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Abstract—To steer a soft robot precisely in an uncon-
structed environment with minimal collision remains an
open challenge for soft robots. When the environments are
unknown, prior motion planning for navigation may not
always be available. This article presents a novel Sim-to-
Real method to guide a cable-driven soft robot in a static
environment under the Simulation Open Framework Archi-
tecture (SOFA). The scenario aims to resemble one of the
steps during a simplified transoral tracheal intubation pro-
cess where a robotic endotracheal tube is guided to the
upper trachea–larynx location by a flexible video-assisted
endoscope/stylet. In SOFA, we employ the quadratic pro-
gramming inverse solver to obtain collision-free motion
strategies for the endoscope/stylet manipulation based on
the robot model and encode the virtual eye-in-hand vision.
Then, we associate the anatomical features recognized by
the virtual vision and the joint space motion using a closed-
loop nonlinear autoregressive exogenous model (NARX)
network. Afterward, we transfer the learned knowledge to
the robot prototype, expecting it to navigate to the desired
spot in a new phantom environment automatically based
on its eye-in-hand vision only. Experiment results indicate
that our soft robot can efficaciously navigate through the
unstructured phantom to the desired spot with minimal
collision motion according to what it has learned from
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the virtual environment. The results show that the aver-
age R-squared coefficient between the closed-loop NARX-
forecasted and SOFA-referenced robot’s cable and pris-
matic joint space motion are 0.963 and 0.997, respectively.
The eye-in-hand visions also demonstrate a good align-
ment between the robot tip and the glottis.

Index Terms—Motion planning, robot learning, simula-
tion, soft robotics.

I. INTRODUCTION

MANY soft robot manipulators and systems have been
designed and intended for the applications of medi-

cal intervention in the past few decades [1]. They are ideal
candidates for robotic surgical tools when force transmission
is a noncritical factor [2]. Inspired by biological compliant
structures, these soft continuum robots can navigate or work in
complex environments with the employment of well-established
kinematics, dynamics, and mechanics [3], [4], [5]. Besides, due
to the challenges in describing those highly nonlinear compli-
ant manipulators made from soft materials with low Young’s
Modulus and interaction [6], model-free approaches like visual
servoing (VS) [7], sensorimotor learning [8], and finite-element
methods (FEM) [9] were widely utilized in the soft/continuum
robotic control. In general, a flexible robotic medical interven-
tion would request a 2-D/3-D reconstruction of the device in an
occlusive environment. The used-to-be difficult reconstruction
is now becoming convenient because of the technological ad-
vances in sensors, such as electromagnetic sensing [10], Fiber
Bragg grating [11], and learning-based strain gauges-liked net-
works [8], but at a relatively high cost. In addition, prototype-
dependent sensory systems often require recalibration on every
individual device, as the multisensor assembly may differ from
one to another. For example, a learning-based embodied strain
gauges array system may become invalid when deployed to
another identical flexible robotic system due to minor assembly
errors in the real world, necessitating local black-box relearning.
We expect that an approach with a minimal amount of sen-
sors and on-site calibration could significantly generalize these
novel soft devices to practical use with lower cost and higher
reproductivity.

Simulation-to-Reality (“Sim-to-Real” or “Sim2Real”) trans-
fer learning will meet our claimed expectations. Bonding the
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linkage between simulation and reality is one of the essen-
tial steps toward the metaverse. With extensive prior study in
simulation, one can reproduce the virtual result on a physical
soft robot. For example, with extensive studies in kinematics,
dynamics, mechanics, and morphology, model-based simulators
can be developed to contribute to different control problems such
as contact detection [12], soft materials shrinkage upon actua-
tion [13], hybrid rigid-soft robots [14], soft parallel robots [15],
etc. In addition to robot control, simulators can sometimes help
us to design better soft robots to fit different applications [16],
[17], [18].

Another stream of soft robotic simulations may include the
virtual world’s sensing, and the physical interaction [19]. A
cohort of researchers from French institutes developed a soft
robots plugin for the Simulation Open Framework Architecture
(SOFA) [20], [21], with physics-based soft body dynamics.
The soft robots plugin is capable of deriving the quantitative
relationship between the robot’s deformation and the changes in
the inputs of the actuators (i.e., joint space) based on a real-time
direct/inverse FEM solver that considers mechanical parameters
like material, geometry, and morphology. Such an open-source
toolkit has been useful for the community to probe into the
robots’ modeling, characterization, and interaction problems
with plausible visualization before or during the transfer to
prototypes.

However, most of the reported applications are solely for
visualization without online deployment. In fact, a reliable sim-
ulation can be utilized to advise a closed-loop control strategy
based on the robots’ perception in the virtual environment.
By using different simulation techniques, sim-to-real transfer
learning was applicable to industrial robots. For instance, Zhang
et al. [22] present a sim-to-real learning method that trains a rigid
manipulator in MuJoCo to avoid colliding with obstacles and
then transfers to the physical world using 3-D bounding boxes
estimated from RGB-D vision. In [23], a sim-to-real transfer
method is introduced for reinforcement learning deployed on a
KUKA LBR iiwa arm for a peg-in-hole task with PyBullet. Due
to the availability of the well-developed simulation platform and
mature robot models in a unified robotics description format
(URDF), perception beyond joint space is no longer a must in
the closed-loop feedback. As a result, the learned policy of rigid
robots is oftentimes and readily applicable in the real world.
While sim-to-real-based control policies are common in rigid
robots (e.g., CoppeliaSim, MuJoCo, and RoboDK, to name a
few), they have rarely been reported on soft robots until recent
years.

