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Volumetric Model Genesis in Medical Domain
for the Analysis of Multimodality 2-D/3-D Data

Based on the Aggregation of Multilevel Features
Muhammad Owais , Se Woon Cho , and Kang Ryoung Park , Member, IEEE

Abstract—The automatic and accurate classification
of medical imaging data has potential applications in
computer-aided disease diagnosis, prognosis, and treat-
ment. However, it remains a challenge to optimize recent
deep learning algorithms in the medical domain for the ac-
curate classification of large-scale three-dimensional (3-D)
volumetric data. To address these challenges, we propose
an efficient deep volumetric classification network based
on the aggregation of multilevel deep features for the accu-
rate classification of large-scale medical 2-D/3-D imaging
data. To perform a detailed quantitative analysis of our
method, 26 different datasets were fused to construct a
single large-scale multimodal database that comprises a
total of seventy different classes, including 151,095 data
samples. Additionally, 15 different baseline methods were
configured under the same experimental protocol for vol-
umetric model genesis and extensive performance com-
parison with our method. The experimental results of our
method exhibited promising performance as an area under
the curve of 93.66% and outperformed various state-of-the-
art methods.

Index Terms—Computer-aided diagnosis (CAD), medical
data analysis, three-dimensional (3-D) deep learning (DL),
volumetric model genesis.
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I. INTRODUCTION

W ITH the development of digital devices, the use of differ-
ent types of imaging modalities [such as magnetic res-

onance imaging (MRI), X-rays, optical projection tomography
(OPT), ultrasonography, computed tomography (CT), angiog-
raphy, positron emission tomography (PET), and visible light
cameras] has become commonplace in the medical diagnostic
domain. These imaging modalities provide diagnostic assistance
to medical experts by capturing the visual representation of
different body organs as 2-D/3-D imaging data [1], [2]. Conse-
quently, the production of multimodal 2-D/3-D imaging data has
grown exponentially in recent years. In addition, the application
of multimodal data in various medical diagnosis areas is also
increasing rapidly. For example, multimodal images such as
CT and MRI images are being fused to create a single mark
image that can be more suitable for diagnostic evaluation than
individual images [3], [4]. Recently, a variety of multimodal
fusion-based algorithms are evolving for safe and secure tele-
health applications [5]. Therefore, effective organization and
analysis of existing multimodal data can offer various poten-
tial applications in the medical domain. For example, medical
professionals can obtain a diagnostic clue for a complex medical
condition by retrieving relevant cases from the existing database
using efficient classification algorithms. Consequently, an accu-
rate and timely diagnosis of acute medical conditions results in
better treatment [1], [2].

However, subjective exploration, classification, and retrieval
of intended content from a huge collection of visual data are
challenging and time-consuming tasks. Recently, advancements
in the artificial intelligence (AI) domain have provided various
potential applications in general, as well as in the medical field
[6], [7]. Efficient analysis of medical imaging data is also one
of the key applications of AI algorithms. Consequently, various
state-of-the-art computer-aided diagnosis (CAD) methods have
been proposed in the literature that utilizes the power of AI in
medical data analysis and enable effective diagnostic decisions
[8], [9], [10], [11]. Among the different AI methods, a subset
of deep learning (DL) algorithms has received special attention
owing to its remarkable performance, particularly in the case
of visual data analysis [12], [13], [14]. Such DL-driven CAD
methods mimic the processing of the human brain and deliver
accurate diagnostic results, similar to those of medical experts.
With respect to image- and sequence-based CAD methods,
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convolutional neural networks (CNNs), a well-known variant
of DL algorithms, have received special consideration. Various
types of CNNs [15], [16], [17], [18] have been proposed in the
literature for general and medical applications. The structure of
a CNN model mainly comprises multiple convolutional layers
and fully connected (FC) layers, including trainable parameters
[9]. Initially, these parameters are trained using an independent
training dataset. Consequently, a trained model classifies the
testing data sample into its target class after analyzing it through
multiple convolutional and FC layers.

A. Potential Research Gaps and Motivation

Most of the existing methods [18], [19], [20], [21] are disease
and modality-specific, and optimized for a limited number of
data samples. Moreover, these methods are designed to make
diagnostic decisions based on 2-D imaging data employing
image-based classification models [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], even in case of 3-D imaging data.
There is very limited research related to the joint classification of
multimodal 2-D/3-D imaging data considering a large number
of classes. The main objective of this study is to encapsulate
the computer-aided diagnostic capability of various kinds of
diseases in a single DL model that can be scaled up in fu-
ture work by including more data and classes. In addition, we
aim to provide new grounds for developing an efficient jointly
connected content-based medical image and sequence retrieval
(CBMISR) framework by applying our proposed classification
model. Various existing medical retrieval methods in the lit-
erature are image-based and consider limited classes and data
samples to validate their proposed models. Therefore, we further
highlight the application of our proposed model in developing
a jointly connected 2-D/3-D imaging retrieval framework. An
efficient CBMISR framework can assist medical professionals
in validating their diagnostic decision for a complex medical
condition by retrieving relevant cases from the existing database.
Finally, we aim to encapsulate the diverse features of large-scale
medical 2-D/3-D imaging data in a single model that can provide
new grounds for future research related to medical domain-
specific transfer learning (MDS-TL). Based on the proposed
framework, the strengths of MDS-TL can be further explored
and additional performance improvements can be achieved in
various medical diagnostic applications.

B. Main Contributions

We mainly propose a novel jointly connected classification
framework based on a multiscale dilated fused (DF) residual
network (MDF-RN) and a spatiotemporal block classification
network (STB-CN) for the classification of both medical 2-D/3-
D imaging data. This is the first study to present a pretrained
classification model in the medical domain, which is trained with
a large-scale multimodal database that includes both 2-D/3-D
imaging data. The main contributions of this study are as follows.

1) The main contribution is the development of a novel
2-D-CNN architecture (named MDF-RN) that leverages
multiscale dilated convolution and a concept of multilevel

feature fusion in a mutually beneficial manner to achieve
state-of-the-art performance.

2) Three additional branches are created in the proposed
MDF-RN model by including three DF-blocks that pri-
marily exploit multiscale/multilevel features and enhance
the overall performance.

3) Subsequently, the second-stage STB-CN model further
utilizes the strength of recurrent neural networks (RNNs)
and transfer learning in classifying 3-D imaging data
without influencing the overall training parameters of the
whole pipeline (MDF-RN+STB-CN).

