
6208 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

Digital-Twin Consistency Checking Based on
Observed Timed Events With Unobservable

Transitions in Smart Manufacturing
Moon Gi Seok , Member, IEEE, Wen Jun Tan, Wentong Cai , Member, IEEE,

and Daejin Park , Member, IEEE

Abstract—Smart factories manage digital twins (DTs) to
evaluate the performance of various what-if production sce-
narios. This article presents a DT consistency-checking ap-
proach to maintain DT in high fidelity by checking whether
each sensed timed event from the physical manufacturing
plant is under its corresponding DT-based estimations in
runtime. The approach targets DTs developed using time
colored Petri net (TCPN). To build the candidates of the
next observable event with observable time margins, we
considered the stochastic property of the plant, frequent
external actuation caused by a new order, machine main-
tenance, etc., as well as intermediate unobservable state
transitions reaching the sensible events. Based on the con-
siderations, we propose an iterative method to build the
virtual estimates for streaming physical events using ef-
ficiently evolved state-class graphs (SCGs). We also pro-
pose a TCPN partitioning method to accelerate the SCG-
evolution and make DT maintenance easier by supporting
the isolation of inconsistent subnets being diagnosed. We
applied the approach to a USB flash-drive factory to prove
the concept and evaluated the performance under various
situations to show speedups of the SCG evolution, that is
the crucial overhead of the estimation.

Index Terms—Digital twin (DT), manufacturing system,
reachability analysis, state-class graph (SCG), time petri net
(TPN).

Manuscript received 1 April 2022; revised 19 July 2022; accepted
17 August 2022. Date of publication 22 August 2022; date of cur-
rent version 22 March 2023. This work was supported in part by
the A*STAR Cyber-Physical Production System (CPPS) – Towards
Contextual and Intelligent Response Research Program, under the
RIE2020 IAF-PP Grant A19C1a0018, in part by NRF under Grant NRF-
2018R1A6A1A03025109, and in part by IITP under Grant 2021-0-00944
and Grant 2022-0-01170. Paper no. TII-22-1404. (Corresponding au-
thor: Daejin Park.)

Moon Gi Seok was with the School of Computer Science and En-
gineering, Nanyang Technological University, Singapore 639798. He is
now with the Department of Artificial Intelligence, Dongguk University
Seoul 04620, Korea (e-mail: mgseok@dgu.ac.kr).

Wen Jun Tan and Wentong Cai are with the School of Computer
Science and Engineering, Nanyang Technological University, Singapore
639798 (e-mail: wjtan@ntu.edu.sg; ASWTCAI@ntu.edu.sg).

Daejin Park is with the School of Electronics Engineering, Kyung-
pook National University (KNU), Daegu 702-701, Korea (e-mail:
boltanut@knu.ac.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3200598.

Digital Object Identifier 10.1109/TII.2022.3200598

Fig. 1. Checking TCPN-based DT using each timed event.

I. INTRODUCTION

D IGITAL twin (DT) is essential for smart factories to
maximize manufacturing plants’ (or shop floors’) pro-

duction performance, such as throughput and cycle time, after
virtually commissioning various what-if scenarios. For reliable
performance estimation, it is crucial to maintain high-fidelity
DT that reflects the dynamics of part (or material) flows in the
high-mix/low-volume manufacturing lines. For that, DTs should
be developed considering various production behaviors of the
target plant’s components, such as machines, conveyors, human
operators, and automated guided vehicles (AGVs). Due to a
modeling error, an unreported physical change, or an unmodeled
exception, a DT-based prediction might become inaccurate.
This article focuses on a DT consistency check that verifies DT
using physical events sensed from the plant along with their
observed times (called timed events). Sufficient fidelity in DT
can be guaranteed by iterative synchronization of DT with its
physical counterpart throughout the manufacturing life cycle.

To reflect the production dynamics, DT is modeled using
discrete-event models (DEMs). DEMs can describe the dynam-
ics of the plant’s operations using state transitions and exchanges
of the events generated by the transitions. Examples of the
events include part loading/unloading, AGV arrival/departure,
machine process start/end, setup or operation mode changes,
fault detection, and fault recovery start/end. Each physical timed
event has corresponding virtual estimates, which comprises
multiple event types and their observable time margin, as Fig. 1
shows. The consistency between the plant and its DT is examined
iteratively by checking whether each event is consistent with its
virtual estimates. If all state transitions and related events are
observable and the plant’s production is deterministic, building

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-8159-9910
https://orcid.org/0000-0002-0183-3835
https://orcid.org/0000-0002-5560-873X
mailto:mgseok@dgu.ac.kr
mailto:wjtan@ntu.edu.sg
mailto:ASWTCAI@ntu.edu.sg
mailto:boltanut@knu.ac.kr
https://doi.org/10.1109/TII.2022.3200598

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6209

the estimates might be straightforward. However, computing the
virtual estimates presents the following three main challenges.

1) Some state transitions that do not produce physical events
(which can be monitored online) are unobservable due to
the lack of monitoring or communication tools for legacy
machines or human operators.

2) There are stochastic state transitions and state-duration
variances due to faults in the machines, human operators,
or AGVs. For example, a machine’s arm can locate a
part in the correct position after several attempts, or an
obstacle can suspend a moving AGV for a while.

3) External interventions from the control facilities (CFs)
to the plant can occur to handle new orders or manage
machines for energy efficiency. We aim to compute the
virtual estimates of the plant’s next physical event based
on reachable observable transitions, considering all pos-
sible sequences of intermediate unobservable transitions,
stochastic state transitions and variable operation periods,
and external interventions.

For the reachability analysis, researchers have identified
reachable transitions (or states) based on the states’ time ranges
and all possible transitions (including unobservable transitions)
using time Petri net (TPN) [1], [2], [3], [4], [5]. In the studies,
various state-class graphs (SCGs) and their evolution methods
for the analysis have been developed. In this article, we propose
a DT-modeling formalism of a time-colored Petri net (TCPN)
to apply the TPN-based analysis methods to high-mix manu-
facturing plants. It is designed by extending TPN to use colors
that distinguish tokens representing various types of parts. By
extending a modern TPN-based SCG evolution method, we
propose a runtime checking method to update SCG and compute
the virtual estimates of the plant’s next event based on the
recent physical event (for further consistency checking), as Fig. 1
shows. We denote the CF’s external interventions as actuation
events (AEs) and the plant’s sensed events as reactive events
(REs). DT’s observable transitions can be detected online using
associated REs and AEs. Assuming AEs are unpredictable, only
REs are used to check DT consistency. AEs are only used to
revise SCG to update the virtual estimates.

We summarize the main contributions as follows.
1) We propose an approach to check the consistency of

TCPN-based DTs during runtime using streaming timed
physical events (monitored online).

2) We extend TPN-based SCG-evolution methods to esti-
mate the next RE, considering AE’s unpredictability.

3) We propose a TCPN partitioning method based on the
AE’s property (unpredictability), which improves the
overall SCG evolution computational performance and
supports the isolation of problematic subnets (which can
examine other consistent subnets during the problem
diagnosis).

4) We propose methods to update the SCG iteratively with
newly observed event to maintain DT’s consistency.

The rest of the article is organized as follows. Section II
introduces the related works about TCPN and TPN-based reach-
ability analysis. Section III defines the formalism of TCPN.
Section IV specifies the problems related to SCG in the runtime
checking. Section V details the overall methods for constructing

the SCG and estimating the next REs. Section VI shows the
TCPN partitioning method and SCG revision according to the
observed AE/RE. Section VII presents a group of experiments
as a case study. Finally, Section VIII concludes this article.

II. RELATED WORKS

Smart manufacturing systems can be generally struc-
tured in three layers: 1) enterprise resource planning (ERP);
2) manufacturing-execution system (MES); 3) industrial control
system (ICS) [6]. At the top level, ERP focuses on integrating
organizational functions to provide forecasting and planning,
inventory management, and accounting functionalities. In the
middle level, MESs have been used to collect and manage
the information from manufacturing plants and helps decision
makers understand the current status and improve productiv-
ity [7]. The decision making requires the evaluations of various
what-if manufacturing scenarios using the plant’s high-fidelity
DT. Our work is meant to increase DT’s fidelity by checking
the consistency between DT and monitored physical events. At
the lowest level, ICSs are used to control and monitor specific
equipment.