Soft robot-wise, sim-to-real transfer methods can assist the
robots design and fabrication [24]. The calibration of vision-
based 3-D shape sensing of pneumatic soft robots can also
be trained in simulation and transferred to real-world deploy-
ment [25]. In [26], an open-source sim-to-real transfer method is
put forward to predict the morphology of cube-based soft robotic
dice. The work is further extended to transfer the simulated
locomotion to reality [17]. By exploring planar kinematics,
which can be geometrically simulated, Greer et al. [27] present
the autonomous navigation task for soft growing robots in a
tortuous maze with an overhead view. However, 3-D navigation,

a capability of soft manipulators that are often sought after
and competent in and which could have benefited from the
sim-to-real transfer, has yet to be reported.

This article proposes an SOFA-based sim-to-real method
for soft robotic navigation that learns from virtual eye-in-hand
vision. Based on the underlying principle of the simulator, we
assume that the SOFA’s results may be very likely to resemble
the real case scenarios. Aiming to navigate a cable-driven soft
robot in a confined environment, we first reconstruct a simulation
scene in the SOFA framework that resembles the situation to
perform collision-free path and motion planning that could
be useful for endoscopic manipulation. Then, we employ the
prior knowledge from the simulation to train a closed-loop
control policy for a soft robot’s navigation. By learning what
the robot “sees” and how it simultaneously “moves” in the
joint space according to a series of optimized motions in the
virtual world, we can transfer the learned policy to the physical
robot and teach it how to “move” depending on what it “sees”
in the real world—and the environment is unknown to the
robot except for regular anatomical features we are intrigued
in. A dynamic neural network called nonlinear autoregressive
exogenous model (NARX) [28] is adopted for virtual learning
that features time-series modeling. Instead of presenting a simple
open-loop sim-to-real method, our closed-loop policy can be
directly transferred to the tangible robot in a one-off manner,
which can considerably reduce the on-site calibration and mul-
tisensory employment for the navigation tasks. Experiments
with further evaluation validate the method’s feasibility and
performance. This article contributes to the soft and medical
robot communities in following ways.

1) A newly presented 3-D-printed cable-driven soft robotic
system featuring a miniature manipulator, soft material,
and mechatronic-decoupled design for soft robot-based
endoscopic manipulation.

2) A novel SOFA-based sim-to-real method that learns from
the virtual eye-in-hand vision for simulated and real-
world soft robotic navigation relying on a light-weighted
NARX network.

3) An interdisciplinary pilot study of autonomous soft robot-
based endoscopic manipulation powered by our sim-to-
real method.

4) A comprehensive experimental validation and evaluation
of our sim-to-real method for soft robots.

To the best of our knowledge, this is the first physical
simulation-based sim-to-real method that enables soft robotic
navigation that learns from virtual eye-in-hand vision. The
method enables the transfer of complicated soft robot motion
computed by a numerical solver in SOFA to a real-world robot
with additional visual perception to improve transfer fidelity.

The rest of the article are organized as follows. Section II de-
scribes the gist of (soft) robotic transoral tracheal intubation with
its background introduction. Section III sketches out the design
and assembly of the robotic system that will be used in simu-
lation and experiment. Section IV demonstrates the kernels of
how we construct the soft robotic-based endoscope (stylet) ma-
nipulation scene, motion planning, and generation of the dataset
in SOFA. Section V presents the implementation of learning.



LAI et al.: SIM-TO-REAL TRANSFER OF SOFT ROBOTIC NAVIGATION STRATEGIES 2367

Fig. 1. Schematic diagram: Transferring the learned policies that actu-
ate the soft robot with an optimal motion from the SOFA environment to
a real-world system based on virtual and real eye-in-hand vision.

Fig. 2. Task description: The robot tip is automatically steered to reach
the upper glottis with the help of the selected anatomical features ob-
tained by its eye-in-hand vision. The soft body’s motion with a minimal
collision with the surrounding is realized by the control strategy that
learns from the simulation.

Section VI shows the experimental validation of the proposed
method on a phantom. Finally, Section VII concludes this article.

II. TASK DESCRIPTION

We assume the primary task for the soft robot is that it
can automatically guide the soft robot’s tip to a reachable 3-D
spot in a confined environment with optimal body motion
throughout the navigation process. Here, we choose the robotic
endoscope/stylet manipulation in transoral tracheal intubation
(TI) as an example to investigate the feasibility and performance
of our proposed sim-to-real method. A stylet or flexible broncho-
scope is typically used to guide the endotracheal tube (ETT) to
reach the desired spot. Despite the conventional “blind” stylets,
video-assisted [29] and semi-robotic stylets [30] were proposed
to help with the transoral TI. However, it comes to our attention
that, except for pink tissues, the endoscope fails to provide
identifiable views for a good while during the navigation. The
situation poses a major challenge in deploying VS for the task.
Nonetheless, we see the potential to overcome the challenge by
using a soft robot with a sim-to-real capability.

To automate this procedure, as illustrated by Fig. 2, we as-
sumed that a vision-embedded soft robotic manipulator would

Fig. 3. (a) CAD schematic of the soft robot system in this work. A total
of six cable joints are enabled by the motors’ rotation that is transmitted
by the flexible shafts. (b) Outer diameter of the soft robot is 6.2 mm.
Notation of frames: {B}: base; {M}: middle; {T}: tip; and {C}: camera.

work as a steerable stylet to autonomously navigate to the
locations near the upper glottis with minimal robot-environment
collisions during the feeding. Along with feeding, there are
two major turnings for the soft body. The first major turning,
obviously, occurs near the palatine uvula that separates the oral
cavity and oropharynx. After a blackout period when no key
features can be perceived, the second turning occurs near the
arytenoid (corniculate) cartilage at the hypo-pharyngeal area
separating the trachea and esophagus [31]: the former belongs to
the respiratory system, whereas the latter belongs to the digestive
system. We can employ the null space motion of a multisegment
soft robot with proper motion planning to produce a dexterous
motion that avoids collisions as much as possible.

