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Abstract—Industrial robots contribute to a considerable
amount of energy consumption in manufacturing. However,
modeling the energy consumption of industrial robots is
a complex problem as it requires considering components
such as the robot controller, fans for cooling, the motor, the
friction of the joints, and confidential parameters, and it is
difficult to consider them all in modeling. Many authors in-
vestigated the effect of operating parameters on the energy
consumption of industrial robots. However, there is no pre-
scriptive methodology to determine those parameter values
because of the challenges in the modeling of industrial
robots. This article investigates an industrial robot and the
manufacturing process together and proposes a black-box
model-based energy consumption optimization approach.
Our contribution to the research is the new online and data-
efficient methodology, prescriptive algorithm, and the anal-
ysis of operating parameters’ effects on industrial robots’
energy consumption. The proposed methodology is tested
using two real FANUC industrial robots in three industrial
settings.

Index Terms—Energy consumption optimization (ECO),
industrial robots (IRs), machine learning, manufacturing,
optimization, robotic manufacturing.

I. INTRODUCTION

INDUSTRIAL robots (IRs) consume a considerable amount
of energy in the manufacturing industry. They account for

8% of the total energy consumption in production processes [1],
and the energy consumption of IRs contributes 60% of the total
follow-up costs after acquisition [2]. Sustainable manufacturing
is one of the key directions of manufacturing, and the energy
efficiency of IRs should be considered to achieve this. Reducing
the energy consumption of IRs will automatically reduce operat-
ing costs and CO2 emissions. The wide and increasing adoption
of IRs makes it critical to optimize their energy consumption to
ensure environmentally friendly characteristics [3].
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In this article, we analyze the effect of operating parameters,
such as velocity, acceleration, spindle speed, and feed rate, on the
energy consumption of IRs and develop a prescriptive methodol-
ogy for finding better parameters. By prescriptive methodology,
we mean a methodology that suggests operating parameters to
minimize energy consumption.

II. RELATED WORK

The energy consumption optimization (ECO) of IRs can
be divided into two approaches: hardware-based optimization
methods and software-based optimization methods [4].

The hardware-based approaches are mainly concerned with
the energy-efficient design of IRs, such as using lightweight
design [5], [6], adding energy recovery units [7], [8], or selecting
energy-efficient robots for a given task [9], [10].

The software-based ECO methods of IRs are concerned with
reducing the energy consumption without making hardware
modifications, generally involving parameter modification [2],
trajectory optimization [11], and operation scheduling [12].
Compared with the hardware approach, the software approach
has the advantages of low cost and practical applicability [4].

In this article, we focus on the software-based ECO of IRs
and specifically on optimizing the operating parameters of IRs
to reduce energy consumption during a manufacturing operation
and analyze recent works in this direction.

Paryanto et al. [1] developed a modular approach to modeling
of an IR to analyze the power consumption and its dynamic
behavior. The main conclusion is that the energy consumption of
an IR can be reduced by reducing the weight of tooling systems,
smoothing the motion, and finding optimal speed, which should
not be too fast and too slow. The proposed approach relies on a
mathematical model, which may limit its applicability to other
types of robots.

Liu et al. [13] discussed the effect of inertial and friction
parameters on the energy consumption of an IR. They analyzed
the relation between the robot’s speed and energy consumption
and came to a similar conclusion as in [1]. The developed
solution is robot specific and difficult to generalize to other types
of robots.

Gadaleta et al. [14] proposed the ECO method using an IR
model and simulation software to show that adjusting accelera-
tion and velocity parameters can reduce up to 19.8% of energy
consumption. However, the proposed method is model based,
assuming that an IR can be accurately modeled.
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Zhang and Yan [15] used neural networks and genetic algo-
rithms for modeling and optimizing the energy consumption of
IRs. The dataset is very small: 729 samples (81 × 9), and it
is difficult for neural networks to generalize from such a small
dataset.

Gadaleta et al. [2] investigated the effect of acceleration,
velocity, motion type, viscous friction, and delay time in closing
the IR’s mechanical brakes on the energy consumption of IRs to
show that it is possible to reduce energy consumption by 50%
with appropriate parameters. Even though the authors shared
the methodology and the collected data, findings in this research
cannot be generalized to other robots due to different parameters
and working conditions.

