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PA3DNet: 3-D Vehicle Detection With Pseudo
Shape Segmentation and Adaptive

Camera-LiDAR Fusion
Meiling Wang , Lin Zhao , and Yufeng Yue , Member, IEEE

Abstract—3-D vehicle detection is a key perception tech-
nique in autonomous driving. In this article, a novel 3-
D vehicle detection framework that fuses camera images
and Light Detection and Ranging (LiDAR) point clouds is
proposed, named PA3DNet. The key novelties of PA3DNet
are the proposing of a pseudo shape segmentation (PSS)
model and an adaptive camera-LiDAR fusion (ACLF) mod-
ule. The PSS model leverages self-assembled vehicle pro-
totypes to learn shape-aware vehicle features. In order
to achieve the adaptive fusion between visual semantics
and LiDAR point features, learnable weight parameters are
developed in the ACLF module to formulate an implicit
complementarity between the two modalities. Extensive ex-
periments on the widely used autonomous driving KITTI
dataset demonstrate that PA3DNet achieves competitive ac-
curacy when compared to advanced methods. It achieves
5.37% higher average precision (AP) on easy difficulty of
30–50 m and 9.67% higher AP on moderate difficulty of
>50 m.

Index Terms—3-D object detection, autonomous driving,
multimodal fusion.

I. INTRODUCTION

W ITH the growing development of the transportation
industry, the safety of intelligent vehicles, especially

self-driving cars, has become increasingly prominent [1]. In
general, safe autonomous navigation requires robust and reliable
3-D perception technology. 3-D vehicle detection, which utilizes
camera or Light Detection and Ranging (LiDAR) sensors to
recognize surrounding vehicles in on-road environments, is con-
sidered a critical perception capability in the field of intelligent
transportation systems. As intelligent vehicles are required to
drive more safely and reduce traffic accidents in complex and
dynamic environments, detecting surrounding 3-D vehicles can
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Fig. 1. Example of 3-D vehicle detection in an autonomous driving
scene. First row: LiDAR point clouds with 3-D detection boxes. Second
row: (3) RGB image with 3-D ground truths, as well as (2-b) image
feature map from the proposed PSS model.

help them maintain a safe following distance, avoid potentially
dangerous collisions, and provide essential environmental infor-
mation for subsequent decision making and vehicle control.

Benefiting from the powerful feature extraction capability
of deep convolutional neural networks, 3-D vehicle detection
based on single-modal data from cameras or LiDAR sensors
has been studied recently [3], [4]. Camera RGB images represent
environments in a perspective view with rich colors and dense
textures; however, existing camera-only 3-D vehicle detection
methods [5], [6] suffer from performance degradation due to
the lack of reliable long-range depth measurements, achieving
only approximately 10% mean average precision (AP) on the
official KITTI test dataset. On the other hand, precise ranging
information from laser scans brings benefits to LiDAR-only
methods. However, 3-D vehicle shape information from LiDAR
point clouds tends to be severely incomplete in occluded or
long-range scenes, inevitably leading to loss of geometric con-
text and occasional erroneous detection results. As shown in
Fig. 1-(1), the LiDAR-only method [8] suffers from missed de-
tection (false negative) and redundant detection (false positive),
while the proposed multimodal approach [in Fig. 1-(2-a,b)] fuses
visual shape features to achieve better performance. Recently,
several image-based algorithms have explored the fine-grained
contextual information in images. Abdel-Basset et al. [2] utilized
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a metaheuristic balancing approach to find the optimal threshold
for grayscale images. Haris and Glowacz [1] studied the feature
prediction capability of the decoder in the lane segmentation
network. Moreover, the authors of [7] further examined that
the combination of camera RGB information and LiDAR depth
information has better performance than using only a single
modality in end-to-end intelligent driving. Therefore, fusing
sensor data from two complementary modalities can fully ex-
ploit dense visual information and accurate LiDAR ranging
measurements, thereby improving the robustness of 3-D vehicle
detection in challenging occlusion and long-range cases. To
this end, this article proposes the multimodal fusion algorithm
between RGB images and point clouds as a more desirable
solution for 3-D vehicle detection.

As summarized above, multimodal 3-D vehicle detection can
complement the strengths of both modalities. Existing mul-
timodal methods [9], [10], [11] utilize image cues obtained
from two-stream extractors to compensate point features, but
are limited to low-level visual feature fusion at the early stage.
To take full advantage of the rich visual information, Pointpaint-
ing [12], PI-RCNN [13], and Sem-Aug [14] directly extracted
high-level image features from pretrained semantic segmenta-
tion models or supervised by 2-D segmentation autolabeling.
While effective, these methods are constrained by the gener-
alization ability of pretrained models or rely on external 3-D
priors to provide autolabeling references. In the absence of
image annotation supervision or external 3-D priors, visual
semantic segmentation networks may fail to learn reliable image
features, resulting in degraded detection performance. There-
fore, the first challenge for multimodal 3-D vehicle detection
is to formulate a practical visual model that bridges the gap
between high-quality image semantic learning and limited data
supervision.

