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Abstract—Multienergy microgrids (MEMGs) have signif-
icant potential to offer high energy utilization efficiency
and system flexibility. The coordination of these MEMGs
poses challenges due to the various system dynamics and
uncertainties and the need to preserve privacy. This article
proposes a double auction (DA)-market-based coordination
framework. As such, MEMGs can not only schedule their
own energy components but also trade energy with others
in the DA market. After that, we formulate this problem
as Markov games and propose a multiagent reinforcement
learning method by making use of the DA market public
information to enhance the stability with privacy persever-
ance. Case studies involving a real-world scenario validate
the superior performance of the proposed method in reduc-
ing both the energy costs and the carbon emissions.

Index Terms—Carbon emissions, energy coordination,
multienergy microgrid (MEMG), multiagent reinforcement
learning (MARL).

NOMENCLATURE

Indices and Sets

t €T  Index and set of time steps (hours).

i € Tgg Index and set of residential MEMGs.
i € Icg Index and set of commercial MEMGs.
i1 € Ii1g Index and set of industrial MEMGs.

Parameters

A A%, A9 Grid electricity buy, electricity sell, and gas prices

($/KWh).
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AC Carbon price ($/kg).

P.Q Electric and heat load (kW).

PP, P PV and wind power generation (kW).

P Q" Power capacity of EES and TES (kW).
E*$ E*°  Energy capacity of EES (kWh).

neese peesd Charging and discharging efficiency of EES.
édlp, G*  Gas power capacity of CHP and FC (kW).

nehee ;P4 Conversion efficiency from gas to electricity and

heat of CHP.

[ Gas power capacity of GB (kW).

ne° Conversion efficiency from gas to heat of GB.

P Electric power capacity of EHP (kW).

7P Conversion efficiency from electricity to heat of
EHP.

Variables

eesc eesd
peese p

tesc tesd
Q**,Q

Charging and discharging power of EES (kW).
Charging and discharging power of TES (kW).

E* E'"S  Energy content in EES and TES (kWh).
G G Gas power input of CHP and FC (kW).

P QP Electric and heat power output of CHP (kW).
Pfe Qfe Electric and heat power output of FC (kW).
Geb Gas power input of GB (kW).

Q=, Q™ Heat power output of GB and EHP (kW).
pehe Electric power input of EHP (kW).

E° Carbon emissions from natural gas (kg).

[. INTRODUCTION
A. Background and Motivation

OWER systems are undergoing a significant transition from

fossil fuel resources to the decarbonization of renewable
energy resource (RES), promising to address the environmental
concerns [ 1]. However, the less controllable and predictable RES
introduces new challenges to power system planning and oper-
ation [2]. In this respect, there has been a significant increase in
developing multienergy systems (MESs) that interact electricity,
gas, and heat with each other, constituting a significant opportu-
nity to provide the flexibility of shifting across multiple energy
vectors and resulting in a cost-effective and reliable system [3].
Currently, an increasing attention has been made to study the
MES inside a microgrid, forming the multienergy microgrids
(MEMGs) [4], [5]. An MEMG is composed of various energy
loads, generators, storages, and converters under the microgrid
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concept. Currently, the benefits of using the MEMG have been
discussed in many studies [5]. Instead of independently schedul-
ing each energy vector, the integrated manner is more efficient to
deal with the complementary and synergistic effects of the MES,
therefore boosting the operation efficiency of the MEMG.

Gas and electricity are the two main input energy sources
for MEMGs. The gas retail market is normally indifferent to
MEMGs, allowing them to buy gas but not sell it back [6]. The
electricity retail market under the deregulation is more active and
flexible, where MEMGs with the RES can sell electricity back
to the grid at feed-in tariff (FiT) [7]. However, under scenarios
where MEMGs need to import energy from the grid, the higher
rated time-of-use (ToU) prices, compared with the lower FiT
issued by the same utility company, can present a dilemma
for MEMGS’ net import decision making [8]. Furthermore,
when MEMGs participate in the traditional market, they act
independently to manage their supply—demand balance. This
is, however, not optimal as the lack of coordination with others
leaves untapped the full potential of energy flexibility for achiev-
ing overall system supply—demand balance [9]. To this end, an
efficient coordinated management of local MEMGs is urgent to
maximize the economic benefit and the system flexibility.

B. Literature Review

So far, the existing literature on the coordinated management
of multiple MEMGs can be classified into two categories. The
first one focuses on the design of a centralized framework that
employs a central operator to manage all the local resources [10].
Although such a framework provides a theoretical solution
for social welfare maximization, it exhibits various drawbacks
in practice. Specifically, the central operator needs to acquire
mathematical models and collect all the technical parameters of
local resources, thereby raising privacy concerns. The second
one focuses on the design of a decentralized framework that al-
lows the MEMGs to manage their own resources independently
with limited information exchange, preserving their privacy.
Currently, alternating direction method of multipliers [11], [12],
Lagrangian relaxation [13], [14], consensus algorithm [15], and
bilateral contract [16] are popular methods in the decentralized
framework for solving the coordination management of multiple
MEMGs. However, the optimality of solutions is not guaranteed
under such a decentralized framework without a central coordi-
nator [10].

To this end, a double auction (DA) market [17] is a kind
of framework that takes advantage of both the centralized and
decentralized frameworks, which is potential to be considered to
formlocal coordination among a group of MEMGs. More specif-
ically, an auctioneer, as a third-party coordinator, is responsible
for clearing the market to ensure the market efficiency, which is
close to optimal in a centralized framework [18]. On the other
hand, MEMGs can manage their resources independently and
submit only the bidding information (i.e., price—quantity bids)
to the auctioneer. As such, the privacy can be preserved that is
similar to the decentralized framework. However, MEMGs in
the DA market are faced with a complex quotation decision
process. Thus, an appropriate trading strategy is challenging
to select in such a complicated market environment. Zero

intelligence (ZI) is a fundamental trading strategy adopted by
traders in the DA market [19]. Specifically, ZI selects the price
bid uniformly at random values between FiT and ToU and runs a
day-ahead self-optimization problem for quantity bid submitted
to the DA market. However, the randomized price bid does not
capture the market dynamics [20]. Furthermore, preoptimized
quantity bid requires the complete MEMG mathematical mod-
els, technical parameters, and accurate forecasting information
of uncertainties, which are generally impractical in real-world
applications [21].