In previous works, researchers have examined the consistency
between DT and physical information to detect abnormal behav-
iors in the ICS’s security domain [8], [9], [10]. They considered
DT as a reference model and noticed the adversary’s attacks
by detecting the inconsistency between physical and virtual
states. Compared to the works from the security domain with
our method, we aim to check DT’s consistency considering
unobservable transitions, stochastic state transitions, stochastic
operation periods, and users’ interventions (which are AEs).

Petri net (PN) has been widely used to describe plants’ event-
driven behaviors for various purposes, including throughput
measurement [11], [12], supervisory control [13], [14], and
deadlock-free scheduling [15], [16], because of its advantages
in modeling concurrent and synchronization operations. PN has
been extended to include various features and functions for
specific modeling purposes, such as colored PN (CPN) [17],
[18], queueing PN [19], and time PN (TPN) [20], [21] or timed
PN [22]. CPN adds an attribute to tokens as color to distinguish
between multiple production sequences for different products
in a complex plant. Some CPNs can also support the primitives
to model specific data manipulation. TPNs or timed PNs help
analyze the performance of timed systems.

The main distinction between TPNs and timed PNs is whether
each enabled transition fires within a given interval or a given de-
lay value, respectively. We represent the plant’s stochastic state
durations as intervals based on measured means and standard
variations (see Section III). Then, we propose a new modeling
formalism of TCPN to: 1) combine TPN’s interval-based tran-
sition firing; 2) employ CPN’s colors (for high-mix manufac-
turing) and AEs (for users’ interventions); 3) reference previous
TPN-based reachability-analysis techniques [to build the virtual
estimates by identifying all reachable states (or transitions) that
generate the REs]. The TCPN’s formalism was not previously
defined to the best of our knowledge.

Berthomieu and Diaz [1] were the first to propose an ab-
stracted TPN state, called state classes (SCs), to represent the

6210 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

finite or infinite sets of the TPN’s timed states. They presented a
graph called a SCG-based on the SCs. The SCG’s nodes are the
set of SCs, and each edge shows the consequence of a labeled
transition execution (or firing) from one source SC to another.
Some studies have focused on better abstractions (reducing the
number of SC nodes) by proposing a relaxed SCG, contracted
SCG, or fault-diagnosis graph (which adds the sequence of
transition information to the edges and removes the unnecessary
SCs) [2], [3]. In [4], Basile et al. presented a modified SCG
(MSCG) that extends edge labels using additional transition
information related to timing variables and constraints. Using
the MSCG, they proposed a fault-diagnosis method that requires
solving a linear programming problem to detect the occurrence
of a fault-related transition for a given sequence of observed
events. In [5], He et al. showed that the previous MSCG evolution
might miss some reachable states. Therefore, they consolidated
the MSCG evolution method by defining deficient SCs that can
generate new paths (series of SCs) using new subsequent SCs.

SCGs show all reachable SCs caused by possible observable
and unobservable transition firings with their range-based time
intervals. Researchers have typically utilized SCGs for fault
diagnoses that check whether any fault transition might occur
based on a given sequence of observed events. The proposed
approach shares the existing TPN-based methods’ principles
in terms of SCG evolution but requires a revision based on
TCPN. Moreover, when we use existing SCG-related methods
for runtime DT checking, we need additional procedures, which
are: 1) building the virtual estimates based on the SCG; 2) up-
dating SCGs iteratively for streaming physical events. An SCG
should be revised for the subsequent event estimation in runtime
checking whenever a new physical event arrives. For the SCG
update, we compute consistent SCs (which become roots for the
next SCG) based on the previous SCG and each physical timed
event. Among various types of existing SCGs and their evolution
methods, our work uses MSCG (in [4] and [5]) because MSCG’s
timing information annotated with its edges is essential to derive
consistent SCs.

For runtime checking, speedup of SCG-evolution (which is
the main estimation overhead) is essential because early in-
consistency guarantees better problem diagnosis by dispatching
human operators to a problematic physical location. Thus, it is
recommended to build the virtual estimates using the updated
SCG before a new physical event arrives. For the evolution
speedup, we resolve computational inefficiency problems of the
latest MSCG evolution method in [5] (discussed in Section IV-A)
and propose a TCPN partitioning method.

The following section defines a TCPN’s formalism for the
formal description of our approach and the plant’s TCPN-based
DT modeling.

III. TIME COLORED PETRI NET

TCPN is a combination of TPN and CPN for: 1) TPN’s
transition-associated time intervals; 2) CPN’s token distinc-
tion. In our work, the tokens represent high-mix parts or other
part-flow control signals (e.g., machine availability, delivery
request/grants, etc.). Transitions represent part-specific or joint

Fig. 2. Example of a logically enabled transition (t1).

operations (with their range-based time duration) for machine
operations, flow-control decisions, AGV movements, etc. We
simplify a transition’s logically enabling condition of TCPN
as the required number of colors in the transition’s backward
places, similar to TPN’s enabling condition (the required number
of tokens). For that, we represent a token, tk, as a pair of colors
(for the transition’s token distinction) and data (which can be
empty), i.e., tk ∈ C × (D ∪∅), where C is a set of colors and D
is a set of possible manufacturing-related data. Then, it requires
an additional color decision when the tokens are fired for the
subsequent transition (if needed).

Based on the concept, we define a TCPN’s formalism as
follows:

Definition 1: The net of TCPN is represented as N =
〈P, T,En,Pre,Post , Q,L〉, where

1) P is a set of places.
2) T = Tre ∪ Tae ∪ Tsi is a set of transitions, where Tre/Tae

is a set of observable transitions using their associated
REs/AEs and Tsi is a set of silent transitions.

3) En : P × T → (C × N0)
|C| is an enabling-condition

function to specify the required numbers of colors for a
given transition t ∈ T from a place p ∈ P to be logically
enabled.

4) Pre : {M} × T → {X∗} is a function to show one or
multiple candidates of inflowing tokens when a transition
t ∈ T is fired at the given marking M ; a marking M :
P → {K} is a vector that assigns each place a multiset
of tokens; K is a multiset of tokens, and X : P → {K}
is a vector of tokens inflowing to t from each place.

5) Post : {X} × T → {Y } is a function to compute a vec-
tor of outflowing tokens Y : P → {K} based on a given
vector X when transition t ∈ T fires.

6) Q is a timing function that defines the set of static closed
time intervals only for predictable transitions (Tre ∪ Tsi)
as Q : Tae → ∅ and Q : T \ Tae → Q × (Q ∪ {∞});

7) L : T → {λ} ∪ ε assigns an RE’s or AE’s type (using a
letter, λ) to each observable transition, t ∈ Tre ∪ Tae, or
the empty string ε to each silent transition t ∈ Tsi.

Let M̃ be a conversion from marking M after projecting
the tokens onto the color domain, as Fig. 2 shows. We de-
note M̃(p) as the numbers of token colors in place p. A
transition t(∈ T) is logically enabled if sufficient colors are
present in M̃ , i.e., M̃ ≥ En(·, t), where En(·, t) is the vector
of (En(p1, t), . . . , En(pm, t)), pi is the ith place, andm = |P |.
The inequality ≥ denotes the relationship: ∀pi ∈ P, M̃(pi) ≥
En(pi, t). We denote the set of transitions logically enabled
at M as A(M), i.e., A(M) = {t ∈ T | M̃ ≥ En(·, t)}. This
color-based enabling description can make the same-colored

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6211

Fig. 3. TCPN examples for different operations (t2 and t3) whose
completions lead to the same-type event. (a) Compact TPN. (b) Revised
TPN with extra t4 and p3.

tokens with different data move through a shared transition,
which helps represent a common process of high-mix parts.

The function Pre is developed considering the corre-
sponding actual system. Let us suppose that a machine ran-
domly selects two parts (which require a t1-related opera-
tion) from its buffer, as Fig. 2 shows. Then, Pre is developed
for Pre(M, t1) = {X1, X2}, where X1 = ({tk1, tk1}, ∅), and
X2 = ({tk1, tk2}, ∅). If the machine selects two parts by the
arrival order and token tk2 arrived earlier than tk1, then tokens
should contain the arrival-order information in their data and
Pre(M, t1) is equal to {X2}.

