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Attention-Guided Multitask Learning for
Surface Defect Identification

Vignesh Sampath , Iñaki Maurtua , Juan José Aguilar Martín , Andoni Rivera, Jorge Molina ,
and Aitor Gutierrez

Abstract—Surface defect identification is an essential
task in the industrial quality control process, in which vi-
sual checks are conducted on a manufactured product to
ensure that it meets quality standards. The convolutional
neural network (CNN)-based surface defect identification
method has proven to outperform traditional image pro-
cessing techniques. However, the real-world surface de-
fect datasets are limited in size due to the expensive data
generation process and the rare occurrence of defects. To
address this issue, this article presents a method for ex-
ploiting auxiliary information beyond the primary labels to
improve the generalization ability of surface defect identi-
fication tasks. Considering the correlation between pixel-
level segmentation masks, object-level bounding boxes,
and global image-level classification labels, we argue that
jointly learning features of the related tasks can improve the
performance of surface defect identification tasks. This arti-
cle proposes a framework named Defect-Aux-Net, based on
multitask learning with attention mechanisms that exploit
the rich additional information from related tasks with the
goal of simultaneously improving robustness and accuracy
of the CNN-based surface defect identification. We con-
ducted a series of experiments with the proposed frame-
work. The experimental results showed that the proposed
method can significantly improve the performance of state-
of-the-art models while achieving an overall accuracy of
97.1%, Dice score of 0.926, and mean average precision of
0.762 on defect classification, segmentation, and detection
tasks.

Index Terms—Deep learning, defect classification, defect
detection, defect segmentation, machine vision, multitask
learning (MTL), quality control, surface defect detection.
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I. INTRODUCTION

AUTOMATED visual inspection plays an important role
in industrial-informatics-based decision-making systems

in various industries, including steel manufacturing companies,
automotive industries, electronic manufacturing, and pharma-
ceutical companies. The correct, consistent, and early detec-
tion of surface defects can make it possible to detect defec-
tive products early in the manufacturing process, which leads
to time and cost savings. Inspection procedures for detecting
such defects are usually performed using nondestructive testing
(NDT) methods. NDT procedure is a combination of various
inspection steps used to identify discontinuities or defects in
a product without causing damage to its usability. The most
frequently used industrial NDT methods are visual optic testing,
radiography, X-ray vision, ultrasonic imaging, dye penetrant
testing, magnetic particle testing, and infrared thermal imaging.
The testing procedure for each of these methods involves several
steps, all of which can be easily automated. However, the final
step of visual inspection is more complex in terms of automa-
tion and remains primarily a manual process performed by
operators.

The traditional machine-vision system relies on hand-crafted
features, such as color, contrast, texture, edges, foreground–
background statistics, etc., followed by machine learning classi-
fiers, such as support vector machines, decision tree, or K-nearest
neighbors. Consequently, hand-crafted feature extraction plays
an important role in classical approaches. However, these fea-
tures are not robust and suited for different tasks, which leads to
long development cycles. Deep learning methods, on the other
hand, learn the relevant features directly from the raw data, with-
out the need for handcrafted feature representations. In recent
years, convolutional neural network (CNN) has achieved and
even surpassed human-level performance on computer vision
tasks such as image classification. The key difference between
CNN and traditional machine-vision algorithms is that CNN
automatically detects significant features without any human
supervision, which made it the most widely used. A fascinating
feature of CNN is its ability to take advantage of the spatial
or temporal correlation of image data. There are three main
problem categories for image recognition tasks using CNN:
1) classification, 2) segmentation, and 3) object detection. The
classification task aims to classify an image into a certain cate-
gory. Starting with the ImageNet Large Scale Visual Recogni-
tion Challenge winning architecture of AlexNet [1], a series
of increasingly complex architectures including ResNet [2],

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4277-7072
https://orcid.org/0000-0001-8476-4929
https://orcid.org/0000-0002-8609-1358
https://orcid.org/0000-0002-4817-6887
https://orcid.org/0000-0002-8500-5294
https://www.digiman4?0.mek.dtu.dk/
mailto:am14m016@gmail.com
mailto:inaki.maurtua@tekniker.es
mailto:andoni.rivera@tekniker.es
mailto:jorge.molina@tekniker.es
mailto:jorge.molina@tekniker.es
mailto:aitor.gutierrez@tekniker.es
mailto:jaguilar@unizar.es
https://doi.org/10.1109/TII.2023.3234030


