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Can Untrained Neural Networks
Detect Anomalies?

Seunghyoung Ryu , Member, IEEE, Yonggyun Yu , and Hogeon Seo

Abstract—Anomaly detection (AD) plays a crucial role
in identifying unusual data patterns indicative of potential
issues or opportunities. Recent data-driven AD models re-
quire extensive training for satisfactory performance. This
study explores the potential of untrained neural networks
(UNNs) for AD tasks. UNNs are used for nonlinear random
projection. The anomaly scores are derived from the ran-
domly mapped features using the Mahalanobis distance.
We conducted a series of experiments on 12 tabular and
two image datasets, comparing the performance of UNNs
with 12 established AD models, including state-of-the-art
deep learning approaches. Our results demonstrate that
UNNs can achieve competitive AD performance without
training, which also underscores the importance of training
to ensure higher performance beyond the untrained base-
line. In addition, the proposed approach offers advantages
in terms of time, computational costs, and accessibility,
making it a compelling alternative for various applications.

Index Terms—Anomaly detection (AD), deep learning,
nonlinear random mapping, untrained neural networks
(UNNs).

NOMENCLATURE

gθ Untrained neural network.
θ Weights of the untrained neural network.
Ag Anomaly scoring function of model g.
x Input to the untrained neural network.
y Output from the untrained neural network.
x′ Unknown input sample for detection.
xn Normal data point.
Xref Reference set of normal data.
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Yref Set of model outputs for reference normal data.
μ Mean vector of the model outputs.
S Covariance matrix of the model outputs.

I. INTRODUCTION

ANOMALY refers to something that deviates from what
is normal, and anomaly detection (AD) is the task of

identifying such anomalies within data. Anomalies often have
a negative impact on systems, making AD critical in various
industrial applications, including finance [1], medical diagnos-
tics [2], network security [3], and manufacturing [4]. For effec-
tive AD, AD models must grasp the concept of normality in the
data they analyze. This understanding can be acquired through
data-driven methods, which is why many modern AD models
rely on machine learning and deep learning techniques.

When a sufficient number of labeled abnormal samples are
available, AD can be treated as a typical classification task and
addressed using a supervised learning framework. However,
anomalies are rare, making it difficult and costly to obtain
enough labeled samples for AD [5]. Given these challenges,
unsupervised learning methods become a more practical and
preferred choice for developing AD models. Based on the
infrequent nature of anomalies, most data are assumed to be
normal in the unsupervised AD framework. Then, the AD model
learns normality from the data by training the model for unsu-
pervised learning tasks such as clustering, reconstruction, and
dimensionality reduction. After training, the model calculates
the anomaly score of new samples and classifies any sample that
exceed a threshold as an anomaly. Building on this foundation,
traditional AD models utilize machine learning techniques, such
as the isolation forest (ISOF) [6], one-class support vector ma-
chine (OCSVM) [7], and local outlier factor (LOF) [8]. Recent
advancements in AD models leverage deep learning methods,
which can extract high-level features from massive training data.
This ability to recognize complex patterns helps the models learn
normal characteristics, thereby enhancing the overall perfor-
mance of AD. Several representative deep-learning-based AD
(deep-AD) models include autoencoder (AE) [9], [10], [11],
[12], [13], [14], [15], [16], deep support vector data description
(DSVDD) [17], deep autoencoding Gaussian mixture model
(DAGMM) [18], and generative adversarial network (GAN)-
based AD models [2], [19], [20], [21], [22]. For example,
AE-based AD models are trained to compress normal data
into lower dimensional latent features, allowing for accurate
reconstruction of the original data. Then, reconstruction error
serves as an anomaly score, and samples with high scores are
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identified as abnormal. The performance of an AD model is
commonly assessed using classification metrics, such as the area
under receiver operating characteristic curve (AUROC) and the
area under the precision–recall curve (PRAUC). State-of-the-art
deep-AD models have demonstrated enhanced performance in
these metrics, due to the integration of advanced network archi-
tectures and customized loss functions [15], [23], [24].

Interestingly, we have found that simpler models have some-
times achieved competitive AUROC scores compared with
sophisticated AD models. We also observed that an untrained
AE could achieve an AUROC score over 0.5, exceeding that of
random guessing. Motivated by these results, we formulate a
provocative research question: “Can untrained neural networks
(UNNs) detect anomalies?” To answer this, we present a simple
and primitive AD strategy that takes advantage of the potential of
UNNs with the Mahalanobis distance metric. First, a randomly
initialized and fully connected neural network serves as a func-
tion that maps input data into nonlinear random space. Next,
the Mahalanobis distance is employed to calculate the anomaly
score, measuring the distance between a point and reference
distribution of normal data mapped by the UNN. To verify
this concept, we conducted experiments on various datasets:
12 tabular and two image datasets. We then compare the results
with 12 established AD models, encompassing traditional mod-
els and state-of-the-art deep-AD models, including robust col-
laborative AE (RCA) [15], internal-contrastive-learning-based
model (ICL) [23], and learnable unified neighborhood-based
anomaly ranking (LUNAR) [24].

