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Abstract—Finite control set model-predictive control ap-
pears an interesting and effective control technique for
cascaded H-bridge converters but, because of its compu-
tational complexity, becomes impractical when the number
of levels of the converter increases. This article proposes
a neural-network-based approach capable of overcoming
the computational burden of conventional predictive con-
trol algorithms. The proposed control is, then, applied to a
cascaded H-bridge static synchronous compensator using
a field-programmable gate array and tested via hardware in
the loop. Results and analysis demonstrate that the optimal
control of multilevel converters with many levels can be
obtained with low computational effort.

Index Terms—Model-predictive control (MPC), multilevel
converters (MLCs), neural networks (NNs), power convert-
ers, static synchronous compensator (STATCOM).

I. INTRODUCTION

CASCADED H-bridge multilevel converters (CHB-MLCs)
are characterized by well-known advantages, such as mod-

ularity, lowdv/dt, operations at low switching frequency, and, in
medium-voltage systems, the possibility of avoiding step-up or
step-down transformers [1], [2], [3]. During the past few years,
the model-predictive control (MPC) strategy has been attracting
increasing attention from researchers and practitioners also in
the field of power converters [4], [5]. The most popular declina-
tion of MPC is the so-called finite control set model-predictive
control (FCS-MPC), where the control problem is formulated
considering the switching combinations of the converter as
a finite and countable set of inputs [6], [7]. The possibility
of directly controlling the switching signals avoids the use
of a modulator, provides a fast dynamic response, and limits
switching frequency, thus ensuring low losses for the converter.
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FCS-MPC is also popular for its simplicity since it just searches
for the best switching pattern driving the converter [8]. However,
in MLCs, computational complexity grows exponentially with
the number of levels of the converter. Therefore, calculating
the optimal input for the next sampling step becomes chal-
lenging [9]. Significant efforts can be found in the literature
to improve the efficiency of FCS-MPC algorithm to make it
implementable in a few tenth microseconds. One possible ap-
proach is reducing the search space within a subset of all the
possible inputs. However, with this approach, only a suboptimal
solution can be found with the existing real-time constraints [10],
[11], [12]. Nasiri et al. [13] and Ni and Narimani [14] proposed
control strategies that explicitly exploit system’s dynamics.
However, they do not compute the control solving an opti-
mization problem. In [15], the optimization problem is solved
by employing a sphere decoding algorithm. However, it re-
quires the determination of an initial radius and involves several
iterations.

An interesting case is the control of the CHB-MLC static
synchronous compensator (CHB-STATCOM), which is one
of the most advanced flexible alternative current transmission
systems and is capable of regulating and stabilizing the grid
voltage through the control of the reactive power. STATCOMs
are commonly used in the stabilization of medium-voltage ac
lines; hence, they take advance from multilevel topologies with
a large number of levels, which makes their control with the FCS-
MPC strategy challenging. Because of the high computational
complexity and nonlinearity, a common solution divides the
overall optimization problem into subproblems that are solved
separately [16], [17], [18]. For instance, Zhang et al. [16] pro-
posed first solving the current control problem and then ensuring
voltage balancing. The resulting computational complexity is
polynomial. Zhang et al. [19] proposed a branch and bound
strategy to further reduce the computational complexity of the
current controller, obtaining an algorithm with linear complex-
ity. However, the number of computations is still high.

Owing to the large number of signals necessary to drive their
power switches, MLCs usually employ field-programmable gate
arrays (FPGA)s because they make available a large amount of
input/output pins necessary for driving the signals of the CHB
converter. Moreover, they are used for acquiring inputs, for the
modulation algorithm, and for achieving the highest computa-
tional speed [20], [21], [22]. Zhang et al. [20] implemented the
polynomial-level FCS algorithm in [19] by employing a DSP
for the main calculations of the control law, accompanied by an
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FPGA for reading the analog input signals, for sending the gate
signals to the switches, and for hardware acceleration of most
expensive parts of algorithm computation. Owing to the large
number of computations needed by an FCS-MPC approach, it
is a good solution to implement the overall control law on the
FPGA [23], [24], [25], [26].