9714 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 9, SEPTEMBER 2023

Inception [3], Densenet [4], and EfficientNet [5] have been pro-
posed in the literature for the classification task. Object detection
is a task that localizes an object using a bounding box. Some
of the notable object detection algorithms include Fast R-CNN
[6], Faster R-CNN, Mask R-CNN [7], single shot detection
(SSD) [8], You Only Look Once (YOLO) [9], etc. Segmentation
is the task of performing pixel-by-pixel classification. Several
segmentation algorithms have been proposed in the literature
including fully convolutional networks, encoder–decoder-based
approaches [10], multiscale and pyramid architectures [11], etc.

However, industrial visual inspection systems barely utilized
the potential of those complex architectures due to several
reasons [12]. One of the main reasons is that the continuous
improvement in industrial processes has resulted in fewer and
fewer defective samples or the number of defective samples
is very limited [13]. This problem of learning from a limited
number of samples is usually referred to as the small sample
problem, which can easily lead to poor generalization ability of
the trained model [14]. In addition, the target surface defects
have different scales, making the deep learning models even
more challenging to identify the small-sized defects. On the one
hand, the visual appearance of the real-world surfaces defects
varies with the type of materials, imaging conditions, and camera
position. On the other hand, it is challenging to distinguish
tiny defects from the noise or non-defect components within
an image (as shown in Fig. 1). Hence, the appearance of false
positives in a defect-free image is an inevitable circumstance.
Furthermore, real-time applications of complex CNN models are
extremely limited due to the long inference time and the resulting
higher computational resource and power consumption.

To address these limitations, we present a novel universal
architecture that integrates classification, segmentation, and de-
tection of surface defects in a single network. Our architecture,
Defect-Aux-Net, is primarily motivated by a multitask learning
(MTL) scheme that exploits useful information from related
learning tasks to help mitigate the problem of data scarcity. The
proposed architecture is based on FPN-semantic-segmentation
[11] with the additional tasks of defect classification and de-
tection to improve the generalization ability by utilizing the
image-level information as an inductive bias. Specifically, we
developed a new MTL network based on FPN, where the classifi-
cation task is carried out in the bottom-up pathway of the network
and segmentation is performed in the top-down pathway of the
network. To create a bounding box, we employ two subnetworks
in the top-down pathway, where one subnet determines the class
associated with the bounding box and the other performs the
regression to adjust the bounding box position.

The FPN-based feature extractor in the proposed network al-
lows surface defects to be recognized at vastly different scales by
efficiently sharing features between image regions. We further
introduce the positional and the channel attention mechanisms
that focus on learning the features of small surface defects to
improve the robustness of detecting small defects surrounded
by a complex background.

We evaluate our model on TekErreka, and Severstal [15] sur-
face defect datasets, with defect classification, segmentation, and
detection tasks. Experimental results demonstrate that jointly

Fig. 1. Magnetic particle inspection on threaded fasteners of differ-
ent surface finish (TekErreka dataset). Surface defects are marked by
red circles and noise due to magnetic particle depositions are marked
in yellow.

learning features of related tasks can improve the performance
of all tasks.

Overall, the contributions of our work are as follows.
1) First, we propose a Defect-Aux-Net model architecture,

which can perform classification, segmentation, and de-
tection of surface defects in a single network. Compared
with the existing state-of-the-art CNN models, this ar-
chitecture is lightweight and compact in terms of model
parameters. From the model training point of view em-
ploying fewer parameters in the architecture enables the
model to efficiently learn potential surface defects from
a smaller number of labeled examples.

2) In contrast to existing single-task learning, our proposed
MTL in surface defect detection facilitates the model
to learn useful representations of the data by exploiting
shared information from related tasks.