Compared with single-modal methods that learn from
viewpoint-consistent sensor data, the cross-view association
between LiDAR points and camera images poses another
challenge. To localize 3-D objects in large-scale point cloud
scenes, [16] generates 3-D LiDAR frustums from image-based
region proposals to reduce the 3-D search space. In view
of the correspondence between cross-view feature learning,
MV3D [17], AVOD [18] and MVX-Net [19] aggregate region-
based image features through pooling layers and then append
them to point features to jointly learn cross-view information.
The features of the two modalities are only fused at concatena-
tion level in these methods, whereas the fusion layers cannot
determine which image features are complementary for the
corresponding LiDAR points. As a result, the second challenge
is to carefully design a camera-LiDAR fusion layer that adap-
tively modulates the complementary weights between the two
modalities.

The above challenges motivates this article to propose a novel
multimodal 3-D vehicle detection framework, named PA3DNet,
which contains a pseudo shape segmentation (PSS) model and
an adaptive camera-LiDAR fusion (ACLF) module. Specifically,
the PSS model self-assembles vehicle point cloud prototypes
formed from full 3-D shapes without external 3-D prior models,
and projects them as pseudo vehicle shapes on the image plane.

Since the generated shapes approximately represent 2-D full
contours, we exploit them to supervise a shape semantic segmen-
tation network to learn visual shape features of vehicles. In the
ACLF module, bilinear interpolation sampling is first adopted to
fetch point-wise visual features at continuous pixel coordinates
from a high-level image feature map. A camera-LiDAR fusion
layer with learnable weight parameters is then incorporated,
which formulates the contributions of the obtained image se-
mantic information and exploits them to adaptively enhance
LiDAR point features. The main contributions of PA3DNet can
be summarized in threefold.

1) A PSS model utilizing self-assembled vehicle prototypes
to generate 2-D pseudo shapes is proposed, which can
learn visual shape features of vehicles.

2) The proposed ACLF module formulates the concatena-
tion between image semantics and LiDAR point features
via learnable weight variables, enabling adaptive camera-
LiDAR feature fusion.

3) Extensive quantitative and qualitative experiments on a
widely used autonomous driving KITTI dataset demon-
strate that PA3DNet achieves competitive performance
compared to advanced baseline methods.

The rest of this article is organized as follows. Section II dis-
cusses recent related work. Section III demonstrates the pipeline
of PA3DNet. Section IV shows the qualitative and quantitative
experiments on the on-road driving scenarios. Finally, Section V
concludes this article.

II. RELATED WORK

The existing 3-D vehicle detection methods are divided into
three main modes: camera-only, LiDAR-only, and multimodal-
based. This section mainly revisits LiDAR-only and multimodal
methods.

A. LiDAR-Only 3-D Vehicle Detection

Recent LiDAR-only methods are mainly divided into two cat-
egories: point-based and voxel-based. Point-based methods [15],
[20] learn local region features by aggregating key point fea-
tures or employing a transformer-based backbone. 3DSSD [21]
incorporates a refined box prediction subnetwork into a point-
based 3-D object detector. These methods, however, suffer from
costly computation of point feature encoding and have difficulty
extending to large-scale tasks. Instead, voxel-based methods [4],
[22] convert sparse LiDAR point clouds to regular voxels, and
leverage 3-D sparse convolutional layers [8] to encode 3-D
voxel features. SegVoxelNet [23] employs semantic segmen-
tation masks from bird’s-eye-view (BEV) to provide contex-
tual information and actively guide 3-D vehicle detection. In
PV-RCNN [24], a voxel-keypoint 3-D feature encoding module
is proposed to enrich representative point cloud features. He
et al. [30] and Ning et al. [31] exploited multiview represen-
tation and attention mechanism to extract more neighborhood
and contextual information respectively. Although voxel-based
feature extractors are effective, these methods are constrained
by the inherent low-occupancy nature of LiDAR point clouds,
making them suboptimal for complex 3-D scenes.
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Fig. 2. Overview of PA3DNet, where the predicted 3-D detection results are shown in both image and LiDAR point cloud (⊕: concatenation
operations).

B. Multimodal 3-D Vehicle Detection

Early multimodal approaches [16], [17], [18], [19] incorpo-
rate region-based fusion strategies into 3-D vehicle detection
networks. Qi et al. [16] utilized region proposals from image-
based object detectors to generate 3-D bounding frustums. In
AVOD [18], a multiview region proposal network (RPN) is
combined with a region-based fusion module to produce high-
quality 3-D region proposals. Two-branch extractors with shared
camera-LiDAR features were proposed in MV3D [17], followed
by fusion-based RPN strategies to enhance the small-object
prediction. However, these region-based late fusion methods
tend to fuse limited visual information through heavy network
structures. The recent SFD [25] utilizes attention mechanisms to
fuse sparse LiDAR points and dense RGB point clouds. Despite
several improvements, it relies on robust depth completion and
is difficult to generalize in complex scenes.

To further explore the point-level correspondence between
cameras and LiDAR sensors, Yoo et al. [10] and Wen and Jo [11]
developed a cross-view feature fusion module to interpolate
image semantics into dense BEV representations. MVXNet [19]
extends the LiDAR-only detector with an additional camera
branch, where the image features are fetched from a pretrained
visual-based network. EPNet [9] and Three-Attn [11] incorpo-
rate the two-stream feature extractor with multimodal fusion
attention modules, but only fuse low-level visual semantic fea-
tures. By extracting image features from pretrained semantic
segmentation networks, PointPainting [12] and PI-RCNN [13]
directly decorate raw LiDAR point clouds with point-level
image semantics, while Sem-Aug [14] leverages 2-D segmen-
tation autolabeling to provide supervision for their segmenta-
tion subnetwork. However, these methods require external data
assistance, or simply augment the raw LiDAR point clouds.