Yan and Zhang [16] proposed a transfer-learning method for
the ECO of IRs. However, they noted the limitations of their
approach, such as the limited motion range for prediction and
the need for sufficient experiments to ensure the accuracy of
energy consumption.

Riazi et al. [17] proposed a framework for IR energy and peak
power optimization. This article has investigated multirobot
scenarios, which is relevant in a real manufacturing scenario.

III. CHALLENGES AND CONTRIBUTIONS

The analyzed literature above clearly indicates that operating
parameters, such as acceleration, velocity, payload, and motion
type, affect the energy consumption of an IR. The majority of
authors used simulation software tools to model and predict the
energy consumption of IRs. They all agree on the nonlinear
relationship between the operating parameters and energy con-
sumption. However, finding the optimal operating parameters
for energy consumption reduction is still a difficult challenge that
needs to be addressed. The challenges of the existing solutions
are as follows.

1) Modeling of an IR: An accurate model of an IR is difficult
to achieve due to heterogeneous components contributing
to IR energy consumption and other parameters of IRs,
such as the trajectory formula, which is unknown and
often protected as a trade secret by the robot manufac-
turers. In general, modeling the energy consumption of
an IR is difficult, imprecise, and not generalizable to
other robots. Modeling and simulation-based approaches
usually address only a specific type of robot, and for
every different type of robot, a separate model should
be developed.

2) Data efficiency: Data-driven methods solve the challenge
of explicit modeling, but they face data efficiency prob-
lems. Generally, data-driven approaches require a huge
amount of data to make reasonable predictions. Transfer-
learning-based methods, such as in [16], can be utilized to
overcome the data limitations, but as the authors of this
article have already mentioned, the prediction accuracy
is determined by the datasets gathered in experiments. A
new prediction task requires previous datasets to be repro-
cessed and new prediction models rebuilt from scratch.

Hence, this article has the following three main contributions:
1) a prescriptive methodology for the modeling and opti-

mization of the energy consumption of IRs;

Fig. 1. Online and modular optimization loop.

2) an online and modular meta-algorithm for the ECO;
3) data analysis of the effect of operational parameters on

the energy consumption of IRs.

IV. METHODOLOGY

Manufacturing requirements constantly change, and there is
a need to adapt quickly to new scenarios, making it flexible for
a wide range of manufacturing applications. Hence, the ECO
methodology should be modular and online to adapt to changing
requirements.

The modularity of methodology is important to abstract the
complexities of the optimization algorithms. The abstraction
allows plugging application-specific optimization algorithms in
or out as appropriate. This way, whenever a better or more
suitable algorithm is developed, it can be directly plugged into
a meta-algorithm.

The ability to optimize process parameters online on a real
IR without stopping production is required because of business
costs. This way, an operator has an option to control adjusting
process parameters at a certain percentage of production cycles
to avoid production disruptions.

In this section, considering the above requirements, we
present an online and modular methodology for optimizing the
energy consumption of IRs. The methodology consists of three
main steps, as shown in Fig. 1, and each step is discussed in the
following subsections.

A. Modeling

Instead of explicitly modeling an IR or using simulation-based
methods, we propose to use a black-box model. The black-box
model allows treating the whole system without knowing its
internal workings and gives flexibility to transferring it to dif-
ferent robots and manufacturing processes. Consequently, we
propose to model an IR and a manufacturing process together
using a black-box function, whose internal workings are not
known or hidden but return different energy consumption as
output depending on input parameter values

f : Rd → R. (1)

The above black-box function f receives a d-dimensional vector
of parameter values x ∈ Rd. The input vector x to the black-box
function f is constrained using lower and upper bound parameter
values’ vectors l ∈ Rd andu ∈ Rd, respectively. In a real robotic
manufacturing scenario, x will be the set of adjustable operating
parameters, such as velocity, acceleration, and motion type. The
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lower and upper values, l and u, will be minimum and maxi-
mum allowed parameter values depending on the manufacturing
process constraints.