The function Post can forward each token tk in a given X to
the next place after the token’s color or data conversion. Post
can also drop or generate tokens on purpose. When a token
vector, X ∈ Pre(M, t), is moved by the firing of a transition t,
M is changed to the next marking,M ′ =M
X ⊕ Post(X, t),
where
 and ⊕ are the element-wise set operations of \ and ∪
on two vectors, respectively.

The function Q does not return any interval for AE-related
transitions because of its unpredictable occurrence. Therefore,
an AE-related transition, t ∈ Tae, is fired only by its real AE
observation. For the reactive transitions (which are Tre ∪ Tsi),
Q indicates the intervals of those transitions using two rational
numbers, namely Q(t) = (l, u), where l ≥ 0 and u ≥ l. In our
work, a logically enabled transition, t ∈ T \ Tae, must be fired
within the interval as a constraint unless it becomes disabled.
The constraint is called strong time semantic (STS) in [4].
The time interval of Q is decided based on its corresponding
operation spans, which are reported online or measured man-
ually. The interval of a transition t ∈ T \ Tae is represented as
Q(t) = [ŝi − kσi, ŝi + kσi], where ŝi and σi are the means and
standard variation of measured spans of a t-related operation,
respectively, and k is a user’s empirical constant, such as 3 (for
the three-sigma rule of thumb).

We assume that each observable transition in Tre ∪ Tae does
not share its label with any of the other transitions. This as-
sumption makes us find a specific transition corresponding to an
event type λ, i.e., t = L-1(λ). Suppose that a machine processes
two steps: a common step (denoted by the transition t1) and a
variable token-dependent step (among two tasks symbolized by
t2 and t3) and we can only detect the completion of the second
step using an infrared sensor, as Fig. 3(a) shows. To prevent the
duplication s.t. L(t2) = L(t3), we should model this situation
as Fig. 3(b) shows by adding the synthetic step t4.

Fig. 4. Examples of time-spent variable (Δ) usages and a node reuse
of MSCG (defined in [5]).

IV. PROBLEM STATEMENT IN SCG-BASED DT CHECKING

Our approach is intended to check DT’s consistency during
runtime via three methods: 1) evolving the SCG (to build the next
RE’s virtual estimates) based on TCPN; 2) splitting the TCPN
(for fast SCG evolution and subnet isolation); 3) reupdating the
SCG based on each physical event. In this section, we describe
each methods’ SCG-related problems.

A. Background and Problems of SCG Evolution

As discussed in Section II, we uses the MSCG in [4] and [5]
as a default SCG. First, we introduce the background of MSCG
and its evolution. Then, we describe the latest evolution algo-
rithm’s computational inefficiencies. Last, we clarify additional
requirements for runtime TCPN checking.

The SCG is a directed graph whose nodes are called SC. Each
SC is associated with the net’s state and represented as a pair of a
reachable marking (M) and a set of inequalities (Θ) that define
the timing constraints of logically enabled transitions atM , i.e.,
Ck = (Mk,Θk), where Ck is the kth SC. Each inequality in
Θ means the remaining time before its associated transition’s
(t’s) firing if t does not become logically disabled due to a
token preemption by another transition firing. The inequality can
depend on a certain number of variables, denoted Δ variables,
which consider how long a transition has been enabled. Let
θi ∈ Θ be transition ti’s timing constraints. Then, we generally
represent θi as

θi = [l◦i , u
◦
i] =

[
li −

di∑
�=1

Δ(-�), ui −
di∑
�=1

Δ(-�)

]
(1)

where [li, ui] = Q(ti);Δ(-�) is the time spent of the �th previous
SC C(-�); and di is the number of intermediate SCs after ti was
newly enabled. In the case of SC C5 (which is one of C2’s next
SCs) in Fig. 4,Δ(-�) and d3 of θ3 (∈ Θ5) areΔ2 (that is,C2’s time
spent) and 1, respectively. This indicates that transition t3 was
newly logically enabled at C2. No timing variable in θ5 ∈ Θ5,
i.e., d5 = 0 means that transition t5 is newly logically enabled
at C5.

Each edge e of SCG has an extensible label L(e) =
〈ti,L(ti),Δk ∈ [l∗k, u

∗
k], . . .〉, where ti is the transition whose

firing leads to the target SC’s marking; L(ti) is ti’s label; and
Δk is a constraint of the source SC’s time spent. The constraint
bounds l∗k and u∗k are functions of Δ variables, as Fig. 4 shows.
As in [5], the label can include a function, feq : Δn → Δk, if

6212 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

an existing SC can be reused as the edge’s next after one or
multiple existing time-spent variables {Δk} (depicted in the
edge’s source) are renamed with their pairs {Δn} of the reusable
SC. In Fig. 4,C5’s forwarding edge contains feq to reuseC3 after
renamingΔ5 asΔ3. The reuse can reduce the evolution overhead
because the reused SC will not be further explored if it is not a
deficient SC. Definition 1 in [5] defines the deficient SC, which
could generate a new path from the deficient SC when a new
deficient SC reuse (for a new path reaching the deficient SC)
lessens a firing constraint of a logically enabled but previously
preempted transition (called deficient transition) enough to be
fireable.

Fig. 4 depicts the deficient SC example, which isC5, because
it has the deficient transition θ3 preempted by the prior transition
t5 based on max(θ5) < min(θ3). However, if C5 is reused and
its new backward edge contains a time spent, such asΔ2 ∈ [1, 2],
then t3 can be fired first as an imminent transition, which will
generate a new subsequent SC.

Based on the concept of SCs’ deficiency and reuse, the pre-
vious SCG evolution algorithms in [5] have the following two
computational inefficiencies:

1) Whenever an SC (from a queue) is called, imminent
transitions (which can be fired before the others) are
computed based on all the previous paths reaching the
SC (as Algorithm 2 in [5]).

2) All deficient SCs are called whenever the queue for the
waiting SCs (to be evolved) is empty to find possible new
paths (as Algorithm 1 in [5]).

Because deficient SCs can be called multiple times, comput-
ing the imminent transitions based on all previous paths can
lead to serious computational overhead. The iterative checking
of all deficient SCs is inefficient because most deficient SCs
would not lead to new paths as the SCG evolution cycle elapsed.
To prevent each SC’s all-path checking, the proposed method
schedules each SC with its new paths and timing information,
defined as follows:

Definition 2: Given an SC Ck in the queue, Ck has its own
new pathsΠ+

k and related previous SCs’ time-spent intervalsΦ+
k,

where
1) Π+

k = {π[1:n]
a | π[1:n]

a = C(1) . . . C(n) ⊂ πa ∈ Π} is a set
of new paths reaching Ck from the roots; Π is the set of
full paths (that comprise all SC sequences from each root
to terminal SCs that do not have any next reachable SC)
based on SCG; πa is the ath path in Π;C(1) is the root on
πa; and C(n)(= Ck) is the nth nodes.

2) Φ+
k = {I(π[1:n]

a) | π[1:n]
a ∈ Π+

k} is a set of the series
of time constraints of Ck’s previous SCs follow-
ing each new path; I(π[1:n]

a) = 〈φ(1)
a , . . . , φ

(n-1)
a 〉; ∀� ∈

{1, . . . , n−1}, φ(�)a = [l
(�)
a , u

(�)
a] is the constraint of the

time spent of �th SC C(�); l(�)a and u
(�)
a are two constant

bounds of φ(�)a .
Based on Φ+

k, we define the path-dependent newly observable
time range of Ck as follows.

Definition 3: Given a path π[1:n]
a = C(1) . . . Ck ∈ Φ+, Ck is

newly observable in a range of Iacc(π
[1:n]
a), where Iacc(π

[1:n]
a) is

a function to accumulate the lower and upper constant bounds
of each time constraint of previous SCs on π[1:n]

a , i.e.,

Iacc(π
[1:n]
a) =

[
n-1∑
i=1

l(�)a ,

n-1∑
i=1

u(�)a

]
. (2)

The range of Ck’s newly observable time based on a given
path π[1:n]

a is the same as the time range of Ck’s last transition
t(n-1), where (t(n-1), . . .) = L(e(n-1)); e(n-1) is the edge between
C(n-1) and Ck.

To prevent the iterative invocation of deficient SCs, we sched-
ule particular deficient SCs when they are engaged in a new
path as a necessary condition. In addition, the proposed evolu-
tion method considers: 1) TCPN (in Definition 1); 2) different
stopping criteria sufficient to find all candidates of the next
observable transitions (related to REs), without reaching all
possible states.