III. SOFT ROBOTIC SYSTEM: DESIGN AND ASSEMBLY

A soft robotic system and its manipulator parameters were
especially designed to validate our method. As shown in Fig. 3,
the cable-driven soft robot has two coupled flexible segments.
Three independent cables actuate each segment. The cables
(∅0.38 mm nylon wire) are threaded through their respective
∅0.8-mm channels that are isometrically distributed in a radius
of 2.1 mm. A 2-mm-diameter main channel is reserved at the
axial center. The robot base is mounted on a linear slide for a feed
motion along the axial direction. Our design features a proximal
segment of 60 mm and a distal segment of 70 mm in length, with
a unified diameter of 6.2 mm to imitate a stylet or an endoscope
and ease of fabrication and assembly. The soft bodies were made
from Agilus30 photopolymer using a PolyJet 3-D printer (J826
Prime, Stratasys).

Each cable is winded on a spool mounted on a bearing on
the fixture base. The spools can be rotated by the couplers that
are connected to the flexible shafts actuated by the respective
dc motor (1000:1 gear ratio, 6 V) with an encoder for angular
feedback. The dc motors are proportional-integral differential
(PID)-controlled by a low-cost self-assembled motion controller
equipped with three L293D units and a general microcontroller.
The linear slide is driven by a stepper motor drive. With some
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Fig. 4. Work predicated on encountering a uvula with a Class-I visibil-
ity in the Mallampati system and the vocal cords with a Grade-I visibility
in the Cormack–Lehane system.

step-down transformers, all electronic components are well-
fitted in a portable acrylic box with a standard power cable
(220-V ac) and a USB port for communication with the PC.
Such spatial-mechatronic-decoupled design reduces the foot-
print size, increases the system’s portability, and facilitates the
free space posing of the robot base.

IV. SIMULATION: SOFA-BASED ROBOT MODELING

A. Virtual Environment

We configured the simulation in SOFA v22.06.99. To align
with the physical scene where the robot tip would be facing
toward the ground, we set the virtual gravity to be [0, 0, 9.81]�

m/s2. As the baseline, this work is predicated on ideal anatomic
scenes with clear visibility of the airway anatomic structures,
with the uvula of class-I visibility in the Mallampati score [32]
and vocal cords of grade-I classification in the Cormack–Lehane
system [33]. The assumption is further depicted in Fig. 4. It
should be noted that unless extensive data with various anatomic
conditions are used, the reconstructed and phantom environ-
ments we present may not fully reflect the complexity and
variety of real cases. The sim-to-real discrepancy at the current
visibility class/grade can be further reduced by using Fourier
domain adaptation [34] and style transfer [35] to even achieve
pixel-grade cross-domain (SOFA/phantom) feature segmenta-
tion [36]. A modified oropharyngeal-tracheal 3-D phantom [37]
was directly imported into the scene in obj format. To reduce
the expensive finite-element computation, we trimmed some
insignificant entities from the phantom, such as teeth and mis-
cellaneous muscles, leaving the phantom with 26 706 triangular
surfaces, as shown in Fig. 5(a) and 5(b).

B. Robot Modeling

In SOFA, robot modeling depends on the meshed solid model
of the soft bodies and their geometric constraints, including cable
distribution, actuation regulation, and partial solidification. To
do that, the soft robot was first sketched in FreeCAD (a free and
open-source software under the LGPL-2.0-or-later license) and
exported to brep or step format. Then, we imported the model
into Gmsh (a free software under the general public license) for
the meshing and exported it to both vtk and stl format. The vtk

Fig. 5. Entities modeling in SOFA. (a) Meshed modified oral cavity.
(b) Meshed pharynx and trachea. Adapted from [37] and [38] under CC
BY-NC-SA license. (c) Cables’ geometric constraints (exploded view) of
the meshed two-segment cable-driven robot.

was used to add the finite-element model in SOFA, and the stl
was used to define the visual model and collision model. After
some trial-and-errors with the consideration of computational
cost and rationality, we tetrahedrally meshed the soft segments
into voxels with 4985 vertices, excluding any cable channels in
the mesh.

Based on the prototype fact, we resembled the physical
properties in SOFA with the Young’s modulus E = 0.8 MPa,
Poisson’s ratio ν = 0.45, and the total mass msoft = 7 g. The
cable actuation mechanism was geometrically constrained in
the Python script, which can be expressed as

Li,j,k =

⎡
⎢⎣
(−1)j · rc · sin

(
(j − 1)β

)
−rc · cos

(
(j − 1)β

)
(k − 1) d

⎤
⎥⎦ (1)

where i = 1 and i = 2 represents the proximal and distal seg-
ment, respectively; j = {1, 2, 3} denotes the indexed cable; and
k = {1, 2, . . ., Ni} indicates the kth node along the soft body.
Note that Ni varies from different segments, and N2 > N1. For
the constants, rc = 2.2 mm is the radius for cable distribution,
β = 2π/3 is the angular offset between the neighboring cables of
the same segment, and d = 5 mm denotes the sampling distance
along the soft body. As for the rigid shaft, it has to be solidified
as a rigid part. The working range of the prismatic joint along the
feeding axis was set to be [0, 80) mm. Fig. 5 gives an intuitive
illustration of our robot modeling in SOFA.