More recently, Transfusion [34] and BEVFusion [35] investigate
camera-LiDAR fusion in BEV representation space, while their
frameworks are complicated and require 360◦ field of view
(FOV) from multiple cameras.

III. PROPOSED APPROACH

The proposed PA3DNet is modularly designed and consists
of three parts: a PSS model, an ACLF module, and a voxel-based
3-D detector, as shown in Fig. 2. To start, the PSS model
assembles vehicle prototypes with full 3-D shapes and projects
them onto the image plane to generate 2-D pseudo shapes.
These pseudo shapes describe the approximate 2-D contours of
vehicles. Consequently, the PSS model utilizes pseudo shapes
as image labels to learn vehicle segmentation features without
manual labeling. Then, the ACLF module extracts point-wise
image semantics from high-level segmentation feature maps
and incorporates them with LiDAR points in adaptive fusion
layers. Finally, the fused multimodal features are fed into the
voxel-based 3-D detector to predict 3-D vehicles.

A. Multisensor Configurations

1) Multimodal Inputs: The LiDAR sensor employs scanning
laser beams to generate a 3-D representation of the environment,
which is typically described as an unordered set of 3-D points.
Denote P = {p1,p2, . . . ,pN} as a LiDAR point cloud data,
where N is the number of 3-D points and p = [x, y, z]T ∈ R3

is the 3-D coordinate. In contrast, the camera image describes
a perspective view of the environment and is represented by
compact and ordered 2-D grids (also known as pixels). The
input RGB image is denoted as G ∈ RH×W×C and the 2-D
grid coordinates of each pixel on the image plane is denoted



10696 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 11, NOVEMBER 2023

Fig. 3. Measurements, coordinate systems and coordinate transfor-
mation of LiDAR and camera sensors.

as g = [u, v]T ∈ R2, where H , W , and C = 3 are the height,
width, and number of channels of the RGB image, respectively.

2) Camera-LiDAR Projection: Fig. 3 shows the measure-
ments of the LiDAR and camera sensors along with the co-
ordinate transformation between the two modalities. Denote
Tcam

lidar ∈ R4×4 as the calibrated coordinate transformation ma-
trix of the LiDAR coordinate system (LCS) with respect to the
camera coordinate system, K ∈ R3×3 as the camera intrinsic
matrix. The mapping for projecting a 3-D LiDAR point p onto
the image plane is represented as

zqr = KTcam
lidarp (1)

where zq is the depth of the LiDAR point in the camera
coordinate system, r = [rx, ry]

T denotes the 2-D coordinate
of the projected point, and (1) implicitly transforms between
homogeneous coordinates and nonhomogeneous coordinates.

B. PSS

Image semantics from well-trained semantic segmentation
networks can provide fine-grained compensation for camera-
LiDAR fusion. Compared to labeling-friendly 3-D bounding
boxes, semantic segmentation requires collecting pixel-level
classifications, which is costly and time-consuming. Therefore,
we propose PSS, which utilizes pseudo shapes transformed from
3-D vehicle prototypes to learn fine-grained image semantic
features. The proposed PSS consists of three components: (a)
3-D prototype self-assembling, (b) pseudo shape generation,
and (c) 2-D shape segmentation. The main idea of (a) and (b)
is to automatically generate image segmentation labels from
annotations of 3-D LiDAR point clouds.

1) 3-D Prototype Self-Assembling: Camera-LiDAR projec-
tion makes it possible to map dense vehicle point cloud as a 2-D
vehicle shape on the image plane. However, since LiDAR point
clouds become scattered and sparse with increasing distance, it
is inevitable that distant vehicles have low 3-D point occupancy,
covering only part of the 3-D vehicle’s shape. To perform point

cloud completion for 3-D vehicles, we adopt a strategy of
inserting 3-D vehicle prototypes within each 3-D bounding box.
The prototype is obtained by collecting sparse 3-D vehicle points
on the specified train dataset and assembling them into a dense
point cloud model with complete 3-D vehicle shape. Denote a
3-D vehicle bounding box label as b = [cx, cy, cz, l, w, h, θ]

T ,
where [cx, cy, cz]

T is the 3-D position of the center point, θ
denotes the vehicle’s orientation angle around z-axis, l, w, and
h denote the length, width, and height of the 3-D bounding box,
respectively. To query the 3-D LiDAR points belonging to the
vehicle label b, we first transform raw LiDAR point cloud from
the LCS to the local vehicle coordinate system (VCS), whose
origin is the center point of b:

PV = {qi | qi = Rθ(pi − t),pi ∈ P} (2)

where Rθ ∈ R3×3 is the rotation matrix converted by the ori-
entation angle θ, t = [cx, cy, cz]

T ∈ R3 denotes the transla-
tion vector between LCS and VCS, and PV represents the
LiDAR point cloud in VCS. Then, the 3-D vehicle points within
b are denoted as Ψ = {qi | xi ∈ [− l

2 ,
l
2 ], yi ∈ [−w

2 ,
w
2 ], zi ∈

[−h
2 ,

h
2 ],qi ∈ PV }. The 3-D coordinates of these vehicle points

are divided by the dimensions on each axis to normalize to unit
length:

Ψ̂ =
{
q̂i|x̂i =

xi

l
, ŷi =

yi
w
, ẑi =

zi
h
,qi ∈ Ψ

}
. (3)

Thus, each normalized Ψ̂ is aligned within the same 3-D
bounding box dimensions and can be assembled into a 3-D
vehicle prototype with full shape. Also, we adopt voxel filtering1

to downsample the dense vehicle point cloud model and remove
outliers.