4) The proposed STB-CN model works for both 2-D and
3-D imaging data and does not limit the processing
of fixed-length sequences as restricted by 3-D-CNNs,
but can classify variable-length sequences of successive
slices/frames.

5) In addition, we evaluated the performance of fifteen state-
of-the-art image-based and sequence-based classification
models to provide standard benchmarks for this study.
Finally, our proposed classification framework (including
implementations of both MDF-RN and STB-CN models)
is freely accessible to enable fair comparisons and future
research.

The rest of this article is organized as follows: Section II
presents a brief literature review related to DL-driven CAD
methods. Section III provides a detailed explanation of the
proposed methodology. In Section IV, we briefly describe the
datasets, experimental protocols, and results. Finally, the results
are discussed and conclusions are drawn in Sections V and VI,
respectively.

II. RELATED WORK

This section presents a brief overview of the existing state-
of-the-art CAD methods related to the classification of medical
imaging data. These methods [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20], [21] utilized the strength of
transfer learning by employing existing pretrained CNN models
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31] in develop-
ing their CAD solutions. All these studies cover a vast scope of 1)
disease-specific, 2) modality-specific, 3) multimodality-based,
and 4) multidisease-based CAD solutions. In addition, the source
codes of all these methods are also publicly available for a fair
comparison. Therefore, we selected these surveyed papers in
this section. In particular, these CAD methods classify 2-D and
3-D imaging data into different categories, including normal and
diseased classes.

A. Image-Based Methods (2-D Models)

In the context of 2-D imaging data, Adnan et al. [7] proposed
a classification-based medical image retrieval framework using
a revised version of AlexNet [21] that can classify multimodal
(CT, MRI, PET, OPT, and fundus camera) 2-D imaging data
into one of 24 different classes. In another study, Falconi et al.
[8] utilized the strength of transfer learning in breast lesion
classification tasks using different pretrained CNN models.
Three CNN architectures were modified and trained to classify
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mammogram images into one of six classes. Among the existing
models, VGG19 [23] achieved superior results. Later, Owais
et al. [9] addressed the limitations of [7] and proposed a new
content-based medical image retrieval framework based on a
modified version of ResNet50 [24], which was trained to classify
multimodal 2-D imaging data into one of 50 different categories,
including both disease and normal cases.

Apart from [7] and [9], most of the existing CNN-based CAD
methods are domain-specific and perform binary classification
(either diseased or normal). For example, Kaur et al. [10] pro-
posed a CAD method using a pretrained VGG16 model [23] with
the capability to categorize pathological brain images as normal
or abnormal. However, a limited number of data samples (20
normal and 140 abnormal MRI images) were used to validate the
proposed method. Subsequently, Ashraf et al. [11] used another
pretrained CNN named GoogleNet [25] for medical image clas-
sification. A multimodal dataset (including 3600 images related
to 12 different categories) was used to train and validate the
method. Their method also includes a limited number of data
samples (300 images per class). Similar to [10], Akpinar et al.
[12] proposed a binary-classification CAD method for detecting
chest abnormalities. An existing pretrained SqueezeNet [26]
model was employed to categorize X-ray images into normal
or abnormal groups. In total, 660 X-ray images were used to
validate the method. Subsequently, Aloyayri et al. [14] utilized
the strength of transfer learning in breast cancer classification
using histopathological images. Three different CNN architec-
tures were trained to classify data samples as either benign or
malignant. Among the different baseline models, ResNet18 [24]
achieved superior results.

Souid et al. [15] proposed a multiclass diagnostic frame-
work for chest lesions. A lightweight deep CNN model, named
MobileNetV2 [27], was trained to predict multiclass lung
pathologies (considering 14 different classes) from chest X-ray
images. A single-modality large-scale dataset, including a total
of 64699 images, was used to calculate the performance of the
CAD method. Similarly, Jasil et al. [16] and Çakmak et al. [17]
utilized different CNNs for skin lesion classification tasks. In
[16], a pretrained CNN, named DenseNet201 [28], was em-
ployed to classify dermoscopy images into one of seven different
classes of skin lesions. A single-modality limited dataset, includ-
ing a total of 3091 images, was used to validate the method. Later,
Çakmak et al. [17] used a lightweight CNN, named NASNet-
Mobile [29], for melanoma detection from dermoscopy images.
They considered a larger dataset (including a total of 10015
images) than that of [16]. In the context of diabetic retinopathy
(DR), Gambhir et al. [18] proposed a severity classification CAD
method that was able to detect and distinguish DR into different
severity levels. An existing ShuffleNet [30] model was trained to
categorize the input DR image into one of five different classes
(including one normal and four diseased cases).

B. Sequence-Based Methods (3-D Models)

There is very limited research related to the classification of
large-scale multimodal 3-D imaging data for clinical decision
support systems. For example, Shahzadi et al. [19], Srinivasu

et al. [20], and Ebrahimi et al. [21] proposed sequence-based
classification methods using existing CNNs and long short-term
memory (LSTM) models [31]. Shahzadi et al. [19] proposed a
binary-classification framework (comprising VGG16 [23] and
LSTM [31] models) for the recognition of brain tumors from
3-D brain MRI scans. Subsequently, a skin lesion classification
framework based on the MobileNetV2 [27] and LSTM [31]
models was proposed by Srinivasu et al. [20]. Rather than
using a single image, a sequence of images was used for dis-
ease classification. Similar to [19], another binary-classification
framework for Alzheimer’s disease detection was proposed in
[21]. A cascade of ResNet18 [24] and LSTM models [31] was
configured using 3-D brain MRI scans. Ebrahimi et al. [21] used
a larger dataset (compared to [19]), including a total of 35550
MRI samples.

C. Limitations of the Existing Methods

The concept of joint multiscale and multilevel feature fusion
has gained less attention in medical 2-D/3-D imaging data
classification. Different fusion techniques, such as early fusion,
late fusion, and ensemble learning [6], exist and have improved
DL performance. However, they require additional pre- and
postprocessing overhead and influence the overall computa-
tional cost of a DL model. In a recent study, Abdar et al. [6]
explored the strength of multilevel feature fusion by employing
the concept of conventional ensemble modeling and proposed
an image-based classification model. However, their proposed
feature extractor scheme consists of a total of four different
pretrained models, containing a total of 162 million trainable
parameters and requiring extensive computational overhead. In
addition, most existing studies related to medical data analysis
are disease-specific and consider a limited number of classes,
as well as data samples, to develop and validate their proposed
classification methods. Moreover, various methods employed
image-based models that consider only spatial information in
making diagnostic decisions in the case of 3-D imaging data such
as CT or MRI scans. Consequently, the loss of 3-D anatomical
information may result in false predictions and finally a decrease
in the overall prediction probability of the testing data.