In view of the above drawbacks in the ZI strategy, reinforce-
ment learning (RL) [22] is a model-free and data-driven control
method to study the sequential decision-making problem, where
the agents within MEMGs gradually learn the optimal trading
strategies by utilizing experiences acquired from their repeated
interactions with the environment (MEMGs and DA market),
without a prior knowledge of MEMGs. In addition, RL as an
online learning method can make use of increasing data acquired
from the environment to learn the optimal control strategies
and to cope with the uncertainties that are encapsulated in the
data [23].

Previous works have successfully applied various RL methods
to energy management problems in power systems, as reviewed
in [24]. The majority of them, however, only consider the energy
management problem of a single entity, e.g., a smart energy
hub [25] and a residential multienergy home [23], and employ
single-agent reinforcement learning methods. On the other hand,
the research efforts on the application of multiagent reinforce-
ment learning (MARL) on power systems are still sparse, partic-
ularly for our studied MEMG coordination management prob-
lem. The most straightforward approach to solve a multiagent
problem is independent reinforcement learning (IRL) that each
agent trains its independent control policy depending on the local
information. Independent deep (Q-network [26] and independent
deep deterministic policy gradient (IDDPG) [27] have been
applied to the energy management problems of the multiple
MGs, where each agent treats others as part of the environment
and learns its own policy without considering others’ policies.
However, directly applying IRL methods to a multiagent setting
is problematic, since the environment appears nonstationary
from the view of every agent [28]. To overcome this issue,
multiagent deep deterministic policy gradient (MADDPG), an
extension of IDDPG to a multiagent setting, has been proposed to
address the energy trading problem among the microgrids [29].
Each agent in MADDPG trains a centralized ()-value function
(critic) with access to all agents’ observations and actions to
stabilize the training performance. During the execution, the
decentralized actor of each agent makes decisions based on its
local observation value. However, MADDPG mainly suffers
from the following: 1) privacy concern: knowing the local
observations and actions of all the other agents and 2) stability
concern: the learned Q-values may be overestimated, which can
lead to the suboptimal polices [30].

C. Article Contributions

To address the limitations of privacy and instability issues
discussed above, this article proposes a novel MARL method



QIU et al.: COORDINATION FOR MEMSs USING MARL

5691

RES MEMG
4 P AN DA Market /!
o /

(local trading) *\,7'---

e | I SR Y
] X
/ ol S pv (o \

J/ EL
;

555 MGCC \\ _______ r— - B
{ L—«|HL |1||[ R 4\ |—H£1I#II‘_|

[ewci=] \ e 2 ’
\

\ — _—
L E—E—8 , e > ; R 4
\ FC  1gs GB / Fooe GB , Tgs  CHP ,
\ == \
""""""" "\‘ Sy AL ittt fetetethiekefeid
<—— Gas power flow 3 '—.1“" 4
Electric power flow \ = TES GB i
<—— Heat power flow N\ EIE' — E S B ll/
<----- Information flow = 1___1"“"““'“ .
Gas grid
Fig. 1. Energy coordination framework and the MES of considered

MEMGs.

for multiple MEMGs to provide autonomous control and trading
policies for local energy coordination in a DA market. Specifi-
cally, a list of contributions can be provided as follows.

1) The flexibility due to the local electricity trading among
different MEMGs and the coupled energy conversions in each
MEMRG is explored. The examined problem is complex because
of various system dynamics and uncertainties. A DA-market-
based coordination framework has been proposed to obtain
good performance with privacy preservation. To the best of
our knowledge, this is the first work to adopt the DA market
mechanism to a local energy community with multiple MEMGs.

2) A novel DA-MATD3 method is proposed, which inherits
the ability of the multi-agent twin delayed deep determinis-
tic policy gradient (MATD3) to perform well in a multiagent
environment with various system dynamics and uncertainties
and addresses privacy concerns using a DA market framework.
Specifically, the DA-MATD3 method integrates the key informa-
tion of the DA market into the state-of-the-art MATD3 algorithm
by connecting the critic networks of the agents with the DA
market order books. To the best of our knowledge, this is the first
work to integrate the DA market information into the MATD3
algorithm.

D. Article Organization

The rest of this article is organized as follows. Section II
formulates the examined coordination problem of multiple
MEMG:s in a DA market. Section III proposes the DA-MATD3
method. Section IV presents the case studies to evaluate the
effectiveness of the proposed method. Finally, Section V con-
cludes this article.

Il. COORDINATION OF MEMGS IN THE DA MARKET
A. Problem Setting

We focus on a local energy community consisting of a group
of MEMG:s, as depicted in Fig. 1. In detail, the set of components
of the proposed MEMGs includes: 1) two types of consumption
loads: electric load (EL) and heat load (HL); 2) two types of
RES generators: solar photovoltaic (PV) and wind generator
(WG); 3) two types of storage units: electric energy storage
(EES), and thermal energy storage (TES); and 4) four types
of energy converters: combined heat and power (CHP) engine,
fuel cell (FC), electric heat pump (EHP), and gas boiler (GB).
The MEMGs are categorized into three groups: 1) residential

MEMGs with the energy portfolio of EL, HL, PV, EES, TES,
FC, and GB; 2) commercial MEMGs with the energy portfolio of
EL, HL, PV, EES, TES, EHP, and GB; and 3) industrial MEMGs
with the energy portfolio of EL, HL, WG, EES, TES, CHP,
and GB.