In recent years, machine learning (ML) techniques have been
widely used in many engineering fields. One popular application
in the automatic control field is to approximate a control law
that is too computationally expensive to be implemented in real
time. With offline computations, the ML procedure computes
a nonlinear function that embeds the optimization solver. This
function can be used in online implementation as a replacement
for the original controller. In [27], a shallow neural network
(NN) is trained to learn the MPC law for a two-level inverter
for different circuit parameters and loads. In [28], the same
strategy is applied to reduce the computational cost of a two-level
inverter when considering horizons equal to one, two, and three.
In [29], horizons 1 and 2 are evaluated on a three-level neutral
point clamped topology. In [30], an NN is used for a flying
capacitor multilevel topology. A comparison of timings and
space complexity of the algorithm is carried out, and the number
of output neurons linearly depends on the number of levels.
In [31], a comparison between classification and regression NNs
for modular MLCs is presented, where regression turns out to
be more effective than classification. Timings are compared for
predictive horizons of lengths one and two. In [32], different
ML techniques are compared for approximating MPC on a CHB
inverter. In a previous work [33], a preliminary methodology was
proposed for deriving an NN capable of learning the optimal
FCS-MPC. Owing to the low computational burden and the
hardware acceleration, it is not necessary to consider the step
ahead delay, and the control input is actuated in the same
sampling interval.

The manuscript presents: 1) a deep study of the performance
of the NN-MPC compared to the FCS-MPC on both the steady-
state and transient conditions; 2) the generalization of the al-
gorithm for different numbers of levels and prediction horizons
via simulative results and the analysis of the performance when
weighting coefficients and number of neurons change; 3) the de-
scription at the register transfer level (RTL) of the experimental
implementation of the NN-MPC on the FPGA platform; 4) the
evaluation of clock cycles needed for the algorithms execution
and the actual time spent in computations on a Cyclone V
FPGA on DE-10 Nano board; and 5) the analysis of the impact
of the computation delay on the controller performance via
hardware-in-the-loop simulation by employing the FPGA and
the Simulink model.

The rest of this article is organized as follows. In Section II,
the FCS-MPC strategy for a CHB inverter is discussed, and
the NN-MPC approach is derived. In Section III, the CHB-
STATCOM mathematical model is described. In Section IV,
the FCS formulation for a CHB-STATCOM is presented. In
Section V, the simulation results are discussed. In Section VI,
the RTL implementation of the two algorithms is described, the
number of computations is derived, and the HIL comparison is
presented. Finally, Section VII concludes this article.

Fig. 1. Cascaded H-bridge inverter.

II. MPC OF A CASCADED H-BRIDGE INVERTER

A. Finite Control Set Model-Predictive Control

Consider a general CHB inverter composed of N H-bridges
per phase as in Fig. 1. The currents are governed by Kirchhoff’s
laws

L
dia,b,c
dt

= vs(a,b,c) −Ria,b,c − va,b,c (1)

where ia,b,c are the three-phase currents, va,b,c are the volt-
ages at the inverter output, vs(a,b,c) are the voltages at the load
side, and R and L are the resistance and the inductance of
the load, respectively. Using the Clarke transformation, the αβ
reference frame currents are given by

L
diα,β
dt

= vs(α,β) −Riα,β − vα,β . (2)

Previous equations, discretized via Euler approximation, be-
come

iα,β (k + 1) = iα,β(k)

+
T

L

(−Riαβ(k) + vs(α,β)(k)− vα,β(k)
)
(3)

where T is the sampling interval and k is the generic sampling
instant.

In the FCS-MPC, the state in the next sampling instant is
predicted using the dynamical model of the system. The control
law calculations consist of the minimization of an optimization
function, which generally includes two weighing terms: one for
the deviation of the state from a reference value and the other
for the effort of the controller. The FCS current control aims to
solve the following minimization problem:

min
Sα,β(k)

h∑
p=1

( ∥∥irefα,β (k + p)− iα,β (k + p)
∥∥
Qi

+ ‖Sα,β(k + p− 2)− Sα,β(k + p− 1)‖Qs

)
s.t. (1)

Sα,β(k) ∈ Vα,β (4)
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where the first term is the weighted norm of the error between
the reference current and the predicted current at time k + p,
while the second term weights the variation of the applied
switching vector to limit the switching loss of the converter.
The weighting matrices can be expressed as Qi = wi × I and
Qs = ws × I , where I is the 2×2 identity matrix andwi and ws

are scalar numbers. The prediction horizon h determines the
number of future predictions to be computed, and the optimal
input Sα,β(k) is searched within the set of all the possible
switching combinations Vα,β .

With the FCS approach, the solutions are reached by comput-
ing the cost for each possible vector and, then, its minimum. The
prediction is computed making an explicit use of the model in (1)
imposing the CHB output vs(α,β)(k) = VDC Sα,β(k), whereVDC

is the nominal dc-link voltage. The number of possible switching
vectors is (12×N 2 + 6×N + 1)h, and the exhaustive search
algorithm is quadratic with respect to the number of levels and
exponential with respect to the prediction horizon.