B. Net Partitioning and Event Estimation Problems

First, we introduce why TCPN partitioning is required for
fast SCG evolution and the requirements of TCPN partitioning.
Then, we present preliminary notations for virtual estimates.

The number of SCs in an SCG increases exponentially with
TPN system complexity (related to the net structure and tokens
in the initial marking), as in [4]. Let C0 be original TPN’s (N0’s)
system complexity, and let size(C0) be the expected number
of SCs induced by C0. If the net and marking of N0 can be
split into two nets, N1 and N2, with distributed markings as
|C0| = |C1|+ |C2|, then the overall SC nodes are greatly re-
duced, for example, size(C1) + size(C2) � size(C0) based on
the exponential node growth by the system complexity. The
net splitting for the complexity distribution should support the
independent evolutions of multiple subnets’ SCGs that lead to
the same virtual estimates (which are computed using the orignal
net’s SCG). The detailed partitioning method that satisfies this
requirement will be described in Section VI-A).

After partitioning, there can be multiple subnets {Nm}, where
Nm = (Pm, Tm, . . .). Each subnet Nm has its own SCG Gm,
which leads its own virtual estimates. Each subnet’s virtual
estimates consist of a set of observable RE’s types Λm and
their observable time intervals Tm. To compute the estimates,
each subnet Nm manages its own full paths Πm of SCG Gm

(see Definition 2), path-related time constraints Φm = {I(πa) |
πa ∈ Πm}, and last event’s observed time τ -

m. The estimation
methods will be described in Section V-B.

C. SCG Update Problem

If a physical event is observed, its dedicated SCG handles
the physical event. The proposed net-splitting method enables
subnets to share observable transitions whose backward and
forward places are located in different subnets. If the physical
event’s transition is shared, the number of related SCGs can
be two. After checking DT’s consistency using the event (if the
event is an RE), a related SCGGm is updated by three processes:

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6213

Fig. 5. Abstracted overview of the framework.

1) finding the consistent SCs; 2) revising the SCs to meet a root’s
property (defined below); 3) starting the SCG evolution based on
the roots. In [4] and [5], an initial marking (as a root) is given.
In our approach, an initial marking should be given only if a
previous SCG does not exist. However, more than one root is
iteratively derived during runtime using the previous SCG and
each physical event.

An RE-consistent SC has a backward edge whose transition
is related to the RE and can occur at the RE-observed time.
An AE-consistent SC is an SC that has a marking where an
AE-related transition is logically enabled and can stay at the
AE-observed time. We will formally define the consistent SCs
in Sections VI-B and VI-C. As in (1), each SC’s timing constraint
θi can depend on previous SCs’ time constraints ({Δ(-�)}, where
� > 0). Thus, we should examine each SC’s timing consistency
considering all pathsΠm using their time-spent informationΦm.

After finding the consistent SCs, we should revise the SCs
so that each SC’s constraint θi does not include previous SCs’
constraints {Δ(-�)} because there are no more previous nodes
of the SC. For that, we define roots’ property as follows.

Definition 4: Given a root Ck = (Mk,Θk), each constraint
θi ∈ Θk is a pair of two constants, i.e., di = 0.

When the physical event is related to a shared transition
ti between two subnets, a subnet that has ti’s forward places
(denoted by t•i) could need the inflowing token information from
the other subnet’s SCG to compute ti-induced next marking. To
specify the exchanging token information between subnets, we
extend the label of SCG’s each edge e to contain inflowing tokens
Xj , such as L(e) = 〈ti, . . . , Xj〉.

V. DT-BASED EVENT ESTIMATION

This section presents the methods for the proposed DT con-
sistency checking. First, we discuss the evolution of SCG using
TCPN in Section V-A. Next, the estimation of next REs are
discussed in Section V-B.

The overall architecture is illustrated in Fig. 5. Before check-
ing, the modelers should develop the TCPN N based on plant-
specific knowledge. Then, they should collect operation timing
data related to the transitions manually or automatically to build
the TCPN’s time function Q. Depending on the transition’s
observability,N can be split into multiple subnets {Nm}, where
Nm = (Pm, Tm, . . .) is the mth subnet. The subnets only share
some observable transitions, and we will discuss the detailed
methods of TCPN partitioning in Section VI-A. Each subnet
represents the production dynamics in a specific location of the
plant. The subnetNm is used to compute its own SCGGm based
on initial consistent SCs to estimate the subnet’s next RE. The

event monitor (EM) converts the streaming physical events and
the external interventions into related REs and AEs, respectively.

When an λ-type RE is observed at time instant τ , the EM’s
specific procedures are as follows.

1) The EM selects an SCG Gm, whose net Nm includes the
λ-related transition ti, that is∃ti ∈ Tm s.t. ti = L-1(λ). If
ti is shared by two subnets, then Nm satisfies •ti ∈ Pm,
where •ti is the set of the backward places of ti.

2) The EM checks the consistency condition using the es-
timated RE types Λm and their observable times Tm
based on last event’s observed time τ−m. The condition
is λ ∈ Λm ∧ (dτ = τ − τ -

m) ∈ Tm(λ), where Tm(λ) is
the estimated observable time interval of λ after τ−m.

3) If it is consistent, the EM starts the Gm evolution using
identified consistent SCs for further RE estimation. If ti
is shared, then ti’s forward SCG Gn, s.t. t•i ∈ Pn, is also
reupdated based on the candidates of moving tokens from
Gm to Gn.

4) If it is inconsistent, the EM activates an inconsistency
diagnosis.

If an AE arrives, the EM does not check the AE’s consistency
because users (in the CF) can generate the AE at any time in
their purpose. The AE only reupdates its associated SCG based
on identified consistent SCs. If the AE’s transition is shared, then
two SCGs are reupdated considering possible moving tokens.

For DT consistency checking, an inconsistency can stem from
a TCPN error or any physical change or error, so cross-validation
is required to diagnose the actual reason. We categorize the main
reasons as follows:

1) a modeling error in the TCPN structure;
2) a new physical exception;
3) an operation-logic change that requires a TCPN revision;
4) a statistical change of an operation period;
5) a packet loss.

Then, the EM initiates a manual diagnosis by looking into
subsystems related to the inconsistent subnet.

A. SCG Evolution

In this section, we describe the SCG evolution procedures
in detail, as depicted in Algorithm 1. A subnet Nm’s SCG
Gm is computed based on root SCs, which are consistent with
the recent physical timed event, meet the root property (see
Definition 4), and denoted by Sroot. Root Ck has one initial
path π[1:1] = C(1)(= Ck) in its new path set Π+

k and its emp-
tied previous time-spent series, i.e., I(π[1:1]) = 〈〉, in Φ+

k (see
Definition 2). Ck’s newly observable time range is zero, i.e.,
Iacc(π

[1:1]) = [0:0]. SCG Gm’s full path set Πm is initialized as⋃
Ck∈Sroot

Π+
k.Πm’s time-spent intervals,Φm, consist of emptied

time-spent information for each path inΠm.Sroot is stored in a set
Swait that consists of waiting SCs (to be evolved) in the insertion
order. Each SC Ck = (Mk,Θk) in Swait is evolved, as depicted
in Algorithm 1.

First, the EM attempts to identify the set of imminent transi-
tions (which can be fired first), denoted by Timm, among candi-
dates Tk as Line 4. Tk is a set of logically enabled transitions,
except forTae (whose firing is triggered by physical AEs) and the

6214 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

previously identified imminent transitions (which are denoted
by T−

imm and specified on forward edges). Then, time-bound
umin, s.t min{u◦i | θi = (·, u◦i) ∈ Θk}, is computed to examine
the following necessary proposition.

Proposition 1: Transition ti ∈ Tk s.t. l◦i > umin cannot be an
imminent transition.