In order to incentivize MEMGs to cooperatively participate in
local trading, we introduce a DA market driven by its high trading
efficiency [17]. As shown in Fig. 1, the options of each MEMG
to supply its consumption loads are diverse. First, MEMGs
can manage their own installed energy resources to supply EL
and HL. Second, MEMGs can trade their electricity with each
other in the DA market. Third, MEMGs are allowed to buy/sell
their unbalanced electricity with the utility company at the grid
buy/sell prices. Finally, MEMGs can purchase natural gas from
the gas grid. The decision-making problem is processed for each
hour across a daily horizon, with the objective of minimizing
energy cost and carbon emission. At each hour, each microgrid
central controller (MGCC) [31] equipped in an MEMG can
manage its energy schedules and trading decisions based on:
1) the grid information of energy and carbon price signals;
2) the local information of its consumption loads, renewable
generations, and the status of controllable components; and
3) the community information of DA market trading prices and
quantities.

B. Multienergy Microgrids

This section aims at providing the detailed mathematical
models of four energy converters (CHP, FC, EHP, and GB) and
two storage energy units (EES and TES).

1) Energy Converters: CHP as a single-input multioutput
converter is characterized by its high energy efficiency compared
to independent electricity and heat sources, of which the coupled
heat and electricity generation can be modeled as

P:hp — nchpeGghP ( 1 )
QY = yIGT )
0< G <G 3)

where constraints (1) and (2) indicate the efficiency of CHP to
convert natural gas into electric and heat power, respectively.
The gas input is limited by its power capacity expressed in
(3). Like CHP engines, an FC is also a single-input multioutput
converter, characterized by its higher combined efficiency and
lower emissions. Given the high thermal efficiency and low
operating temperature, the FC is more suitable for individual
residents with high heat demands. The mathematical model of
the FC is similar to the CHP model (1)-(3).

Apart from CHP and the FC, the studied MEMGs also include
the energy converters of the EHP and the GB. The EHP produces
heat energy by consuming electricity, as presented in (4). The GB
is a vessel converting natural gas into heat energy. The generation
of heat from natural gas via the GB is given in (6). The power
inputs of the EHP and the GB are limited by their individual
capacity expressed in (5) and (7), respectively

chhp — nehthehP 4)
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0< P < P (5)
QP =Gy (6)
0<G® <G )

2) Energy Storage Units: The energy storage units with the
high flexibility are characterized by their redistribution ability
of off-peak and peak loads and the ability to absorb free RES
for the future usage when energy prices are at the peak. The
mathematical models of an EES unit can be formulated as

Egisl _ Eges + PteescAtneesc + PteesdAt/neesd (8)

—5ees

B <Fe<T ©)
0< Pteesc < Fees‘/;ees (10)
ﬁees(‘/;ees o 1) S Pteesd S O (11)

where equality (8) corresponds to the storage dynamic transition
of battery energy content, taking into account the charging and
discharging energy losses. Constraint (9) expresses the lower
and upper bounds of battery energy content. The following
constraints (10) and (11) ensure that charging and discharging
powers P and Pfed are under their power capacity P and
operate mutually exclusive by introducing a binary variable
Vees € {0,1}. Then, the power rate Q°, Q% and battery
energy content F* of the TES unit can be derived similarly
to the EES model (8)—(11).

C. DA Market

The DA market matches multiple buyers (MEMGs with en-
ergy deficit) and sellers (MEMGs with energy surplus) who are
interested in local trading and is deemed as a highly efficient
mechanism [17]. It is widely used in the trading of a variety of
commodities, including equities and electricity. In this article,
we apply the DA market to the local electricity trading, while
the heat energy cannot be traded in the community. In general,
a DA market lasts for a fixed period of time, known as the
auction period (1 h). It allows traders to submit their bids/offers
at the beginning of each auction period; then, the auctioneer
(DA market operator) clears the market and publishes the public
market outcomes (trading prices and quantities) at the end of
each auction period. More specifically, a DA market comprises
the following:

1) a set of buyers B, where each buyer b € I3 defines its
trading price p;, and quantity g, which means that the
buyer b would like to buy ¢, amount of energy at price py;

2) a set of sellers S, where each seller s € S defines its
trading price ps and quantity ¢, which means that the
seller s would like to sell ¢, amount of energy at price py;
and

3) a public order book managed by an auctioneer, where all
the accepted bids and offers are listed. Bids submitted by
buyers are sorted by decreasing the submitted buy prices
and queue in the buy order book &° (b, ps, g»), while offers
submitted by sellers are sorted by increasing the submitted
sell prices and queue in the sell order book k° (s, ps, Gs)-

Algorithm 1: DA Market Clearing Algorithm.
1: Collect price—quantity bids/offers at auction period ¢
2: Allocate order books k? (b, py.¢, qp.¢) and k3 (s, Ds ¢, Gs.¢)
at auction period ¢
3: Initialize b =s =1
4: while py, ; > p, ¢ do
5:  match the trading energy: qﬁ =min(qp.¢, ¢s.t)
calculate the trading price: p} = (ot +Dsit)/2
update buy order book g+ < .t — gL
if g+ = O then
9: b<—b+1
10:  update sell order book g < qs.+ — ¢!
11: ifgsy = O then

=

12: s+—s+1
13:  break if
14: b > length of k? or s > length of &

15: end while
16: Balance unmatched quantity at FiT (A7) and ToU ()Jt’)
prices

The pseudocode of the DA market clearing process is given
in Algorithm 1. Once an auction period begins, traders submit
their order information with a trading price and a corresponding
energy quantity to the market, collected by the auctioneer (step
1). All the submitted orders are allocated in the order book
(step 2). The clearing process iterates down the order books and
attempts to match each buy order with sell order (steps 3—12)
until the buy price is less than the sell price or no unmatched order
exists anymore (steps 13 and 14). Specifically, when two orders
get matched, the auctioneer calculates the trading price between
the matched buy price and sell price, using the traditional mid-
pricing method [17] (step 6), while the trading quantity is equal
to the lower value between the two matched orders (step 5).
Owing to the sorting principle and the clearing algorithm, the
clearing results promise the social welfare maximization [17].
Finally, at the end of the auction period, the remaining quantity of
energy and the unmatched orders are balanced with the utility
company at the grid electricity prices. It should be noted that
the submitted prices of all the traders are bounded between the
grid sell (FiT) and sell (ToU) prices to guarantee the economic
benefits in the DA market instead of directly trading with the
utility company [21].