D. Singularity of Our Method

To address the limitations of existing studies, we propose a
domain-specific pretrained model related to medical diagnostic
applications using large-scale, multiclass, and multimodal 2-
D/3-D imaging data. This is the first study to present a pretrained
classification model in the medical domain including both 2-
D/3-D imaging data. In total, 26 publicly available datasets
(based on 11 different modalities) [9], [32], [33], [34], [35],
[36], [37], [38], [39], [40], [41] were fused to construct a single
large-scale database comprising 70 different classes, including
151,095 data samples. The proposed CAD solution utilized the
strength of multiscale/multilevel feature fusion and encapsulates
the computer-aided diagnostic capability of various kinds of dis-
eases in a single DL model. Our proposed model leverages trans-
fer learning in classifying 3-D imaging data without influencing
the overall training parameters and works for both 2-D and 3-D
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Fig. 1. Comprehensive workflow diagram of the proposed classifica-
tion framework (MDF-RN+STB-CN), including both training and testing
phases.

imaging data. It has the capability to classify variable-length
sequences in case of 3-D imaging data. The experimental results
reveal the superior performance of the proposed framework over
various state-of-the-art methods.

III. PROPOSED METHOD

A. Workflow Overview

This study aims to develop a deep classification model with
the capability to classify multiclass medical data, including both
2-D/3-D imaging data. In particular, the proposed method can
classify a variable-length sequence ofn successive slices/frames
(i.e., I1, I2, I3, . . . , In,F 1,F 2,F 3, . . . ,F n)with significant per-
formance gain compared to image-based models. After selecting
appropriate datasets, we developed a cascade of two classi-
fication networks, MDF-RN and STB-CN, for the accurate
classification of multimodal 2-D/3-D imaging data. The overall
procedure of the proposed model development mainly includes
a training phase followed by a testing phase as shown in Fig. 1.
Both networks were trained, validated, and tested using indepen-
dent training, validation, and testing datasets. In the first step, an
untrained MDF-RN model was trained to exploit and learn the
spatial features from the training dataset that included a total
of p data samples and corresponding class labels notated as
〈[F T ]

p
i=1, [lT ]

p
i=1〉. In the next step, all training data samples

[F T ]
p
i=1 were converted into feature vectors [fT ]

p
i=1 after pro-

cessing each data sample through our trained MDF-RN model.
Consequently, we obtained a new training dataset (denoted as
〈[fT ]

p
i=1, [lT ]

p
i=1〉) in the feature domain. In the next step, the

second untrained STB-CN model was trained to learn the 3-D
anatomical dependencies (in the case of 3-D imaging data) from
〈[fT ]

p
i=1, [lT ]

p
i=1〉. We divided the training data into 2-D and 3-D

imaging data according to the given information in each class
label. In detail, all the classes with 2-D imaging data are notated
with “I” along with the name of their actual class labels as shown
in Fig. 1. Similarly, 3-D imaging classes are differentiated with
“V” along with the name of their actual class labels as mentioned
in Fig. 1.

After training, the performance of the proposed classifica-
tion framework (MDF-RN+STB-CN) was evaluated for an

independent testing dataset, denoted as 〈[F Ts]
r
i=1, [lTs]

r
i=1〉.

In the case of 2-D images, a trained MDF-RN model ex-
ploits the spatial features and performs class prediction. In the
case of 3-D imaging data such as endoscopy videos, CT, and
MRI scans, the second trained STB-CN further improves the
overall performance by exploiting 3-D anatomical dependen-
cies and results in an additional performance gain. Initially,
MDF-RN sequentially transforms the sequence of n successive
slices/frames (i.e., F 1,F 2,F 3, . . . ,F n) into n feature vec-
tors (i.e., f 1,f 2,f 3, . . . ,fn). Then, the second stage STB-CN
model parallelly processes these feature vectors to exploit ad-
ditional 3-D anatomical features and perform class prediction.
To provide visual insight into the network decision, we also
visualized the class activation map for each input 2-D or 3-D
imaging data sample as an additional output (see Fig. 1).

B. MDF-RN Model Structure and Workflow

To achieve superior classification performance and fast execu-
tion speed, the proposed MDF-RN design utilizes the following
strengths.

1) Residual blocks [labeled skip residual (SR)-block and
projected residual (PR)-block in Fig. 2] of ResNet (RN)
models [24].

2) Our newly included DF-block (as shown in Fig. 2) based
on multiscale dilated convolution layers.

3) A concept of multilevel feature fusion in a mutually
beneficial manner.

The complete structure of our MDF-RN model includes five
SR-blocks, three PR-blocks, three DF-blocks, and some other
layers, as shown in Fig. 2.

1) Residual Blocks: In general, residual blocks (SR- and
PR-blocks) avoid the vanishing gradient problem in a training
process and achieve the optimal convergence of the entire net-
work. Therefore, we selected the residual blocks in our network
design to exploit high-level semantic features. Both residual
blocks consist of two 3×3 convolutional layers and a residual
connection, as shown in the bottom-left corner of Fig. 2. The SR-
block includes a SR connection and transforms the input tensor
F k ∈ ℛwk×hk×dk into the final output tensor F l ∈ ℛwk×hk×dk

without influencing the dimension. By contrast, the PR-block
consists of a PR connection based on a 1×1 convolutional layer
and maps the input tensorF k ∈ ℛwk×hk×dk into the final output
tensor F l ∈ ℛwk/2×hk/2×2dk . Mathematically, the input tensor
F k ∈ ℛwk×hk×dk undergoes the following transformations af-
ter passing through these residual blocks:

ΨSR (F k,ϕ) = hϕl

(
hϕk

(F k)
)
+ F k (1)

ΨPR (F k,ϕ) = hϕl

(
hϕk

(F k)
)
+ hϕm

(F k) (2)

where ΨSR(·) and ΨPR(·) denote the SR- and PR-blocks as
transfer functions, respectively. hϕk

(·) hϕl
(·), and hϕm

(·) rep-
resent the convolutional layers with training parameters ϕk, ϕl,
and ϕm, respectively.

