described above. Both case

6852 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

TABLE I
COMPARISON BETWEEN THE EXECUTION TIMES OF A*, EHC, AND SP-MCTS ON THE FIRST TEN INSTANCES OF THE FIRST CASE STUDY

TABLE II
COMPARISON BETWEEN THE EXECUTION TIMES OF A*, EHC, AND SP-MCTS ON THE FIRST TEN INSTANCES OF THE SECOND CASE STUDY

studies start from the same initial state. The two instances
differ in the number of resources and tasks: the first consists
of 18 atomic tasks and 12 complex tasks acting on 16 unique
resources, and the second is composed of 24 atomic tasks and
16 complex tasks acting on 20 unique resources. Each complex
task has been created by composing pairs of atomic nodes
exploiting Rule 4.2. Both instances have been tested on 20
different final states, increasing the length of the sequence of
intermediate states to execute (i.e., the complexity). To evaluate
the scalability of the proposed approach and the impact of
the introduction of complex nodes, the instances have been
initially tested with atomic tasks only. In a second round of
experiments, complex nodes have been introduced and tested.
Furthermore, each final state has been searched with four dif-
ferent heuristics. The first set is composed of “pwXD” and
“pwXU,” which have been proposed in [21]. The second set
contains “XDP” and “XUP,” proposed in [22]. All experiments
have been executed on a 3.60 GHz Intel Core i7 with 64 GB of
RAM.

Fig. 6 depicts the results of the first case study. Fig. 6(a)
compares the total “execution time” necessary to reach a goal
state with and without complex nodes. For this test case, a
timeout for the execution time was set to 15 s. The introduction
of complex nodes allows for reducing the total execution time
necessary to find a solution to a third of the initial time. This also
allows solving more complex instances. Fig. 6(b) compares the
cost of the solution found with respect to the optimal value. It
shows that the cost of the solutions found with and without the
complex nodes are near-optimal.

The second case study is depicted in Fig. 7. The complexity
of this case study increases exponentially with the distance
between the initial and the final states. Therefore, in Fig. 7(a),
the timeout was increased to 400 s. The results show that with
a complexity of 13, the necessary time to find a solution is 300
s without complex nodes, while it reduces to 75 s by exploiting
the complex nodes. Thus, with complex nodes, it is possible
to solve also instances with a complexity of 20. Moreover,

Fig. 7(b) demonstrates that the solutions found with and without
the complex nodes are near-optimal.

C. Comparative Analysis

RRPDG is a flexible framework that can be used as a repre-
sentation formalism by many different optimization algorithms.
To demonstrate the versatility and advantages of RRPDGs,
we implemented two additional search algorithms: EHC [19]
and SP-MCTS [20]. The algorithms have been implemented
with different use cases in mind, allowing us to analyze the
advantages of complex nodes obtained with the rules defined
in the previous sections. EHC has been implemented with a
greedy heuristic computed as the distance of the current state
to the final goal, ignoring the cost needed to reach the current
state. This allows finding a solution (without any guarantee of
optimality) faster with respect to A*, enabling the application of
our proposed representation in environments with strict timing
constraints. SP-MCTS selects the best action to execute in the
current state based on the win likelihood of the next states
computed by randomly exploring it. Choosing one action at
a time enables the application of our proposed representation
in dynamic environments, in which the computation of a new
solution must be called after each action. SP-MCTS has been
implemented with the same heuristic of A*.

Table I reports the execution time necessary to find a solution
for the first ten instances of the first case study with the three
search algorithms. Notice that with “simple” instances, the in-
troduction of complex nodes does not contribute to decreasing
the necessary time to find a solution. Meanwhile, by increasing
the complexity of the problems, the introduction of complex
nodes leads to an improvement of up to two times for A*,
three times for EHC, and three times for SP-MCTS. Among
the algorithms, EHC is the fastest one (thanks to the greedy
heuristic being used), A* placed second, whereas SP-MCTS
provided the worst performance. The higher execution time of
SP-MCTS depends on the solution’s length (i.e., the number of

GAIARDELLI et al.: RRPDG: A GRAPH MODEL TO ENABLE AI-BASED PRODUCTION RECONFIGURATION AND OPTIMIZATION 6853

actions in the solution), since the algorithm is called after each
action.

Table II depicts the execution time necessary to find a solution
for the first ten instances of the second case study. The higher
complexity of the problem is reflected in slower execution times.
SP-MCTS is unable to find a solution for the last two instances
by relying only on atomic nodes. The algorithm reaches a plateau
from which it is not able to escape, thus continuously executing
the same set of actions in an infinite loop. By introducing
complex nodes, we can observe a greater improvement in the
execution time up to ten times for A*, three times for EHC, and
three times for SP-MCTS. Thus, SP-MCTS is able to solve the
last two instances by exploiting the complex nodes that allow
escaping from the plateau.