Robotic manufacturing systems are complex, and different
factors can affect the energy consumption of an IR. In addition,
the energy consumption measurements can be noisy depend-
ing on the energy monitoring solutions. Thus, the developed
methodology should be robust to such noisy outputs. To deal
with the measurement noises directly inside the optimization
loop, we extend the output of the black-box model with a noise
value, and the observed energy consumption of a black-box
model f(x) is measured as follows:

E(x) = f(x) + ε (2)

where the noise parameter ε is normally distributed

ε ∼ N (0, σ2). (3)

Considering the above model, the ECO of an IR performing
a manufacturing process is formulated as follows:

min
x∈P

E(x) (4)

where

P = {x ∈ Rd | li ≤ xi ≤ ui ∀i = 1, . . . , d} (5)

is the feasible set of solutions.
Most real-world robot tasks require stops or a constant speed

at specific program points. The optimization problem can be
further broken down into smaller optimizations, which makes
the method scalable w.r.t. the length of the robot program.

The black-box optimization reasoning can be applied to mul-
tiprocess robotic manufacturing by considering each process
separately and independently optimizing energy consumption.
The optimization problem becomes

min
x1∈P1

E(x1) + · · ·+ min
xN∈PN

E(xN ) (6)

where N is the number of separable and independent pro-
cesses.

B. Monitoring

The important step in ECO is monitoring the energy consump-
tion of an IR.

The different sources for monitoring are smart meters, current
and voltage clamps, or machine-integrated devices that provide
out-of-the-box instantaneous power consumption. Some IRs
can provide the power consumption for each joint of the robot
directly from a robot controller.

The sampling rate of energy data collection is important and
depends on the application. For example, analyzing the motion
profiles of IRs requires a relatively high sampling rate of energy
consumption. While a high sampling rate gives much data that
will be difficult to preprocess in real time, a low sampling rate
might miss important information, such as the start and end of the
operation cycles. Therefore, a sampling rate should be chosen
carefully depending on the application and computing power
capabilities. Usually, a high acquisition frequency is required to
obtain good measurements, such as in [2] and [14]. However,

the acquisition frequency is limited by the monitoring hardware
limitations.

Once the data are acquired, they need to be resampled to
match time stamps and stored in local storage. The energy
data are usually recorded in regular time stamps, which result
in time-series data. There are special database solutions for
storing time-series data, such as InfluxDB. In addition, relational
database methods are used in energy data for their reliabil-
ity. However, some monitoring solutions store the collected
energy in device memory using comma-separated value files.
The choice of storage solutions greatly affects the application.
High-frequency big data files require special solutions, such as
Hadoop and Spark, that can deal with the high volume property
of big data [18].

C. Optimization

With the ECO problem mathematically formulated in
Section IV-A and with a monitoring approach detailed in
Section IV-B, we can then apply the data to solve the problem
using suitable optimization algorithms. However, the nature
of the black-box models prevents using first- or second-order
methods, such as gradient descent, Newton’s method, or quasi-
Newton methods. In such cases, derivative-free optimization
methods are commonly used. Many algorithms exist to solve
black-box optimization problems. Still, the optimization of en-
ergy consumption of robotic manufacturing systems should be
data efficient because every experimental trial is time consuming
and limits the amount of data that can be collected in a reasonable
time.

Another problem in optimization is “the no free lunch” (NFL)
theorem [19]. According to the NFL theorem, “any two algo-
rithms are equivalent when their performance is averaged across
all possible problems,” i.e., there is no single best algorithm that
performs on all the problems.

We propose a modular meta-algorithm that can accept suitable
application-dependent optimization algorithms to address the
challenges above. This meta-algorithm is called the online and
modular energy consumption optimization (OMECO) meta-
algorithm, shown in Algorithm 1.

The OMECO algorithm starts with an initial guess of input
parameters. The initial guess can be chosen randomly or using
the previously gathered knowledge. For example, initial velocity
and acceleration values can be started from 50% values or
selected based on input parameters of similar manufacturing
processes.

The OMECO meta-algorithm is designed to be able to run
online without stopping production. This feature is achieved
by running the optimization loop in the background because
some algorithms take a long time to finish the optimization
step. Whenever the new suggested parameters become available,
they are changed in the IR. If the new parameters yield less
energy consumption, they are kept; otherwise, the previous best
parameters are reverted.