2) DF Block: Additionally, we proposed a DF-block (as
shown in the bottom-left corner of Fig. 2) followed by an average
pooling layer to capture a multiscale representation of multilevel
(i.e., low-, intermediate-, and high-level) features acquired from
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Fig. 2. Overall architecture of the proposed classification framework including both MDF-RN and STB-CN models.

different residual blocks (see Fig. 2). The key intuition behind
the development of DF-block is to aggregate the multiscale
representation of deep features at different resolutions. Quan-
titative results (in the result section) have shown the significant
strength of our designed DF-block. The structure of our proposed
DF-block includes a total of three parallelly connected dilated
convolutional layers (with a filter size of 3×3 and dilation
rates of 6, 12, and 18) and a PR-connection based on a 1×1
convolutional layer. The DF-block transforms the input tensor
F k ∈ ℛwk×hk×dk into the output tensor F l ∈ ℛwk ×hk× 2dk

by exploiting additional multiscale features from the output
of different residual blocks. Mathematically, the input tensor
F k ∈ ℛwk×hk×dk undergoes the following transformations af-
ter passing through a DF-block:

ΨDF (F k,ϕ) = h∗ϕ18
k
(F k)� h∗ϕ12

k
(F k)� h∗ϕ6

k
(F k)

� hϕk
(F k) (3)

where ΨDF (·) denotes the DF-block as a transfer function.
hϕk

(·) and h∗ϕx
k
(·) represent simple and dilated convolutional

layers with training parameters ϕk and ϕx
k , respectively. The

symbol � presents the depth-wise feature concatenation.
3) Multilevel Feature Fusion: A concept of multilevel feature

fusion is introduced in our MDF-RN model by aggregating
the joint contribution of the multiscale low-, intermediate-,
and high-level semantic features (i.e., f 1– f 4) in the final
classification decision. These multilevel features are obtained
from different residual blocks using multiple DF-blocks (see
Fig. 2) and provide a diverse representation of a particular
class. A detailed ablation study (in a later section) shows the
substantial contribution of multilevel feature fusion in achieving
state-of-the-art performance.

4) Model Workflow: Initially, a 7×7 convolutional layer ex-
plores the input image F and generates an output tensor of
size 112×112×64, which is further processed by a 3×3 max-
pooling layer and downsampled into a new output tensor of
size 56×56×64. Consequently, a stack of nine building blocks
(including five SR-blocks, three PR-blocks, and one DF-block,
as shown in Fig. 2) sequentially processes the output of the pre-
ceding layer/block and finally generates a multiscale high-level
feature vector of size 1×1×1024 (labeled as f 4 in Fig. 2).

Additionally, three DF-blocks were included to exploit mul-
tiscale low- and intermediate-level semantic features (i.e., f 1–
f 3) from three different residual blocks. These residual blocks
are selected based on the different spatial sizes of their output
tensors (i.e., 56×56, 28×28, and 14×14) to obtain low- and
intermediate-level semantic features. Moreover, each DF-block
is followed by an average pooling layer that further transforms
the 2-D output tensor of the DF-block into a 1-D vector space. A
depth concatenation layer followed by the first FC layer (FC1;
Fig. 2) fused all multilevel semantic features (i.e., f 1– f 4) and
further exploited more discriminative patterns. Consequently,
we obtained a multilevel semantic representation of input image
F as an output feature vector f of size 1×1×256. In the case of
a 2-D image, the MDF-RN model further performs the class
prediction by processing the output feature vector f with a
stack of three additional layers (FC2, SoftMax, and classification
layers; Fig. 2).

C. STB-CN Model Structure and Workflow

In the case of 3-D imaging data consisting of n successive
slices/frames (i.e., F 1,F 2,F 3, . . . ,F n), the proposed MDF-
RN model sequentially processes each input slice/frame and
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generates a set of n feature vectors (i.e., f 1,f 2,f 3, . . . ,fn) of
size 1×1×256×n. All these feature vectors are extracted from
the FC1 layer of our MDF-RN model. These feature vectors
are further processed by the second-stage STB-CN model to
exploit additional 3-D anatomical features and perform class
prediction. The STB-CN includes a revised variant of RNNs
called the LSTM model [19], [20], [21], which resolves the
vanishing gradient problem in the training process and can
leverage transfer learning in the case of volumetric data analysis
without influencing the overall training parameters. Therefore,
we utilized the strength of LSTM in designing our second-stage
STB-CN model for the effective classification of volumetric data
in the medical domain.

The overall structure and workflow of the proposed STB-CN
are shown in Fig. 2. First, a sequence input layer passes a set of
n feature vectors (i.e., f 1,f 2,f 3, . . . ,fn) to the LSTM layer,
which exploits additional 3-D anatomical dependencies among
these feature vectors after processing through a sequence of n
LSTM cells (see Fig. 2) and finally generates a single feature
vector hn of size 1×1×1200 (obtained from the last LSTM
cell). The output feature vector hn incorporates both 2-D spatial
and 3-D anatomical information of the 3-D imaging data (i.e.,
F 1,F 2,F 3, . . . ,F n) and further refined by a third FC layer
(FC3; Fig. 2) to exploit more discriminative patterns. Finally, a
stack of three additional layers (FC4, SoftMax, and classification
layers; Fig. 2) predicts a single class label for the entire 3-D
imaging data sample based on the highest probability score
(similar to MDF-RN) using the final output feature vector hn.

D. Training Loss

A two-step training process of both the MDF-RN and STB-
CN models was performed sequentially to attain optimal conver-
gence of our proposed classification framework. In the first step,
the MDF-RN was trained to exploit and learn the spatial features
from the entire training dataset denoted as [F T ]

p
i=1, [lT ]

p
i=1 using

a cross-entropy (CE) loss function [9]. The initial weights of
different residual blocks in MDF-RN were obtained from a
pretrained RN [24] that was trained with a large-scale ImageNet
dataset using the CE loss function. Therefore, a similar loss
function was used to train our MDF-RN model. In the next
step, the training and validation datasets were converted into
training (denoted as [fT ]

p
i=1, [lT ]

p
i=1) and validation (denoted

as [fV ]
q
i=1, [lV ]

q
i=1) feature vectors after processing each data

sample through MDF-RN. Subsequently, the second STB-CN
model was trained to learn the 3-D anatomical dependencies in
the case of 3-D imaging data using the same CE loss function.
The overall two-step loss function of the proposed models can
be expressed as

ℒoss =
⎧⎪⎨
⎪⎩

arg min
w

′
MDF−RN

ℒ1 (ψ1 (wMDF−RN , [FT ]
p
i=1) , [lT ]

p
i=1) , Step 1

arg min
w

′
STB−CN

ℒ2 (ψ2 (wSTB−CN , [fT ]
p
i=1) , [lT ]

p
i=1) , Step 2

(4)

Fig. 3. Visualization of a few data samples for each class in our
dataset.

where ψ1 and ψ2 represent the MDF-RN and STB-CN models
as transfer functions, respectively. ℒ1(·) and ℒ2(·) are the CE
loss functions.