C. Collision Avoidance Motion Planning

With all the preparations ready, we then defined a relative
position between the soft robot’s base and the environment.
For the sake of convenience and valid computation, we located
the robot base frame {B} at Ptarget = [0,−55, 160]� mm with
respect to the target site as a basic status (also refer to Figs. 1
and 9). The relative frames relationship can also be found in the
weak registration in the real-world deployment, which will be
discussed in Section VI.

The built-in QPInverseProblemSolver was used for the colli-
sion avoidance motion planning. The cost function is a quadratic
function that minimizes the actuation and the distance between
robot meshes (a function of the actuation) and the environment.
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Fig. 6. Simulation snapshots of the collision avoidance motion plan-
ning of our soft robot in different SOFA scenes using the built-in QP
solver and the local minimum distance-based proximity method, interact-
ing with (a) a 90° pipe, and (b) phantom in Section IV-A. The respective
objective values are given. The default initial objective values are 250.

Algorithm 1: Establish Environment and Robot Model in
SOFA to Compute Collision-Free Motion for Navigation.

1: Procedure ROOTNODE()
2: requiredPlugins � SOFA SoftRobots Plugin
3: defaultVisualManagerLoop & freeMotionAnimationLoop
4: visualStyle & gravity � Robot appearance; G = 9.8 m/s2

5: collisionPipeline: alarmDistance = 2, contactDistance = 0.5
6: QPInverseProblemSolver (epsilon = 1e-1) � Compute Inverse
7: simulationNode()

- solversForDeformation: OdeSolver, linerSolver, SparseLDLSover,
GenericConstraintCorrection � Compute soft object deformation

- softRobot: FEM, visual, collisionModel � vtk, stl
◦ rigidify() � Rigid shaft
◦ deformablePart: cableActuators � Cable nodes using (1)
◦ rigidPart: slidingActuator � Linear slide

- mechanicalMatrixMapper (rigidAndDeformableCoupling)
8: phantomModel(visual, collisionModel) � obj

9: define frames: target and end-effector
10: recordedCamera: orientation and position from myAnimation
11: animate(myAnimation)
12: return

The solver implements the QP problem with linear complemen-
tarity constraints (QPCC) [20] based on the qpOASES library
to inversely compute the corrected FEM-based robot model in
response to the actuators, actuator constraints, and surround-
ings. Different primitives, including point, line, and triangle,
were utilized in the narrow phase intersect detection. A local
minimum distance proximity method was used to evaluate the
anticipation of contact with an alarming distance of 2 mm and
a contact distance of 0.5 mm. The pseudo-code in Algorithm
1 depicts the collision-free navigation deployment workflow in
SOFA. Fig. 6 demonstrates two resultant examples in collision
avoidance and evaluation with the said proximity method. As
the robot moves, the objective values from the QP formulation
converge.

Since we would be interested in the eye-in-hand vision, a
camera frame {C} was additionally attached at the robot’s tip
to provide an endoscopic view. For simplicity, we ignored that
offset between the camera and the tip frame and coincided with
them, i.e., {C} ≈ {T}. Given that there are no available tools
to acquire the endoscopic view, we defined a fixed frame on the

TABLE I
SIZE OF THE BLENDED DATASET FOR FEATURE RECOGNITION

(UNIT: FRAME)

plane perpendicular to all cable ends—based on trigonometry—
as the camera frame. The coordinates of three cable ends can
be indicated w.r.t. the robot base as pj = L2,j,N2 ∈ R

3×1 where
j = {1, 2, 3}. Then, the plane formulated by those coordinates
can be calculated by

[
α β γ

]�
= (p1 − p2)× (p3 − p2) . (2)

Thereby, the orientation of the camera frame can be computed
by

C =

⎛
⎜⎜⎝

⎡
⎢⎢⎣
arccos

√
α2+γ2

α2+β2+γ2

arctan
(

α
γ

)

0

⎤
⎥⎥⎦

⎞
⎟⎟⎠

⊗

·Rx (π) ·Rz (π) (3)

where (·)⊗ denotes the operations that convert an Euler angle to
a rotation matrix, and Rx(θ) and Rz(θ) represent the rotation
matrices of θ on the subscripted axis. The rotation matrix C
was then converted to a quaternion for use. The frame origin
was located at 1

3 (p1 + p2 + p3)
�. With the specific definition

of viewport coordinate and focal length, the eye-in-hand view
can be acquired from the QtViewer using OpenGL. This method
would grant us theoretically unlimited virtual endoscopic image
data of anatomical features/organs, as long as we can build in
SOFA, without concerning privacy issues.

V. LEARNING FROM THE VIRTUAL VISION

In this work, the learnings can be divided into two parts
and will be introduced in this section. Section V-A describes
the use of primarily SOFA-generated images (i.e., eye-in-hand
viewport) with a small number of phantom pictures blended
for anatomical feature recognition. While Section V-B de-
picts the recurrent learning between the SOFA-generated joint
space motion—subjected to the QP-constraints for collision
avoidance—and the resulting labels of recognized features in
the virtual environment.

A. Recognizing Anatomical Features Using YOLO

We employed You Only Look Once (YOLO) [39], a real-time
object detection algorithm, for the online anatomical feature
recognition task. Due to the limitation in available virtual 3-D
models, the SOFA environment is overanimated, which fails to
satisfy the feature recognition task in the real world. To bridge
the gap between simulation and reality in this regard, we blended
the simulated endoscopic dataset with some pictures of the
phantoms. The dataset size is given in Table I. The images in the
dataset were labeled using bounding boxes with corresponding
feature tags. The dataset was arbitrarily divided into training
(80%), validation (10%), and test set (10%). Among the four
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Fig. 7. Performance metrics of the YOLOv5s for anatomical recogni-
tion. Early stopping was triggered at epoch 481 as no improvement was
observed in the last 100 epochs. Best results observed at epoch 380.

