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Abstract—Deep learning (DL) has certainly improved in-
dustrial inspection, while significant progress has also
been achieved in metrology with impressive results
reached through their combination. However, it is not easy
to deploy metrology sensors in a factory, as they are
expensive, and require special acquisition conditions. In
this article, we propose a methodology to replace a high-
end sensor with a low-cost one introducing a data-driven
soft sensor (SS) model. Concretely, a residual architecture
(R2esNet) is proposed for quality inspection, along with
an error-correction scheme to lessen noise impact. Our
method is validated in printed circuit board (PCB) manufac-
turing, through the identification of defects related to glue
dispensing before the attachment of silicon dies. Finally,
a detection system is developed to localize PCB regions
of interest, thus offering flexibility during data acquisition.
Our methodology is evaluated under operational conditions
achieving promising results, whereas PCB inspection takes
a fraction of the time needed by other methods.

Index Terms—Defect detection, printed circuit board
(PCB), residual network (ResNet), smart manufacturing.

I. INTRODUCTION

INDUSTRY 4.0 aims to automate manufacturing processes
using smart technologies and has greatly benefited from

recent advancements in deep learning (DL). The success of
DL has been demonstrated by its numerous applications in a
variety of different industrial sectors ranging from telecommu-
nications [1] to electronics [2]. However, the large amounts of
accurately annotated data needed to train DL models necessitate
the deployment of multiple high-accuracy sensors for industrial
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process monitoring. The use of high-end laboratory sensors,
which are accurate, stable, and robust, is not always a feasible
solution due to the high deployment and maintenance cost they
incur. Hence it is necessary to rely on less accurate, yet low-cost
sensors.

This article is a direct extension of a previous work by
Dimitriou et al. [3], in which a printed circuit board (PCB)
defect detection system is developed. Prior to the attachment of
integrated circuits, it is necessary to dispense conductive glue on
the PCB’s substrate surface, during which defects related to the
dispensed glue volume may occur. Identification of such defects
is achieved through the use of a modular scanning system and
a 3-D convolutional neural network (3DCNN), which regresses
the volume of each glue deposit of a PCB. Interestingly, glue
volume is accurately estimated even after die attachment when
only part of the glue is visible and partial information about its
shape is available.

Despite the promising results obtained, this method relies
on the use of a laser profilometer, which is expensive, slow,
needs to be calibrated, and requires controlled illumination
conditions during measurements. These limitations are the main
motivation for our work, where we propose to replace the laser
profilometer with a single RGB camera and a DL architecture
that provides laboratory level accuracy in the shop floor (in
situ). The replacement of a profilometer with an industrial
camera has numerous advantages, as it significantly reduces
the cost of automated inspection, making it a suitable choice
for in situ deployment, whereas both data acquisition and pro-
cessing are faster, thus notably reducing inspection time. To
automate the inspection process using a low-cost sensor, ground
truth is acquired in the laboratory by analytically calculat-
ing the volume of each sample from its corresponding 3-D
point cloud representation and is subsequently used to train
a deep network that estimates glue volume from 2-D image
data. Additionally, we develop a segmentation and detection
system that localizes glue regions within the image irrespec-
tive of the PCB’s orientation. Finally, we propose a method
to deal with label noise, inherently existent due to the finite
resolution of the 3-D scans, using only a few reliable mea-
surements. The main novelties of our work are summarized as
follows.

1) We propose a new methodology to replace expensive
sensors with in situ ones.
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2) We provide increased flexibility during data acquisition,
as accurate part placement is not necessary.

3) We extrapolate a 3-D variable (volume) from 2-D data
(RGB image).

4) A modified residual network for regression (R2esNet) is
introduced, and the impact of different choices of depth
is examined.

5) We demonstrate the potential of this approach in a semi-
conductor manufacturing use case.