B. Neural Network Model-Predictive Control

In MLCs, the complexity of the controller becomes challeng-
ing when the number of levels becomes relevant, as occurs in
medium-voltage systems. To overcome this difficulty, a novel
approach is proposed to solve the optimal current control prob-
lem via an NN approximation, which consists of two distinct
steps: in the first step, the CHB is simulated and the optimal vec-
tors Sαβ(k) are computed solving (4) for all the collected con-
figurations of iref

α,β(k), iα,β(k), vs(α,β)(k), Sα,β(k − 1). Further
data are collected by solving the control problem for random
configurations. In the second step, the overall dataset is used
to train an NN to obtain optimal current control inputs. A
shallow NN is employed, using the Bayesian regularization
backpropagation to minimize the sum squared error. The NN
has eight input and two output variables; therefore, the input
and output neurons are eight and two, respectively.

It is proposed to use η hidden neurons with a hyperbolic
tangent activation function and a simple linear one for the output
layer. Note that the computational complexity of the NN does not
depend on the number of levels and prediction horizons and is
only given by the adopted architecture. For the considered simple
NN, 8 × η + η × 2 sums and multiplications and η activation
function computations are needed. This approach brings a closed
form of the approximated solution of the optimal problem, which
can be quickly calculated in real time. Since it is not possible to
obtain a feasible result by simply rounding the Sαβ vector, the
result is transformed into a reference frame, in which the α-axis
is delayed by π/3, obtaining the S

π/3
αβ vector

S
π/3
αβ =

√
3

[
cos

(
−π

3

)
sin

(
−π

3

)
0 1

]
Sαβ

=

⎡
⎣3

2
−
√

3
2

0
√

3

⎤
⎦Sαβ .

Then, the feasible points are arranged on a grid with orthogonal
axes. The transformation also provides a scale factor in order

Fig. 2. NN current control with η = 8 hidden neurons.

to make them integer values. In this way, the feasible switching
vector is obtained by rounding S

π/3
αβ . Hence, the inverse trans-

formation into the abc frame leads to

Sabc =

⎡
⎢⎣

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

⎤
⎥⎦Sαβ =

⎡
⎢⎣

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

⎤
⎥⎦
[

2
3

1
3

0 1√
3

]
S
π/3
αβ

=

⎡
⎢⎣

2
3

1
3

− 1
3

1
3

− 1
3 − 2

3

⎤
⎥⎦S

π/3
αβ .

The NN, including the reference transformation, is shown in
Fig. 2.

III. CHB-STATCOM MODEL

The proposed approach is tested using a CHB-STATCOM
composed of an inverter with N H-bridges per phase, each one
including a dc-link capacitor C. The converter is connected with
the grid through a series inductor L, as shown in Fig. 3. Each
H-bridge can output positive, negative, or zero voltage, whose
rated value is VDC.

According to this, the system can be modeled considering the
inputs of the system as discrete variables s(a,b,c)i ∈ {−1, 0, 1},
where i = 1, . . ., N indicates that the H-bridge i of a, b, c phases
is supplying negative, zero, or positive voltage. The total output
voltage of the STATCOM is the sum of the individual cells’
output voltages

va,b,c =
N∑
i=1

s(a,b,c)i vDC(a,b,c)i �
N∑
i=1

s(a,b,c)iVDC (5)

where vDC(a,b,c)i is the dc-link voltage of the ith cell of the
corresponding phase. Since the inverter is sized to have a small
ripple voltage on the dc side, usually vDC(a,b,c)i is assumed to
be equal to VDC. The dynamic model of the CHB-STATCOM is

L
dia,b,c
dt

= vs(a,b,c) −Ria,b,c − va,b,c

C
dvDC(a,b,c)i

dt
= s(a,b,c)iia,b,c, i = 1, . . ., N (6)
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Fig. 3. Schematic diagram of a CHB-STATCOM.

where ia,b,c are the three-phase currents fed by the inverter,
vs(a,b,c) are the three-phase grid voltages, andR is the equivalent
resistance of the STATCOM. Using Clarke’s transformation and
discretizing, we have

iα,β (k + 1) = iα,β(k)

+
T

L

(
vs(α,β)(k)−Riα,β(k)− vα,β(k)

)
(7)

vC(a,b,c)i (k + 1) = vC(a,b,c)i(k) +
T

C

(
s(a,b,c)i(k)ia,b,c(k)

)
.