Proof: Let tj be a transition s.t. ◦uj = umin. If all transitions
in Tk \ {tj} are not fired until umin, then tj is eventually fired
first based on the STS assumption. Therefore, a first transition
always occurs within umin. �

As (1) shows, each upper bound u◦i can include any previous
SCs’ time-spent variables {Δ(-�)}, and the intervals vary de-
pending on the path, which changes umin and Timm accordingly.
Thus, the necessary condition to be imminent is checked for
each transition ti ∈ Tk based on Proposition 1, considering all
new previous paths in Π+

k, as Lines 6–7. From (1), l◦i (π
[1:n]
a) and

umin(π
[1:n]
a) are given by

l◦i (π
[1:n]
a) = li −

di∑
�=1

u(n-�)
a (3)

umin(π
[1:n]
a) = min

ti∈Tk

{
ui −

di∑
�=1

l(n-�)
a

}
. (4)

If a previous path, π[1:n]
a ∈ Π+

m, makes transition ti imminent as
Line 7, π[1:n]

a is extended by ti-induced subsequent SC(s) from
Ck. In addition, SC Ck adds π[1:n]

a to set Timm and stores all
previous paths and corresponding interval series (making ti im-
minent) in a dataset, Di = {〈π[1:n]

a , I(π
[1:n]
a)〉}, to save the path

candidates for their extension. As mentioned in Section IV-C,
the set of full paths, Πm, and its set of time-spent intervals,
Φm, are important to deriving the next RE’s virtual candidates.
If π[1:n]

a ∈ Πm (i.e., |πa| = n), then πa and I(πa) are removed
from Πm and Φm as Line 10. After examining all new paths
using their own time-spent information, Ck clears (Π+

k,Φ
+
k).

Let Sdef be the set of deficient SCs. Ck updates Sdef as Lines 12
and 13.

Using each new imminent transition ti, we derive the candi-
dates of tokens inflowing to ti, {Xj}. Then, the EM finds the
next SC, C ′ = (M ′,Θ′). Thus, M ′ is derived as Line 16, and
Θ′ is computed by considering newly disabled transitions (as
Line 17), the time spent of Ck (as Line 19), and newly enabled
transitions (as Line 21).

If C ′ is reusable using a function feq, then we reuse existing
C ′ (in Gm) by making an edge ei from Ck to C ′. If not, a new
node for C ′ is connected to Ck by edge ei. If C ′ is reusable,
then edge ei’s label is extended by adding feq. Unlike in the
TPN-based SCG evolution, there can be multiple candidates for
leaving tokens at the transition ti firing (i.e., |Pre(Mk, ti)| ≥ 1),
so an SC can have multiple forward edges for the ti firing, as in
SC C3 in Fig. 6.

Using each new edge (caused by each transition ti) from
SC Ck to C ′, Ck computes the set of new full paths (denoted
by Π◦) using the saved paths in Di. C ′ is one of a newly
added or a reused SC. If C ′ was newly added, Π◦ is set by the

Fig. 6. SCG example based on a TCPN and initial roots (C1, . . . , C3).

following: {π[1:s]|π[1:s] = π
[1:n]�
a (C ′), s = n+ 1, 〈π[1:n]

a , ·〉 ∈
Di}, where � concatenates the given sequences.

If SC C ′ is reused, C ′ can already have its subsequent paths.
Then, we extend the previous paths saved in Di based on C ′’s
subsequent paths. We denote C ′’s subsequent paths as Πsub =
{πsub | πsub = C ′ . . . C(�) ⊂ πa ∈ Πm, � = |πa|}. A full path
πa ∈ Πm can lead to multiple subpaths (reaching πa’s terminal)
whenC ′ exists multiple times inπa. UsingΠsub, we represent the
new path set by Π◦ = {π[1:s] | π[1:s] = π

[1:n]�
a π

[1:q]
b , s = n+

q, 〈π[1:n]
a , ·〉 ∈ Di, π

[1:q]
b ⊂ πb ∈ Πsub, q = max1≤q≤|πb|{q |

∀� ∈ {1, . . . , q}∃φ(�)(l(�) ≤ u(�))}}. When merging a previous
path π

[1:n]
a and a path πb ∈ Πsub, an SC C(�) ∈ πb might

not be accessible from π
[1:n]
a because of the violation

of Proposition 1, which results in l(n+�) > u(n+�), where
[l(n+�), u(n+�)] = φ(n+�).

We denote Π◦’s corresponding time-spent intervals as Φ◦ =
{I(πa) | πa ∈ Π◦. The derivation method of Φ◦ based on the
calculation of I(πa) will be discussed in the following section.
Based on (Π◦,Φ◦), Gm’s full path information (Πm,Φm) is
updated as Lines 28. In our work, the next SC C ′ evolves if
the fired transition ti is silent. If ti is observable, C ′ evolves
after ti is confirmed as being consistent with the next RE and
after being revised to satisfy the property in Definition 4. If C ′

was not reused and scheduled in Swait for further evolution, new
path information (Π◦,Φ◦) is delivered to C ′ as Line 32. If C ′

was reused, Ck traverses subsequent deficient SCs on new full
paths to schedule them as Lines 34–36. This active scheduling
of deficient SCs can avoid inefficiency in iterative examinations
of all deficient SCs whenever there are no new SCs waiting for
further evolution, as in [5]. Finally, a scheduled SC starts a new
evolution.

B. Estimation of Next Reactive Events

The proposed approach utilizes full path and time-spent in-
formation of SCG Gm, (Πm,Φm), to estimate the next timed
RE. Let e(�)a be the �th edge on path πa ∈ Πm, connecting C(�)

and C(�+1), where 1 ≤ � < |πa|. Then, the set of the next REs’

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6215

types from SCG Gm is given by

Λm = {L(t) | ∀πa ∈ Πm, 〈t, . . .〉 = L(e(|πa|-1)
a) s.t t ∈ Tre}.

(5)
Let Πm(λ) be the set of paths in SCG Gm, leading to specific
RE type λ. Based on subnetNm’s recent event-arrival time, τ−m,
the expected observable time range of the λ-type RE, Tm(λ), is
given by

Tm(λ) =
⋃

πa∈Πm(λ)
Iacc(πa). (6)

Thus, the expected observable time of any RE related to Nm

(from time τ−m) is ∪λ∈Λm
Tm(λ). To calculate Tm(λ), we need to

compute each time-spent interval φ(�)a = [l
(�)
a , u

(�)
a] ∈ I(π). For

Fig. 7. Example of TCPN partitioning. (a) Before partitioning. (b) After
partitioning.

this, we reformulate the lower and upper bounds as follows:

l(�)a = max{0, l◦i} = max

⎧⎨
⎩0, li−

di∑
j=1

max(Δ(�−j))

⎫⎬
⎭

= max

⎧⎨
⎩0, li−

d∑
j=1

u(�−j)
a

⎫⎬
⎭ , (7)

u(�)a = min
k∈K

⎧⎨
⎩◦uk} = mink∈K{uk−

dk∑
j=1

min(Δ(�−j))

⎫⎬
⎭

= mink∈K

⎧⎨
⎩uk−

dk∑
j=1

l(�−j)
a

⎫⎬
⎭ (8)

where i is the transition index in e(�)a , i.e., 〈ti, . . .〉 = L(e
(�)
a); and

K is the set of indices of fireable transitions, i.e., K = {i | θi ∈
Θ(�), (·,Θ(�)) = C(�)}. As such, l(�) and u(�) can be derived
using the previous values of {l(�−j)} and {u(�−j)} in a recursive
manner. Based on the property in Definition 4, the first transition
ti (i.e., 〈ti, . . .〉 = L(e

(1)
a)) has time constraint θi = [l◦i , u

◦
i],

which is an interval having two constraint bounds and leading
to φ(1)

a = θi. The derivation of first time-spent interval, φ(1)
a on

Πa, enables subsequent time-spent intervals (φ(2)
a , φ

(3)
a , and so

forth) to be recursively calculated as constant bounds.

VI. REVISION OF TCPN AND SCG

A. Partitioning of TCPN

As discussed in Section IV-B, the sizes of TPN-based SCGs
in [4] and [5] increase exponentially with TPN system com-
plexity. Compared to the TPN-based evolution, the size of the
proposed TCPN-based SCG grows more rapidly than that of a
TPN-based SCG because each imminent transition ti of each
TCPN-based SC Ck can lead to multiple subsequent SCs—as
many as Pre(Mk, ti)| (see SC C3 in Fig. 6). Thus, the speed
up evolution of TCPN-based SCGs is essential for the runtime
analysis. Hence, we propose partitioning TCPN to speed up the
SCG evolution, described as follows.