3) Considering surface defect detection with a complex
background, the positional and the channel attention
mechanisms are incorporated to amplify target features
and to reduce the influence of background noise.
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4) The proposed model is compact and efficient with the
state-of-the-art performance that meets the computational
resource requirements of the real-time inference speed.

II. RELATED WORK

A large and growing body of literature has explored the
use of CNN for surface defect identification. Kim et al. [16]
adopted a few-shot learning technique with a Siamese neural
network using CNN, which aims to classify surface defects with
a limited number of training images. Lin et al. [17] employed
a class activation mapping technique in CNN to simultaneously
achieve defect classification and localization tasks in the LED
chip defect inspection process. Tao et al. [18] designed cascaded
autoencoder (CASAE) architecture to segment and localize
defect region. The proposed architecture transforms the input
image into a mask prediction, and then, the defect region of
the segmented mask is classified into their specific classes. Jing
et al. [19] combined autoencoder with a fully connected network
to detect keyboard light leakage defects from mere dust. Jian
et al. [20] leveraged generative adversarial network to exaggerate
the tiny defects within the images to improve the accuracy of
different classifiers. Zheng et al. [21] proposed a three-stage
model for rail surface and fastener defect detection. In the first
stage, the YOLOV5 framework is employed to localize the
rail and fasteners. Then, an object detection model based on
Mask-RCNN is used to detect the surface defect of the rail
surface. At the final stage, the ResNet architecture is utilized to
classify defects of the fasteners. To detect defects at a different
scale, Xu et al. [22] used a pretrained ResNet model to extract
the multiscale features and fuse them using a multilevel feature
fusion network. In [23], U-Net and residual U-Net architectures
were used for the fine-grained segmentation of surface defects
on a steel sheet. The main drawback of these methods is that
the model needs a large amount of annotated data and hence the
localization of defects is very coarse in the real-time scenario.

III. PROPOSED METHOD

A. Network Architecture

Our proposed network is inspired by two deep learning ar-
chitectures that are widely used: 1) feature pyramid network
(FPN) and 2) ResNet-50. Recognizing surface defects at vastly
different scales is a fundamental challenge in the industrial
machine vision system. For this reason, we use FPN that uses a
pyramidal hierarchy of convolutional filters to extract feature
pyramids at different scales. FPN consists of two pathways:
1) bottom-up and 2) top-down. The bottom-up pathway also
known as the encoder is the typical CNN, which can be any
image classifier for feature extraction. As we go up, the en-
coder gradually decreases the spatial resolution while building
high-level feature maps. The top-down pathway is connected to
the bottom-up pathway through lateral connections for efficient
multiscale feature fusion. It is designed to enhance the feature
maps from the bottom-up pathway and build semantically strong
feature maps at multiple scales by double upscaling. As a result,
the feature pyramid has rich semantics at all levels because

Fig. 2. Sample features in different channels of top-down pathway at
stage 3.

the lower semantic features are interconnected to the higher
semantics.

1) Bottom-Up Pathway: We tested several standard image
classification architectures to select the core model and finally
chose ResNet-50 as the backbone. ResNet-50 has shown great
performance for surface defect classification, segmentation, and
detection tasks. ResNet-50 architecture has the advantage of us-
ing a stride of two for each scale reduction, which makes it easier
to incorporate ResNet-50 into FPNs when we need to upscale
feature maps in a top-down pathway. Furthermore, Resnet-50 is a
relatively small network based on modern standards; therefore,
it is suitable for our limited labeled data problem. However,
existing ResNet-50 feature pyramids have two problems in the
way they apply convolution operations to the input features.
First, the receptive field of the encoder has the information only
about the local region, so the global information is lost. Second,
the feature maps constructed from the learned weights are given
an equal magnitude of importance but some feature maps are
more important for the next layers than others. For instance, a
feature map that contains edge information of the defects might
be more important than another feature map that has background
texture information (as shown in Fig. 2). Thus, to incorporate
channel attention we adopt Squeeze-and-excitation (SE) module
[24] in the encoder. SE module consists of three components: 1)
squeeze, 2) excite, and 3) scale components.