(8)

IV. MPC FOR CHB-STATCOM

As discussed in [33], the FCS-MPC problem can be divided
into three distinct subproblems: 1) current tracking, which is
presented in Section II; 2) cluster voltage balancing; and 3) indi-
vidual voltage balancing. Once the switching vectorSαβ is com-
puted, it is transformed into abc coordinates. The zero-sequence
voltage is computed to balance the three clusters. Given the
predicted average voltages of the three clusters va,b,c(k + 1),
the cluster voltage balancing problem is

min
Sa,b,c(k)

∥∥∥vrefa,b,c (k + 1)− va,b,c (k + 1)
∥∥∥
Qcb

+ ‖Sa(k) + Sb(k) + Sc(k)‖Rcb

s.t. va,b,c (k + 1)=va,b,c(k)+
T

Ceq
(Sa,b,c(k) ia,b,c(k))

Sa,b,c(k) ∈ Va,b,c (9)

where Ceq is the equivalent phase capacitance, equal in all the
phases. The first term is a weighted norm of the deviation of
the three cluster voltages from the reference value, and the
second term aims to reduce the common-mode voltages. Then,
the control algorithm searches among the redundant vectors in
the abc coordinates, which are 4N + 1.

The third subproblem aims to find which H-bridges must
supply the voltage in the proper polarity to obtain the overall
desired voltage. Specifically, the individual voltage balancing
problem solves the following optimization problem for each
phase:

min
s(a,b,c)i(k)

∥∥∥vref
C(a,b,c)i (k + 1)− vC(a,b,c)i (k + 1)

∥∥∥
Qv

+
∥∥s(a,b,c)i(k)− s(a,b,c)i (k − 1)

∥∥
R

s.t. (8)

N∑
i=1

s(a,b,c)i(k) = S∗(a,b,c)(k)

s(a,b,c)l × s(a,b,c)m ≥ 0 ∀ l, m = 1, . . ., N : l 	= m (10)

whereS∗(a,b,c)(k) is the switching vector computed by (9). Zhang
et al. [16] also proposed an efficient algorithm for solving the
capacitor voltage balancing problem. The solution can only be
s(a,b,c)i(k) ∈ {0, 1} ifS∗(a,b,c)(k) ≥ 0; otherwise, s(a,b,c)i(k) ∈
{−1, 0}: the optimization problem becomes a {0, 1} program-
ming problem. Then, rather than computing the cost for every
possible {0, 1} combination of the switching states, which
are 2N + 1, the cost increment in choosing 1 rather than 0 is
computed for every phase cell. Once theN costs are determined,
they are sorted in ascending order, and the first |S∗(a,b,c)(k)|
elements of the array identify the best possible s(a,b,c)i(k) that
must be selected to ensure the desired phase voltage. With this
procedure, the computational cost is no longer exponential and
is limited to the cost of the sorting algorithm, which must sort
an array of N elements.

V. SIMULATION RESULTS

A. Training Procedure

The power system in [34] was used as a test bench for the
STATCOM. The original test bench was modified to deal with
a medium-voltage grid. In particular, the voltage source was set
to 10 kV, while the nominal power was set to 6 MVA. The CHB-
STATCOM replaced the original two-level STATCOM. Three
different case studies were considered, i.e., three STATCOM
configurations with N = 5, 10, and 20 H-bridges, respectively.
STATCOMs were sized to account for grid voltage variations of
±20% of the nominal voltage, providing up to ±600 kvar. The
inductor was 44 mH, while the capacitors for the three cases were
2600 V–250 μF, 1300 V–500 μF, and 650 V–1000 μF [3]. The
test bench simulates changes in the voltage source propagating
through grid elements until they reach the node where the
STATCOM is connected. Several step changes in the source
voltage were simulated in the interval of [0.8, 1.2] per unit (p.u.)
voltage. In this way, the STATCOM, controlled by FCS-MPC,
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reacted by providing reactive power in all the ranges of the rated
STATCOM power (600 kvar). For each configuration of N ,
η, (wi, ws), and h, the data were collected from a simulation
of 8 s with 80 step changes. Since the controller sampling
time was 40 μs, the overall dataset was composed of 200 000
samples. Starting from this dataset, a further dataset was cre-
ated by perturbing the inputs of the optimization problem, i.e.,
iref
α,β(k), iα,β(k), vs(α,β)(k), and Sα,β(k-1), with random noise