Another feature of the OMECO algorithm is exploration-and-
exploitation, which helps run the optimization only at some
production cycles. This feature of the algorithm is controlled
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Algorithm 1: OMECO Algorithm.
Require: An initial guess x0, the lower bound l, the upper
bound u, the total number of iterations n, the exploration
parameter α, an optimization algorithm Φ, a data-structure
for storing dataset D

1: y0 ← E(x0) � Measure energy consumption
2: ybest ← y0 � Best energy consumption
3: xbest ← x0

4: D ← {(x0, y0)} � Set the initial dataset
5: i← 1
6: while i < n do
7: Sample p from uniform distribution U(0, 1)
8: if p ≤ α then
9: i← i+ 1

10: xi ← Φ(i, l,u,D) � Call the optimization step
11: yi ← E(xi)
12: D ← D ∪ {(xi, yi)} � Extend the dataset
13: if yi < ybest then
14: xbest ← xi

15: ybest ← yi
16: end if
17: end if
18: end while
19: return xbest, ybest,D

using the α parameter. Setting α = 1 always tries to find an
optimal solution, while setting α < 1 will run optimization
stochastically. For example, α = 0.1 will run an optimization
algorithm on average every tenth iteration.

OMECO wraps around other optimization algorithms, Φ;
therefore, they can be plugged into the meta-algorithm whenever
the better choices become available.

The OMECO algorithm accepts the following input parame-
ters:

1) x0: an initial parameter guesses either choosing randomly
or using the human operator’s knowledge;

2) l: the lower bound of x0;
3) u: the upper bound of x0;
4) n: the total number of optimization steps;
5) α: the exploration parameter. This parameter controls how

often the optimization should be performed;
6) Φ: an application-dependent optimization algorithm.

The output of the OMECO algorithm is the parameters that
yield the least energy consumption and the collected data for use
with similar processes.

In the next section, we experimentally validate the proposed
modeling methodology and OMECO algorithm on a represen-
tative manufacturing process using a real IR.

V. USE CASE

This section consists of three experimental validations of the
proposed approach.

The first experiment analyzes the application of the proposed
methodology and algorithm on a real IR using a representative
pick-and-place manufacturing process. The objectives of the first

Fig. 2. Experiment setup representing a common pick-and-place op-
eration in a robotic manufacturing.

experiment are to find the optimum parameters and use them to
gather insights into how different motions might have different
optimum parameters.

The second experiment involves a more complex industrial
bin-picking application where the movements are not prepro-
grammed and require online task adaptation. The objective of
the second experiment is to provide an illustrative example for
wider application scenarios.

In the third aerospace manufacturing experiment, a robotic
drilling system was utilized to optimize energy consumption
while drilling holes in aluminum and acrylic materials. The
experiment aims to identify the ideal spindle speed and feed
rate parameters that reduce energy consumption.

A. Experiment 1: Pick-and-Place Operation

1) Experimental Setup: The experimental setup for the first
experiment is shown in Fig. 2 and includes a FANUC ER-4iA
IR and a pick-and-place process. The FANUC robot controllers
allow access to the energy data directly out of the box. It is
possible to change the resolution of data collected directly inside
the controller. This approach might differ for different types of
robots, but the overall methodology will be the same.

A pick-and-place process is a very common process in robotic
manufacturing, and the whole process shown in Fig. 2 can be
divided into the following operations.

1) M1. Move to the “pick approach” pose.
2) G1. Open the gripper.
3) M2. Move to the “pick” pose.
4) G3. Close the gripper.
5) M3. Move to the “pick retract” pose.
6) M4. Move to the “place approach” pose.
7) M5. Move to the “place” pose.
8) G3. Open the gripper.
9) M6. Move to the “place retract” pose.

10) M7. Move to the “home” pose.
The labels M and G refer to different types of actions, and

there are seven motions labeled as M and three gripping actions
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TABLE I
MINIMUM AND MAXIMUM ALLOWED VELOCITY AND ACCELERATION VALUES

FOR MOTIONS M1–M7

labeled as G. The parameters of the motions can be adjusted to
affect the energy consumption. In this experiment, the operat-
ing parameters for each motion are velocity, acceleration, and
motion type. FANUC robot controllers allow setting only two
types of motions: J [Joint] and L [Linear]. Hence, we tune only
the velocity and acceleration values of seven motions for the
minimum energy consumption objective.