IV. RESULTS AND ANALYSIS

A. Dataset and Experimental Setup

To perform a quantitative analysis of our proposed classifi-
cation framework, twenty-six different datasets as used in [9],
[32], [33], [34], [35], [36], [37], [38], [39], [40], and [41] were
fused to build a single large-scale database that included a
total of 151,095 data samples. Consequently, the whole dataset
was divided into 70 different classes according to the given
ground-truth labels, which included various types of normal and
disease categories. In this study, we tried our best to select var-
ious publicly available 2-D/3-D imaging datasets related to the
medical diagnostic domain. Therefore, we explored numerous
publicly available datasets and eventually, selected well-known
data repositories from large publicly available collections based
on their publication venue. To provide a visual representation
of our final dataset, Fig. 3 shows a few example images of
each class. In addition, Table I shows the details of each class
in our selected datasets in notation L(X/Y/Z) that provides the
following information:

1) actual ground-truth label (L),
2) type of imaging modality (X),
3) whether it includes 2-D or 3-D imaging data (Y), and
4) the total number of data samples in terms of the number

of images/slices/frames (Z).
Most of the 3-D imaging data are related to CT and MRI imag-

ing modalities that do not include time information. However,
their length information (as a number of slices) is included in
Table I. In detail, the number of slices for each class related to
3-D imaging data was determined by counting the total number
of all the slices in each 3-D scan of a particular class. In addition,
such meta-information (i.e., number of slices) was also provided
in each dataset related to CT and MRI imaging modalities. A few
classes (i.e., D8, D9, D10, E1, and E2) comprise endoscopy data
encoded at a frame rate of 25 frames per second and having a
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TABLE I
BRIEF DESCRIPTION OF EACH CLASS IN OUR SELECTED DATASETS IS PROVIDED IN NOTATION L(X/Y/Z), WHERE L: ACTUAL LABEL, X: IMAGING MODALITY,

Y: 2D IMAGING DATA (I) OR 3-D IMAGING DATA (V), AND Z: TOTAL NUMBER OF DATA SAMPLES. (“CT: COMPUTED TOMOGRAPHY,” “MS: MICROSCOPE,” “MRI:
MAGNETIC RESONANCE IMAGING,” “XR: X-RAYS,” “VLC: VISIBLE LIGHT CAMERA,” “PET: POSITRON-EMISSION TOMOGRAPHY,” “US: ULTRASOUND,” “ES:

ENDOSCOPY,” “FC: FUNDUS CAMERA,” “CNV: CHOROIDAL NEOVASCULARIZATION,” “OCT: OPTICAL COHERENCE TOMOGRAPHY,” “DME: DIABETIC MACULAR
EDEMA,” “GI: GASTROINTESTINAL,” “MSI: MICROSATELLITE INSTABILITY,” “MSS: MICROSATELLITE STABILITY”). NOTE: THE NOTATION “A1, A2, …, G10”

PRESENTS “CLASS 1, CLASS 2, …, CLASS 70”

variable-length in terms of the number of frames as mentioned in
Table I. In the data preprocessing step, all the data samples were
resized to a fixed spatial dimension of 224×224 (as the fixed
input layer size of our proposed MDF-RN model). Additionally,
online data augmentation was performed to resolve the class
imbalance problem during the training process.

The MATLAB (R2019a) coding framework (including the DL
toolbox) was used for model development and simulation using
a desktop computer with an Intel Core i7 CPU, 16 GB RAM,
NVIDIA GeForce graphics processing unit (GPU) (GTX 1070),
and Windows 10 operating system. In our optimization scheme,
a stochastic gradient descent optimizer [42] with a learning rate
of 0.001 was used for training both networks. Various existing
studies [43], [44], [45], [46] related to medical image analysis
considered such a small learning rate value of 0.001 for the
optimal training of their proposed models. Generally, in case
of a small value of learning rate, a minimum can be reached
eventually; however, it will require many epochs to get there
[47]. Nevertheless, when the learning rate is relatively large,
the training loss drops sharply at first, fluctuates above the
minimum, and never decays to the minimum [47]. Therefore,
we chose a small value of learning rate (as reported in vari-
ous existing studies [43], [44], [45], [46]) to achieve optimal
convergence of the proposed model. We selected mini-batch
sizes of 10 and 100 for training the MDF-RN and STB-CN
models, respectively. These optimal values for mini-batch sizes
were experimentally determined based on the maximum con-
vergence of training accuracies, as shown in Fig. 4. In addition,
because of the memory size limitation of GPU, it was not
possible to select further higher values (i.e., >10 and >100)

Fig. 4. Training/validation accuracies and losses of the proposed
(a) MDF-RN model and (b) STB-CN model.

of mini-batch sizes. For the other hyperparameters, we used the
default parametric scheme provided by MATLAB (R2019a). In
all experiments, two-fold cross-validation was performed using
40% (60432 data samples), 10% (15108 data samples), and
50% (75554 data samples) of the whole dataset for training,
validation, and testing, respectively. Two-fold cross-validation
includes a smaller number of training data and shows lower
accuracy compared to ten-fold cross-validation as reported in
[48]. In addition, various existing studies related to medical
image analysis [49], [50], [51], [52] also considered two-fold
cross-validation to validate their proposed methods. Therefore,
we considered two-fold cross-validation in all the experiments to
achieve higher accuracy using a smaller number of training data.
In most classes, different patient datasets were chosen for train-
ing, validation, and testing. Fig. 4 shows the training/validation
losses and accuracies of both networks according to the incre-
ment of epoch. The convergence of training curves validates
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TABLE II
QUANTITATIVE RESULTS OF OUR PROPOSED MDF-RN+STB-CN (BEST

MODEL) ALONG WITH THE PERFORMANCE OF MDF-RN (OUR
SECOND-BEST PROPOSED MODEL) AND RN (BASELINE MODEL)

the sufficient training of both networks with training data. In
addition, validation curves further confirmed that our models
were not overfitted with training data. Numerous medical image
classification studies measure the effectiveness of their proposed
model with the following top-5 performance evaluation metrics:

1) average accuracy (ACC),
2) F1-score (F1),
3) precision (PRE),
4) recall (REC), and
5) area under the curve (AUC).