D. Energy Coordination as the Markov Decision Process

The above-introduced DA market can be formulated as a
multiagent coordination problem in the form of a finite par-
tially observable Markov decision process (POMDP) [22] with
discrete time steps. The POMDP is, then, defined with a set
of state S describing the global state of environment £ (DA
market), a collection of local observations {O;.;}, a collection
of action sets {.A;.7}, a collection of reward functions {R1.s},
and a state transition function 7 (s,a.;,w), where w is the
environment stochasticity representing uncertain parameters.
The time interval between two consecutive time steps is one
auction period (At = 1 h). At time step ¢, each agent ¢ chooses
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an action a; ¢ according to its policy 7;(a; ¢|0; +) conditional on
its local observation o; ; and executes this a; ; to the environment
£. The environment, then, moves into the next state according
to the transition function 7. Each agent ¢ obtains the reward
r; + and the next local observation o0; ;1. The objective of each
agent ¢ is maximizing the cumulative discounted reward R; =
EooT a;mm [Z,:T:o 77 +], where vy € [0, 1) is the discount factor
and 7 is the daily horizon of 24 h. In detail, the components of
the POMDP for the proposed coordination problem are defined
as follows.

1) Agents: An agent is a computation entity within each
MGCC of the MEMG, who can directly manage the controllable
components in each MEMG and the trading strategies in the DA
market.

2) Environment: The environment includes MEMGs defined
in Section II-B, and the DA market defined in Section II-C.

3) Observation: Each MGCC agent 7 at time step ¢ observes
its local observation o; ; that varies for different MEMG cate-
gories and can be defined as

(Ao, Liy, PPy, ES) Vi€ Tpg, Wt € T

(Ao, L, PPy, B3] Vi€ Teg Wt € T
i Li, P2 ES) Vi€ Lig,VteT

(12)

Ot =

where the observation o, ; consists of two parts: 1) the exogenous
state unaffected by the action includes the sensor data of price
signals A, = [A%, A5, A7, A¢] representing the grid electricity buy
and sell prices, the gas price, and the carbon price, as well
as the measured data of consummation loads L; ; = [P}, Q! ]
representing EL. and HL, the renewable generation of PV Pf "
and WG Pwtg, and 2) the endogenous state that serves as the
feedback signals of agents’ executed action and represents the
system dynamics, including the energy content of EES and TES
ES, = [E55, ).

4) Action: Each MGCC agent ¢ at time step ¢ controls its
action a, ; that varies for different MEMG categories and can be
defined as

p ees tes . fc gb
[ai,t’ al t az £ @y g @ ﬁ]

- p ees ,tes chp g
Qit = [ai,t’ Aiey Qg Qg ¢ Ag )

)
p ees tes chp gb
[ai,t’ ity Qg Ay g s ai,t]

Vi € Irg,Vt €T
Vi € Zeg,Vt €T
Vi€ Lig,Vt €T

13)

where the action a; ¢ consists of two parts: 1) the price decision
a; , € [0, 1] representing the magnitude of willing price submit-
ted to the DA market as a ratio of FiT and ToU price differen-
tials p; ¢, = A + af ,(Af — A{); and 2) the energy decisions that
comprise of af"f, agef5 [—1, 1] indicating the mutually exclusive
charging (positive) and discharging (negative) power rate of EES
P = P + Psdand TES Q5 = Q5 + Q3¢ as apercent-

—_€€s —5ees —tes tes]

age of their power capacity [-P, , P, | and [ QZ Q.7 (as
EES and TES cannot charge and dlscharge simultaneously), and
aﬁct,a§b7 as™ ™ € [0, 1] indicating the magnitude of power
schedules as a percentage of their power capacity for FC Ggft €
0,G;], GB G, € [0,G%"), EHP P{™ ¢ [0,P;"], and CHP
™ e [0,G").

5) State Transition: The state transition from time step ¢
to t+ 1 is governed by s;+1 = T (8¢, a1.1¢,w;), influenced

by the combination of the environment state s;, all agents’
actions a.7,;, and environment stochasticity w;. In the exam-
ined problem this corresponds to the exogenous states w; =
[Li.1e, Py t,Pl 1.¢] that are decoupled from the agents’ actions
and are characterized by inherent variability. In the machine
learning area, RL translates this problem to a data-driven ap-
proach that learns the stochastic characteristics directly from
the data sources [22].

By contrast, the state transitions of endogenous states
S5% and S} are determined by actions af} and aff;, respec-
tively. Given EES as an example, the mutually quantities
P and Pgesd are managed by action a;% and are also re-
stricted by its parameters of the m1n1mum/max1mum en-

ergy level B E;", and the charging/discharging efficiencies
75 and nee‘d which are expressed as

Py = min(aS5 P, (B — Ei9)/ (e Aan™  (14)

Pevt = [max(a35 P, (B — B)nl/Ad(15)

where [-]*/~ = max / min{-,0}. Given the charging and dis-
charging powers Py and Pf"fd and efficiencies 7% and 7$°9,
the state transition of E7% from ¢ to ¢ + 1 can be expressed as

Ze’eti‘rl EZeC: + PZGCtQCAtnSeQC + Ple?dAt/neeid (16)

Then, the charging and discharging powers teic and ‘eid as
well as the state transition £} of TES can be derived in the
similar manner as the EES model (14)—(16).

To this end, the electricity quantity g; ; submitted to the DA
market of each agent ¢ at time step ¢ can be expressed as the
summation of its individual electric demand and supply power,
where the positive value represents the electricity demand to buy,
while the negative value represents the electricity generation to
sell in the DA market

(P!, — PPy — Pf + P At
(P!, — PPy + P{P + P& At
(P!, — PYd — PP + PE)At

Vi € IRG, VieT

Vi € Tcg, VieT

Vi € Iig, Vt € T.
A7)
After collecting the price—quantity bids (p; ¢, ¢; ) from all
the participating agents, the auctioneer allocates the order books
K2 (i, ity Git), Vi € Band kf (i, pi ¢, ¢i ), Vi € S,clearsthe DA
market (see Algorithm 1), and publishes the market outcomes
[P8.1.4: @100 @g 40 BE, K], which comprises: 1) the local infor-

qit =

mation of cleared trading price pﬁyt, cleared trading quantity
qé’t, and the remaining/unmatched quantity balanced with the
utility company qi . for each agent i; and 2) the public market
information of updated order books k% and k.