While tuning the operating parameters of each motion, careful
attention should be given to holding constraints, such as maxi-
mum execution time and the safety of pick-and-place operation.
The maximum acceptable execution time usually depends on the
manufacturing operation requirements. In this experiment, the
maximum allowed execution time was set to 20 s by a human
operator for one pick-and-place operation. In a real manufac-
turing scenario, there are some challenging situations where the
energy consumption is demanding, and the robot performing
tasks requires a given velocity and acceleration. Therefore,
each parameter was constrained separately besides a maximum
execution time constraint to meet such requirements.

For our experiment, the minimum and maximum values were
selected based on picking and placing relatively fragile 3-D-
printed parts. The human operator ensured the safe values for
velocity and acceleration, as shown in Table I. Table I also shows
the number of possible configurations for each motion type.
These values are fixed for this specific manufacturing process,
and the parameter values are displayed in percentages of the
robot’s maximum possible velocity and acceleration.

To verify the modularity of the OMECO and its applicability
to an industrial setting, we experimented with three different
popular algorithms: random search (RS) [20], generalized simu-
lated annealing (SA) [21], and Bayesian optimization (BO) [22].
The choice of the algorithms was task dependent. There are many
different types of algorithms in the literature, but not all of them
are suitable for solving black-box optimization problems. In this
case, we do not have any derivative information, and the space
of optimization algorithms is limited only to derivative-free
optimization algorithms.

We applied the proposed methodology and OMECO algo-
rithm to solve the above ECO problem as follows.

1) In the first step, the energy data were obtained through a
FANUC robot controller. The instantaneous power data
were collected every 50 ms because of the limitations
of the robot controller and network latency. The energy
data were resampled to match the time stamps and make
regular time intervals. It was stored in the SQLite database

Fig. 3. Comparing algorithms.

TABLE II
EXPERIMENTAL STATISTICS

for calculating the total power consumption, which is then
fed to the model.

2) In the second step, the optimization loop continuously
optimizes the parameters.

3) Finally, in the third step, new parameters are recom-
mended for the robot.

The whole optimization procedure continues until the termi-
nation criteria are met. Usually, the termination criterion is when
the cost function, i.e., energy consumption, stops changing.
However, for a fair comparison of the optimization algorithms,
the termination criterion, in this case, is the predefined total
number of iterations.

In the next subsection, we present our experimental results
and analysis of algorithms and the effect of motion parameters
on the ECO of IRs.

2) Experimental Results: To benchmark with the proposed
ECO methodology, as a baseline, we measured the energy con-
sumption of the robot with minimum and maximum allowed
parameter configuration for the above-described pick-and-place
process. For simplicity, we call the minimum allowed parameter
configuration Bmin and the maximum allowed parameter con-
figuration Bmax. Since the energy consumption measurement is
noisy, we performed the same pick-and-place process ten times
for each configuration.

RS, SA, and BO are nondeterministic algorithms, meaning
that their output will differ in every run even with the same
set of input parameters. Therefore, each algorithm was run for
100 iterations ten times for a fair comparison. The box plots
and corresponding statistics are shown in Fig. 3 and Table II,
respectively.
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Fig. 4. ECO results for the pick-and-place process.

TABLE III
OPTIMIZED VELOCITY AND ACCELERATION VALUES

From Fig. 3, we can observe that the maximum allowed
parameter configuration yields less energy consumption than
the minimum allowed parameter configuration. However, in
general, the relationship is nonlinear, and the maximum al-
lowed parameter configuration does not yield the optimal energy
consumption, as shown by many authors [2], [14], [15], [16], and
validated by our results below.

From Fig. 3 and Table II, we can see that all the optimization
algorithms outperform the Bmin baseline. However, only the
BO outperforms Bmax. The BO outperforms Bmax on average
by 9%, and the worst case of BO is similar to the best case of
Bmax, which proves that the fastest possible option is not the
most energy optimal motion.

We ran the OMECO algorithm with three previously chosen
optimization algorithms starting from the same initial parameter
configuration for 200 iterations more to check the possibility of
further improvement. Fig. 4 shows energy savings achieved by
the optimization algorithms compared with baseline results.