Therefore, we measured the effectiveness of the proposed
model compared to various baseline methods using these five
performance evaluation metrics as key indicators.

B. Testing Results (Ablation Studies)

We proposed a cascade of two networks for the classification
of both 2-D/3-D imaging data related to the medical domain.
Table II presents the quantitative results of our proposed MDF-
RN+STB-CN, along with the performance of MDF-RN (our
second-best proposed model) and RN (baseline model) as an
ablation study. The results in Table II primarily highlight the
contribution of multilevel feature fusion using the proposed DF-
blocks (MDF-RN versus RN) and second-stage STB-CN model
(MDF-RN+STB-CN versus MDF-RN) in terms of performance
gains. The regularity of this comparative analysis (see Table II)
is defined as follows.

1) In our first comparison (MDF-RN versus RN), we dis-
regarded the 3-D anatomical dependencies of 3-D imag-
ing data by considering the whole data as 2-D imaging
data. For the data conversion from 3-D volume to 2-D
slices/images, the same class label of each 3-D data
sample was considered for its corresponding slices. Con-
sequently, the whole 3-D data samples were converted
into 2-D imaging data.

2) In our second comparison (MDF-RN+STB-CN versus
MDF-RN), we further highlighted the contribution of
3-D anatomical dependencies of 3-D imaging data by
introducing our second-stage STB-CN for the additional
feature extraction in case of 3-D volumetric data samples
(as explained in Section III-C).

The first proposed MDF-RN model (comprising SR-, PR-,
and DF-blocks) outperforms the RN model (comprising only

Fig. 5. Receiver operating characteristic curves of MDF-RN+STB-
CN (our proposed best model), MDF-RN (our proposed second-best
model), and RN (baseline model).

SR- and PR-blocks) with average gains of 2.54%, 1.71%, 1.23%,
2.16%, and 1.75% in terms of ACC, F1, PRE, REC, and AUC,
respectively. Subsequently, the addition of the STB-CN model
further improved the performance of the MDF-RN model, with
average gains of 0.73%, 2.18%, 2.31%, 2.05%, and 1.36% in
terms of ACC, F1, PRE, REC, and AUC, respectively. Ulti-
mately, our proposed MDF-RN+STB-CN model significantly
outperformed the RN (baseline model), with average gains of
3.27%, 3.89%, 3.54%, 4.21%, and 3.11% in terms of ACC,
F1, PRE, REC, and AUC, respectively. In a t-test analysis, our
first proposed MDF-RN achieved an average p-value of 0.001
(p < 0.01), and the final MDF-RN+STB-CN attained a p-value
of 0.00003 (p < 0.01) compared to RN (baseline model). These
lower p-values (p < 0.01) imply that both networks signifi-
cantly outperformed the baseline model at a 99% confidence
score.

Moreover, Fig. 5 further highlights the performance gain
of our proposed MDF-RN+STB-CN (best model) compared
to MDF-RN (proposed second-best model) and RN (baseline
model) as receiver operator characteristic (ROC) curves. In de-
tail, in case of image-based models (i.e., MDF-RN and baseline
RN), we evaluated slice/frame-level classification performance
of 3-D imaging data by considering only spatial features. While,
in case of our sequence-based model (i.e., MDF-RN+STB-
CN), we evaluated block-level classification performance of 3-D
imaging data by exploiting both spatial and 3-D anatomical
features. Each ROC curve (see Fig. 5) indicates a tradeoff
between the true positive rate (TPR) and false positive rate (FPR)
at different classification thresholds, ranging from 0 to 1 in 0.01
increments. We attain the optimal validation performance of
each model at a particular classification threshold (labeled as
operating points in Fig. 5). The values of the optimal operat-
ing points for MDF-RN+STB-CN (our proposed best model),
MDF-RN (our proposed second-best model), and RN (baseline
model) were 0.41, 0.44, and 0.46, respectively.
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TABLE III
PROGRESSIVE PERFORMANCE GAINS OF THE PROPOSED MDF-RN AND
MDF-RN+STB-CN MODELS BASED ON MULTILEVEL FEATURE FUSION

Compared with RN (baseline model), our best model sig-
nificantly reduced the FPR from 14.14% to 11.09% with an
average gain of 3.05% [14.14%–11.09%] and increased the
TPR from 82.57% to 86.78% with an average gain of 4.21%
[82.57%–86.78%]. Subsequently, our second-best model also
significantly reduced the FPR from 14.14% to 11.52% with
an average gain of 2.62% [14.14%–11.52%] and increased the
TPR from 82.57% to 84.73% with an average gain of 2.16%
[82.57%–84.73%] in comparison with RN. Consequently, our
proposed MDF-RN+STB-CN accurately classified a total of
3181 more data samples compared to RN (baseline model).

A detailed ablation study was further conducted to demon-
strate the significance of multilevel feature fusion in the pro-
posed image-based model (MDF-RN). Successive feature-level
performance was calculated to highlight the contribution of mul-
tiscale low-, intermediate-, and high-level semantic features (i.e.,
f 1– f 4). Subsequently, the same ablation study was conducted
for our proposed sequence-based model (MDF-RN+STB-CN).
Table III lists the successive feature-level performances of both
networks. It can be observed (see Table III) that the fusion of
multilevel features (i.e., f 1– f 4) results in a progressive gain,
and finally, a high-performance MDF-RN model was attained
based on multilevel feature fusion. Similarly, the proposed
MDF-RN+STB-CN also showed progressive results with the
fusion of multilevel features in the MDF-RN model.