2) Pseudo Shape Generation: The assembled vehicle pro-
totype is denoted as Γ = {q̂1, . . . , q̂n}, where n is the number
of 3-D points. Generally, Γ is a statistical point cloud model
of full vehicle shape in the specified dataset. Given a sparse
LiDAR point cloud PB={b1,...,bK} with K 3-D vehicle labels,
the dimensions of each 3-D vehicle prototype are scaled to fit the
size of the corresponding 3-D bounding box label before vehicle
point completion:

Ok = {qi|xi = x̂ilk, yi = ŷiwk, zi = ẑihk, q̂i ∈ Γ} (4)

where [lk, wk, hk] is the box size of the kth 3-D vehicle label
bk. With the proposed vehicle point completion strategy, we are
able to reconstruct 3-D vehicle shapes in sparse LiDAR point
cloud.

Enforcing the LiDAR-to-camera projection allows for estab-
lishing correspondences between 3-D LiDAR points and 2-D
image pixels. When camera and LiDAR sensors are accurately
calibrated, a 3-D to 2-D shape constraint exists to convert the
complete 3-D vehicle model into the 2-D shape. Since the
assembled vehicle prototype contains dense and complete 3-D
vehicle points, we directly project it onto the image plane and
generate a dense vehicle pixel set. Convex hull2 is then exploited
to estimate the contour curve of dense vehicle pixels. In general,

1[Online]. Available: https://github.com/strawlab/python-pcl
2[Online]. Available: https://github.com/opencv/opencv

https://github.com/strawlab/python-pcl
https://github.com/opencv/opencv
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a convex hull defines the set of all convex combinations of
points in the given subset of the Euclidean space. Therefore,
the estimated contour curve can form a pseudo vehicle shape
that surrounds all the dense vehicle pixels from the prototype
projection. We project the assembled 3-D vehicle prototypes
onto the 2-D image plane in order of distance from far to near
and generate pseudo shapes for all 3-D vehicle labels.

3) 2-D Shape Segmentation: The inner regions enclosed by
the projected pseudo shapes are considered as approximate rep-
resentations of complete 2-D vehicle shapes. PA3DNet utilizes
pseudo shapes to provide supervision for learning high-quality
image semantics without extra image annotations. To obtain
robust image semantics from RGB images of on-road driving en-
vironments, HMANet [27], a multiscale semantic segmentation
network, is exploited to learn pseudo vehicle shape segmenta-
tion. Specifically, we extract the last prediction feature map from
the final stage of HMANet, just before being fed into the softmax
layer. The prediction feature map is of the same resolution as
the input RGB image and represents the highest-level shape
features in the semantic segmentation network. In summary, the
proposed PSS model leverages annotations of 3-D LiDAR point
clouds to generate pseudo image segmentation labels, which are
then utilized to supervise the learning of a shape segmentation
network. It reduces the dependence of our multimodal fusion
approach on different sensor annotations.

C. ACLF

1) Bilinear Interpolation Sampling: Denote the prediction
feature map as I ∈ RC×H×W , where C = 2 is the number of
pixel classifications (i.e., vehicle and background). Given a 3-D
LiDAR pointp, its 2-D projected point r = [rx, ry]

T falls within
a grid coordinate of I. Denote gr = [�rx�, �ry�]T as the grid
coordinate corresponding to r, where �·� denotes the rounding
function. To alleviate the floating-point deviation between the
2-D projected point coordinate r and the correspondence grid
coordinate gr, PA3DNet utilizes bilinear interpolation sampling
to extract point-wise semantic features at continuous image
coordinates:

fp =
∑
i∈U

∑
j∈V

(1 − |rx − i|)︸ ︷︷ ︸
weight in x axis

(1 − |ry − j|)︸ ︷︷ ︸
weight in y axis

I[i,j]

where U = {�rx�, �rx�}, V = {�ry�, �ry�}
(5)

where �·� and �·� represent the floor and ceiling functions,
respectively, i and j denote the neighboring pixel coordinates
of the sampling position r, and fp = [f, ξ]T is the binary seg-
mentation feature appended to the 3-D LiDAR point p. When
the sampling position exceeds the image grid resolution, its cor-
responding segmentation features are filled with zeros. Through
bilinear interpolation sampling, the raw LiDAR point cloud P
is projected onto the full-size prediction feature map to obtain a
semantic feature set, denoted as F = {fp1 , fp2 , . . . , fpN }.

2) Adaptive Fusion Layer: Denote the input LiDAR point
cloud as Pg = {pg

i = [xi, yi, zi, ei]
T ∈ R4}i=1,2,...,N , where

pg
i contains the 3-D geometric coordinates of the ith LiDAR

point, and ei denotes its reflection intensity. Let Ps = {ps
i =

Fig. 4. Details of the ACLF module. Adaptive weight parameters are
learned to fuse features from two modalities.