We can observe from Fig. 4 that RS, SA, and BO outperform
Bmin by 28.38%, 29.73%, and 44.59%, respectively. However,
RS and SA methods do not outperform Bmax, because, usually,
RS and SA methods require thousands of iterations to find the
optimal solution. The BO outperforms Bmax by 16.32% in as
few as 40 iterations.

The parameter values found by three optimization algorithms
are shown in Table III. As shown in Table III, the discovered

Fig. 5. Cumulative minimum values for three different optimization
results.

velocity and acceleration values are not the fastest or slowest
motion yielding values. These results are consistent with the
literature’s related work and show the nonlinear relationship
between operating parameters and energy consumption.

3) Data Efficiency Analysis: Here, we analyze the data effi-
ciency of the proposed approach.

Fig. 5 displays the cumulative minimum curves for each opti-
mization algorithm for 200 iterations. The cumulative minimum
curves are useful for visualizing the speed of finding solutions.
As shown in Fig. 5, the SA algorithm finds its solution in 21
iterations. However, the algorithm fails to improve at all after
that. The RS algorithm finds its best solution in 166 iterations.
However, the found solution is not better than the solution
found by the SA algorithm. The BO finds its best solution
in 190 iterations. However, after 30 iterations, it outperforms
the SA algorithm, and after 40 iterations, it outperforms all
the baselines. Consequently, it can be concluded that BO is a
relatively data-efficient algorithm.

The most efficient methods for energy consumption of IRs
in the literature are work by Zhang and Yan [15], which re-
quired 729 samples, and work by Yan and Zhang [16], which
required 900 samples. Our optimization methodology starts
improving the energy consumption after only 40 samples. The
other strength of the proposed methodology is that data can be
added sequentially without collecting in advance. Hence, this
method can be used in an already running production system
that can dynamically change operating parameters that affect
energy consumption.

4) Analysis of Motion Parameters: Fig. 6 shows the energy
consumption outcome as a function of velocity and acceleration
parameters. The left figure shows the energy consumption when
all the parameters are fixed except the velocity parameter of
motion M7. One can observe that the relationship between veloc-
ity and energy consumption is nonlinear, i.e., the minimum en-
ergy consumption is achieved when the velocity is around 70%.
Similarly, the right subfigure shows the energy consumption as
a function of the acceleration parameter of motion M7. The
nonlinearity property also holds for this parameter. Fig. 7 shows
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Fig. 6. Slice plot for motion 7. (Left) Velocity varies, other parameters
are fixed. (Right) Acceleration varies, others are fixed.

Fig. 7. Contour plot for motion M7 as a function of velocity and accel-
eration. Other parameters are fixed.

the contour plot of energy consumption as a function of velocity
and acceleration parameters together. This plot also reveals
how the BO reaches the optimal point. Initially, parameters are
sampled from different regions. However, as the optimization
progresses, more and more parameters are sampled in the neigh-
borhood of the optimal parameters.

B. Experiment 2: Optimization of Bin Picking

In this experiment, we optimized the bin-picking process,
which involves picking randomly positioned objects from a
bin containing three different parts, as shown in Fig. 8. The
objective of the process is to pick the parts and place them in
their corresponding containers.

The picking of each object involves seven different motions,
but the parameters for these motions differ for each object, with
different lower and upper bounds. In addition, the robot must
stop and select the next object to pick after each pick-and-place
operation. This results in a total of 21 parameters to be optimized.

However, as the number of parameters increases, the
efficiency of black-box optimization algorithms, such as BO,

Fig. 8. Bin consists of three different parts with variable shapes and
weights. The task is to sort the parts in their respective containers.

decreases. To address this issue, we performed two scenarios
for optimizing energy consumption. In the first scenario, we op-
timized all the 21 parameters together. In the second scenario, we
measured and optimized the parameters for each part separately,
while the bin-picking process was running, allowing for more
efficient optimization.

In the present experimental setup, the optimization for each of
the scenarios was run for a total of 200 iterations, which is similar
to the number of iterations used in previous experiments. The
results of each optimization scenario were compared to Bmin

and Bmax baselines, as shown in Fig. 9.
In the bin-picking experiment, the learning curves presented

in Fig. 9 reveal that the combined optimization approach did
not yield better results than those of the Bmax baseline. The in-
creased number of parameters, which totaled 21 in this scenario,
likely contributed to this outcome. With more dimensions, the
search space expands, requiring the optimization algorithm to
perform a larger number of search iterations before discovering
optimal values.