Our experimental results show that the proposed method
demonstrates effective AD performance while offering acces-
sibility advantages in practical use based on its training-free
property (i.e., no need to train neural network weights). Con-
sequently, the proposed model could serve as a baseline for
developing new AD models, establishing a reference point for
the empirical performance lower bound without training. Our
research contributions can be summarized as follows.

1) We introduce an AD method based on UNNs that lever-
ages randomly initialized neural networks in conjunction
with the Mahalanobis distance. The integration of these
two methods enables the proposed model to perform AD
tasks effectively without training neural networks.

2) To validate UNN-based AD, we evaluate its performance
on various tabular datasets by comparing AD models,
including state-of-the-art deep learning approaches. Ex-
perimental results show that, despite its random and
training-free nature, the proposed model consistently de-
livers competitive AD performance.

3) Considering the prevailing trend toward deep learning
models, our work provides a counterintuitive observation
and re-emphasizes the importance of training to ensure
the higher performance of learning-based AD models.

The rest of this article is organized as follows. Section II
introduces related works. Sections III and IV describe the prob-
lem formulation of the AD task and the proposed method,
respectively. Section V presents the experiments, including
ablation studies. Results and discussion are presented in
Section VI. Finally, Section VII concludes this article.

II. RELATED WORKS

A. AD With Deep Learning

In order to compute anomaly score, deep learning models
in unsupervised AD frameworks learn the normality of data
through unsupervised tasks, which can generally be categorized
into three types: probability distribution modeling, one-class
classification, and reconstruction [25]. In some cases, these tasks
are trained to perform together.

A conventional approach is to use AE-based reconstruction
models. The AE is trained to minimize the reconstruction error
of normal data; therefore, samples with a high reconstruction
error are classified as anomalies. Due to its simple mechanism,
the AE approach is widely adopted in various domains such as
multivariate sensors [16], image [26], and time-series data [12].
Variations in AE have been developed to achieve better AD
performance [9], [10], [11]. For example, convolutional AEs
and long short-term memory AEs have been introduced to
address challenges in more complex image and time-series data.
Some models exploit additional features in anomaly scoring
along with the reconstruction error, such as the error in latent
spaces [13] and the uncertainty of the data [14]. Multiple AEs
are collaboratively used to focus on normal samples with low
reconstruction error within contaminated data [15]. AEs can also
be associated with probability distribution modeling approaches.
For example, DAGMM [18] leverages an AE to extract latent
features and reconstruction errors. The combined distribution
of these features and errors is then modeled using a mixture of
multivariate Gaussians.

In terms of generative models, AD models based on varia-
tional AE [27], [28], [29] employ the reconstruction probability
as an objective measure to identify anomalies, outperforming
AD based on conventional AE and principal component analysis
(PCA). GAN-based AD was first employed in AnoGAN [2],
which utilizes reconstruction error along with discriminator
loss. Following this, various GAN-based AD models have been
developed, examples of which include efficient GAN-based
AD [19], fast-AnoGAN [20], GANomaly [21], and their en-
semble [22]. Other types of deep-AD models have evolved in
different ways. For example, some models focus on solving one-
class classification problems [17], [30], while others leverage
architectures like graph neural networks [24]. A comprehensive
overview of various deep-AD models can be found in [5], [25],
and [31].

Advancements in algorithm and model structures have sig-
nificantly improved the performance of deep-AD models. De-
spite these achievements, the development and optimization
of problem-specific AD models for real-world applications
still face several challenges. These include training-related
factors such as the collection of training data, the embed-
ding of domain-specific knowledge, limitations in computa-
tional time and resources, and the need to address issues like
model drift. Automated machine learning [32] has emerged
to address these challenges, but the training step remains
necessary. In this context, the proposed UNNs offer distinct
advantages, particularly in terms of efficiency and ease of
implementation.
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B. Utilizing Randomness

Random projection is a dimensionality reduction technique
that linearly maps a point to a lower dimensional space by
multiplying a random matrix. The theoretical foundation for this
approach is provided by the Johnson–Lindenstrauss lemma [33]
stating that distances between points can be approximately
preserved after a linear random projection with high probabil-
ity [34]. Thus, anomalies that are distinguishable in the original
space can still be identified after the projection.

Lemma 1 (Johnson–Lindenstrauss lemma [35], [36]): For
any integer n and tolerance 0 < ε < 1, let m be a positive
integer satisfying m ≥ O(ε−2 log(n)). Then, for any set of
d-dimensional real-valued points X = {xi}ni=1, there exists a
linear map f : Rd → Rm such that for all u, v ∈ X

(1 − ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2. (1)

Early work of [37] used random projection to measure the
outlyingness of data. The outlyingness is defined as the ratio of
the median absolute deviation (MAD) of a given sample to the
MAD of an entire dataset in randomly projected space, where a
high outlyingness indicates abnormality. In [38], Fourier-based
random features are combined with OCSVM to improve detec-
tion efficiency in large datasets. More recently, deep random
projection outlyingness has been proposed, which combines
random projection with DSVDD [39]. In this approach, the
features extracted by DSVDD are subsequently transformed
using random projection. These studies employed random pro-
jection for generating input vectors for subsequent AD models,
necessitating further training.