and computing the optimum valuesSαβ(k) for these new points.
The original dataset and the perturbed one were merged into one
dataset: this procedure gives robustness to the learning proce-
dure and improves the NN performance. Once the dataset was
collected, several NNs were trained in MATLAB, changing the
activation functions of hidden and output neurons, training algo-
rithms, and performance indexes. The training dataset was 70%
of the overall set, while the validation and the test datasets were
15%. For each configuration, the three sets (training, validation,
and test) were collected randomly grabbing the points from the
overall set. In this way, every learning procedure had a different
division of the datasets and computed a slightly different NN;
therefore, it was possible to select the best one. This procedure
was done to reduce the effect of dataset division on the NN
performance. In this article, ten NNs were trained for each
parameter combination, and the best one was selected. The best
NN had hyperbolic a tangent function (“tansig”) in the hidden
neurons and a linear activation function (“purelin”) in the output
neurons, while the Bayesian regularization (“trainbr”) was used
for the learning procedure, considering as performance index
the sum squared errors (“sse”). The selected NN was the one
with minimum sum squared error. A shallow NN was employed
since it was the simplest architecture and was accurate enough
for our scope. Each NN training, considering 1000 epochs, takes
on average about 4 min to be computed on the authors’ PC (on
11th Gen Intel Core i7, eight cores, 2.8 GHz, 8-GB RAM, Linux
Ubuntu 20.04, MATLAB 2021b).

B. Performance Evaluation

The performance of the different approaches was compared
considering the mean absolute error (MAE) between current
and reference, the switching frequency, and the total harmonic
distortion (THD) on steady state and evaluating the transient re-
sponse. The NN-FCS approach was tested using varying number
of levels, weighting parameters, number of hidden neurons, and
prediction horizon.

1) Different Numbers of Levels N : In order to analyze the
generalization of the NN approach for different levels, three
CHB inverters were considered, with N = 5, 10, and 20 H-
bridges. The weighting coefficients (wi, ws) were fixed to (1,
0.1), and η = 8 hidden neurons are considered with a prediction
horizon h = 1. Fig. 4 shows the switching frequency of the
controllers for different steady-state conditions of the quadrature
current reference. The frequency is not fixed due to the absence
of a modulator and varies according to reference changes.

Fig. 5 presents the MAE, while Fig. 6 shows the THD. Fig. 7
presents the transient state, showing the dynamic response to
a Δiq step. It turned out that the NN-MPC controller provides

Fig. 4. Steady-state switching frequency at N = 5, 10, 20.

Fig. 5. Steady-state MAE at N = 5, 10, 20.

Fig. 6. Steady-state THD at N = 5, 10, 20.

Fig. 7. Transient operations at N = 5, 10, 20.

TABLE I
AVERAGE PERFORMANCES FOR DIFFERENT LEVELS

a slightly lower frequency and harmonic distortion, compatible
reference errors in steady state, and a slightly slower dynamic
response. Moreover, it follows the optimal controller trend,
irrespective of the number of levels of the converter, making the
NN a general solution and a promising alternative for real-time
implementation. Table I summarizes the average performances.
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Fig. 8. Step response outside the nominal range; N = 10.

Fig. 9. Step response frequency outside the nominal range, N = 10.

Further tests were carried out to analyze the system outside
the nominal conditions to evaluate the performance of the NN
controller in a region outside the training dataset. In particular,
a voltage 20% higher than the nominal value was applied, and
a current 20% higher than the rated value was supplied. The
grid voltage was 1.4 p.u., and the reference quadrature current
step was 1.2 p.u. Fig. 8 shows the step response for the N =
10 inverter. A zoom of the αβ currents is shown highlighting
the satisfactory dynamic response. Fig. 9 shows the switching
frequencies when applying the two controllers. The NN was
able to generalize the control law even on operational conditions
not considered in the training dataset. This result is still valid
for N = 5 and N = 20 STATCOMs, but the relative plots are
omitted for space reasons.

2) Different Weighting Coefficients (wi, ws): The weighting
factors of the FCS-MPC cost function in (4) allow a tradeoff
between tracking performances and switching losses. By in-
creasing the ratio wi/ws, the controller gives higher priority to
reference error minimization at the expense of the switching
frequency. Once the weighting factors are suitably tuned, it
is possible to train the NN that will approximate the desired
controller behavior. In order to evaluate the NN performance
under different tuning parameters, tests were carried out by
varying the FCS-MPC weighting coefficients (wi, ws) between
(1, 0), (1, 0.1), (1, 0.5), (1, 1), and (0.5, 1). Thus, different
NNs were trained to learn the controllers with different tuning
parameters. The following tests refer to the N = 10 case, with
η = 8 and h = 1. Figs. 10– 12 show the switching frequencies,
the MAE, and the THD at steady state for the different control

Fig. 10. Steady-state switching frequency at different weights.