The initial weights of the different residual blocks in our
MDF-RN model were obtained from a pretrained RN [24]
through a transfer learning approach. Therefore, we also trained
our models from scratch to highlight the importance of transfer
learning in terms of quantitative performance. For the MDF-RN
model, the results indicate that transfer learning compared with
training from scratch exhibits superior results with average gains
of 20.11%, 18.29%, 16.77%, 19.60%, and 23.02% in terms of
ACC, F1, PRE, REC, and AUC, respectively. Similarly, we
observed significant performance gains of 18.79%, 16.45%,
15.51%, 17.26%, and 18.86% in terms of ACC, F1, PRE, REC,
and AUC, respectively, for MDF-RN+STB-CN. In addition to a
large number of data samples in our training dataset, a significant

TABLE IV
COMPARATIVE RESULTS OF THE PROPOSED MDF-RN AND

MDF-RN+STB-CN MODELS WITH AND WITHOUT PERFORMING TRANSFER
LEARNING. (“T.L: TRANSFER LEARNING”)

Fig. 6. Clustering of classification results of the final proposed model
in terms of confusion matrix to highlight the performance degradation of
each individual class as type I (false-positive) or type II (false-negative)
errors.

impact of transfer learning can be observed (see Table IV) in
developing our image-based and sequence-based classification
models.

In addition, Fig. 6 further presents the clustering of clas-
sification results of the final proposed model in terms of the
confusion matrix. These results (see Fig. 6) show the individual
performance of each class by visualizing the number of false
predictions as type I (false-positive) or type II (false-negative)
errors. It can be observed that the data samples of classes A1 to
C10 show a higher number of false predictions (highlighted with
red-box in Fig. 6) as compared to other classes. The high inter-
class similarities cause such performance degradation due to the
following reasons: 1) overlapped body organs in different classes
and 2) data samples of different imaging modalities (i.e., CT and
MRI) presenting similar types of diseases in different classes.
However, the overall performance of our proposed method is
significantly improved as compared to other baseline methods
(as shown in subsequent Section IV-C).

C. Comparison

This section provides a detailed comparison of our proposed
MDF-RN+STB-CN (best model) and MDF-RN (second-best
model) with several state-of-the-art image- and sequence-based
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TABLE V
COMPARATIVE PERFORMANCE ANALYSIS OF OUR PROPOSED MDF-RN+STB-CN (BEST MODEL) AND MDF-RN (SECOND-BEST MODEL) WITH THE

VARIOUS STATE-OF-THE-ART METHODS

CAD methods. This is the first study related to the classifi-
cation of large-scale 2-D/3-D imaging data and no standard
benchmarks are given in the literature with the selected dataset.
Therefore, we explored the existing literature related to medical
image classification and selected fifteen different methods [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21] closely related to our work for this comparison. In
detail, all these competitor methods utilized the strength of trans-
fer learning employing existing pretrained CNN models [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31] in developing
their CAD solutions. All these studies cover a vast scope of 1)
disease-specific, 2) modality-specific, 3) multimodality-based,
and 4) multi-disease-based CAD solutions. In addition, the
source codes of all these methods are also publicly available
for a fair comparison. Therefore, we selected these methods for
comparative analysis with our proposed solution. To make a fair
comparison and provide standard benchmarks, we evaluated the
performance of these existing methods with our selected dataset.
Table V presents the comparative results of our proposed models
in comparison with 15 different state-of-the-art methods.

The regularity of this comparative study is defined as follows:
Initially, we compared the performance of our first image-based
model with various image-based classification methods [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18] using our
selected dataset. All these comparative models are labeled as
image-based models in Table V. In this comparison, we ignored
the 3-D anatomical information of 3-D imaging data by consid-
ering the whole data as 2-D imaging data (as explained in Sec-
tion IV-B). Subsequently, we further compared the performance
of our final sequence-based model with three different sequence-
based classification methods [19], [20], [21] under the same
experimental setting. These comparative models are labeled as
sequence-based models in Table V. In this comparison, we also
considered the contribution of 3-D anatomical dependencies of
3-D imaging data (as explained in Section III-C).

Compared to various image-based classification methods, our
proposed 2-D-CNN model (MDF-RN) shows better results. Jasil
et al. [16] proposed a CAD method based on DenseNet201
[16], which showed comparable results and ranked it as the
second-best method among other image-based models. How-
ever, our proposed MDF-RN model outperformed [16] in terms
of quantitative as well as computational performance. In detail,
our MDF-RN model outperformed DenseNet201 (used by Jasil
et al. [16]) with average gains of 0.64%, 0.75%, 0.85%, 0.66%,
and 0.39% in terms of ACC, F1, PRE, REC, and AUC, respec-
tively. In a t-test analysis, our MDF-RN model outperformed
DenseNet201 at a 99% confidence score by reaching an average
p-value of 0.001 (p < 0.01). In addition, the average inference
time (class prediction time of one data sample) of our MDF-RN
model was approximately 50% lower than that of Jasil et al.
[16]. To be specific, our MDF-RN took approximately 13.26
ms, whereas DesneNet201 (used by Jasil et al. [16]) required
approximately 25.88 ms for one image. The average inference
time was evaluated using the same experimental setup described
in Section IV. Moreover, our final MDF-RN+STB-CN model
gave better results than MDF-RN and further outperformed the
second-best image-based method (Jasil et al. [16]) with average
gains of 1.37%, 2.93%, 3.16%, 2.71%, and 1.75% in terms of
ACC, F1, PRE, REC, and AUC, respectively. Subsequently, a
t-test analysis also showed the superior performance of our final
MDF-RN+STB-CN model compared to [16] at a 99% confi-
dence score by reaching an average p-value of 0.001 (p < 0.01).

In the context of volumetric data classification, three dif-
ferent sequence-based models were proposed in the literature
[19], [20], [21] using pretrained 2D-CNNs [10], [15], [22]
as backbone networks. The performance of these methods
[19], [20], [21] was also evaluated for comparison with our
proposed MDF-RN+STB-CN (best model) under the same
experimental setup. Srinivasu et al. [20] proposed a method
based on MobileNetV2+LSTM [15], [20] ranked as second-best
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Fig. 7. Qualitative classification and content-based medical image and sequence retrieval (CBMISR) performance of our proposed and the various
state-of-the-art methods (red box: False predictions).

among the other two methods [19], [21]. However, our final
MDF-RN+STB-CN model outperformed the method of Srini-
vasu et al. [20], with average gains of 1.98%, 2.85%, 3.69%,
2.04%, and 1.62% in terms of ACC, F1, PRE, REC, and AUC,
respectively. A t-test analysis also highlights the superiority
of our final model over [20] at a 99% confidence score by
reaching an average p-value of 0.001 (p < 0.01). The proposed
pipeline mainly includes a novel 2-D-CNN architecture (named
MDF-RN) that leverages multiscale dilated convolution and a
concept of multilevel feature fusion in a mutually beneficial
manner to achieve state-of-the-art performance. Additionally,
the second subnetwork (STB-CN) further aggregates the overall
performance by exploiting 3-D anatomical dependencies in case
of 3-D imaging data and results in an additional performance
gain. Consequently, the proposed model offers better results
compared to various existing methods (see Table V).