Several recent studies have demonstrated the potential of us-
ing randomly initialized neural networks (i.e., nonlinear random
projection) for AD. For example, an extreme learning machine
(ELM) [40] is a type of neural network composed of random
hidden layers and a learnable output layer. Instead of using
backpropagation, the weights of the output layer are obtained by
solving a least-squares problem. The ELM under unsupervised
and semisupervised learning frameworks was also investigated
in [41]. Related to AD, a random sparse neural network (i.e.,
sparse activation with randomly initialized weights) was used
to generate a random binarized hash code, and its dot product
to the moving average was used as the anomaly score [42]. A
deep ISOF model [43] was introduced that uses a randomly
initialized neural network as a feature generator in conjunction
with an ISOF model.

The inherent efficacy of random neural networks can be found
in some studies. For example, the ability to estimate numerosity
from an untrained convolutional neural network was investigated
in [44]. Kim et al. [45] highlighted the inadequacies of the point
adjustment technique commonly used in recent time-series AD
models, and it was observed that the reconstruction error of a ran-
dom neural network showed comparable F1 scores. These works
outline the potential of a randomly initialized neural network in
different aspects. In this research, we investigate the direct use of
UNN for AD in conjunction with the Mahalanobis distance. By
combining them, the proposed method demonstrates robust and
competitive AD performance across various tabular datasets.

Algorithm 1: AD via UNNs.
Require: Xref: Reference dataset for anomaly score
calculation.
φ: Randomness method.
θ: Network weights.
gφθ (x): Randomly initialized neural network of φ.
d′: Target dimensionality.

Ensure: Ag(x
′): Anomaly score of unknown sample x′

1: procedure Model preparation
2: Initialize neural network
3: for all x ∈ Xref do
4: y = gφθ (x)
5: Yref = Yref ∪ {y}
6: end for
7: Calculate mean μ and covariance S of Yref.
8: end procedure
9: procedure Score calculation

10: Obtain a new sample x′

11: Performs nonlinear random mapping: y′ = gφθ (x
′)

12: Calculate anomaly score Ag(x
′)

13: Ag(x
′) =

√
(y′ − μ)TS−1(y′ − μ)

14: return Ag(x
′)

15: end procedure

III. PROBLEM FORMULATION

In this section, we describe the general problem setting of
AD tasks. Letx ∈ Rd be a d-dimensional vector obtained from a
system. Then, the deep-AD modelfθ mapsx toy ∈ Rd′

, where θ
denotes the trainable weights of the neural network, andy differs
according to the model. The value of θ is obtained by minimiz-
ing the loss function designed for AD such as reconstruction,
classification, and clustering. After training, AD models derive
the anomaly score of a new sample x′, ax′ ∈ R+ from the
scoring function A(x′, fθ(x′)). If ax′ exceeds a threshold ath,
it is classified as an anomaly; otherwise, it is considered normal.
For example, y of an AE is a reconstruction of input x based on
the lower dimensional latent feature z. Then, fθ is obtained by
minimizing ‖x− fθ(x)‖2, resulting in low reconstruction error
‖x− fθ(x)‖2 for trained normal data and a relatively higher
error for abnormal data. Besides reconstruction error, there are
various ways to calculate anomaly scores, e.g., distance to the
cluster [18], reconstruction probability [27], and Mahalanobis
distance [14]. Deep-AD models generally employ a loss function
closely tied to the anomaly score, allowing end-to-end AD.

IV. PROPOSED METHODOLOGY

The algorithm for the proposed methods is presented as
pseudocode in Algorithm 1. Let gθ be a UNN that maps input
x to output y, where θ denotes its weight parameters. In deep
learning, θ is randomly initialized and then trained to minimize
the predefined loss function. However, θ is not trained in the
UNN; thus, the inputx is randomly and nonlinearly transformed
to y = gθ(x) according to random weights and activation func-
tions. Here, we use a simple neural network with a single hidden
layer and a sigmoid activation function.
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Fig. 1. Difference between linear and nonlinear projections: linear projection (left), nonlinear projection (center), and the distributions after
projections (right). The nonlinear projection (right-bottom) provides better separation than the linear projection (right-top).