[xi, yi, zi, fi, ξi]
T ∈ R5}i=1,2,...,N denote the input semantic

point cloud, whereps
i contains the 3-D position of the ith seman-

tic point and its appended image semantics. First, we convert
both the input LiDAR point cloud Pg and the semantic point
cloud data Ps to voxel representations Vg and Vs, respectively,
and utilize two 3-D sparse convolution layers [8], one to extract
LiDAR geometric features fromVg and the other to obtain image
semantic features from Vs. The voxelized LiDAR features and
camera features are then fed into an adaptive fusion layer, to
fuse the rich geometric-semantic dependencies in 3-D space and
refine voxel features.

As shown in Fig. 4. the adaptive fusion layer first utilizes 3-D
sparse convolutions with the same output channels to process
camera features and LiDAR features separately, making the
feature channels consistent for both modalities. Through this
way, voxelized camera and LiDAR features located in 3-D space
share the same sparse voxel coordinates and number of voxels,
allowing features from both modalities to be fused in a voxel-
wise manner. However, directly concatenating the features of
the two modalities cannot achieve flexible associations between
useful image semantics and the corresponding LiDAR point
geometries. To this end, a learnable sparse weight parameter is
embedded in the camera-LiDAR layer to improve the adaptive
fusion between the two modalities.

Let Fg ∈ RM×D and Fs ∈ RM×D denote the geometric and
semantic features of the input nonempty sparse voxels, respec-
tively, where M is the number of nonempty voxels, and D
denotes the channel of nonempty voxel features. First, Fg and
Fs are fed to linear transformation layers, respectively:

Fg∗ = Fgw
T
g + bg (6)

Fs∗ = Fsw
T
s + bs (7)

where ws(g) ∈ RD×D and bs(g) ∈ RD×1 denote the weights
and biases of the linear transformation layers, respectively. The
transformed features Fg∗ and Fs∗ are merged via the element-
wise addition operation to form multimodal fusion features:

Fsg1 = LNw1,b1(tanh (Fg∗ + Fs∗)) (8)

where tanh(·) denotes the element-wise hyperbolic tangent
activation function, and LNw1,b1 : RM×D → RM×D represents
a linear transformation layer with learnable parameters (w1,b1).
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Fig. 5. Precision recall curves of 3-D vehicle detection methods in the official KITTI object detection evaluation test dataset. The performance of
PA3DNet compared to state-of-the-art methods at three detection difficulty levels is reported separately.

Fig. 6. Visualization of multiclass 3-D object detection results on the KITTI dataset. (1-A to 4-A): LiDAR point cloud with 3-D detection boxes,
where Car, Pedestrian, and Cyclist classes are shown in blue, green, and pink, respectively. (1-B to 4-B): RGB images with 3-D bounding boxes.
(1-C, 1-D, 1-E to 4-C, 4-D, 4E): semantic image feature maps of Car, Pedestrian, and Cyclist classes, respectively.

Considering that each sparse voxel contains both multidimen-
sional geometric and semantic features, an element-wise con-
catenation operation is introduced to extend the feature channels
of sparse voxels:

Fsg2 = LNw2,b2(tanh (Fg∗ ⊕ Fs∗)) (9)

where ⊕ represents the feature channel concatenation operation
and LNw2,b2 : RM×2D → RM×D denotes another linear trans-
formation layer that outputs the same feature channel as Fsg1.
The merged Fsg1 emphasizes the spatial position information
of sparse voxels, while the concatenated Fsg2 focuses on the
channel information of each sparse voxel feature. We exploit
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Fig. 7. Qualitative comparison results of 3-D vehicle detection. 3-D
detection boxes (in green solid box) are visualized in both LiDAR point
clouds and RGB images. Left column: There are missed 3-D detections
(in red dotted box) and redundant 3-D detections (in blue dotted box) for
the LiDAR-only approach [22]. Right column: better prediction results
from PA3DNet. (a) KITTI road scene. (b) KITTI city scene.

an element-wise addition operation to combine the spatial and
channel information at each nonempty voxel, and then utilize
sigmoid activation function to generate a voxel-wise learnable
weight vector:

E = σ(LNw3,b3(tanh (Fsg1 + Fsg2))) (10)

where the linear transformation layer LNw3,b3 : RM×D →
RM×1 is employed to map the multidimensional features of each
sparse voxel into one channel, σ denotes the sigmoid activation
function, and E ∈ RM represents the learnable weight parame-
ter.

The learnable weight vector E is derived from the dual fusion
of camera features and LiDAR features, capable of representing
both image semantics and geometric information. Since Li-
DAR points provide accurate geometric measurements for 3-D
bounding box estimation, a key idea of PA3DNet is to preserve
more reliable geometric information of LiDAR points in camera-
LiDAR fusion, while enhancing the contextual information of
3-D points with high-level image semantics. To this end, we
utilize the weight vectorE to learn the compensation coefficients
of multimodal features:

Ffuse = C(LNw4,b4(Fg)⊕E(LNw5,b5(Fs))) (11)

where C is a 1-D convolutional layer with output channel of D
andFfuse ∈ RM×D denotes the multimodal sparse voxel feature
from the ACLF module.