In general, as a strong incentive toward the adoption of the
RRPDG formalism to specify production processes, exploiting
regions leads to better performance for all the considered
algorithms.

VI. CONCLUSION

In this article, we introduced RRPDGs: a formalism with
an algebra, useful to specify physical processes and produc-
tion services. We defined a set of rigorous manipulations,
aimed at proposing process transformations while preserving
the original functionalities. The RRPDG formalism is meant
to support different optimization strategies when reasoning on
production systems reconfiguration. In this work, we showed an
application of AI state-of-the-art search algorithms, integrating
RRPDGs transformation rules to guide the procedure. Exper-
iments showed that by exploiting regions algorithms are able
to solve larger instances more efficiently, providing at the same
time near-optimal solutions.

In the future, we aim to develop even more refined optimiza-
tion strategies defined over the proposed formal framework. A
possible direction may look toward defining methodologies to
generate optimized complex nodes in advance. Thus, moving
the search complexity offline and, consequently, speeding up the
execution time of the proposed search algorithms. Furthermore,
we plan to leverage the formal semantics of RRPDGs to de-
velop monitoring and verification techniques useful for proving
process properties at runtime.

ACKNOWLEDGMENT

This manuscript reflects only the authors’ views and opinions,
neither the European Union nor the European Commission can
be considered responsible for them.

REFERENCES

[1] F. Tao, L. Zhang, V. C. Venkatesh, Y. Luo, and Y. Cheng, “Cloud manu-
facturing: A computing and service-oriented manufacturing model,” Proc.
Inst. Mech. Engineers, Part B, J. Eng. Manufacture, vol. 225, no. 10,
pp. 1969–1976, 2011.

[2] T. Lojka, M. Bundzel, and I. Zolotová, “Service-oriented architecture
and cloud manufacturing,” Acta Polytechnica Hungarica, vol. 13, no. 6,
pp. 25–44, 2016.

[3] S. Gaiardelli, S. Spellini, M. Panato, M. Lora, and F. Fummi, “A software
architecture to control service-oriented manufacturing systems,” in Proc.
IEEE/ACM Des., Automat. Test Europe Conf. Exhib., 2022, pp. 40–43.

[4] J. Zhong-Zhong, F. Guangqi, Y. Zelong, and G. Xiaolong, “Service-
oriented manufacturing: A literature review and future research direc-
tions,” Front. Eng. Manage., vol. 9, no. 1, pp. 71–88, 2022.

[5] M. Vještica, V. Dimitrieski, M. Pisarić, S. Kordić, S. Ristić, and I. Luković,
“Towards a formal specification of production processes suitable for
automatic execution,” Open Comput. Sci., vol. 11, no. 1, pp. 161–179,
2021.

[6] G. Wang, D. Li, and H. Song, “A formal analytical framework for IoT-
based plug-and play manufacturing system considering product life-cycle
design cost,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1647–1654,
Feb. 2023.

[7] E. Järvenpää, M. Lanz, and N. Siltala, “Formal resource and capability
models supporting re-use of manufacturing resources,” Procedia Manuf.,
vol. 19, pp. 87–94, 2018.

[8] S. Spellini, R. Chirico, M. Panato, M. Lora, and F. Fummi, “Virtual
prototyping a production line using assume-guarantee contracts,” IEEE
Trans. Ind. Informat., vol. 17, no. 9, pp. 6294–6302, Sep. 2021.

[9] H. Bahmann, N. Reissmann, M. Jahre, and J. C. Meyer, “Perfect recon-
structability of control flow from demand dependence graphs,” ACM Trans.
Archit. Code Optim., vol. 11, no. 4, pp. 1–25, Jan. 2015.

[10] M. Weser, J. Bock, S. Schmitt, A. Perzylo, and K. Evers, “An ontology-
based metamodel for capability descriptions,” in Proc. IEEE 25th Int. Conf.
Emerg. Technol. Factory Automat., 2020, pp. 1679–1686.

[11] C. C. Pantelides, “Unified frameworks for optimal process planning and
scheduling,” in Proc. 2nd Conf. Foundations Comput. Aided Operations,
1994, pp. 253–274.

[12] E. Kondili, C. Pantelides, and R. Sargent, “A general algorithm for short-
term scheduling of batch operations—I. MILP formulation,” Comput.
Chem. Eng., vol. 17, no. 2, pp. 211–227, 1993.

[13] J. Ren, Y. Cheng, F. Xiang, and F. Tao, “Platform-based manufactur-
ing service collaboration: A supply-demand aware adaptive scheduling
mechanism,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1768–1777,
Feb. 2023.