We denote the set of the backward and forward transitions of
place p as •p and p•, respectively. Let us look at the example
in Fig. 7(a), where •p� ⊂ Tob = Tre ∪ Tae. Suppose that two
subnets of N1 = (P1, T1, . . .) and N2 = (P2, T2, . . .) have the

6216 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

following properties: P1 ∩ P2 = ∅ and T1 ∩ T2 = •p�. Based on
the SC scheduling condition of Algorithm 1, any path from a
root in an SCG is terminated when an observable transition is
encountered. Thus, N1’s SCG G1 cannot affect the evolution of
N2’s SCGG2 because any path reaching •p� is stopped. Let T (i)

ae

and T (i)
re be the sets of subnet Ni’s AE- and RE-related transi-

tions, respectively. Then, G2 can also evolve independently to
estimate an RE related to (T2 ∩ Tre)\ •p� after assuming •p� to be
an unpredictable transition in Tae (i.e., •p� ∈ T

(2)
ae), as Fig. 7(b)

shows. G2 is influenced by G1 only when •p�-related physical
events are observed, which triggers the G2 reupdate. Generally,
the set of subnets N from an original TCPN N0 = (P0, T0, · · ·)
must meet the following definition:

Definition 5: The set of subnet N = {N�}, where
N� = (P�, T�, · · ·) is the �th subnet, 1 ≤ � ≤ n, and n =
|N |, should meet the following properties:

⋃n
�=1 P� =

P0;
⋃n

�=1 T� = T0; and ∀i, j ∈ {1, . . ., n}(i �=j) → (Pi ∩ Pj =
∅) ∧ (Ti ∩ Tj ∈ Tob).

To compute the subnets, we initially make temporary and
minimum-sized subnets using each place in P0 of the original
net N0: e.g., N = {N�} s.t. |N | = |P0|; |P�| = 1, and T� =
•p� ∪ p•�, where p� is the �th place in P0. Each subnet iteratively
merges other subnets in N when two paired subnets share any
silent transition. If there are no longer any subnets to merge, then
the remaining subnets are the final subnets.

B. SCG Update Based on Reactive Events

When detecting a new λ-type event at time τ (0), the EM
selects the SCG Gm whose subnet Nm contains transition ti
s.t. ti = L-1 ∈ T

(m)
re . Then, the EM decides the consistency by

checking (λ ∈ Λm) ∧ (dτ ∈ Tm(λ)) from (5) and (6), where
dτ = τ (0) − τ−m, not one subsequent SC in the TPN-based SCG.
If it is inconsistent, the EM triggers the inconsistency diagnosis
for the subnet. If it is consistent, the EM finds root SCs for the
further SCG evolution by following two main steps.

1) Select the paths whose terminals are consistent SCs
{Ck = (Mk,Θk)} with the timed RE.

2) Revise each time constraint θi ∈ Θk of each consistent
SC Ck by resolving previous SCs’ time-spent variables
{Δ(�)} to satisfy the property of Definition 4.

Let Ω be a set of the pairs of consistent SC and its path. Then,
Ω is represented by

Ω = {(C(n),πa)|πa = C(1). . .C(n) ∈ Πm, e
(n-1)
a

= λ, dτ ∈ Iacc(πa)}.

From a physical event, if we can get more information than
type λ, which helps distinguish the processed tokens (annotated
in the last edge e(n-1)) based on their data, we can reduce
the number of consistent SCs additionally, which lessens the
evolution overhead.

For each (C(n), πa) ∈ Ω, where n = |πa|, the previous time-
spent terms in each time constraint θi can be simply changed
into a constant interval from

∑di

�=1 Δ
(n-�) to

∑di

�=1 φ
(n-�)
a (which

is Iacc(π
[n-di:n]
a). However, we should consider one additional

constraint, dτ .

Suppose that consistent path πa, s.t |πa| = 5 and
(·, πa) ∈ Ω, meets the following properties: Iacc(π

[1:4]
a) = [20 :

24], Iacc(π
[4:5]
a) = ψ

(4)
a = [2 : 4], and Iacc(πa) = [22 : 28]. For

constraint θi, if di = 1 and dτ = 26, then
∑di

�=1 Δ
(n-�) (which is

Δ(4)) is the same as Iacc(π
[4:5]) = [2 : 4] becauseΔ(4) can be 2 if∑3

j=1 Δ
(j) = 24 ∈ Iacc(π

[1:4]
a) and can be 4 if

∑3
j=1 Δ

(j) = 22.

However, if dτ = 22,
∑3

j=1 Δ
(j) and Δ(4) should be [20 : 20]

and [2 : 2], respectively, which makes the interval of Δ(4)

smaller than Iacc(π
[4:5]). In a similar manner, dτ = 28 reduces

the interval of Δ(4) to [4 : 4]. Considering the dτ constraint, we
can generally formulate the interval of

∑di

�=1 Δ
(n-�) based on

dτ and πa, as follows:

min

di∑
�=1

Δ(n-�) = max

{ di∑
�=1

l(n-�)
a , dτ −

n-di-1∑
j=1

u(j)a

}
(9)

max

di∑
�=1

Δ(n-�) = min

{ di∑
�=1

u(n-�)
a , dτ −

n-di-1∑
j=1

l(j)a

}
. (10)

From (9) and (10), each Δ-included constraint θi ∈ Θ
(j)
k in

each C(n) is renewed by

θi =

[
max

{
0, li −max

di∑
�=1

Δ(n-�)

}
, ui −min

di∑
�=1

Δ(n-�)

]
.

(11)
Then, renewed consistent SCs are saved to the root set, Sroot, as
initial SCs for the next Gm.

C. SCG Update Based on Actuation Events

When observing a λ-type event at time τ (0), the EM selects
one or two SCG {Gm} s.t. ti = L-1(λ) ∈ T

(m)
ae ; two SCGs

can be found when ti is shared by two subnets. Similarly, in
Section VI-B, the EM aims to find the consistent SCs and
their paths Ω based on dτ(= τ (0) − τ−m) to derive the roots
Sroot for the next SCG. Compared to the RE-consistent SCs
(which are the terminals of specific paths in Πm), any SCs
{C(j) = (M (j),Θ(j))} on paths s.t. C(j) is observable at dτ
and ti is logically enabled at M (j) are consistent SCs. Thus,
we represent the pairs of consistent SCs and their belonging
paths, Ω, by Ω = {(C(j), π

[1:j]
a) | π[1:j]

a = C(1). . .C(j) ⊂ πa ∈
Πm,

∑j-1
�=1 l

(�)
a ≤ dτ ≤

∑j
�=1 u

(�)
a , ∀� ∈ {1, . . . , j − 1}(t(�)i ∈

Tsi), ti ∈ A(M (j))}, where 〈t(�), · · · 〉 = L(e(�)). If an SC
C(j) is a path πa’s terminal and its last transition is silent
(i.e., t(j-1) ∈ Tsi), then u

(j)
a is ∞. If ti is shared and a subnet

Gm = (Pm, . . .) has ti’s forward places (i.e., t•i ∈ Pm), then
ti’s logical enabling is not checked. After deriving Ω, the EM
performs the following two main steps to obtain the roots.

1) Renew Δ-dependent timing constraints of consistent SCs
in Ω for Definition 4.

2) Update the markings and add new timing constraints of
renewed SCs based on the ti firing.

Compared to the renewals of RE-driven timing constraints, we
should consider the elapsed time of each SC from previous tran-
sition t(j-1) up to τ (0). For each (C(j), π

[1:j]
a) ∈ Ω, we add new

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6217

Fig. 8. Overview of the plant’s manufacturing processes.

jth time-spent variable Δ(j) to each constraint θi ∈ Θ(j), which
symbolizes the interval ofC(j) elapsed time. This leads toφ(j)a =
[max{0, dτ −

∑j-1
�=1 u

(�)}, dτ −
∑j-1

�=1 l
(�)]. The Δ(j) insertion

resets the relative time-spent term in θi to
∑di

�=0 Δ
(j-�) from∑di

�=1 Δ
(j-�). Then, constraint θi becomes Δ free using (9) and

(10).
After the constraint renewal, the EM begins the marking

update. If ti is not a shared transition, the marking of each
consistent SC Ck = (Mk,Θk) s.t. (Ck, ·) ∈ L is revised using
the next markings{M ′ | Xj ∈ Pre(Mk, ti),M

′ =Mk
Xj ⊕
Post(Xj , ti)}. If the size of {M ′} is larger than 1, multiple SCs
are generated from Ck and their constraints are also updated
based on their markings.