TABLE II
MODEL SUMMARY OF YOLOV5S-BASED FEATURE RECOGNITION

released models (https://github.com/ultralytics/yolov5), namely
the 5s, 5m, 5l, and 5x, we opted for the most lightweight
YOLOv5s model. The model was set to be trained for 800
epochs with a batch size of 4, and the early stopping (patience
at 100) was triggered at the 481st epoch, meaning that the best
results were observed at epoch 380. The network performance
is given by Fig. 7 and Table II, showing that it can classify
the three classes with a high precision of 0.989, 1, and 0.989,
for uvula, epiglottis, and glottis, respectively. As an indicator
metric for object detection, Table II also explicitly provides the
mean average precision (mAP) for intersection over union (IoU)
greater than 0.5 and from 0.5 to 0.95. Figs. 8 and 9 demonstrate
the effectiveness of the trained feature recognition model in both
simulation and reality scenes, where the recognized features
could be parameterized into the respective category (see the
Z-axis of Fig. 11) with coordinated bounding boxes in real time.
The generalization of feature recognition can be improved fur-
ther by taking into account anatomic appearances with varying
visibility grades introduced in Section IV-A.

B. Eye-Hand Learning Using NARX

Since the virtual endoscopic images and the robot actuation
(“eye-hand”) are temporal dependents, the NARX model [40]
was used for the learning. NARX is a class of discrete-time
nonlinear models that are often utilized as an open-loop or
closed-loop form multistep predictor in times-series modeling.
The advantage of using the NARX is that the whole operation can
be involved by a single model. Such a model can be algebraically
represented by [28]

y (t+ 1) = f [y(t), y (t− 1) , . . . , y (t− ny + 1)

u(t), u (t− 1) , . . . , u (t− nu + 1) ] (4)

where y(t) and u(t) are, respectively, the output and the input
sequence of the network at the discrete time step of t. Meanwhile,
ny andnu are the delays in output and input, respectively, subject
to nu ≥ ny ≥ 1. The dependent output value at the next time

step y(t+ 1) is regressed on its previous output and previous
independent exogenous input.

Since we cannot provide a perfect driver sequence y(t) in prior
to the NARX network for prediction, we need to train the net-
work in a closed-loop way, i.e., using the newly predicted driver
sequence as part of the input, then combining it with the visually
recognized labels for the next prediction. Besides, we improved
the training process regarding the model generalization and
overfitting avoidance by using the early stopping method with
automated regularization under the Bayesian framework [41].
The model training was implemented using the Neural Network
Toolbox of MATLAB. In the NARX network, d1 and d2 de-
note non-negative input delays and output (feedback) delays,
respectively. These hyperparameters must be tuned based on
the specific problem and data characteristics, and no reference
values exist. Here, we empirically initialized the input delays
as d1 = [1 : nu] and the output delays as d2 = [1 : ny], where
nu = 7 and ny = 5. For the initialization of network training,
we found that the NARX network would produce more stable
initial predictions if the input delay were replenished with some
small nonzero values at the first seven timesteps, which is in
response to the input delay. In our work, we supplemented the
SOFA-generated joint motion with arbitrary small values as

yinit = 10−4

⎡
⎢⎣
| | . . . |
1 2 . . . 7

| | . . . |

⎤
⎥⎦ (5)

for each training. It has been tested that using other small
values for initialization would not cause a significant difference.
Whereas, the initial amended labels can be uinit ∈ R

1×7 as long
as it does not interpret any executable features.

After training a total of 300 NARX networks, we kept the
network with the most satisfactory performance. The selection
was made by feeding each network with ten sets of new label
data from YOLO and driven data from SOFA exclusive from
the original dataset for training, validation, and testing, and
obtaining the mean squared error performance for comparison.
To diversify the simulation data, we added a cohort of offsets of
[±3,±3,±5]� ∈ Z in millimeter on the target position Ptarget in
three axes, resulting in 20 groups of simulation paths in SOFA.
Using offset targets for the training could contribute to weak
robot–patient registration in a real-world deployment. The off-
sets were also selected to fulfill the consequence that each path
would correspond to a unique endoscopic view and QP-solved
actuation. Fig. 11 illustrates the sequences of feature(s) captured
by the eye-in-hand vision in SOFA. The variable target positions
affect the virtual visual perception in terms of timing, duration,
and recognized features, enriching the simulation data. Such
variation mimics the slight individual difference in physiological
appearance among people, which would benefit the model’s
adaption to new oropharyngeal environments.

The architecture diagram in Fig. 10 summarizes our proposed
method. The robot modeling and the feature recognition were
implemented in Python and YOLOv5 (PyTorch framework),
respectively, while the eye-hand learning using the NARX net-
work was performed in MATLAB R2020a. The networks were

https://github.com/ultralytics/yolov5
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Fig. 8. Trained PyTorch model (YOLOv5s) can effectively recognize and track single or multiple anatomical features (uvula, epiglottis, and glottis)
in simulation and real environments. The aforementioned examples were fed to the model with confidences = 0.7.

Fig. 9. Snapshots of one of the SOFA simulation groups: Based on the built-in QPInverseProblemSolver, a set of feasible actuators’ solutions
that avoid physical body collision can be derived and fed back into the simulator for visualization. By associating a camera frame {C} to the robot’s
tip, a simulated endoscopic vision (i.e., eye-in-hand) can be obtained for further feature learning. The view encounters a “blackout” period without
recognizing any key features.