D. Multimodal 3-D Vehicle Detection

1) Voxel-Based 3-D Detector: Starting from the input voxel
feature Ffuse with D-dimensional multimodal features, the
voxel-based 3-D detector consists of a 3-D RPN [8], and a

proposal refinement network [22]. First, the 3-D RPN predicts
coarse 3-D vehicle bounding boxes, also known as 3-D propos-
als, from the input multimodal fusion feature Ffuse. Following
the principle of utilizing precise geometric information of raw
LiDAR points to refine 3-D proposals, the proposed refinement
network then adopts an encoder–decoder architecture to learn the
geometric features of each proposal. Specifically, the encoder
performs feature encoding and feature extraction on the raw
LiDAR points sampled in each 3-D proposal. The encoded
point feature of each proposal is then decoded into a global
representation vector, which is employed to predict the final
classification confidence and the 3-D bounding box residuals,
respectively.

2) Loss Functions: In the first stage of the voxel-based 3-D
detector, we follow [8] to configure the loss function of 3-D
RPN, which contains proposal classification loss, 3-D proposal
box regression loss, and orientation angle loss:

LRPN = w1Lcls + w2Ldir + w3Lbox (12)

where LRPN denotes the loss of RPN network with parameters
w1 = 1, w2 = 2, and w3 = 0.2. The classification confidence
refinement loss LΔcls and 3-D box refinement loss LΔbox in
the proposal refinement network are derived from [22]:

L = w4LRPN + w5LΔcls + w6LΔbox (13)

where L denotes the total loss in the training phase of the 3-D
voxel-based detector, with parameters w4 = w5 = w6 = 1.

IV. EXPERIMENTAL RESULT AND ANALYSIS

A. Evaluation Methodology

In this section, the KITTI 3-D object detection dataset [33],
which is widely available for autonomous driving, is adopted to
evaluate PA3DNet. The KITTI 3-D dataset consists of 7518 test
scenes, 3712 train scenes, and 3769 validation scenes, where
each scene sample provides a 64-beam LiDAR point cloud,
an RGB camera image, and the corresponding camera-LiDAR
calibration data. The train scenes contain 14 357 3-D bounding
box labels for vehicle category, where each 3-D vehicle label is
classified into three detection difficulty levels: easy (E), mod-
erate (M), and hard (H). We utilize the 3-D vehicle labels of
the easy level in the train scenes to assemble the 3-D vehicle
prototype. The predicted results of 3-D vehicles are evaluated
by the AP metric with intersection over union (IoU) threshold
of 0.7, and the 3-D detection performance for each detection
difficulty level is evaluated separately.

Besides the KITTI dataset, we extend ablation experiments
on the large-scale nuScenes dataset [28] to further validate the
universality and robustness of the proposed ACLF method. The
nuScenes dataset is a large-scale autonomous driving dataset for
3-D object detection, which contains a train set of 28 130 samples
and a validation set of 6019 samples. Each sample includes a
point cloud acquired by a top 32-beam LiDAR sensor, and RGB
images collected by six cameras covering a 360◦ FOV. The mean
average precision (mAP) and nuScenes detection score (NDS)
metrics are adopted to evaluate 3-D detection.
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TABLE I
PERFORMANCE COMPARISON OF 3-D VEHICLE DETECTION ON THE KITTI

3-D TEST SET. THE RED, GREEN AND BLUE COLORS SHOW THE TOP
THREE BEST PERFORMANCE RESULTS

B. Training and Inference

The training of the PSS model follows the configuration
of [27]. We then employ the Adam optimizer with 100 epochs,
six batch sizes, and a learning rate of 0.001 to train the voxel-
based multimodal 3-D detector. Data augmentation operations
for camera images include random horizontal flipping, random
scaling (scale factor: 0.5–2.0x), and Gaussian blur. All training
programs are conducted on two NVIDIA GTX 1080Ti GPUs.
For the performance evaluation on the KITTI validation set, only
the train set is utilized for training, while the performance evalu-
ation on the KITTI test set is trained using all sample data from
validation and train sets. To suppress the overfitting problem
caused by the limited number of samples, data augmentation
operations of random global rotation, scaling, and flipping are
performed on the raw LiDAR point clouds and all labeled 3-D ve-
hicle boxes during training. The noise of the global scaling obeys
a uniform distribution of [0.95,1.05] and the noise of the global
rotation is set to [−π

4 ,
π
4 ]. Besides, a ground truth sampling strat-

egy [8] is employed to augment the number of 3-D vehicle labels
and accelerate the convergence of the 3-D vehicle detection
network.

C. 3-D Vehicle Detection on the KITTI Dataset

1) Results on the Test Set: To evaluate the 3-D vehicle
detection performance of PA3DNet, we follow the evaluation
criteria of the official KITTI 3-D object detection dataset and
calculate interpolated AP metric over 40 recall sample locations[

1
40 ,

2
40 ,

3
40 , . . . ,

39
40 , 1

]
. Table I reports the AP performance com-

parison results of PA3DNet and state-of-the-art 3-D detection
methods on the KITTI 3-D object detection test set. It can be seen
that existing LiDAR-only methods tend to perform better than
camera-LiDAR fusion methods, while our PA3DNet instead
achieves more competitive 3-D vehicle detection performance.