If ti is shared by two subnets Gm and Gn, s.t. •ti ∈ Pm

and t•i ∈ Pn, two subnets exchange token candidates inflow-

ing to ti from Gm. Let S(m)
con and S

(n)
con be the constraint-

renewed consistent SCs from Gm and Gn, respectively. If
ti ∈ Tae, then each Ck ∈ S

(m)
con is revised for the next mark-

ings {M ′ | Xj ∈ Pre(Mk, ti),M
′ =Mk
Xj}. Then, each

SC Cr ∈ S
(n)
con is revised or duplicated based on the next mark-

ings {M ′ |M ′ =Mr ⊕ Post(Xj , ti), Xj ∈ Xi}, where Xi =

{Xj | Xj ∈ Pre(Mk, ti), Ck ∈ S
(m)
con }. If ti ∈ Tre ∧ ti ∈ T

(n)
ae

and L(ti)-type RE arrives, each SC Cr ∈ S
(n)
con is revised in

the same manner in which the token candidates between the
ti-shared subnets are exchanged.

VII. CASE STUDY

We applied the proposed approach to maintaining a DT of
a factory located on the Singapore Institute of Manufacturing
Technology (SIMTech) that has produced various research pro-
totypes, such as customized USB devices [23]. The USB device
requires a customer-selected logo and emits a scent, such as
lavender, from a scent-filled cartridge when the device is active.
Overall, the manufacturing processes consist of 17 steps: Steps
1 to 13, which are common to all products, and the following
optional steps (including Step 14 for customer-specific sen-
tences), as Fig. 8 shows. When a customer’s order arrives, the
CF generates an AE for specific parts of trays to be processed
by custom steps. An operator in the CF occasionally generates
an AE for some parts of a tray to complete specific steps (e.g.,
Steps 3–6) to reduce the makespan of the final product. If a tray
does not undergo a process, it stays in a work-in-progress (WIP)
conveyor or a machine’s output dock(s).

Twelve machines are used for the production, and some ma-
chines, such as an infrared oven and a screen printer, are involved

Fig. 9. Examples of token-color conversions in the plant’s TCPN.
(a) Subnet for a tool’s part-specific molding process. (b) Common sub-
nets for tray-delivery requests, request grant, and AIV driving.

in more than one step. The processed trays in a machine’s output
dock are transferred by an automatic intelligence vehicle (AIV)
to a destination’s input dock or WIP. The TCPN for the factory
consists of 220 places and 381 transitions, representing the
tray unloading/loading by AIV, single- or multiple-part-specific
processes of each machine, the delivery request and its grant,
AIV movements along paths, and so on. The tokens represent
the actual trays (for the part exchanges between machines), parts
(for machines’ processes), and synthetic control units (for the
delivery requests, machines’ availability, etc.). Each tray can
carry up to 12 different types of parts. The machines, excluding
the oven, process the input tray’s specific parts based on the
tray token’s data. For example, if four parts of a tray token are
required to be processed based on the tray token’s part-related
data, a Post function changes the tray token to four part tokens,
as Fig. 9(a) shows. In the case of an injection-molding machine,
depending on the part type (whether it is a reservoir or a bottom
cartridge), its processing time varies; thus, part tokens’ colors
change for their subsequent processes. The part tokens would be
merged into a tray token to be moved. As illustrated in Fig. 9(b),
the target TCPN has common subnets for a tray-delivery request
and its grant using an AIV. In the net, feasible requests are iden-
tified considering the availabilities of destinations’ input docks.
Among the tokens symbolizing feasible requests, a top-priority
token is selected based on the tokens’ data.

Using a daily RE/AE-observation history, we evaluated the
DT-checking performance by varying the degree of the RE
observation (OB). The degrees are categorized as follows.

1) OB1: All REs for all machines’ tray process starts and
trays’ arrivals at the input and output docks.

2) OB2: All REs related to OB1, process endings/failures,
and delivery requests.

3) OB3: All REs related to OB2 and AIV’s idles/failures.
OB3 represents all possible REs from the factory.

Examples of silent transitions include order-related setups and

6218 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 4, APRIL 2023

Fig. 10. Example of an inconsistency detection when the average of the operation,ov2_proc, is significantly different from its real measurement.

Fig. 11. Performance comparisons varying the evolution methods (be-
tween the previous state-of-the-art and the proposed approaches) and
TCPN splitting.

subprocesses of machines and AIV’s multiple attempts (with ex-
tant
maximums) to arrive at specific positions. The transition
durations are measured manually or can be calculated based on
observed events. Due to the stochastic property of the transition
duration, there can be more than one next RE candidate with
different time occurrence intervals.

We implemented the environment for the proposed TCPN-
based modeling and SCG-based runtime checking using C++.
If we intentionally create a DT inconsistency by considerably
lowering the average of a specific duration, such as changing an
infrared-oven operation from 2987 to 2680 s, an inconsistency
can be detected, as Fig. 10 shows.

Aside from OB1, OB2, and OB3 enabled us to split the TCPN
into 16 subnets for each of the machines, WIP conveyors, and
AIVs, based on the partitioning condition (see Definition 5).
Among the subnets, a subnet for AIV and delivery decision, with
a place size of 145, is dominant. The overall workload consists
of SCG evolution and finding the consistent SCs based on each
RE/AE. We measured the performances using a machine with
an Intel Xeon E5-1650 3.6 GHz CPU and 32 GB of memory.
The results are displayed as Fig. 11 shows.

As the degree of event observability decreases (from
OB3 to OB1), the length and number of paths created

by firing possible silent transitions subsequently increases,
which increases the numbers of the next RE candidates and
computational overhead. Compared to the previous SCG evolu-
tion method in [5], the proposed SCG evolution method that sup-
ports active scheduling (for path-changed deficient SCs) and new
path management (which prevents redundant computations in
examining deficient transitions), thus decreasing the number of
iterations.

TCPN partitioning requires additional consistent SC deriva-
tion and SCG evolutions whenever an RE related to a shared
transition occurs, which consequently increases the overhead
of consistent SC derivation. However, the average SCG size
becomes significantly smaller, which drastically reduces the
overall computation times. In our OB1 experimentation, the new
evolution method reduced the overhead by about 8%. In the
OB2 and OB3 cases, the final speedups (which are the ratios of
the conventional evolution times to the active-scheduling-based
evolution times after partitioning) were 18.97(= 18.21/0.96)
and 8.28(= 5.69/0.68) times, respectively.

Future work will discuss the proposed work’s scalability by
measuring the SCG evolution times and their speedups caused
by TCPN partitioning, varying the plants’ scales.

VIII. CONCLUSION

This work presents a novel approach for checking DT’s con-
sistency (for its high fidelity) by comparing streaming physical
events with corresponding DT-based virtual estimates during
runtime. For that, we aimed to build the virtual estimates of
the plant’s each physical event based on reachable observable
transitions (that can produce physical events), considering all
possible sequences of intermediate unobservable transitions,
stochastic state transitions, stochastic operation periods, and
external interventions. The previous TPN-based reachability-
analysis methods facilitate deriving the reachable transitions
and states by identifying all possible sequences of transitions
based on their time ranges. To model the plant’s high-mix man-
ufacturing using CPN’s colors and allow unpredictable users’
interventions (AEs), we first designed the TCPN formalism.
Then, we extended the previous SCG evolution method to
1) resolve some computational inefficiencies; 2) consider the
TCPN formalism (from TPN); 3) alter the evolution stopping
criteria sufficient to build the next event’s virtual estimates. For
better SCG evolution speedup and problematic-subnet isolation,
we proposed a TCPN-partitioning method. We also proposed

SEOK et al.: DT CONSISTENCY CHECKING BASED ON OBSERVED TIMED EVENTS 6219

an iterative SCG update based on the previous SCG and each
observed physical event for the next-RE estimation. We applied
the approach to a USB device factory. Under a given experimen-
tation set, the TCPN partitioning and revised SCG evolution
algorithm accelerated the performance of the state-of-the-art
evolution up to 18.97 times.

REFERENCES

[1] B. Berthomieu and M. Diaz, “Modeling and verification of time dependent
systems using time Petri nets,” IEEE Trans. Softw. Eng., vol. 17, no. 3,
pp. 259–273, Mar. 1991.