Fig. 11. Steady-state MAE at different weights.

Fig. 12. Steady-state THD at different weights.

Fig. 13. Transient operations at different weights.

tunings, respectively. As the ratio increases, the MAE and the
THD decrease at the expense of a higher switching frequency.
Conversely, as the ratio decreases, the switching frequency
becomes lower but MAE and THD increase. The step response
in Fig. 13 shows that a low ratio also impacts the transient state,
increasing both settling time and overshoot, as evident in the
case (wi, ws) = (0.5, 1).

3) Different Hidden Neurons η: The tradeoff between the
performance and complexity of the NN is a key factor for the on-
line implementation. In order to find the best tradeoff, tests were
carried out by training NNs with a different number of hidden
neurons. Starting from the data collected for the case in which



SIMONETTI et al.: NEURAL NETWORK MODEL-PREDICTIVE CONTROL FOR CHB CONVERTERS WITH FPGA IMPLEMENTATION 9697

Fig. 14. Steady-state switching frequency at different hidden neurons.

Fig. 15. Steady-state MAE at different hidden neurons.

Fig. 16. Steady-state THD at different hidden neurons.

Fig. 17. Transient operations at different hidden neurons.

N = 10, (wi, ws) = (1, 0.1), and h = 1, different NNs were
trained with hidden neurons equal to 2, 4, 8, 16, and 32. Figs.
14–16 show the performance of the different NN architectures,
while Fig. 17 presents the transient state. The tests above showed
that even an NN with just two hidden neurons was enough
to stabilize the system. However, its performance was poor if
compared to NNs with more neurons. The performance analysis
suggested that η = 4 was sufficient to guarantee satisfactory
results. At the same time, η = 8 was the best option since it
generated the lowest switching frequency, and its performance
was compatible in terms of THD and MAE with respect to
η = 4, 16, 32.

Fig. 18. Steady-state switching frequency at different prediction hori-
zons.

Fig. 19. Steady-state MAE at different prediction horizons.

Fig. 20. Steady-state THD at different prediction horizons.

4) Different Prediction Horizons h: By increasing the pre-
diction horizon of the FCS-MPC, it is possible to improve
the overall performance of the controller [7]. In order to test
the ability of the NN approach to learn multiple horizons,
FCS-MPC tests were carried out by changing the prediction
horizon. Since the increase of the control horizon led to a
dramatic increment in computations, horizons larger than three
were not tested. It turned out that horizon h = 2 led to better
performances with respect to the case in which h = 1. Choosing
h = 3, the one-step prediction controller was improved, but
no significant improvements were found by changing h from
2 to 3. For this reason, NN approximations were tested just
for h = 1 and 2. Figs. 18–20 show the steady-state switching
frequency, MAE, and THD, respectively, for the case in which
N = 5, (wi, ws) = (1, 5), approximated with η = 8 NNs for
horizon h = 1, 2. The NN-MPC tended to have slightly lower
switching frequency and slightly higher THD when compared
with the original FCS-MPC. Fig. 21 presents the transient
response of the controllers, showing a slightly lower settling
time of the NN approximations compared with the FCS-MPC.
Table II summarizes the average performance for horizons
h = 1, 2.
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Fig. 21. Transient operations at different prediction horizons.

TABLE II
AVERAGE PERFORMANCE FOR DIFFERENT HORIZONS

VI. HARDWARE-IN-THE-LOOP SIMULATIONS

Hardware-in-the-loop tests were carried out for N = 5, 10,
and 20 cases. The weighting parameters were fixed to (wi, ws) =
(1, 0.1). The number of hidden neurons was η = 8: the best
tradeoff between accuracy and cost complexity for the discussed
implementation. The prediction horizon was h = 1 to allow a
fair comparison with the FCS-MPC, whose classical solution is
impractical for larger horizons with a large number of levels.