Specifically, the 3-D vehicle detection results of each detection
difficulty level are evaluated separately. PA3DNet improves the
AP by at least 0.49% (versus Pyramid R-CNN [32]) in the
moderate detection difficulty level, and at least 0.39% (versus
Pyramid R-CNN [32]) in the hard detection difficulty level.
The mAP of 3-D vehicle detection on three difficulty levels is
also evaluated. Compared with the latest advanced LiDAR-only
methods H23D R-CNN [3] and PV-RCNN [24], our PA3DNet
reports a 058% mAP improvement (versus H23D R-CNN) and
a 0.81% mAP improvement (versus PV-RCNN). The above
performance evaluation results verify the effectiveness of the
two proposed methods. 1) The PSS model can extract more
contextual semantic information from camera images. 2) The
adaptive fusion of image semantic features and point cloud
features can improve the performance of multimodal methods
since it bridges the gap between sparse voxel representation and
abstract semantic information.

Furthermore, precision-recall curves are calculated to evalu-
ate the precision performance at each recall locations, as shown
in Fig. 5. The proposed PA3DNet outperforms both existing
LiDAR-only and camera-LiDAR fusion methods, demonstrat-
ing the effectiveness of our camera-LiDAR fusion network. As a
result, by compensating geometric information of LiDAR points
with high-quality visual shape features, the proposed multi-
modal approach enriches the semantic understanding of 3-D
vehicle objects, further improving the robustness and accuracy
of 3-D vehicle detection.

2) Results on the Validation Set: The 3-D vehicle detection
performance of PA3DNet compared to advanced methods on
the KITTI validation set is further reported, as shown in Ta-
ble II. For a fair comparison with previously published exper-
imental results, we employ the same 11 recall sample points
[0, 0.1, 0.2, . . . , 1] as MV3D [17] to evaluate the AP. PA3DNet
achieves impressive 3-D vehicle detection performance on three
difficult levels. Compared with the LiDAR-only method Pyra-
mid R-CNN [32] and multimodal method Three-Attn [11],
PA3DNet improves mAP for 3-D vehicle detection by 0.86%
and 6.46%, respectively.

Considering that the top-view representation provides explicit
localization information and is more applicable to intelligent
decision making in autonomous driving, the performance eval-
uation of 3-D vehicle localization (i.e., BEV detection) is also
reported in Table II. Specifically, the predicted 3-D vehicle
bounding boxes are projected onto the top-view plane, and
the resulting rotated 2-D bounding boxes are then evaluated
with an IoU threshold of 0.7 for BEV detection. It should be
noted that LiDAR-only methods generally show better detec-
tion performance than multimodal methods. This reveals that
the complementary association between sparse LiDAR point
cloud and image semantic features has not been well exploited
in previous camera-LiDAR fusion methods. In contrast, com-
pared to top two LiDAR-only methods, PartA2 [4] and Point-
GNN [29], PA3DNet obtains 0.38% and 0.73% mAP improve-
ments in BEV detection, which indicates the potential of our
proposed camera-LiDAR fusion method for autonomous driving
perception.
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TABLE II
PERFORMANCE COMPARISON OF 3-D VEHICLE DETECTION AND BEV DETECTION ON THE KITTI 3-D VALIDATION SET. THE RED, GREEN AND BLUE COLORS

SHOW THE TOP THREE BEST PERFORMANCE RESULTS. THE SYMBOL “-” INDICATES THAT NO PUBLISHED RESULTS ARE PROVIDED BY THE METHODS

TABLE III
PERFORMANCE COMPARISON OF 3-D MULTICLASS OBJECT DETECTION ON
THE KITTI VALIDATION SET, WHERE * INDICATES REPRODUCED RESULTS

USING THE OPEN SOURCE CODE. THE BEV DETECTION AND 3-D OBJECT
DETECTION ARE EVALUATED BY MEAN AP WITH 40 RECALL POSITIONS

D. Robustness Against Nonrigid Road User Classes

In order to promote the application of our method on 3-D ob-
ject detection of more road users, we extend a multiclass 3-D ob-
ject detection experiment for PA3DNet, evaluating on the KITTI
validation set with Car, Pedestrian, and Cyclist annotations, as
shown in Fig 6. For Pedestrian and Cyclist classes, the rotated
IoU threshold of mAP calculation is set to 0.5 according to the
general configuration [4]. The KITTI train set and validation set
provide 2207/2280 Pedestrian annotations and 734/893 Cyclist
annotations, respectively. For the multiclass 3-D object detection
experiment, we leverage the open source code3 provided by
CT3D [22] to reproduce the LiDAR-only baseline results. The
multiclass 3-D detection version of PA3DNet (PA3DNet-3CLS)
is trained for 100 epochs with a batch size of 24 and a learning
rate of 0.001 on the KITTI train set. As shown in Table III,
the results indicate that the proposed approach can improve
the performance of BEV detection and 3-D detection at each
difficulty level, especially for Pedestrian class. We argue that
the information loss of LiDAR point clouds becomes worse
for Pedestrians and Cyclists due to their smaller shape sizes,

3[Online]. Available: https://github.com/hlsheng1/CT3D

TABLE IV
PERFORMANCE COMPARISON OF 3-D VEHICLE DETECTION AT DIFFERENT

DISTANCES ON THE KITTI VALIDATION SET

while the fusion of semantic image features in the proposed
approach brings more useful contextual information. As a result,
the performance gains of 3-D pedestrian detection and 3-D
cyclist detection are more significant.