Then, the anomaly score of a new sample x′ is derived from
the Mahalanobis distance, which measures the distance between
the mapped point and the reference distribution of normal data.
Let Xref be a set of reference normal data xn. We obtain Yref =
{gθ(x)|x ∈ Xref} from the UNN, and the anomaly score of a
new sample x′ is derived using the following equation:

Ag(x
′) =

√
(y′ − μ)TS−1(y′ − μ) (2)

where μ ∈ Rd′
and S ∈ Rd′×d′

are a mean vector and a covari-
ance matrix of Yref, respectively. As a result, the anomaly score
of UNN is the distance to the distribution of a reference set in a
nonlinear random space. The combination with the Mahalanobis
distance is a key point in utilizing UNN for AD. After random
projection via UNN, the scale of each dimension can be different.
In this regard, the Mahalanobis distance involves the normal-
ization process, thus providing scale-invariant and normalized
anomaly scores. It is worth noting that the Mahalanobis distance
is proportional to the square root of the Gaussian negative
log-likelihood. Therefore, a low-probability sample will have
a larger distance when the distribution of normal data in random
spaces is modeled as a multivariate Gaussian distribution.

A. Interpretation of the UNN-Based AD

Deep-AD models aim to identify nonlinear space through
training where normal and anomalous data points can be easily
distinguished. Trained neural networks are a subset of all possi-
ble randomly initialized models. In this respect, if the deviation
between normal and abnormal data points can be preserved to
some extent after projection onto a random space, feature vectors
from UNNs can be used as is without training the weights
of neural networks. However, compared to the linear random
projection, theoretical modeling of distance-preserving property
is difficult due to the complex nonlinearity of neural networks.
In [46] and [47], the following bounds on Euclidean distance
were studied with single-layer and rectified linear units (ReLU),
which is given as [46, Corollary 5].

Corollary 1: Let K ⊂ Bd
1 be the manifold of input data,

and
√
mM is an m× d random matrix of independent and

identically distributed normal distribution. If we denote ρ in-
dicating ReLU and m ≥ Cδ−4w(K)4 for given constant C and
the Gaussian mean width w(K), then with high probability in
the form of 1 −O(− exp(δ2)), the following inequality holds

on u, v ∈ Rd:

1
4‖u− v‖2

2 − δ ≤ ‖ρ(Mu)− ρ(Mv)‖2
2 ≤ 1

2‖u− v‖2
2 + δ.

(3)
This suggests the distance-preserving capability of random

neural networks with sufficiently large m. The proofs and de-
tailed explanation are given in [46] and [47].

Next, we illustrate an example of how the nonlinear projection
helps for AD in Fig. 1. Linear random projection maps data
onto a random straight line drawn in observation space Rd.
We could separate normal and abnormal data by modeling the
distribution of data points on that axis. The Euclidean distance
between two points after linear projection is bounded by the
distance in the original space. In the worst case, two classes may
overlap completely, making it impossible to detect anomalies.
However, this can be mitigated by drawing multiple lines to
reduce such probability and using them together by calculating
the Mahalanobis distance, i.e., the ensemble effect [14]. In
this sense, the calculation of Mahalanobis distance with raw
data is a special case of linear random projection where the
straight lines correspond to the principal components defined
by normal samples. In contrast to the linear case, a UNN draws
a nonlinear curve and projects data onto that curve. Since a
nonlinear curve does not impose an upper bound on the distance
between data points after projection, the UNN has a chance to
facilitate further separation of anomalies from normal samples.
As in the examples in Fig. 1, compared with the linear case,
abnormal and normal data can be further apart when stretching
the curve to the line.

B. Approaches for Providing Randomness to Networks

Random initialization of weights inherently introduces ran-
domness into neural networks. However, there can be variations
in the process of obtaining random vectors from initialized
neural networks. In this study, we compare the following three
different models, as described in Algorithm 2.

1) Iterative random model (IRM): The IRM is composed
of a single output neuron. As a result, a d′-dimensional
vector is generated by concatenating the outputs from
d′ iterations. In each iteration, the weights of the neural
network are re-initialized, which results in the utilization
of varying hidden features.

2) Dropout random model (DRM): The DRM also has a
single output neuron. Instead of re-initializing weights,



RYU et al.: CAN UNTRAINED NEURAL NETWORKS DETECT ANOMALIES? 6481

Algorithm 2: Variations of UNN

Require: d′: Target dimensionality.
gθ(x): Randomly initialized neural network.

Method 1. Iterative random model
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Require: {θi}: List of random weights for IRM.
1: for i = 1 to d
2: yi = gθi(x)
3: end for
4: y = {yi}di=1
5: return y

Method 2. Dropout random model
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Require: p: Dropout rates for DRM.
{DMi(p)}: List of dropout masks for DRM.
1: for i = 1 to d
2: Apply dropout to the network with DMi(p)
3: yi = gθ×DMi(p)(x)
4: end for
5: y = {yi}di=1
6: return y

Method 3. One-shot random model
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
1: y = gθ(x)
2: return y

the DRM utilizes the Monte Carlo dropout method [48],
which is a common approach for measuring model un-
certainty. In each inference iteration, the DRM randomly
masks neurons based on the dropout layer, allowing the
use of different features based on random subnetworks.

3) One-shot random model (ORM): The ORM is composed
of d′ output neurons. Thus, it generates a d′-dimensional
random vector at once without iteration. Compared with
the IRM and the DRM, it shares identical hidden features
in obtaining d′ output values.