6) Reward Function: The reward function for each agent
1 at time step ¢ is designed as two parts: 1) the energy and
environment costs and 2) the penalty imposed to avoid the
constraint violations of the MES operation model. Specifically,
for these agents who are successfully matched in the DA market
will receive the cleared local trading price pat and quantity
qé’t, then each agent ¢ can calculate its corresponding electricity
cost/revenue in the DA market, and the remaining/unmatched
quantity qﬁ . will be bought or sold with the utility company
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at ToU A or FiT ;. For these agents who are unsuccess-
fully matched in the DA market, their quantity qi = qiy (e,
q., = 0) will be directly traded at A} or A{. As a result, the
reward term corresponding to the electricity cost for each agent
1 at time step ¢ can be formulated as

15y = =0 dhs - Liw + A[a )T + 25 1al,]7)

where the indicator 1, =l if i€ Band 1,; = —-1ifi € S.
Furthermore, the reward terms corresponding to the gas cost
and the environment cost out of the DA market for each agent ¢
at time step ¢ can be, respectively, formulated as

(18)

’/‘it = —)LfG‘ZtAt, rf,t = —AfEf,t (19)

where the gas quantity purchased from the natural gas grid
varies for three kinds of MEMGs: G?,t = Gf}; Vi € Trg U Zcg,
GY, = G + G, Vi € Tig.

Note that, in (17), the electricity demand and supply in each
MEMG can always be balanced through the internal system
together with the external DA market at each time step. However,
the heat demand and supply may not be balanced, since extra
heat cannot sell back to the grid. More specifically, the power
schedules of components (i.e., FC, GB, EHP, CHP, and TES)
controlled by actions only respect their individual operation
models (e.g., power capacity). However, they do not make sure
that the heat demand and supply are always balanced. The
main factor leading to this issue is that the action selections
in the RL algorithm for different dimensions are independent,
decoupling the correlation in the optimization-based approach.
To adequately account for such operation constraints of heat
demand—supply balance, we introduce a penalty term rﬁ , for
each agent in the reward function, which penalizes the extent of
violation of the heat demand—supply balance constraint, with
denoting a large (negative) penalty weighting factor to ensure
its feasibility

KIQL, — Q% — QS+ QS| Vie gVt €T
e = FlQL — Q5 — Q5 + Q| Vi€ Te V€ T
RIQL, — QM — Q% + QS| VieTg Vi e T
(20)
Thus, the final reward function r; ; of each MGCC agent % at
time step ¢ can be expressed as

Fig =715+ 1 i+l VielIVteT.  (21)

[ll. ProrPOSED MARL METHOD

To solve the POMDP defined above, we propose a novel
MARL method named DA-MATD3 with its general flowchart
being shown in Fig. 2. DA-MATD3 derives three concrete
implementation details that are insightful and particularly crit-
ical to our proposed MEMG energy management coordination
problem: 1) learning an abstracted ()-value function for each
agent through the DA market public order books to protect the
private information of each MEMG; 2) forming an actor-critic
architecture to handle the high-dimensional continuous state and
the action spaces of the MEMGs; and 3) taking advantage of
double critic networks in the twin delayed deep deterministic

_____________________

exploration "4 ctor of MEMG i Critic of MEMG i
N(0,6:%) DPG Update Action | TD Error |
4 ‘ Gradient
+ [Critic NN 1 | | [CriticNN 2 |

€ = clip(W(0,0%),—c,c) _t

policy regularization

Qiz

2 06, Qits Tip Kit
__________________________________ .
’ O ¢41, Kig a1
h

Replay Buffer

Fig. 2. Flowchart of the proposed DA-MATD3 method.

policy gradient (DDPG) (TD3) algorithm [32] to address the
(Q-value overestimation problem, thereby stabilizing the training
performance.

A. Abstracted Q-Value Function

As discussed in Section I-B, it is challenging to directly
acquire the local observations and actions by other agents in our
proposed problem since the MEMGs are not willing to share
their energy portfolios, technical parameters, and energy usage
behaviors. This article, thus, assumes that the agents can use
the public order books that epitomize the key information of the
DA market (thereby abstracting all agents’ price—quantity bid
information) in the centralized training process. This substantial
improvement protects the privacy of all the agents. To this effect,
we approximate the centralized )-value as

Qi(or.1,a1.1) = Qi(0, ai, ki) (22)
where k; = {k% k% Vj € T\ {i}} denotes the combination of

buy and sell ogder] books of all the agents other than agent ¢
in the DA market. k; is an embedded function of order books
k;’ and k7 that not only abstracts all other agents’ observations
(e.g., B}, PV, and P}') as well as actions of the price bids

aé’ and the quantity bids resulting from their energy decisions
(e.g., a=,al® o™, and a;hp ) but also displays the DA market
dynamics of local trading activities. As aresult, this combination
provides a good approximation of agents’ observations and
actions as well as the DA market dynamics. Incorporating k; into
the critic estimation, each agent can make acquainted decisions
on the basis of the impact of other agents’ actions, albeit not
knowing their energy portfolios and usage activities, protecting
the privacy of each MEMG.

B. MATD3

MATD3 [30], an extension of TD3 to multiagent setup,
addresses the stability concern that occurred in conventional
MADDPG by three key features: 1) using a pair of critics that
estimate the current (Q-value via a separate target value function;
2) updating the policy less frequently (delayed update) than the
Q-value function; and 3) smoothing the target policy by using a
(noise) regularization technique.