Fig. 10. System architecture of the proposed sim-to-real transfer learning method: The system uses the simulation data from SOFA for the NARX
network training. While in a real environment, the system codes the recognized features from its real eye-in-hand vision (labeled as u(t+ 1)) and
current joint space motion y(t) to forecast the next move y(t+ 1). Here, the S refers to the length of simulation timestep.

trained on an NVIDIA GeForce RTX 3060 GPU. Since multiple
platforms were involved, we employed a User Datagram Proto-
col (UDP) socket that allows the Python program to stream the
real-time recognition to where the MATLAB host on the actuator
side could receive it.

VI. EXPERIMENT

A. Experiment Setup

A simplified robotic TI scene was set for the experiments.
A CMOS image sensor (OV6946, OmniVision, CA, USA) was
used to provide eye-in-hand vision. The 1.8-mm-diameter LED-
equipped image sensor can capture 400 × 400 resolution video

stream at a 30 fps frame rate. To show the generalization of the
proposed method, in the experiment, we used a commercially
available clinical oropharyngeal phantom, which was different
from the simulated scene that produced the eye-hand dataset
for NARX network training. The experiment setup is shown
in Fig. 12. The linear slide that holds the manipulator was
vertically installed with the robot tip pointing toward the ground
and fixed on an adjustable holder. A permanent-magnetic-based
tracking system was used to obtain the 3-D position of a magnet
attached to the robot tip. A tiny NdFeB magnet was used to
avoid excessive payload. Based on the magnet’s size, the valid
measurement range of the tracking system is about 100 mm
above the array.
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Fig. 11. With variable targets, 20 groups of feature sequences ob-
tained by the SOFA’s eye-in-hand vision were utilized for the NARX
training.

Fig. 12. Experiment setup and the open-loop control tests. The robot
joint space motions are computed by the QP solver of the SOFA frame-
work. The tip positions are captured by the magnetometer array.

Before configuring the sim-to-real method, we tested the
robotic system with open-loop control. As shown in Fig. 12,
two tip paths were imported to the SOFA to derive the inverse
solution in joint space. The paths (in millimeter) for the circle
and ∞-shape are, in t = 0 : π/500 : 2π time steps, xref,o =
16 · sin(t), yref,o = 16 · cos(t), and xref,∞ = 22 · sgn(cos(t)) ◦
(cos(t) ◦ cos(t)), yref,∞ = 22 · sgn(cos(t)) ◦ sin(t) ◦ (cos(t) ◦
cos(t)), respectively, with a height of 52 mm above the mag-
netometer array. The ◦ operator denotes the element-wise
(Hadamard) product. Due to the unit problem, the SOFA-
generated inputs necessitate an overall amplification to fit the
prototype setup, such as spool sizes and the minor transmission
losses of using flexible shafts. The measured results show that
our setup can reproduce the desired path with an average spatial
positioning error below 2 mm in open-loop mode, which is
adequate for using the latter sim-to-real validation with closed-
loop control.

B. NARX Performance

We performed a prior experiment in the simulation to evaluate
the closed-loop NARX network performance in our joint space
motion forecasting task. Initially, three new target positions
proximate to the upper glottis were randomly selected in SOFA.

Fig. 13. Closed-loop NARX-forecasted joint space motions based on
only the virtual eye-in-hand vision, compared with the ideal SOFA-
generated joint space motion. Three examples are given in (a)–(c),
with variant target positions of [0,−55, 155]�, [3,−55, 155]�, and
[0,−58, 155]� mm, respectively. The resultant observed features are
shown in the right column.

TABLE III
R-SQUARED FITNESS FOR FIG. 13

Notably, the selected target position was intentionally excluded
from the training, validation, and testing datasets to prevent
biases. After running the simulations, we obtained the SOFA-
generated joint space motion with a time-series feature sequence
observed by the endoscopic vision in the virtual scene. After
that, we tried to feed the recorded feature to the trained NARX
in sequence—imitating a real-time feature sequence that the
actual camera vision would attain—and examined the alignment
between the forecasted and SOFA-generated joint space motion.
The result is given in Fig. 13. It can be seen that the endoscopic
vision would observe the features differently in terms of time
and the ROI of features. Such variant observed features and
the closed-loop mechanism would result in NARX-forecasted
joint motions that are deviated from the reference joint motions
computed by the QP solver of SOFA. However, the deviations
are insignificant for the overall robot motion. As shown in
Fig. 13, the cable joints of the proximal segment, joints 1–3,
are nearly merged with only minor differentiation. The resultant
task motion showed that such joint motion would stiffen the
proximal motion to antagonistically resist the passive bending
motion caused by the distal segment, which conforms to the
literature [42], [43] and simulation. Table III demonstrates the
R-squared coefficient of determination of the motion of each
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Fig. 14. Joint space motions predicted by (a) LSTM and (b) open-loop
NARX, given a target position of [0,−55, 155]� mm. The former demon-
strates an R2 coefficient of 0.983 and an MSE of 0.4419, while the latter
shows an R2 coefficient of 0.997 and an MSE of 0.3820, respectively.

joint for the aforementioned experiments. The R-squared coef-
ficient is given by

R2 = 1 − SSres

SStot

where SSres and SStot denote the residual sum of squares and
the total sum of squares, respectively. It measures how well
the NARX network forecast can fit the SOFA-generated out-
comes. Based on the aforementioned three experiments, the
table shows that the average R2 coefficient for the cable joints
is 0.963, with the lowest performance shown in joint 3 (one
of the cable joints for the proximal segment). In contrast,
joint 7 (the prismatic joint) has an average R2 coefficient of
0.997. The prior results validate the fidelity between what the
trained NARX network produces and the computation from the
SOFA. It supports the closed-loop sim-to-real implementation
in Section VI-C.