Fig. 7 further presents the qualitative classification and CB-
MISR results of our method compared with all the testing
baseline methods [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. We provided the predicted class
label, probability score, and best-matched data sample for each
method. We retrieved the best-matched case from the testing
database using the predicted class label as explained in [7].
The key objective of this qualitative analysis is to highlight the
predictive confidence score and CBMISR performance of our
method in comparison with all the baseline methods. It can be
observed (see Fig. 7) that our method attains the highest confi-
dence score, particularly in low-contrast data samples (class B8
and G1), and shows a significant resemblance of best-matched
cases with the input query data samples.

V. DISCUSSION

In the case of 3-D imaging data, 2-D-CNNs (image-based
models) only extract the spatial features from each slice/frame
for class prediction. By contrast, 3-D-CNNs extract both spatial
and 3-D anatomical features from the entire 3-D sequence and
make a class prediction. In the first scenario, 2-D-CNNs neglect

3-D anatomical information for the sequence of 2-D slices,
which can result in performance degradation. In the second
scenario, 3-D-CNNs include several trainable parameters and
require high computation power for training. In addition, 3-D-
CNNs are restricted to process a fixed-length volumetric data and
may cause performance degradation in case of variable-length
data in a real-world scenario. To address these issues, a sequence-
based classification framework is proposed for the accurate
classification of both 2-D/3-D imaging data. Initially, our first
proposed image-based model (MDF-RN) extracts a set of n
multilevel spatial feature vectors (i.e., f 1,f 2,f 3, . . . ,fn) from
a given sequence of slices/frames (i.e., F 1,F 2,F 3, . . . ,F n).
Subsequently, the second-stage STB-CN model further exploits
3-D anatomical features from a set of spatial feature vectors
and performs the final class prediction. In the case of 3-D
imaging data, the use of LSTM models with 2-D-CNN makes
it more expedient than 3-D-CNNs in terms of computational
complexity. In addition, our proposed sequence-based model
leverages transfer learning in volumetric data analysis without
influencing the overall training parameters. It can also classify
variable-length sequences. Our comprehensive ablation study
proves the significance of multilevel feature fusion (see Table III)
and transfer learning (see Table IV) in developing the proposed
sequence-based classification framework for the efficient clas-
sification of multimodal 2-D/3-D imaging data.

In the context of image classification, our first MDF-RN
model outperformed various state-of-the-art 2-D-CNNs (image-
based models) (see Table V). In addition to quantitative per-
formance gains, the average inference time of our MDF-RN
model was approximately 50% lower than that of the second-best
image-based method (Jasil et al. [16]). We also evaluated the
performance of various disease and modality-specific models
with our selected datasets and observed that our proposed model
significantly (t-test:p < 0.01) outperformed these models in
case of large cohort (see Table V). For example, our final MDF-
RN+STB-CN model outperforms the second-best modality-
specific method of Srinivasu et al. [20] with average gains of
1.98%, 2.85%, 3.69%, 2.04%, and 1.62% in terms of ACC,
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Fig. 8. Illustration of (a) correctly classified and (b) incorrectly classi-
fied data samples including top five predicted probabilities.

F1, PRE, REC, and AUC, respectively. Most of the existing
methods [18], [19], [20], [21] exploit only high-level semantic
features to make a classification decision. Our network design
mainly leverages multiscale dilated convolutions (DF-blocks)
and multilevel feature fusion in a mutually beneficial manner
and finally achieves superior classification results.

Fig. 8 shows a few examples of correctly and incorrectly
classified data samples (including both 2-D/3-D imaging data)
using our proposed classification framework. To visualize the
discriminative capability of our model, we additionally included
the top five predicted probabilities along with each data sample.
In most of the correctly classified data samples [see Fig. 8(a)], the
best probability score was significantly higher (>85%) than the
other classes, which highlights the distinctive characteristics of
the proposed method. However, a few incorrect predictions [see
Fig. 8(b)] may also turn out because of the existence of analogous
shapes and texture patterns in different classes. For example, the
data samples of class B2 (lung normal) and E10 (lung viral pneu-
monia) show high inter-class similarities in terms of shapes and
texture patterns. Therefore, the input sample of class B2 (lung
normal) was incorrectly classified as E10 (lung viral pneumonia)
by achieving the best probability score of 57.12%. Fig. 8(b)
visualizes a few more examples of such incorrectly classified
data samples. Regardless of high inter-class similarities, the poor
annotation of data samples can also lead a deep classification
model toward false predictions. However, visual assessment
can assist medical experts in performing cross-validation of all
predicted results.

Despite the considerable gains of the proposed classification
framework, there are a few limitations that may influence the

overall performance of our classification framework in a real-
world setting. The main concern is the issue of generalizability,
particularly with respect to those classes with a limited number
of data samples. Second, real-world data can show high intra-
class variance due to various types of imaging modalities and
may influence the prediction results. However, these limitations
can be resolved by including a large collection of diversified and
well-annotated datasets.

VI. CONCLUSION

This article aims to develop a deep classification model with
the capability to classify multimodal and multiclass medical
data, including both 2-D and 3-D imaging data. In particular,
a sequence-based deep classification framework (named MDF-
RN+STB-CN) is proposed, which mainly leverages transfer
learning in the case of volumetric data analysis without influ-
encing the overall training parameters. This is the first study to
offer a pretrained classification model in the medical domain
based on a large-scale multimodal dataset (including a total
of 151 095 data samples related to 70 different classes). Fi-
nally, the experimental results exhibited promising performance
values of 89.83%, 88.10%, 89.46%, 86.78%, and 93.66% in
terms of the average accuracy, F1-score, precision, recall, and
area under the curve, respectively, and outperformed various
state-of-the-art methods. In a future study, we will explore
more heterogeneous datasets and intend to resolve generality
issues thoroughly. In addition, the proposed model provides new
grounds for future research related to MDS-TL. The strengths of
MDS-TL can be further investigated and additional performance
improvements can be achieved in numerous medical diagnostic
applications.
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