V. EXPERIMENTS

A. Datasets and Metrics

The AD performance of the proposed method is evaluated
on 12 multivariate tabular datasets [13], [49], which are the
primary targets of this method. In addition, to investigate the
detection capability on image datasets, MNIST (mnist) and
Fashion MNIST (fmnist) are also included. Basic information
about these datasets is summarized in Table I.

All tabular datasets have predefined anomaly classes and go
through the following preprocessing pipelines. First, the data are
normalized using Z-scores, subtracting the mean and dividing
by the standard deviation, column by column. Next, the dataset
is divided into two subsets: the reference and test sets. The
reference set Xref is used to derive the mean vector μ and the
covariance matrix S to compute the Mahalanobis distance. In
doing this, a randomly sampled 70% of the normal data is used
as Xref. The remaining 30% of the normal data is used as the
test set Xtest along with all the abnormal data.

TABLE I
BENCHMARK DATASETS FOR EXPERIMENTS

The test set is used to evaluate the performance of AD models
in terms of two standard classification metrics: the AUROC and
the PRAUC. Both the metrics represent the overall detection
performance of the models in a scalar value ranging from 0 to 1.
AUROC and PRAUC can be represented by the following equa-
tions. First, we could generate a confusion matrix for the given
threshold ath; thus, true positive rate (TPR), false positive rate
(FPR), and precision (PRC) can be denoted as functions of ath.
Then, AUROC and PRAUC are

AUROC =
∫ 1

0 TPR(ath)dFPR(ath), (4)

PRAUC =
∫ 1

0 PRC(ath)dTPR(ath). (5)

These metrics provide a comprehensive view of the model
performance across all possible thresholds rather than being
tied to a specific threshold value. This is particularly useful in
AD, where the optimal threshold may vary depending on the
specific application and the tradeoff between false positives and
false negatives that the user is willing to accept. In both the
cases, the perfect classifier has a score of 1, so a higher value
indicates better performance. During the experiment, we report
mean scores and standard deviations with ± sign after ten trials
with different random seeds (0–9) for each dataset. Note that the
UNN showed consistent results with no significant deviations as
we increased the number of experiments from 10 to 1000.

B. Benchmarks Methods

We use AUROC and PRAUC to compare three proposed
methods (IRM, DRM, and ORM) with the following three base-
lines: Mahalanobis distances in observation space (Raw), linear
random mapping approach with Gaussian random projection
(LRMG), and uniform distribution (LRMU ).

For the Raw case, anomaly scores are derived by directly
calculating the Mahalanobis distance on Xref. For the LRM
cases, we generate ad× d′ random matrixR from the zero-mean
Gaussian distribution for LRMG using the implementation in
scikit-learn library [50]. LRMU generates R from the uniform
distribution ranging from 0 to 1 and normalizes the column sum
by

∑d′
j=1 Ri,j = 1. Then, linear random mapping is conducted
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TABLE II
DESCRIPTION OF UNN STRUCTURES

TABLE III
AUROC, PRAUC, AND COMPUTATION TIME ACCORDING TO THE

RANDOMNESS METHODS FOR UNNS

Fig. 2. AUROC and PRAUC on average and speedup indicating the
ratio to the maximum calculation time of the UNN based on the DRM.

by the dot product with R, and its anomaly score is the Maha-
lanobis distance between x′ ·R and Xref ·R.

For a UNN, we used a simple neural network consisting
of only one hidden layer with a sigmoid activation function.
The detailed structure differs depending on the randomness
method and is described in Table II. The numbers in parentheses
represent the hyperparameters of each corresponding layer, and
common values were used for simplicity; the number of neurons
for Dense layers and the dropout probability for Drop layers.

Next, we compared general AD models, including five
machine-learning-based models and seven state-of-the-art deep-
learning-based models. The machine-learning-based AD mod-
els include the following methodologies: LOF [8], clustering-
based LOF (CBLOF) [51], ISOF [6], histogram-based out-
lier score (HBOS) [52], and PCA [53]. In the case of
deep-AD models, we utilize DSVDD [17], DAGMM [18],
GANomaly [21], random-distance-prediction-based AD model
(RDP) [54], RCA [15], ICL [23], and LUNAR [24]. These
benchmark models are implemented using its default param-
eters: DeepOD [43] for ICL, RCA, and RDP and PyOD [55] for
the remaining models.

C. AD Performance on UNN Variations

First, we investigated the most effective way among UNN
variations (IRM, ORM, and DRM) and compared it to the
three baselines (Raw, LRMG, and LRMU ). Table III and Fig. 2
describe the average performance in terms of AUROC, PRAUC,
and speedup of computation time. According to the experimental
results, even modeling of a multivariate Gaussian distribution on

raw data achieves a certain level of AUROC. This indicates the
inherent distinguishability of anomalies in observation space. In
the context of linear random mapping, it has been observed that
a generated random matrix does not have significant variations.
The linear random mapping slightly increased the AUROC and
PRAUC, but it could be further improved with UNNs.