Moreover, a comparison was made between the performance
of the NARX network and the Long Short-Term Memory
(LSTM) network, which is frequently employed for learning
time-series sequential data. The trained networks were assigned
a new target position of [0,−55, 155]� mm for joint motion
predictions, and the outcomes were subsequently contrasted
with the joint motion computed by the QP solver in SOFA.
Fig. 14 presents a side-by-side comparison of the network
predictions. The R2 coefficients for the LSTM and open-loop
NARX networks are 0.983 and 0.997, respectively, and the train-
ing time for these open-loop models take, respectively, about
120 and 10 s with an Intel i9 12th-gen CPU using MATLAB.
Nevertheless, when fitting the predicted and referenced outputs
based on such a single trial, the NARX network exhibited a mean
square error (MSE) that was 15.7% lower than LSTM. These
results suggest that the NARX network outperforms LSTM
in terms of performance with less training time. Furthermore,
the NARX network has a simpler architecture, requires less
computation, and exhibits better generalization and robustness to
input changes than LSTM especially when only small amounts
of training data are available [44]. Here, training a usable closed-
loop NARX network for 3000 epochs takes about 12 min on
the same PC configuration. And thanks to the relatively short
training time, we could explicitly test the training effect, adjust
the hyperparameters promptly, and select the optimal model in
due course.

TABLE IV
SIM AND REAL PERFORMANCE—SUCCESS RATE OF REACHING THE

UPPER GLOTTIS

C. Validating the Sim-to-Real Transfer on Phantom

An overview of our sim-to-real-driven deployment is shown in
Fig. 15. A video is also available in the supplementary material.
Using a phantom different from the simulation, the soft robot’s
tip was placed about 15 mm above the uvula to resemble the
initial scene of the SOFA’s as much as possible. When operated,
the robot would navigate to the upper glottis location based on
only its real-time eye-in-hand vision. The vision underwent the
YOLO algorithm for feature detection, and the recognized fea-
ture sequences were decoded into executable joint space motion
by the trained-NARX network. Fig. 16 demonstrates the selected
video sequence from the eye-in-hand vision of two experiments
with slightly different initial settings of the relative positions
between the robot and phantom. Their corresponding recognized
features are also given in Fig. 16. Even with different initial
placements, it can be observed that the robot can efficaciously
navigate to the desired location without significant collision with
the environment, which is unstructured in any of our simulations.
The measured tip paths during the navigation are available in
Fig. 17, which also indicate the variability of the network’s
decision depending on what the eye-in-hand vision receives in
real time. As we have planned in the SOFA scene, the soft robotic
endoscope/stylet manipulation should:

1) avoid colliding with the uvula at the beginning;
2) perform the first major bending at the oropharynx;
3) distinguish esophagus and glottis, and then, align to the

latter.
To evaluate the aforementioned criteria: 1) can be visually

examined; 2) can be verified by post-evaluation of tip position
measurement; and 3) can be visually evaluated by the real-world
endoscopic view.

The experiment results showed that the robot could conduct
the given navigation task automatically based on what it had
learned from the simulations. Due to the different initial settings,
the robot “saw” different feature sequences, resulting in diverse
NARX-forecasted joint space motions as shown in Fig. 18—both
of them are capable of driving the robot to fulfill the task. The
stiffening effect on the proximal soft segment due to the antag-
onistic actuation was also realized on the prototype as planned
in the physical simulation. As designed in the simulation, the
proposed method allows a relative malpositioning between the
robot and the phantom. The experimental observation suggested
an error tolerance of [0 ± 5,−55 ± 5, 160 ± 5]� mm of Ptarget

in {B}, which surpasses to the simulation. The success rate
of sim-to-real transfer has usually been one of the indicators
to evaluate deploying performance [45]. Table IV shows the
success rate of the sim-to-real transfer in reaching the upper
glottis in our phantom experiments. Here, a success reach was
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Fig. 15. (a)–(f) Snapshots of the robot motion generated by the proposed sim-to-real method. The joint space motions were automatically
computed based on the endoscopic vision and the closed-loop NARX algorithm. (g) Weak robot–patient registration.

Fig. 16. Snapshots from the eye-in-hand vision of two experiments with different initial settings of the relative positions between the robot and
phantom and their corresponding recognized features (0: None; 1: Glottis; 2: Uvula; 3: Epiglottis; 4: Glottis and Uvula; and 5: Glottis and Epiglottis).

Fig. 17. Measured NARX-forecasted tip motion for (a) Experiment 1
and (b) Experiment 2 of Fig. 16. Numbered tags: 1) Avoid colliding with
the uvula; 2) first major bending at the oropharynx; and 3) second major
bending, aligning to the glottis instead of the esophagus.

judged by whether it could provide a clear endoscopic view
showing the vocal cords or not. While the simulation can always
obtain a viable view at the end, a high success rate of 17 out
of 20 consecutive trials were found capable of delivering the
camera into the spots in real-world phantom experiments. In our
observation, failed trials were primarily accused of overexposure
due to the intense LED light (can tell from Exp. 2 in Fig. 16),
which interferes with YOLO-detection when acquiring valid
features for closed-loop feedback.

D. Discussion

The major novelty of our visual-dependent sim-to-real
method for soft robots can be highlighted as the following.

Fig. 18. Recorded NARX-forecasted joint space motion for (a) Exper-
iment 1 and (b) Experiment 2 of Fig. 16.