1) Twin Critic Networks: The overestimation bias in the con-
ventional MADDPG method has been discussed in [30]. Inspired
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by the technique in double QQ-learning [33] using a separate
target ()-value function to estimate the current ()-value, thus re-
ducing the bias, we introduce for each agent ¢ two separate online
critic networks (Q; 1 and @); ») parameterized by 6, ; and 0; »,
along with two target critic networks (@} ; and Q) ,) parameter-
ized by ¢ | and 6] ,. Then, the two target values used to update
the critic can be written as

Yin = i + Qi1 (0}, i (05), k)
Yip = 1i + Qi (0}, 15(07), k7) -
However, the values of ;| and ); » cannot be equal, and it is
inevitable that the high value may be overestimated. Therefore,
we make a slight change on the basis of double QQ-learning and

take the minimum value between these two estimates to get the
target ()-value for each agent ¢

(23)

yi =i+ min Qi i (0}, i (07), ki) - (24)

With this improvement, MATD3 can simultaneously train
two critic networks and pick the minimum value of them, thus
alleviating the overestimation phenomenon.

2) Delayed Policy Updates: Another potential failure in
MADDPG is the variance, which generates noisy gradients
during the policy update, thus slowing down the update speed
and leading to poor performance [30]. Similar to MADDPG,
MATD?3 also introduces the target networks to achieve stability.
Apart from this, the algorithm also proposes to delay the actor
network update until the critic network is updated after a fixed
number of time steps. As such, the updates of actor and critic
networks are decoupled, i.e., the actor network is updated at
a lower frequency than the critic network, to first achieve an
accurate (-value before it is used to update the policy. This less
frequent policy update will have a (Q-value estimate with lower
variance, resulting in better policy performance.

3) Target Policy Smoothing Regularization: The final tech-
nique of MATD3 is smoothing the target policy. Deterministic
policies trend to produce the high variance of the target when
updating the critic; this is caused by overfitting to narrow peaks
in the @)-value estimate [30]. MATD3 reduces this variance by
adding a clipped Gaussian noise ¢ = clip(NV (0, 0?), —c,¢) to
the actions in the critic update: a; = p(0;) + €. This serves
as a regularization, such that all the actions within this small
area have similar -values, thereby reducing the variance in the
associated estimations. The complete target, then, resolves to

yi =i+ min Qi (0, 1i(07) + € k). (25)

C. Training Process

DA-MATD?3 is an off-policy MARL method that requires the
past experiences to update the networks. To this end, an experi-
ence replay buffer D; is employed for each agent . The buffer
is a cache storing the past experiences of agent ¢ acquired from
the environment (an experience is a transition tuple (0; ¢, a; ¢,
Tit,Kit, 05141, Ki+1). For each time step ¢, we sample uni-
formly a minibatch of NV experiences from each agent’s cor-

responding replay buffer {(of, al, r*, kI, of ™ KT IV~

D; to compute the mean-squared temporal difference (TD) error
of two online critic networks as

N
L) = 3 7~ Quaol a? kY]

(26)
n=1
1 N
£t2) = 7 2 [ = Quatoal k)] @)
where
vl =iy min Qi (0 T (o] ) + e kT (28)

The online actor network employs the delayed update after d
critic updates, its policy gradient can be expressed as

N
1 n
Vo (i) = > [Voui(0])Var Qi
n=1

X(On an I{/’n)|a:b:#(0:z):| .

27T

(29)

The target networks of two critic and one actor are also
employed as the delayed updates after d critic updates

im0+ (1 =1)0; (30)
o Thia+ (1 =7)0;, (31)
qﬁ; — TP; + (1 — T)(;S; (32)

where T is the soft update rate for their target networks. More-
over, in order to help the agents explore the environment and
acquire more valuable experiences, we add a random Gaussian
noise NV'(0,07) to the online policy p;(0; ) of each agent i,
constructing an exploration policy

f1i(0i ) = pi(054) + N(0,07).

Finally, the overall training process of the proposed DA-
MATD3 is summarized in Algorithm 2.

(33)

IV. CASE STUDIES
A. Experimental Setup and Implementation

1) Experiment Setup: We implement experiments on a real-
world dataset recorded from Open Energy Data Initiative [34]
and RWTH Aachen University [35]. We collect the correspond-
ing EL, HL, and PV and wind power of residential, commercial,
and industrial users with hourly resolution for our experiments.
Then, these energy users can be classified and aggregated into
three MEMGs. To further account for the uncertainties, we add
the Gaussian noise [zero mean and 5% standard deviation (std)]
to the original collected data as the train set, while using the
original collected data as the test set. The operating parameters
of MEMGs’ controllable components are derived from [36].
ToU tariff [37] selected as the grid electricity buy price varying
for the time: 0.1129 $/kWh at 20:01-17:00 (next day) and
0.2499 $/kWh at 17:01-20:00. FiT as the grid electricity sell
price, natural gas price, and carbon price are flat over the day
at 0.04 $/kWh [38], 0.0338 $/kWh [39], and 0.0316 $/kg [40],
respectively. The averaged carbon emission of using natural gas
is 0.245 kg CO,/kWh [40].
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Algorithm 2: DA-MATD3 for I Agents.

1: Initialize weights 0; 1,0; », and ¢; for the online
networks and copy them to the target network weights
i1,0; 2, and ¢/, for each agent i
2: Initialize replay buffer D; for each agent ¢
3: for episode (i.e., trading day) = 1 to Mdo
4: Initialize the environment £ and Gaussian noise
N(0,0?)
for time step (i.e., L h) ¢ = 1 to T'do
For agent i, select action a; ; = [1;(0;,¢) in (33)
7. Execute actions a.7,; to the DA market, then
observe reward r; ¢, next observation o; ;, and
order books k; 11

AN

8: For agent 4, store (0;.¢, @i ¢, Tit, ki t5 O t41, Ki t41)
in D1
9: Update local observations for next time step

Ojt < 04 t+1
10: for agenti = 1to I do

11: Sample uniformly a minibatch of /N experiences
(o, al,ri kP, o1 k) from D;

12: Compute critic target value in (28)

13: Update two online critic networks in (26) and (27)

14: if t mod d = O then

15: Update online actor network in (29)

16: Update parameters of target networks in

(30-(32)

17: end if

18: end for

19:  end for

20: end for

2) Benchmarks: We compare the proposed DA-MATD3
with the conventional ZI strategy and three state-of-the-art
MARL methods of IDDPG, MADDPG, and MATD3. To further
evaluate the benefit of the energy coordination architecture,
we benchmark the performance against one scenario that each
MGCC agent trades independently with the utility company
using DDPG without MEMG energy coordination (UDDPG).