The ORM model achieved the highest performance for all
three metrics. IRM and DRM showed slightly lower AUROC
and PRAUC performance and much longer computation time
due to iterative initialization. The DRM also required longer
computation time due to iterative masking of dropped neurons,
and both AUROC and PRAUC were slightly reduced compared
to the others. In terms of AUROC and PRAUC, there is only
a marginal difference in performance between the different
randomization methods. Therefore, we could simply use the
ORM for a UNN-based AD; it is straightforward, fast, and also
has a lower standard deviation.

D. Ablation Studies

Ablation studies were conducted on the structural changes of
neural networks. We set the basic hyperparameter as the ORM
described in Table II and changed one of the following list of
hyperparameters while keeping the others fixed: 1) number of
hidden neurons; 2) depth of hidden layers; 3) type of activation
function; and 4) output dimensionality. Fig. 3 illustrates the
distributions of AUROC and PRAUC on 12 tabular datasets in
the form of box plots, and the average score is represented by a
line graph. Note that the long whiskers in the box plot are due to
the differences in the datasets. As in the previous experiments,
we report the results after ten trials per dataset with different
random seed settings.

1) Number of Hidden Neurons: The average AUROC and
PRAUC increase as the number of hidden neurons increases.
However, neurons more than 256 have no significant advantage
in the results and tend to be saturated.

2) Depth of Hidden Layers: We fixed the number of hidden
neurons to 128 and increased the number of hidden layers. The
UNN with a single hidden layer had the highest scores and
decreased as more layers were stacked.

3) Type of Activation Functions: We changed the activation
function of the hidden layers to introduce different nonlinearity
into the neural networks. As can be seen, sigmoid and tanh
show similar performance, and the family of ReLU activation
functions offers lower performance except for the exponential
linear unit (ELU).

4) Dimension of Random Projection: We could obtain an
ensemble effect by using the Mahalanobis distance on d′-
dimensional output. We increase the output dimension (i.e., the
number of output neurons) from 1 to 300. The average score
increased with increasing dimensionality but became saturated
as the number of hidden neurons increased. Using more than
100 output neurons has no significant advantage in the score.

E. Effect of Mahalanobis Distance

The Mahalanobis distance is used in AD to quantify the dis-
tance of an anomaly score from the center of the anomaly score
distribution, taking into account the shape and orientation of the
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Fig. 3. AUROC and PRAUC with respect to modifications in hyperpa-
rameters of the ORM. Colors indicate the rank of the average score: the
number of hidden neurons (top), the depth of hidden layers (second), the
activation function (third), and the number of output neurons (bottom).

distribution. It assigns higher anomaly scores to points that are
further away from the mean of the normal data distribution, ef-
fectively discriminating between normal and anomalous points.
The effectiveness of Mahalanobis distance was investigated
according to anomaly scoring methods based on UNNs. Four
scoring methods were considered as follows: the reconstruction
error (‖y′ − x′‖2), the norm score (‖y′‖2), the inner product to
the average (y′ · ȳ, used in [42]), and the Euclidean distance to
the average (‖y′ − ȳ‖), where ȳ denotes the average vector of
the reference output.

For the case of reconstruction error, the number of output neu-
rons was changed to d in order to match the dimension. Table IV
summarizes the averaged AUROC and PRAUC for different
scoring methods. As can be seen, all scores showed average
AUROC values above 0.5, but the norm and inner product-based

TABLE IV
DIFFERENCES IN AUROC AND PRAUC, ALONG WITH THEIR STANDARD
DEVIATIONS, ACCORDING TO THE ANOMALY SCORING FUNCTIONS WHEN

USING THE UNNS BASED ON THE ORM

scores had relatively lower performance and higher deviation.
The reconstruction error and the Euclidean distance showed
similar values above 0.7. However, the performance was fur-
ther improved with the Mahalanobis distance, which played an
essential role in modeling the normal distribution.

According to the above experiments, a simple neural network
(single hidden layer, sigmoid activation function, 128 hidden
neurons, and 100 output neurons) has demonstrated sufficient
AD performance and can be used as a good starting point.
This structural simplicity also leads to computational advantages
compared to more complex deep learning models.

VI. RESULTS AND DISCUSSION

A. Comparison to Various AD Models

The proposed ORM was compared to various machine learn-
ing and deep-AD models in terms of AUROC and PRAUC.
Tables V and VI show the results for AUROC and PRAUC,
respectively; the highest values are in bold, and the second
highest values are underlined. For each dataset, the distribution
of the anomaly scores of the normal and abnormal classes
obtained from ORM is shown in Table VII.