[14] L. V. D. Ginste, A. D. Cock, A. V. Alboom, S. Huysentruyt, E.-H.
Aghezzaf, and J. Cottyn, “A formal skill model to enable reconfigurable
assembly systems,” Int. J. Prod. Res., vol. 61, no. 19, pp. 6451–6466, 2022.

[15] D. Scrimieri, O. Adalat, S. Afazov, and S. Ratchev, “An integrated data-
and capability-driven approach to the reconfiguration of agent-based pro-
duction systems,” Int. J. Adv. Manuf. Technol., vol. 124, pp. 1155–1168,
2022.

[16] G. Engel, T. Greiner, and S. Seifert, “Ontology-assisted engineering of
cyber–physical production systems in the field of process technology,”
IEEE Trans. Ind. Informat., vol. 14, no. 6, pp. 2792–2802, Jun. 2018.

[17] J. Backhaus and G. Reinhart, “Digital description of products, processes
and resources for task-oriented programming of assembly systems,” J.
Intell. Manuf., vol. 28, no. 8, pp. 1787–1800, Dec. 2017.

[18] T. Zheng, Y. Xu, and D. Zheng, “AGV path planning based on improved
A-star algorithm,” in Proc. IEEE 3rd Adv. Inf. Manageme., Communicates,
Electron. Automat. Control Conf., 2019, pp. 1534–1538.

[19] S. Akramifar and G. Ghassem-Sani, “Fast forward planning by guided
enforced hill climbing,” Eng. Appl. Artif. Intell., vol. 23, no. 8,
pp. 1327–1339, 2010.

[20] M. P. D. Schadd, M. H. M. Winands, H. J. van den Herik, G. M. J. B.
Chaslot, and J. W. H. M. Uiterwijk, “Single-Player Monte-Carlo Tree
Search,” in Proc. Comput. Games: 6th Int. Conf., 2008, pp. 1–12.

[21] J. Chen and N. R. Sturtevant, “Necessary and sufficient conditions for
avoiding reopenings in best first suboptimal search with general bounding
functions,” in Proc. AAAI Conf. Artif. Intell., 2021, pp. 3688–3696.

[22] J. Chen and N. R. Sturtevant, “Conditions for avoiding node re-expansions
in bounded suboptimal search,” in Proc. Int. Joint Conf. Artif. Intell., 2019.

Sebastiano Gaiardelli (Student Member,
IEEE) received the master’s degree in computer
science in 2021 and engineering from the
University of Verona, Verona, Italy, where he is
currently working toward the Ph.D. degree in
computer science.

He is involved as a Cofounder and Scientific
Advisor with FACTORYAL S.r.l., a startup
specializing in factory automation software that
originated as a spin-off from the University
of Verona. His research interests include the

development of new methodologies for the optimization, reconfiguration,
and verification of cyber-physical production systems.

6854 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 20, NO. 4, APRIL 2024

Michele Lora (Member, IEEE) received the
Ph.D. degree in computer science from the Uni-
versity of Verona, Verona, Italy, in 2016.

From 2020 to 2023, he held a Marie
Skłodowska-Curie Global Fellowship with dual
appointments at the University of Verona and
the University of Southern California, Los Ange-
les, USA. Previously, he held different research
positions in Sweden, the United States, and
Singapore. He is currently a Researcher with
the University of Verona. He is involved as a

Cofounder and Scientific Advisor for FACTORYAL S.r.l., a startup spe-
cializing in factory automation software that originated as a spin-off
from the University of Verona. His research interests include modeling,
simulation, and verification of cyber–physical systems.

Stefano Spellini received the Ph.D. degree in
computer science from the University of Verona,
Verona, Italy, in 2022, with a thesis proposing
a unifying framework to model, verify, and opti-
mize production systems.

He is the Development Team Leader and Co-
Founder of FACTORYAL S.r.l., a spin-off com-
pany from the University of Verona. He is cur-
rently involved in the development of modeling
methodologies and tools for cyber-physical pro-
duction systems.

Franco Fummi (Member, IEEE) received the
Laurea degree in electronic engineering and the
Ph.D. degree in electronic and communication
engineering, in 1990 and 1994, from the Poly-
technic of Milan, Milan, Italy, respectively.

Since March 2001 he is a Full Professor in
Computer Architecture with the Università di
Verona, Verona, Italy. He is leading the Cyber–
physical and IoT Systems Design (CISD) group
of the Università di Verona, currently composed
of more than 20 people, and working on hard-

ware description languages and electronic design automation method-
ologies for modeling, verification, testing, and optimization of cyber–
physical systems. He is also a Co-Founder of two spin-off companies:
EDALab, focused on networked embedded systems design, and the
automation control software company FACTORYAL.

Open Access funding provided by ‘Università degli Studi di Verona’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