E. Effects When Point Cloud Distance Changes

The distance between the 3-D object and the LiDAR sensor
is positively correlated with the sparsity of raw LiDAR point
clouds. We investigate the benefits of the proposed ACLF mod-
ule at different distance ranges, as shown in Table IV , where the
LiDAR-only baseline method comes from CT3D [22] and only
processes the input LiDAR point cloud. The 3-D vehicle objects
in the range of [0, 30 m) have relatively dense point clouds.
By integrating ACLF module, the AP of the CT3D+ACLF
method for near-range 3-D vehicles is improved (Easy: 0.36%,
Moderate: 0.25%, Hard: 0.21%). Furthermore, distant 3-D ve-
hicle objects in the range of > 50 m have rather sparse point
clouds with highly incomplete geometric information. Due to
the adaptive compensation of abstract visual shape features,
the CT3D+ACLF method reports significant AP improvements
(Moderate: 9.67%, Hard: 2.66%), which demonstrates that the
proposed ACLF module can provide more fine-grained con-
textual information for sparse point clouds. The above results
also validate the robustness of our proposed approach when the
LiDAR density varies.

https://github.com/hlsheng1/CT3D
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TABLE V
PERFORMANCE COMPARISON OF 3-D OBJECT DETECTION ON NUSCENES

VALIDATION SET. (∗: OUR RE-IMPLEMENTATION)

TABLE VI
RUNTIME PER FRAME ON THE KITTI VALIDATION DATASET. THE TOTAL

RUNTIMES OF SINGLE THREAD AND MULTITHREADING ARE DENOTED AS S-
AND M-, RESPECTIVELY. ALL RUNTIMES ARE TESTED ON AN NVIDIA

1080TI GPU

F. Generalization to LiDAR Resolution Variations

Different from the KITTI dataset with 3-D point clouds from
a 64-beam LiDAR scan, the 3-D point cloud samples on the
nuScenes dataset are acquired from a 32-beam LiDAR sensor.
To analysis the generalization and robustness of the proposed
ACLF with LiDAR resolution variations, we conduct an ablation
study on the nuScenes validation dataset. Inspired by the BEV
representation of BEVFusion [35], we employ the same BEV
architecture to create a fusion variant, named BEV-ACLF, while
switching the fully convolutional fusion layer in BEVFusion
with the proposed ACLF module. The LiDAR branch of BEV-
ACLF is the same as TransFusion-L [34]. Table V reports the
comparison of BEV-ACLF with TransFusion-L and BEVFu-
sion on the nuScenes validation dataset. We train BEV-ACLF
on the nuScenes detection dataset following the same training
configuration settings as in [35]. Compared with TransFusion-L
and BEVFusion, BEV-ACLF achieves 3.69% and 0.58% mAP
improvement, respectively. This illustrates that the proposed
ACLF module can also benefit the cross-fusion of LiDAR point
clouds and camera features in BEV representation space. The
results also validate the generalization of the proposed method
in case of LiDAR resolution variation.

G. Qualitative Results

Fig. 7 shows the visualization results of 3-D vehicle detection
from PA3DNet and the LiDAR-only baseline method CT3D [22]
on the KITTI 3-D dataset, respectively. The predicted 3-D vehi-
cle results are visualized in both RGB images and LiDAR point
clouds. It can be seen that PA3DNet overcomes the problem of
false detection caused by sparse and irregular LiDAR points, and
also improves the missed detection cases caused by occlusion
and long distance, validating that the proposed multimodal
fusion method is beneficial for sparse LiDAR point cloud, as
shown in Fig. 6.

H. Runtime Analysis

The runtime of PA3DNet per frame is reported in Table VI.
The PSS model and the voxel-based 3-D detector can run in
parallel threads to reduce the overall runtime. We evaluate the

total runtime of PA3DNet in both single thread (i.e., each module
runs sequentially) and multithreading settings. Note that the
proposed ACLF module takes only 10 ms to fuse LiDAR point
features and semantic image features. Therefore, the latency of
the ACLF module combined with other detectors is almost negli-
gible, which further demonstrates the efficiency of the proposed
approach. It is worth mentioning that PA3DNet is modular in
design, which means that the 2-D shape segmentation model can
be easily replaced by other lightweight semantic segmentation
networks, further reducing the total running time.

V. CONCLUSION

In this article, we propose a camera-LiDAR fusion-based
3-D vehicle detection approach for accurate 3-D perception
in intelligent transportation systems. To address the high-cost
problem of image segmentation annotation in multimodal meth-
ods, a PSS model is designed to learn vehicle shape features
without prior manual image annotation. By adopting the bilinear
interpolation sampling algorithm, image semantic features are
aligned with sparse 3-D LiDAR points in a point-wise manner.
The proposed ACLF module formulates cross-modal attention
between the two modalities. As a result, the semantic informa-
tion of vehicles in the images can be reasonably encoded without
additional manual image annotations, further improving the 3-D
vehicle detection performance in challenging cases. Qualitative
and quantitative experimental results on autonomous driving
scenarios demonstrate that the proposed method is able to per-
form efficient multimodal 3-D vehicle detection in challenging
long-range environments. In summary, PA3DNet provides a new
perspective of 3-D perception for autonomous vehicles, which
is also complementary to camera-LiDAR fusion. In future work,
the resolution gap between sparse LiDAR and dense image
semantic features will be studied to preserve more image con-
textual information. The multimodal fusion framework will be
integrated into the safe navigation module of intelligent vehicles.
It will be helpful for intelligent vehicles in maintaining a safe
driving distance on urban roads and avoiding potential collisions
caused by 3-D obstacles.
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