Given the random nature and algorithmic simplicity, the
limitations of the proposed model in AD performance seemed
obvious. Interestingly, however, the ORM performed consis-
tently well in terms of both AUROC and PRAUC, achieving the
second highest average score across all datasets. Figs. 4 and 5
illustrate the performance differences of the ORM in percentage
points relative to the score of each AD model. The relative score
difference has positive values in most cases, indicating that the
scores are lower than those of the ORM. Among the benchmark
AD methods, the LUNAR models achieved the highest average
AUROC and PRAUC in most cases. In addition, the ORM
achieved a lower average standard deviation compared to deep-
AD models; the standard deviation of AUROC and PRAUC
are 0.6 and 1.0 for the ORM, while those of deep-AD models
range from 0.5 to 7.8 for AUROC and 0.8 to 7.3 for PRAUC.
This indicates that the training process of neural networks may
have a greater impact on the performance deviation compared
to random mapping.

Overall, the results demonstrate that even UNNs could exhibit
reasonable AD performance compared to the existing methods,
considering the simplicity of implementation and training-free
and random characteristics. In this sense, the proposed model
shows the potential as a baseline for the development of new AD
models. Moreover, the total time to obtain AUROC and PRAUC
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TABLE V
COMPARISON OF AUROC (%) OF THE PROPOSED UNN BASED ON THE ORM TO THE BENCHMARK AD MODELS

TABLE VI
COMPARISON OF PRAUC (%) OF THE PROPOSED UNN BASED ON THE ORM TO THE BENCHMARK AD MODELS

Fig. 4. Relative AUROC of UNN based on the ORM to those of the benchmark AD models. Positive values indicate that the UNN performs better.

Fig. 5. Relative PRAUC of UNN based on the ORM to those of the benchmark AD models. Positive values indicate that the UNN performs better.
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TABLE VII
MEAN AND STANDARD DEVIATION OF ANOMALY SCORE DISTRIBUTION

Fig. 6. AUROC and PRAUC with the relative size to the reference set.

using UNNs is significantly faster, about 43 times for the best
performing machine learning model, LOF, and 218 times for
the best performing deep learning model, LUNAR. For these
tests, only the CPU (AMD Ryzen 5 3600) was used for UNNs
and machine learning models, while both the CPU and the GPU
were used for deep learning models. The longer time of other
models is mainly due to the training process. This implies that
using UNNs without requiring a training process can also serve
as a practical and efficient alternative for AD tasks, particularly
in scenarios where computational resources are constrained or
where the model needs to adapt continuously or periodically to
a changing normal environment.

B. Application of UNNs for AD in Image Datasets

The AD performance of using UNNs in two image datasets
(MNIST and Fashion MNIST) was explored. For the image
datasets, we adopt a slightly different setup. Initially, all data

TABLE VIII
COMPARISON OF AUROC (PRAUC) ON THE MNIST DATASET

TABLE IX
COMPARISON OF AUROC (PRAUC) ON THE FASHION MNIST DATASET

undergo min-max normalization, which modifies the grayscale
values from a range of (0, 255) to a range of (0, 1). Subse-
quently, we assign a specific class as “normal” while treating the
remaining nine classes as “abnormal.” For instance, in mnist, if
we designate “0” as the normal class, then the remaining classes
from “1” through “9” are considered abnormal. We then split the
normal data in the same way as we did for the tabular datasets,
designating 70% of the data as the reference set and 30% as
the normal test set. We randomly sampled data of the abnormal
classes for the abnormal test set, ensuring an equal number of
abnormal and normal test samples.

For performance comparison, we selected the several models
that ranked first or second in Table V. These models represent
the best performing models across the various datasets and
provide a robust benchmark for evaluating the performance
of our proposed method. The results of this comparison are
presented in Tables VIII and IX for MNIST and Fashion MNIST,
respectively. The proposed UNN method offers reasonable and
competitive performance in AD in both image datasets, as ev-
idenced by its comparable AUROC and PRAUC scores with
both traditional and deep-learning-based models. However, the
performance is limited in datasets with complex labels and
significant pixel variation, as seen in color images where the
same class may show diverse visual features. Addressing this in
more intricate datasets remains a focus for future work.

C. Reference Set Size and Contamination

1) Reference Set Size: The influence of reference sample
size on AD performance was analyzed. Initially, the reference set
contains 70% of the normal data, and the remaining 30% is used
to compute the AUROC for comparison as the test set. Keeping
the test set constant, we modify the size of the reference set for
the computation of the Mahalanobis distance. Fig. 6 illustrates
the variations in AUROC according to changes in the size of the
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Fig. 7. Impact of the data contamination ratio in the reference set on AUROC (%) of the UNN based on the ORM.

Fig. 8. Impact of the data contamination ratio in the reference set on PRAUC (%) of the UNN based on the ORM.

reference set, where the horizontal axis illustrates the ratio to the
initial reference set. Significantly, the AUROC largely remains
consistent, with a few exceptions. For instance, rarm, mi-f, mi-v,
and nasa exhibit a decrease in AUROC when using less than 10%
of the initial reference set. Typically, enhancing the performance
of learning-based models necessitates increasing the amount of
training data. However, the proposed method, which does not
incorporate a learning process, largely maintains its performance
even when the size of the reference sample decreases. This
suggests that our approach is robust and can offer advantages
even when data availability is limited.