A. RTL Implementation

In this section, the RTL implementation is discussed, pre-
senting the algorithmic state machines (ASMs) that realize the
sequential steps of the algorithm and giving insights into the
combinatorial part. In the ASMs, the notation <= is a signal
assignment, while←means that a register is updated, implying
that the value is changed in the next clock cycle. The ASM
that implements the NN calculation for η = 8 is shown in
Fig. 22. The pre- and postprocessing calculations computed
by the MATLAB NN are implemented in the corresponding
states. The layer computations are implemented by using eight
adders and eight multipliers opportunely multiplexed to create a
pipeline structure to speed up the algorithm: the red lines in
the figure underline the different stages of the pipeline. The
activation function of the hidden layer is computed using a
lookup table (LUT in the figure). The NN output is transformed
into S

π/3
αβ in order to compute the feasible switching vector. It

is, then, transformed into the abc coordinate considering null
zero-sequence obtaining S0

abc. The cluster voltage balancing
problem is solved by explicitly computing the cost for all the
possible abc vectors that ensure the αβ computed values. Start-
ing from S0

abc, the maximum and minimum possible values of
the zero-sequence component are obtained, namely, smax

γ and
smin
γ . The costs are computed for all the admissible values, that

are Si
abc = S0

abc + i, smin
γ ≤ i ≤ smax

γ , and the abc vector that

Fig. 22. NN algorithmic state machine.

minimizes the cost is selected. In the ASM in Fig. 23, the cost is
initialized to be the maximum stored value, while the optimum
value is initialized to be S0

abc. The constabc value includes the
term that is constant during the operations in the same sampling
interval (INIT1). The minimum and maximum values between
S0
a, S0

b , and S0
c are evaluated in order to compute the maximum

and minimum zero-sequence admissible voltages (INIT2 and
INIT3). The costs are individually calculated by employing 12
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Fig. 23. Cluster voltage balancing ASM.

adders and 12 multipliers multiplexed in an eight-level pipeline
structure. The minimum cost and the optimal vector are iter-
atively updated by employing the comparator circuits in the
figure.

The individual voltages balancing problem is solved for each
abc phase starting from the optimal value Smin

abc. It proceeds as
follows: the cost for each H-bridge is computed; then, the cost
array is sorted in increasing order. The first |Smin

abc|H-bridges are
selected to be 1 or −1 according to the sign of Smin

abc, while the
others are set to 0. Fig. 24 presents the implementation of the
different steps, computed concurrently for each phase.

Fig. 24. Individual voltage balancing ASM.

The first ASM is related to the computation of the costs: in
INIT1 and INIT2, those variables that are constant during the
overall computation are calculated, depending on the sign of
Sp, p ∈ {a, b, c}, computed by the cluster voltages problem. If
the most significant bit (MSB) of Sp is 0, the cost difference in
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Fig. 25. NN-MPC simulation in ModelSim for N = 10.

Fig. 26. Steady-state switching frequency HIL for N = 10.

Fig. 27. Steady-state MAE HIL for N = 10.

Fig. 28. Steady-state THD HIL for N = 10.

Fig. 29. Step response HIL for N = 10.

choosing 1 rather than 0 is computed. Otherwise, if the MSB is
1, the cost difference in choosing −1 rather than 0 is evaluated.

The N costs are evaluated and stored by employing a five-
level pipeline and utilizing four adders and four multipliers:
it makes it possible to use the 12 total adders and multipliers

for computing the three phases in parallel. The second ASM
implements the sorting algorithm: a selection sort algorithm is
chosen for simplicity. The third ASM selects the best H-bridges
setting them to 1 or −1, leaving the remaining values equal to
0. These switching variables are converted into gate signals.

On the other hand, FCS-MPC implementation employs the
same architecture for the clusters and voltage balancing prob-
lems but differs for the current control loop. The ASM that
implements the FCS current control consists of an initialization
step, the cost computation, and the evaluation of all the possible
vectors (similar to cluster voltage balancing ASM) and the abc
transform. The cost computation is realized using the same
adders and multipliers multiplexed in an eight-level pipeline.
Considering the steps needed by the exhaustive search, the
pipeline, the initialization, and the transform, the total number
of steps needed by the control loop is 12N 2 + 6N + 14.

B. Hardware-in-the-Loop Results

The two algorithms were implemented using a Terasic DE-
10 Nano board equipped with an FPGA SoC Intel Cyclone
V (5CSEBA6U23I7). Each control algorithm was tested via
hardware-in-the-loop setup, in which the STATCOM model was
simulated in Simulink environment, while the algorithm compu-
tations were implemented on the FPGA. The FPGA-in-the-loop
app in Simulink was used to generate a Quartus project that em-
bedded the hardware implementation. More in detail, it provided
the Universal Asynchronous Receiver–Transmitter connection
that permitted the communication between the Simulink model
and the FPGA control. The simulation step was set according
to the actual clock frequency needed to guarantee the correct
execution of the algorithm. With the described implementation,
with the register sized to 48 bits and the sharing of the arithmetic
resources, the Quartus Time Analyzer ensured correct execution
with a clock frequency of 36 MHz. The clock cycles needed for
the two algorithms and the execution times for different values
of N are reported in Table III.