The main goal of the squeeze component is to extract global
information from each of the channels c in a feature block U.
The global information is acquired by applying a global average
pooling operation across their spatial dimensions (H ×W ) for
each channel Uc of U to obtain global statistics (1 × 1 × C).
Mathematically, squeeze operation can be represented as

zc = Fsqueeze (Uc) =
1

H ×W

H∑

m=1

W∑

n=1

Uc (m,n) . (1)

After obtaining global information from the squeeze compo-
nent, the excite component generate a set of weights for each
channel. It uses a fully connected multilayer perceptron (MLP)
bottleneck structure to dynamically calibrate the weights. This
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Fig. 3. Structure of squeeze and excite module.

Fig. 4. Structure of spatial attention module.

Fig. 5. FPN bottom-up structure with attention module.

MLP bottleneck has two fully connected layers with sigmoid
activation as the output layer. The output of the excitation com-
ponent can formally be represented by the following equation:

s = Fexcite (z,W ) = σ (g (z,W )) = σ (W2ρ (W1, z)) (2)

where σ is a Sigmoid operation, ρ is ReLU operation, z is
the output from the squeeze component, W1 and W2 refers to
weights of the two fully connected layers. Subsequently, each
channel in the feature map is scaled by a simple elementwise
multiplication of the input feature map and weights obtained
from the excite component (as shown in Fig. 3).

Surface defects only appear in some parts of the image
but not the whole image. Unlike the conventional Resnet-50
architecture, which gives equal importance to each region in an
image, the spatial attention reduces background interferences by
assigning a weight to each pixel in the feature map.

The spatial attention focuses on the most relevant parts of the
feature maps in the spatial dimension. The working principle of
our spatial attention mechanism is as follows.

Given feature block U , we use average and max-pooling
operations along the channel axis and concatenate them to
generate an efficient feature map summary M. A convolutional
layer followed by sigmoid operation is then performed on the
feature M to produce a spatial attention map (as shown in Fig. 4).

ResNet uses four modules consisting of residual blocks,
each of which uses two blocks, 1) Identity (ID) blocks and 2)
convolution blocks, depending on whether the input / output
dimensions are the same or different. We arrange SE and SA
modules in series and integrate into a residual block (as shown in
Fig. 5).

2) Top-Down Pathway: Deep features from a bottom-up
pathway are upsampled by convolutions and bilinear upsam-
pling operations until all the feature maps reach one-fourth
scale. Attention module outputs from a bottom-up pathway
{C2,C3,C4,C5} are fused to a top-down pathway through
lateral connections for an efficient multiscale feature fusion.
First, 1 × 1 convolutional filter is applied to the feature maps
{C2,C3,C4,C5} to get a fixed number of channels and then
merged with the corresponding top-down feature map by ele-
mentwise addition. Finally, the outputs are summed and then
transformed into a pixelwise output (as shown in Fig. 6).

3) Segmentation Branch: The segmentation branch from a
top-down pathway aims at classifying pixels into a set of pre-
defined classes. The pixels corresponding to background are far
more numerous than the pixels of surface defects in the real-
world dataset, which causes the model to be biased toward the
background element. To address the pixelwise class imbalance,
we employ Dice loss, which uses the Dice coefficient to calculate
overlapping of the pixels of the predicted mask with the ground
truth label. Mathematically, the Dice loss function is defined as

Lseg = 1 − 2yŷ + 1
y + ŷ + 1

(3)

where yi is the ground truth label and ŷi is the predicted label.
The value of the Dice coefficient ranges from 0 to 1, where 1
indicates the perfect and complete overlap of pixels.

4) Classification Branch: The output of the bottom-up path-
way encodes the rich abstract feature representations of the input
image. Hence, we utilize the spatial average of the feature maps
from the bottom-up pathway via a global average pooling layer,
and then, the resulting feature vector is fed into the sigmoid or
softmax layer depending on the classification type. We employ
binary cross-entropy (BCE) as a classification loss function.
Mathematically, our classification loss is defined as

Lclass =
1
k

k∑

1

CE (yi, ŷi) (4)

where yi is the ground truth label, ŷi is the predicted label of ith
sample, and k is the total number of samples. CE is the binary
cross entropy function.