In contrast, the scenario where each part was optimized indi-
vidually resulted in better parameter values than those achieved
with the Bmax baseline. Once satisfactory motion parameters
are identified, the optimization process can be halted, and the
discovered parameter values can be applied to subsequent itera-
tions. In this particular experiment, the individual optimization
approach led to an average energy savings of 25%.

Further emphasizing the effectiveness of the individual opti-
mization approach, Table IV presents a comparison of energy
savings for the individual scenario against Bmin, Bmax, and
combined scenarios. With energy savings of 45.88%, 25%,
and 27.37%, these results demonstrate the superior efficiency
of optimizing the parameters for each part individually in the
bin-picking experiment.
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Fig. 9. Plot shows the optimization results of bin picking for three
different parts separately and the combined optimization.

TABLE IV
ENERGY SAVINGS COMPARISON FOR BIN-PICKING EXPERIMENT

C. Experiment 3: Optimization of Drilling

In this aerospace manufacturing experiment, a FANUC
M800iA robot controller and a drilling end effector controlled
by a computer numerical control (CNC) machine were utilized
to optimize the energy-efficient drilling of holes through 6-
mm-thick aluminum and 6-mm-thick cast acrylic layers. The
experimental setup is illustrated in Fig. 10. The robotic arm’s
approach and retract positions were fixed, and the total drilling

Fig. 10. Optimization of drilling. The aim is to energy efficiently drill
holes through 6-mm-thick aluminum and 6-mm-thick cast acrylic layers.

TABLE V
PARAMETER RANGES FOR THE DRILLING EXPERIMENT

Fig. 11. Cumulative minimum values for drilling optimization results.

time was constrained to be within 20 s. The maximum allowed
spindle speed was set to vary between 1500 and 2500 r/min,
while the feed rate ranged from 150 to 180 mm/min, as shown
in Table V.

The primary objective of this experiment was to determine
the optimal spindle speed and feed rate parameters to minimize
energy consumption during the drilling process. BO was em-
ployed in real time on the actual equipment to achieve this
goal. The total energy consumption, which encompassed the
spindle and servo motors, was measured and subsequently fed
back into the OMECO algorithm. This algorithm suggested
new parameter values, and the optimization loop continued
until convergence was reached, which was determined when
no further improvements were made, and the algorithm began
suggesting the same parameters repeatedly.

After only 25 iterations of the optimization process, energy
consumption savings of 17.64% were achieved. The cumulative
minimum plot for the BO results is displayed in Fig. 11, while
Fig. 12 presents the slice plots of energy consumption in rela-
tion to spindle speed and feed rate parameters. These results
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Fig. 12. Slice plot for drilling. (Left) Spindle speed varies and the feed
rate is fixed. (Right) The feed rate varies and spindle speed is fixed.

are consistent with previous experiments, demonstrating the
nonlinear relationship between process parameters and energy
consumption and emphasizing the importance of optimization
for energy-efficient manufacturing processes.

The drilling experiment showcased the effectiveness of BO in
identifying optimal parameter values for energy efficiency. As
evidenced by Fig. 11, substantial energy savings were obtained,
reinforcing the value of optimization techniques in manufactur-
ing processes.

VI. CONCLUSION

In this article, we examined software-based ECO for IRs
and introduced a novel, modular, and prescriptive optimiza-
tion methodology. This methodology treated the IR and man-
ufacturing process as a black-box model and was resilient to
measurement noise. Our analysis corroborated the nonlinear
relationship between energy consumption and IR operation, as
previously demonstrated by other researchers. However, our
approach uniquely enabled the online optimization of operating
parameters without requiring extensive data.

Our experiments illustrated the applicability of this proposed
method for optimizing robotic manufacturing processes using
black-box optimization algorithms. Furthermore, the results
from the second scenario indicated that optimization can be
divided into subproblems when feasible.

As energy consumption is a critical aspect of sustainable
manufacturing, exploring the application of this methodology to
other manufacturing equipment presents an intriguing research
opportunity. Future research directions include examining var-
ious black-box optimization algorithms, their limitations, and
their advantages across manufacturing equipment and processes.
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