2) Data Contamination: In real situations, the reference set
may be contaminated with anomalies and outliers, making AD
more difficult. To investigate the effects of such contamination,
an experiment was carried out to explore the decline in per-
formance relative to the contamination ratio for five datasets
(campaign, eopt, mi-v, nasa, and rarm). The ratio represents the
percentage of anomalies in the reference set, and 0.1%, 1%, 2%,
3%, 5%, and 10% were applied in this experiment. This ratio is
denoted on the horizontal axes of Figs. 7 and 8. The abnormal
data used for the contamination are excluded from the test set.

The average AUROC and PRAUC across the five datasets are
depicted in Figs. 7 and 8, respectively. The standard deviation
is represented as error bars. Each chart presents the results of
each dataset using eight models, consistent with the experiment
conducted for the image datasets. Both the AUROC and PRAUC
generally exhibit a linear decrease as contamination increases.
The PRAUC shows a more drastic decrease compared to the
AUROC. Despite this degradation, the performance ranking of

the models largely remains the same. These results suggest that
our proposed model is affected by contamination to a similar
degree as other models. A key implication of this, especially
when combined with earlier findings regarding the reference set
size, is that securing a contamination-free subset of normal data
can ensure a comparable level of performance.

D. Relation to Unsupervised ELM

The initial motivation for the proposed model originates from
the question of the inherent AD capability of neural networks.
Thus, all weight parameters remain untrained in the proposed
UNN AD model. However, when the Mahalanobis distance
comes with the UNN for anomaly scoring, the proposed model
operates in a similar context to the unsupervised ELM (US-
ELM) proposed in [41]. If we denote the input data after the
first hidden layer as H ∈ RN×dh , the US-ELM sets the weights
of the output layer with do smallest eigenvectors by solving the
generalized eigenvalue problem Aν = λBν, and the standard
eigenvalue problem is a special case of B = I . The generalized
eigenvalue problem of US-ELM is

(Idh
+ γHTLH)ν = λHTHν. (6)

In detail, Idh
is the identity matrix of size dh, γ is the regular-

ization term, and L is graph Laplacian built from the training
data X . Also, the Mahalanobis distance is the distance to the
origin after projection to the principal components, i.e., the
eigenvectors of the covariance matrix. In this regard, if we denote
the zero-mean output matrix of the UNN as H̃ ∈ RN×do , the
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TABLE X
AUROC AND PRAUC OF US-ELM AND UNN BASED ON THE ORM

proposed model solves a standard eigenvalue problem of

H̃T H̃ν = λν. (7)

The US-ELM adopts graph Laplacian for feature representation;
thus, it explicitly reflects data structure in raw space. However,
when the amount of data grow, the creation of graph Laplacian
is affected by computational resources since it requires pairwise
distance calculation, which is associated with theN ×N shaped
matrix. On the other hand, the problem becomes simplified in
the proposed method because it deals with H̃T H̃ having the
size of do × do, where do � N holds in general. Even with
simplification, the proposed UNN AD model exhibited better
results, which can be shown in Table X. Note that the number of
training datasets is limited to 10 000 for US-ELM to solve (6).

VII. CONCLUSION

In this article, we explored the inherent AD capabilities of
UNNs. To do so, the UNNs project data nonlinearly onto a
random space. Next, the Mahalanobis distance between a point
and the reference distribution in this random space is used as an
anomaly score. The integration of these two methods achieves
effective AD performance even without the training process that
is essential in modern learning-based AD models. We validated
the results through extensive experiments on various datasets
with established AD models, including state-of-the-art deep
learning models. The proposed model demonstrated competi-
tive performance by achieving second best results in terms of
AUROC and PRAUC. Furthermore, despite the random nature
of the UNN, it demonstrated: 1) lower standard deviation; 2)
maintained performance with limited data; and 3) robustness
against contamination. These results highlight the AD ability of
the proposed model.

Optimizing deep-learning- and machine-learning-based AD
models can be resource intensive. However, our UNN-based
AD approach offers good performance without the need for
extensive training or complex design. In this sense, the proposed
model can be an effective baseline for the development of AD
models, which also underscores the importance of training
to ensure higher performance beyond the untrained baseline.
Since the proposed model is based on neural networks, it

can also be seamlessly integrated with well-established deep
learning libraries and environments, offering the potential for
incorporation into more advanced deep-AD models. In addition,
the simplicity and nontraining characteristics of the UNN offer
advantages in scenarios where: 1) computational resources
are very limited, such as in edge or sensor-level Internet of
Things devices; 2) the model requires frequent updates, which
is facilitated by adjusting only the scoring function; and 3) data
security is a concern, as the model utilizes randomized data.

Our experiments were primarily conducted on tabular and
grayscale image datasets. However, tackling more complex
datasets, such as time series, color images, and videos, presents
another challenge because of their unique complexity and higher
dimensionality. Future work will focus on adapting our approach
to those datasets. We are also developing hybrid techniques using
trained and UNNs to improve AD performance further.
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