3) Implementations and Hyperparameter Selections: For all
the examined five MARL methods, we use an Adam opti-
mizer [41] for both the actor and critic networks with the same
learning rate o = 10~ [30]. The sizes of replay buffer D and
batch N are 10° and 10? [30], respectively. We employ a soft
update rate 7 = 1072 [30] and a discount rate v = 0.9. The de-
layed step d = 2 [30] for DA-MATD3. For all the networks, we
use multilayer perceptron (MLPs) with two hidden layers with
400 and 300 units, respectively. The sigmoid activation function
is used as the actor outputs. The outputs are, then, scaled linearly
to their individual action space. For all the examined methods,
we run 5 x 10° episodes to evaluate their training performance
with ten random seeds for both environment and network initial-
ization. The values of the hyperparameters o, 7, and d were set
based on the original MATD3 [30] paper. The grid search
function [42] was used to determine the value of hyperparameter
7 to obtain the best performance.

—— DA-MATD3
MATD3
—— MADDPG

—— IDDPG
— ZI
—— UDDPG
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Fig. 3. Episodic reward of three MEMGs for different control methods.
0
—3001
T —600-
z
2 900
—1200 I I
1500 DA-MATD3 MATD3 MADDPG IDDPG zl UDDPG
Fig. 4. Mean and std of three MEMGs’ aggregated reward at conver-

gence for different control methods.

TABLE |
TEST ENERGY COST AND CARBON EMISSION OF THREE MEMGS AND
COMMUNITY FOR DIFFERENT CONTROL METHODS

Method Energy Cost ($) Carbon Emission (kg)

MEMGs RG | CG | IG | Total | RG CG 1G Total
UDDPG 479 | 515 | 163 | 1157 | 2816 | 1310 | 1143 | 5269
71 464 | 504 | 91 1059 | 2857 | 1290 | 1164 | 5311
IDDPG 448 | 490 | 41 979 | 2915 | 1269 | 1190 | 5374
MADDPG 440 | 471 | -12 | 899 | 3048 | 1237 | 1064 | 5349
MATD3 418 | 450 | -11 | 857 | 2997 | 1112 | 1144 | 5253
DA-MATD3 | 415 | 456 | -2 869 | 2926 939 | 1222 | 5087

B. Performance Evaluation

We compare the training performance of five examined
MARL methods and the conventional ZI strategy for the test set.
Specifically, Fig. 3 illustrates the convergence curve of episodic
reward of three MEMGs for different control methods, where
the solid lines and the shaded areas, respectively, depict the
moving average over 50 episodes and the oscillations of the
reward during the training process. The converged performance
of mean and std of three MEMGs’ aggregated reward are also
compared in Fig. 4. Furthermore, their energy (electricity and
gas) costs and carbon emissions for the test dateset are also
presented in Table I for comparison.

Our first observation in Fig. 3 is that all five MARL methods
show an upward trend, and their policies are being improved,
even for the UDDPG method without considering the energy
coordination benefits. On the other hand, IDDPG, the most
straightforward MARL method, exhibits the highest oscillation
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and unstable learning behavior, ultimately failing to reach an
optimal policy (the highest carbon emission). As discussed
in Section III-A, this is because IDDPG focuses on local in-
formation while ignoring the others’ behaviors, rendering the
environment dynamics nonstationary. As such, MADDPG and
MATD?3 with centralized training can effectively mitigate such
nonstationarity issues and exhibit superior training performance.
Furthermore, MATD?3 owing to its double critic networks (more
accurate ()-value estimation) can achieve a higher reward with
regard to MADDPG. However, both the methods suffer from the
privacy issue requiring all others’ local observations and actions
for the centralized critic. Our proposed DA-MATD3 method
learns the DA market dynamics directly by extracting the others’
observations and actions through the DA market public order
books. In addition, the performance of the traditional ZI strategy
during the training process is illustrated in Fig. 3. ZI as a static
control method does not tend to go up but tends to flatten out
over 5000 episodes.

The mean and std of the aggregated rewards of three MEMGs
are quantified in Fig. 4. The figure shows that DA-MATD3
has the best performance, since it achieves the highest reward
among all six control methods. DA-MATD3 also has lower std
compared to MATD3, MADDPG, IDDPG, and ZI, so that it is
more effective in stabilizing the training performance. UDDPG
obtains much lower reward than DA-MATD3, even though its std
is lower than DA-MATD3. The reason is that UDDPG does not
consider a DA market; therefore, the economic benefits of energy
coordination cannot be obtained. The test results presented in
Table I obtain the similar performance as the training results
in Fig. 3. The proposed DA-MATD3 achieves 7.31%, 6.50%,
6.25%, 4.67%, and 2.52% lower total energy costs and carbon
emissions than UDDPG, ZI, IDDPG, MADDPG, and MATD?3,
respectively.