5) Object Detection Branch: We extract bounding boxes and
its associated classes by employing box regression and classifi-
cation subnets at each level of top-down pathway. The classifi-
cation subnet predicts the probability of defect presence at each
spatial location of an input image. The box regression subnet is
attached to a top-down pathway in parallel to the classification
subnet for the purpose of regressing offset from each anchor box
to the ground truth bounding boxes. To handle class imbalance
problems, we adopt focal loss [25], an improved version of cross
entropy to focus learning on hard negative examples. It is defined
as

Ldetection = −αt(1 − pt)
γ log (pt) (5)

where αt is the weight parameter per class and γ is the hyperpa-
rameter focuses on hard negative samples. We choose αt= 0.25
and γ = 4 as suggested in [26].
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Fig. 6. Overview of the proposed Defect-Aux-Net architecture. It is mainly composed of classification, segmentation, and detection module that
incorporates multitask loss function.

B. Loss Function

Our proposed method combines three loss functions from the
classification, segmentation, and detection tasks, which provide
mutual sources of inductive bias for each task. Specifically,
the segmentation and detection loss functions signal back to
the entire model (bottom-up and top-down pathway) while the
classification loss signals back only to bottom-up pathway. We
combine and weight the three losses into a multitask loss LM

to leverage the heterogeneous annotations and jointly optimize
multiple tasks as follows:

LM = βLclass + β1Lseg + β2Ldetection (6)

where β, β1, and β2 are weight parameters. We tested with
different combinations of weight parameters and found that
β = β1 = β2 = 1 yields the best result for all the tasks.

IV. EXPERIMENTS

A. Datasets

In this article, we evaluate our framework on real-world
surface defect identification problems. We use two challenging
datasets with increasing resolutions and complexities, 1) Sev-
erstal steel sheet [15] and 2) TekErreka steel fastener defect
datasets. Severstal, the largest steel and steel-related mining
company, has recently published the largest industrial steel
sheet surface defect dataset, which contains pixelwise masks
annotated by their technical experts. The dataset contains 12 568
grayscale images of size 1600×256. Each image in the dataset
has the possibility of having either no defects, a single defect,
or multiple defects divided into four classes. Fig. 7 shows
the example of steel defect images on Severstal datasets. We
randomly select 10% and 20% of the 12 568 original images
as the validation and test data. The main challenge with this
dataset is that the interclass similarities between defective and
defect-free examples are very high.

Fig. 7. Sample images of Severstal steel with four classes of defect.

The TekErreka dataset is a self-collected steel fastener surface
defect dataset based on a magnetic particle inspection proce-
dure. The magnetic particle inspection is an excellent method
to investigate near-surface defects in steel fasteners. The basic
principle is to magnetize a steel fastener parallel to its surface.
If the fastener is free from defects the magnetic field lines run
within the fastener and parallel to its surface. In case of magnetic
inhomogeneity, for instance, near cracks, the magnetic field lines
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will locally leave the surface and a leakage field occurs. When a
suspension of ferromagnetic particles is applied to the test piece
surface the magnetic particles will run off at defect-free areas.
In the places of leakage fields, the magnetic particles are at-
tracted and clustered together thus indicating the location of the
defect. The surface defects can be visible under ultraviolet light.
We acquired the TekErreka dataset from a magnetic particle
inspection apparatus located at the Erreka fastening solutions.
The defects in the TekErreka dataset differ in their size, shape,
location, and materials type and thus cover several scenarios
in real-time defect detection. The difficulty in this dataset lies
in the similarity of defects and noise due to magnetic particles
deposition on the defect-free surface of the fasteners. There are
many factors responsible for the noise component, which include
magnetic particle size, the amount of magnetic particles used,
ultraviolet light present, etc. The original examples are directly
stored in a database as RGB images of size 2464 × 2056. It has
450 positive and 1200 negative examples. We split the TekErreka
dataset into training and testing sets: 80% for training and 20%
for evaluation of the model performance.

B. Preprocessing

We resized the images of the Severstal dataset to 128×800
and the TekErreka dataset to 600×600. To keep the pixel values
in the same scale, we normalized the images using min–max
standardization. It rescales raw pixel values to a range of 0 and
1. This helps the optimizer not get stuck taking steps that are too
large in one dimension, or too small in another.