[2] X. Wang, C. Mahulea, and M. Silva, “Diagnosis of time Petri nets us-
ing fault diagnosis graph,” IEEE Trans. Autom. Control, vol. 60, no. 9,
pp. 2321–2335, Sep. 2015.

[3] R. Hadjidj and H. Boucheneb, “Efficient reachability analysis for time Petri
nets,” IEEE Trans. Comput., vol. 60, no. 8, pp. 1085–1099, Aug. 2011.

[4] F. Basile, M. P. Cabasino, and C. Seatzu, “State estimation and fault
diagnosis of labeled time Petri net systems with unobservable transitions,”
IEEE Trans. Autom. Control, vol. 60, no. 4, pp. 997–1009, Apr. 2015.

[5] Z. He, Z. Li, A. Giua, F. Basile, and C. Seatzu, “Some remarks on “state
estimation and fault diagnosis of labeled time Petri net systems with
unobservable transitions,” IEEE Trans. Autom. Control, vol. 64, no. 12,
pp. 5253–5259, Dec. 2019.

[6] M. Younus, C. Peiyong, L. Hu, and F. Yuqing, “MES development and
significant applications in manufacturing-A review,” in Proc. 2nd Int. Conf.
Educ. Technol. Comput., 2010, vol. 5, pp. V5-97–V5-101.

[7] X. Chen and T. Voigt, “Implementation of the manufacturing execution
system in the food and beverage industry,” J. Food Eng., vol. 278, 2020,
Art. no. 109932.

[8] C. Gehrmann and M. Gunnarsson, “A digital twin based industrial automa-
tion and control system security architecture,” IEEE Trans. Ind. Inform.,
vol. 16, no. 1, pp. 669–680, Jan. 2020.

[9] M. Eckhart and A. Ekelhart, “A specification-based state replication
approach for digital twins,” in Proc. Workshop Cyber- Phys. Syst. Secur.
PrivaCy, New York, NY, USA, 2018, pp. 36–47.

[10] A. Erba and N. O. Tippenhauer, “No need to know physics: Resilience
of process-based model-free anomaly detection for industrial control
systems,” Dec. 2020, arXiv: 2012.03586 [cs].

[11] I. Hatono, K. Yamagata, and H. Tamura, “Modeling and online scheduling
of flexible manufacturing systems using stochastic Petri nets,” IEEE Trans.
Softw. Eng., vol. 17, no. 2, pp. 126–132, Feb. 1991.

[12] M. Jeng, X. Xie, and M. Peng, “Process nets with resources for manufac-
turing modeling and their analysis,” IEEE Trans. Robot. Automat., vol. 18,
no. 6, pp. 875–889, Dec. 2002.

[13] Y. Chen, Z. Li, K. Barkaoui, and M. Uzam, “New Petri net structure and its
application to optimal supervisory control: Interval inhibitor arcs,” IEEE
Trans. Syst., Man, Cybern. Syst., vol. 44, no. 10, pp. 1384–1400, Oct. 2014.

[14] Y. Chen, Z. Li, and M. Zhou, “Optimal supervisory control of flexible
manufacturing systems by petri nets: A set classification approach,” IEEE
Trans. Automat. Sci. Eng., vol. 11, no. 2, pp. 549–563, Apr. 2014.

[15] J. Luo, K. Xing, M. Zhou, X. Li, and X. Wang, “Deadlock-free scheduling
of automated manufacturing systems using Petri nets and hybrid heuristic
search,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 3, pp. 530–541,
Mar. 2015.

[16] H. Liu, K. Xing, W. Wu, M. Zhou, and H. Zou, “Deadlock prevention
for flexible manufacturing systems via controllable siphon basis of Petri
nets,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 45, no. 3, pp. 519–529,
Mar. 2015.

[17] K. Jensen, “Coloured Petri nets,” in Petri Nets: Central Models and Their
Properties. Springer, 1987, pp. 248–299.

[18] J. Ezpeleta and J. Colom, “Automatic synthesis of colored Petri nets for the
control of FMS,” IEEE Trans. Robot. Automat., vol. 13, no. 3, pp. 327–337,
Jun. 1997.

[19] F. Bause, “Queueing Petri Nets-A formalism for the combined qualitative
and quantitative analysis of systems,” in Proc. 5th Int. Workshop Petri Nets
Perform. Models, 1993, pp. 14–23.

[20] Y. Q. Lv, C. K. M. Lee, Z. Wu, H. K. Chan, and W. H. Ip, “Priority-
based distributed manufacturing process modeling via hierarchical timed
color Petri net,” IEEE Trans. Ind. Inform., vol. 9, no. 4, pp. 1836–1846,
Nov. 2013.

[21] J. Wang, Y. Deng, and G. Xu, “Reachability analysis of real-time systems
using time Petri nets,” IEEE Trans. Syst., Man, Cybern., Part B, vol. 30,
no. 5, pp. 725–736, Oct. 2000.

[22] S. Gaubert and J. Mairesse, “Modeling and analysis of timed Petri nets
using heaps of pieces,” IEEE Trans. Autom. Control, vol. 44, no. 4,
pp. 683–697, Apr. 1999.

[23] SIMTech, “Model factory simtech,” 2022. Accessed: Mar. 22, 2022.
[Online]. Available: https://www.a-star.edu.sg/simtech/model-factory@
simtech/overview

Moon Gi Seok (Member, IEEE) received the
B.S. degree in electronics engineering from Ko-
rea University, Seoul, Korea, in 2009, and the
M.S. and Ph.D. degrees in electrical engineering
from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, Korea, in
2011 and 2017, respectively.

From 2017 to 2019, he was a Postdoctoral
Researcher with both KAIST and Arizona State
University (ASU), Tempe, AZ, USA. From 2019
to 2023, he was a Research Fellow and Senior

Research Fellow at Nanyang Technological University (NTU), Singa-
pore. Since 2023, he has been an Assistant Professor with the Depart-
ment of Artificial Intelligence at Dongguk University, Seoul. His research
interests include digital twinning for manufacturing systems, parallel
and distributed simulations, model verification, and hardware/software
codesign.

Wen Jun Tan received the Ph.D. degree in
computer science from Nanyang Technological
University (NTU), Singapore, in 2020.

He is a Research Fellow with the School
of Compute Science and Engineering (SCSE),
NTU, Singapore. His research interests include
cyber-physical systems (including virtual model
design and data assimilation), modeling and
simulation of large-scale complex systems (traf-
fic, supply chain, manufacturing), and applica-
tion and system support for parallel and dis-

tributed simulation on heterogeneous and high-performance computing
platforms.

Wentong Cai (Member, IEEE) is a Professor
with the School of Compute Science and En-
gineering (SCSE), Nanyang Technological Uni-
versity (NTU), Singapore. His research interests
include modeling and simulation, and parallel
and distributed computing.

Prof. Cai is a Member of the ACM. He is an
Associate Editor for ACM Transactions on Mod-
eling and Computer Simulation (TOMACS), an
Editor of the Future Generation Computer Sys-
tems (FGCS), and an Editorial Board Member

of the Journal of Simulation (JOS).

Daejin Park (Member, IEEE) received the B.S.
degree in electronics engineering from Kyung-
pook National University, Daegu, Korea, in
2001, the M.S. and Ph.D. degrees in electrical
engineering from the Korea Advanced Institute
of Science and Technology (KAIST), Daejeon,
Korea, in 2003 and 2014, respectively.

He was a Research Engineer with SK Hynix
Semiconductor, Samsung Electronics over 12
years from 2003 to 2014, and has worked on
designing low-power embedded processors ar-

chitecture and implementing fully AI-integrated system-on-chip with in-
telligent embedded software on the custom-designed hardware acceler-
ator, especially for hardware/software tightly coupled applications, such
as smart mobile devices and industrial electronics. Since, 2014, he has
been a Full-Time Processor with the School of Electronics and Elec-
trical Engineering and School of Electronics Engineering, Kyungpook
National University. He has authored or coauthored over 200 technical
papers and 40 patents.

Dr. Park was nominated as one of the Presidential Research Fellows
21, the Republic of Korea, in 2014.

https://www.a-star.edu.sg/simtech/model-factory@simtech/overview
https://www.a-star.edu.sg/simtech/model-factory@simtech/overview

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