C. Analysis of Multienergy Management

To further validate the learned policies in DA-MATD3 for
the test set, we provide the energy management schedules of
three MEMGs for both the electric and heat supplies in Fig. 5.
Residential MEMG features abundant PV production during
mid-day hours and high EL peaks during night hours as well

11 13 15 17 19 21 23

9 11 13 15 17 19 21 23
Hour (h)

Hour (h)

Power supply and demand for three MEMGs under the DA-MATD3 method.

as a relatively flat HL profile. As its high combined electricity
and heating generation efficiencies, the FC is learned to supply
both EL and HL over the day, apart from the mid-day with PV
sources. Furthermore, the MGCC learns to use the storage (EES
and TES) flexibility to charge power when energy prices are low
or PV is abundant and discharge power when the energy price is
high or HL is at the peak. Finally, GB is a backup component to
supply HL when the FC is not in use. Similar to the residential
MEMG, the commercial MEMG also features abundant PV, but
its HL is concentrated during the daytime. Without the converter
from natural gas, the electricity grid and PV are major sources
to supply EL. The EHP is used to supply HL during the mid-day
hours by converting the free PV from electricity to heat power,
while EES and TES also exhibit their flexibility to charge cheap
and free energy and discharge them to the peak demand hours.
Finally, GB in the heat sector is used to supply the left part of HL.
Unlike residential and commercial ones, the industrial MEMG
installs a WG and its energy usage mainly focuses on EL. It can
be observed that there is abundant WG production supplying
EL and is also used for EES charging power and surplus fed
to the grid to obtain extra revenue. The electricity grid partly
supplies EL during the mid-day hours with low wind sources.
In the heating sector, CHP accounts for the major proportion
of HL supply, while TES is learned to discharge to reduce
CHP usage when energy prices are high. It can be concluded
that the proposed DA-MATD3 is able to learn effective energy
management policies for all three MEMGs to various price
signals, demand patterns, and renewable output. In addition, the
complementary effect among multienergy vectors (interaction
between electric and heat supplies) can also be verified based
on the above analysis.

D. Benefits of Energy Coordination

Having demonstrated the superiority of the DA-MATD3
method over the state-of-the-art MARL methods and analyzed
the energy schedules of three MEMGs, this section aims to
compare the trading strategies under the dynamic DA-MATD3
method with the statistic ZI policy and quantifying the benefits
of energy coordination among three MEMGs. Fig. 6 shows the
net load (positive for consumption and negative for generation)
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methods.

Local trading quantities and prices under ZI and DA-MATD3

of three MEMGs under the methods of UDDPG without energy
coordination and ZI and DA-MATD?3 with energy coordination
but in different trading strategies. Dash lines as the baselines
represent the aggregated load of electric demand and renewable.
Fig. 7 illustrates the local trading quantities and the averaged
trading prices under ZI and DA-MATD3 methods.

When energy coordination is allowed in the DA market,
MEMGs with energy surplus/deficiency are incentivized to trade
locally. As aresult, we can observe that compared with UDDPG,
the generation and demand of three MEMGs in Fig. 6 are both
reduced under ZI and DA-MATD3, since an amount of energy is
balanced locally in the DA market, which can also be confirmed
in Fig. 7. The figure shows that the DA-MATD3 method trades
more frequently and in greater quantities than the ZI method due
to the following reasons.

1) For the DA-MATD3 method, the agents are trained to
select the suitable trading prices, so that the buyers and the
sellers can achieve more trading deals. For the ZI method,
the trading prices of the MEMGs are chosen randomly
within the range of FiT and ToU, which affects how many
times the trading deals are successful.

2) For the DA-MATD3 method, the agents are more likely
to trade larger quantities in the DA market to reduce the
costs, since each agent considers others’ trading strate-
gies. For the ZI method, each MEMG decides the energy
trading quantity without considering the trading strategies
of the other MEMG:s.

More importantly, compared with the nonstrategically sam-
pling behaviors in the ZI method, MGCC agents under DA-
MATD3 learn to trade a large amount of energy locally, thereby
reducing their dependence on the utility company. Such results
can also be validated in Table II: 1) there is no internal trading

TABLE Il
COMMUNITY DAILY INTERNAL, EXTERNAL TRADING QUANTITIES, AND
ENERGY COsTS UNDER UDDPG, ZI, AND DA-MATD3 METHODS

Method Internal (kWh) | External (kWh) | Energy Cost ($)
UDDPG - 7382 1151
Z1 1929 5327 1062
DA-MATD3 7263 1933 881

under UDDPG, so the net demand and generation (7382 kWh
in total) are all bought at high ToU and sold at low FiT; 2) ZI
achieves $89 total cost saving by 1929 kWh internal trading
within the DA market; and 3) DA-MATD?3 achieves the lowest
total energy cost by making the highest internal trading at
7263 kWh. In relative terms, DA-MATD3 achieves 2.82/1.76
times lower external trading with the utility company (higher
balance of local demand-generation) and 30.65%/20.54% lower
energy cost (more economic benefits of local trading) over
UDDPG/ZI methods.

V. CONCLUSION

This article proposed a novel MARL method to address the
energy coordination problem of MEMGs local trading in a
highly efficient DA market, incentivizing MEMGSs to participate
in local trading with economic benefits. The examined MEMGs,
featuring various demand and renewable characteristics, were
categorized into residential MEMGs, commercial MEMGS, and
industrial MEMGs. The proposed MARL method named DA-
MATD3: 1) constructs the centralized critic by abstracting the
others’ observations and actions through the DA market public
information, thereby preserving MEMGs’ privacy and capturing
the market dynamics and 2) uses a pair of critic networks to over-
come the (J-value overestimation issue and stabilize the training
performance. The effectiveness of the proposed DA-MATD3
method was evaluated through simulations using a real-world
setting. Specifically, the proposed method achieved superior
performance in reducing both energy costs and carbon emissions
compared to the state-of-the-art ZI and MARL methods. Finally,
the trading strategies and outcomes were also analyzed to show
the significant economic benefits of the community by more
internal energy trading among three MEMGs within the DA
market.

Future work aims at enhancing the proposed work from
two directions. First, the DA market introduced in this article
focuses on electricity trading. Future work will explore a new
market mechanism enabling multienergy trading within a local
MEMG community. Second, although this article focuses on a
local energy community, the proposed method can be extended
to a larger and wider energy community with the following
changes: 1) in the system model, the transmission losses need
to be considered, as long-distance transmission tends to lose
energy; 2) the matching algorithm in the DA market should
take the distance into consideration when matching a buyer
and a seller; and 3) distribution network constraints need to
be considered, since different distribution networks often have
different constraints such as transformer and line limitations,
phase unbalance, and voltage stability.
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