C. Data Augmentation

To improve the diversity of the training set, we apply ran-
dom but realistic data augmentation such as rotation, verti-
cal/horizontal flips, zoom, shear, and channel shifts.

D. Training Details

The Defect-Aux-Net is implemented using the Tensorflow
framework. All the experiments are run on Google-cloud TPU
V2 infrastructure, which contains 8 cores with 64 GB memory.
The network is optimized with the Adam optimizer and trained
with a batch size of 128 for 50 epochs. We adopt one cycle policy
[27] to find an optimal learning rate.

E. Evaluation Metrics

The classification results are evaluated using precision, recall,
F1-score, and binary accuracy

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FP
(8)

F1Score =
2 · (Precision · Recall)
(Precision + Recall)

(9)

Accuracy =
TP + TN

TP + FP + TN + FN
(10)

TABLE I
PERFORMANCE OF THE PROPOSED APPROACH ON LOSS VARIANTS FOR THE

DEFECT SEGMENTATION TASK

where TP, TN, FP, and FN denote true positive (correctly iden-
tified surface defects), true negative (correctly identified non-
defect images), false positive (erroneously classified images as
surface defect), and false negative (erroneously classified images
as non-defect). Precision measures the percentage of images
with surface defects that are correctly classified while recall is
the ratio of correctly classified images with surface defects to
all images with surface defects. F1-score can be interpreted as a
harmonic mean of precision and recall. The overall performance
of the classification task is measured by its accuracy.

The segmentation results are evaluated using Dice score and
Intersection-over-Union (IoU), which quantify the percentage
overlap between the predicted and target binary masks. To
evaluate defect detection results, we used the mean average
precision (mAP) that compares the detected bounding box to
the ground truth bounding box and returns a score.

F. Experiments on Defect Segmentation

We performed a series of experiments on the TekErreka
dataset to test the effectiveness of different loss functions. First,
we trained Defect-Aux-Net using BCE, and Dice loss alone as
the segmentation loss. Then, it was trained using a combination
of loss functions. The results are shown in Table I.

Using Dice loss alone yielded more accurate results than using
a combination of losses. Additionally, the Dice loss function
assisted our model to converge faster. We use the Dice loss
function throughout rest of the experiments.

To verify the effectiveness of the segmentation task using
the MTL strategy, we compared the proposed MTL network
(Defect-Aux-Net) against the following network with the same
bottom-up backbone (Resnet50 + SE + SA attention module).

1) FPN [11]: This is the original FPN architecture without
the MTL strategy and serves as our baseline.

2) UNet [10]: This network uses an encoder for multilevel
feature extraction and a decoder that scales them up and
combines multilevel features through stacking.

3) LinkNet [28]: This is similar to UNet with the difference
of replacing stacking operation with addition in skip
connections.

4) PSPNet [28]: Pyramid scene parsing network uses a pyra-
mid pooling module for multiscale feature extraction.

Based on the experimental results, we observed that the pro-
posed multitask learning strategy achieves better segmentation
performance as compared to the state-of-the-art segmentation
models. The Dice and IoU scores of the various segmentation
models on the Severstal dataset are depicted in Figs. 8 and 9.
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Fig. 8. IOU comparison between the state-of-the-art segmentation
methods and the proposed approach on each type of defect classifi-
cation.

Fig. 9. Dice score comparison between the state-of-the-art segmen-
tation methods and the proposed approach on each type of defect
classification.

TABLE II
PERFORMANCE OF THE COMPETING MODELS ON THE TEKERREKA DATASET

We observe that Defect-Aux-Net is able to achieve higher
scores for all classes as compared to the other segmentation
models. Table II shows the performance of the various networks
on the TekErreka dataset. Experimental results from Table II
showed that the proposed multitask learning can improve the
performance of its corresponding single-task model. Taking
advantage of the classification-guidance module, Defect-Aux-
Net avoids the oversegmentation of defects in a complex back-
ground.