It can be seen that the time delay of the NN is the same,
independently of the number of levels. This result leads the NN-
MPC to have a much shorter execution time than the classic FCS-
MPC. The time spent in clusters and individual voltage balancing
is the same for the two controllers since the neural network
replaced just the current control. For N = 5, FCS-MPC takes
11.75μs, while NN-MPC takes 3.03μs. Thus, the classic control
is implementable in real time, and it is possible to compute the
input within the 40-μs sampling interval. By the way, NN-MPC
takes an execution time nearly four times smaller. For N = 10,
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Fig. 30. Schematic diagram flow of the overall procedure.

TABLE III
COMPUTATIONAL COST AND TIME DELAYS OF FCS AND NN MPCS

FCS-MPC takes 39.52 μs, which is about the overall sampling
interval. Using the FCS-MPC algorithm, it is just possible to
calculate the control for the next sampling time.

The performance of the standard FCS-MPC is degraded due to
the one sampling interval delay. Because of this, it is a common
solution to use a delay compensation as in [9]. Using NN-MPC,
the control loop is completed in 4.97 μs, which is one order of
magnitude less than the conventional FCS-MPC, and it makes
it possible to apply the input in the same sampling interval.
Fig. 25 shows the algorithm steps simulated via ModelSim,
whereas Figs. 26–29 shows the HIL simulations for N = 10.
Compared with the FCS-MPC with delay compensation, NN-
MPC has similar performance on the steady-state error and
harmonic distortion, as seen in Figs. 27 and 28. However, in
Fig. 26, the steady-state switching frequency of the NN-MPC is
still slightly lower, and in Fig. 29, the dynamic performances of
the proposed approach are superior since it has faster response
and does not suffer from the inaccuracy of the two-step forward
prediction that leads, in any case, to a deterioration of the
performances.

For N = 20, the standard control is impractical unless the
sampling interval is increased. The proposed one takes 10.94 μs,
which is small enough to permit the real-time implementation. It
is interesting to notice that the time spent for the NN with η = 8,
4, 2 hidden neurons was similar for the described implementa-
tion since 12 adders and multipliers were used in parallel (the
cluster voltages balancing requires four of them for each phase).
In particular η = 4 requires 27 iterations, while η = 2 requires
25 iterations, resulting in 0.75 and 0.69 μs. With the described
implementation, without adding extra hardware resources, the
NN with η = 16 required to solve the two loops in the ASM in
Fig. 22 twice, resulting in 50 iterations. Analogously, the η = 32
NN required to solve the loops four times, and 88 iterations were
needed. The execution time spent was about 1.39 and 2.44μs for
the two cases. The FCS-MPC for N = 10 and horizons h = 2
and 3 required about 89.9 and 852 us. In contrast, the time spent

by the NN-MPC is always the same as Table III, regardless of
the prediction horizon. Fig. 30 presents a schematic diagram
flow that summarizes the whole procedure, which embeds: 1)
the simulation of the FCS-MPC to control the CHB inverter for
collecting data; 2) the training of the NN; 3) the selection of the
best NN in the closed-loop performance; 4) the implementation
on the FPGA; and, finally, 5) the HIL simulation used to analyze
the effect of computation delay.

VII. CONCLUSION

In this article, an NN-MPC for a cascaded H-bridge converter
was presented. A shallow NN was trained to learn the FCS-MPC
solution. The control was tested on a CHB-STATCOM in sim-
ulation to analyze the performance of the proposed controller
in comparison to the standard FCS-MPC. The controllers were
tested for different numbers of levels, and the results suggested
that the NN well follows the optimal behavior in each case. The
standard FCS-MPC and the proposed algorithm were imple-
mented on the FPGA, and the time spent by the computations
of the controllers was derived. It turned out that the standard
FCS-MPC is only implementable for a CHB with ten H-bridges
with a delay compensation technique and becomes impractical
for 20 H-bridges.

On the other hand, the time delay of the proposed approach
allows the control input to be computed within the same sam-
pling intervals, even for a CHB inverter with 20 H-bridges per
phase.
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