1) General Eye-in-Hand VSs: In general, VS requires de-
tected features in the loop at all times. But oftentimes, the
endoscope sees nothing or invalid frames (this has been verified
in simulation and real phantom), which is inadequate for valid
closed-loop feedback. In contrast, our sim-to-real method can
refer to the “memories” that the robot learns from the virtual
world, allowing its navigation without relying on a continuous
eye of sight of features. If we use an eye-in-hand VS method
in our task, it may require many feature labels along the navi-
gation to determine the next step, whereas ours only requires
a few, significantly reducing the time-consuming training in
feature recognition. Furthermore, compared to the traditional
VS method, a sim-to-real method reduces the on-site calibration
of the visual system’s extrinsic and intrinsic matrices [46], initial
Jacobian estimation between the joint and task space [47], and
position-configuration measurement [48]. In addition, general
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TABLE V
COMPARISON OF DATASET THAT BLENDS WITH PHANTOM IMAGES ONLY AND

WITH ADDITIONAL MEDICAL IMAGES FROM

eye-in-hand VS may not be able to control the whole-body mo-
tion of a multisegment soft robot, which is essentially required
for the navigation task in a tortuous environment, while our
method is capable of whole-body motion control. Due to privacy
and ethical concerns, the medical dataset used to deploy VS
is typically inaccessible. However, simulation scenes are more
accessible and customizable. Computer graphics experts might
contribute to more realistic virtual scenes for future sim-to-real
deployment. Therefore, as supplementary to the VS methods,
a vision-based sim-to-real method like ours will be meaningful
for the developers and roboticists.

2) Model-Based Simulation Frameworks: Our soft robot
simulation is based on the open-source SOFA framework, in-
stead of model-based simulators. Due to its physics engine, the
framework is friendly to deformable entities of soft materials
with multiple collision models and collision detection methods,
providing a rich source of simulation data for the sim-to-real
transfer. The use of embedded eye-in-hand vision in the virtual
environment, which is not available in general model-based
simulators, improves transfer fidelity as well.

3) Deep Learning Frameworks: A light-weighted network
like NARX is more suitable for our desired application. There
are only a few anatomical features in the human oropharynx
structure, which can be handily covered by the permutation of
explainable feature labels. However, a deep learning network
requires more expensive computational overhead as it would
also account for the voided vision that further challenges the
sim-to-real discrepancy. Also, the explainable feature labels
with pathologies/defectives can be added to further enrich the
simulation dataset in a separate recognition training process.

4) Possible Extension to Real-World Anatomy: We have also
explored the possibility of further extending part of this work
to real anatomical application. One of the critical parts will
be reducing the discrepancy between simulation and reality
regarding the YOLO-based feature recognition. Following a
similar strategy, we blended the datasets with some real medical
images from open access sources [49], [50] to train a model
applicable in simulation, phantom, and anatomical environment.
Detailed configuration of the datasets is given in Table V,
indicating a comparative mAP to the model that was trained
using only SOFA’s and phantom images. To further verify the
newly introduced model, we input new video clips (i.e., excluded
from the learning process) into the model after some necessary
trimming (4:21–4:32 and 4:57–5:51) for the recognition test. As
shown in Fig. 19, the model was able to recognize the intended
features, even though the real anatomical images only account
for 7.61% of the dataset. The preliminary results reveal the

Fig. 19. Recognizing real-world anatomical features from open ac-
cessible clips [51] using a model trained with mostly (i.e., 92.39%)
simulation and phantom data.

possibility of applying the proposed sim-to-real transfer strategy
in future real-world trials.

5) Limitation: We acknowledge that there are also some lim-
its to this work. For instance, the method lacks perceptual/control
mechanisms to deal with possible collisions in different real-
world environments. Such drawbacks can be further improved
by employing additional haptic sensors and including them in
the simulations to diversify the virtual sensing (other than only
vision) in future works. Moreover, the proposed method can be
further completed by introducing variations on virtual scenes to
reduce the discrepancy among patients.

VII. CONCLUSION

This article proposed an SOFA-based sim-to-real method for
soft robotic navigation that learns from the virtual eye-in-hand
vision using the NARX network. Motivated by the soft robotic
endoscope/stylet manipulation procedure before the transoral
TI, this work first presented a two-segment 3-D-printed cable-
driven soft robotic system featuring a miniature manipulator,
soft material, and mechatronic-decoupled design. Based on the
prototype and open-source 3-D phantom models, a virtual envi-
ronment that resembled the soft robot navigation during stylet
manipulation was reconstructed in SOFA. The SOFA’s built-in
QP solver was used to compute the minimal collision motions in
both task space and joint space. Meanwhile, eye-in-hand visions
in the virtual world were obtained. The YOLOv5 algorithm
was configured to recognize the observed anatomical features,
namely, the uvula, glottis, and epiglottis, with a high precision
of over 98.9% in virtual and phantom environments.

Then, using only the simulation data, a closed-loop NARX
network was trained to associate the time-series anatomical
features sequence with the SOFA-generated joint space motion.
After that, the trained network was employed in the real-world
soft robotic system. Equipped with eye-in-hand vision, the soft
robot with the NARX network could compute the joint space
motion in real time based on what it observes, despite the diverse
environment and robot-phantom setting, and autonomously nav-
igate to the desired spot with minimal collision to the environ-
ment. The experiment results showed that the soft robot can
efficaciously navigate through the unstructured phantom to the
desired spot near the upper glottis with minimal collision motion
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according to what it has learned from SOFA. The average R-
squared coefficient between the closed-loop NARX-forecasted
and SOFA-referenced robot’s cable and prismatic joint space
motion were 0.963 and 0.997, respectively. The eye-in-hand
visions demonstrated a good alignment between the robot tip
and the glottis.
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