TABLE III
COMPARISON OF PERFORMANCE OF DEFECT-AUX-NET AND

STATE-OF-THE-ART CLASSIFICATION MODELS

G. Experiments on Defect Classification

We evaluated and compared the classification task perfor-
mance of the proposed approach with the state-of-the-art deep
learning architectures. While evaluating the classification task,
the other two modules, segmentation and detection, are removed
from the network. The results of the experiments are summarized
in Table III. It can be noted that most errors are due to false pos-
itives. The visual similarity between defects and surface noise
leads to false positive errors. Notably, Defect-Aux-Net obtains
overall accuracy of at least 92.9% and at most 99.4% across all
defect types on the Severstal dataset. Based on the experimental
results, we observe that the proposed MTL approach achieves
a surpassing performance over the other models. Also, it is
evident that incorporating the segmentation task improves the
performance of the classification task and vice-versa.

To assess the effectiveness of the proposed approach against
the limited data problem, we removed part of the training data
and conducted a series of experiments leaving 90%, 75%, and
50% from the training data. The effect of training data size on
its accuracy is shown in Fig. 10. The proposed Defect-Aux-Net
showed a consistent performance even when only 50% of the
original training data is used in training. As seen, the proposed
multitask loss function greatly improves the performance of
the classification task by taking image, pixel, and map level
optimization into consideration.

To verify the importance of the attention mechanisms in
Defect-Aux-Net, we compared the accuracy of the network with
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Fig. 10. Training data size versus classification accuracy of the Sever-
stal dataset.

TABLE IV
EFFECT OF USING ATTENTION MECHANISMS ON TEKERREKA DATASET

and without spatial and channel attention mechanism (squeeze
and excite) on the TekErreka dataset, as shown in Table IV.
Furthermore, we experimented with inserting a combination of
both spatial and channel attention mechanisms.

H. Experiments on Defect Detection

The proposed model is compared with other object detection
algorithms on the TekErreka dataset. The comparative models
include SSD [8], RetinaNet [25], and cascade R-CNN [30].
Fig. 11 shows the mAP scores of the various detection models
for the TekErreka dataset. We observe that Defect-Aux-Net
is able to achieve a higher mAP score as compared to the
alternative networks. The mAP of the proposed algorithm is
17.95%, 43.77%, and 26.03% higher than that of RetinaNet,
SSD, and Cascade RCNN.

I. Inference Time

In addition to the model performance, we attempt to determine
the effectiveness of the MTL framework on the inference time.
We compared the inference time of the proposed approach with
a conventional single-task network where each task requires
a separate pass through the network during inference. All the
inference time was measured using a computer with an Intel Core
processor. The CPU specification is summarized in Table V.

Fig. 11. mAP comparison between the state-of-the-art detection mod-
els and the proposed model.

TABLE V
SYSTEM SPECIFICATION

TABLE VI
COMPARISON OF THE INFERENCE TIME OF DEFECT-AUX-NET AND BASELINE

MODEL

From Table VI, we can see that our proposed framework
allows for a 57.1% reduction in the model size by solving
different tasks jointly rather than independently. Compared to
the single-task network, the inference time of our proposed
network reduces by 45.5%.

V. DISCUSSION

By incorporating the MTL strategy, our proposed Defect-
Aux-Net improves the performance of defect classification,
segmentation, and detection tasks. Intuitively, the multitask
deep learning system can provide regularization effects to the
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multiscale feature learning and thus improve the performance as
opposed to the single-task algorithms. Also, the MTL framework
can save computational inference time as only a single network
needs to be evaluated for three different tasks. The experimental
results show that our proposed algorithm greatly improves the
performance of the surface defect identification tasks compared
to other state-of-the-art deep learning algorithms.

VI. CONCLUSION

In this article, we described an attention-guided MTL scheme,
which combines classification, segmentation, and defection for
automated surface defect detection. Specifically, we proposed
an extended FPN architecture with Resnet-50 incorporated as
the encoder section of the model. The hybrid loss function
is introduced to enhance the performance of the model. An
overall accuracy of 97.1%, Dice score of 0.926, and mAP of
0.762 on classification, segmentation, and detection tasks of the
TekErreka dataset were achieved with Defect-Aux-Net.
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