6) A new benchmark dataset is generated.
The rest of this article is organized as follows. Section II

reviews the related work in soft sensors (SS) and metrology
methods for defect detection for industrial applications. Sec-
tion III outlines the examined defect detection use case as well
as the proposed methodology. A detailed description of the
available data is given and the various deep architectures used are
introduced. In Section IV, our methodology is evaluated and the
experimental results are presented. Finally, Section V concludes
this article.

II. RELATED WORK

In this section, we give an overview of the most recent
work related to our method. Since we develop a SS model to
indirectly estimate glue volume from RGB image data and use
the estimated value to identify defects, we further elaborate on
the recent advancements in the fields of defect detection via deep
learning, soft sensor models, and AI.

A. Defect Detection via DL

The successful application of DL in the industry can be
partially attributed to the introduction of several deep convolu-
tional architectures that have revolutionized image classification
and have since been used as backbone networks for various
tasks. In [4], the authors introduce VGG, a deep convolutional
architecture that makes use of multiple layers, while keeping a
small, fixed, 3 × 3 size for the convolutional kernels, which has
since become a standard process. Proposing the use of residual
connections, He et al. [5] developed residual network (ResNet),
achieving state-of-the-art results in multiple image classification
datasets. Extending this idea, DenseNet is proposed in [6], by
concatenating the feature maps of each layer with the input of
every subsequent layer, thus facilitating the gradient flow to the
initial layers during backpropagation. To address the increasing
demand for mobile and real-time embedded vision applications,
Howard et al. and Sandler et al. [7] and [8] proposed MobileNet,
which is based on depthwise separable convolutions to lower the
computational cost both during training and inference without
significantly affecting performance.

In recent years, DL approaches have been successfully
adopted for various industrial applications, mainly focusing on
optimizing the production process through the identification
of defective parts. In [3], upon which our work is based, the
authors consider a PCB defect detection use case and develop
a 3DCNN regression architecture called RNet to estimate the
volume of a conductive glue deposit before die attachment.
In [9], a data-driven fault diagnosis system is developed using

a 2DCNN in combination with a parameter-free conversion
method to transform 1-D signals into 2-D images, and its ef-
fectiveness is demonstrated on three distinct fault diagnosis use
cases. Moreover, in [10] a deep convolutional transfer learning
network is developed to address the discrepancy between source
and target domain during training and testing and is evaluated
on three motor bearing fault diagnosis datasets. Lee et al. [11]
propose the use of a fault diagnosis classification CNN, which
enables the association of the output of the first convolutional
layer with the structural meaning of the raw data, making it
possible to extract information regarding the cause of defects,
and test their method on a chemical vapor dataset. To cope
with noisy data, a wavelet-inspired soft thresholding approach
is adopted in [12] in which the optimal threshold values are
learned, and it is applied for the identification of bearing and
gear faults in rotating machines. A joint detection and classifi-
cation scheme is proposed in [13] for steel plate defect inspec-
tion through the fusion of multilevel features. Another defect
detection application in the hard metal industry is developed
in [14], where data gathered from multiple sensors are used
for quality assessment. Chen and Li [15] developed another
feature fusion method exploiting sparse auto encoders, whereas
in [16], the use of a segmentation-based deep architecture that
can generalize based on only few training samples is suggested
to identify surface crack defects. Finally, both [17] and [18]
take advantage of deep learning models to identify welding
defects.

B. Soft Sensors and AI

Another line of DL applications in the industry, involves the
development of SS for the indirect monitoring of hidden vari-
ables during production. A data-driven approach to estimate haz-
ardous gas concentrations using principal component analysis to
decorrelate the input signals along with a deep belief network
is proposed in [19]. Furthermore, a soft sensor application is
developed in [20], where support vector machines and other
predictive models are used to regress key variables in a refinery
isomerization process. In a related application [21], a stacked
autoencoder soft sensing model is introduced, where a product
concentration prediction use case on an industrial debutanizer
column process is examined. In [22], a nonlinear finite impulse
response model is used to estimate the deflection of a polymeric
mechanical actuator, whereas in [23] a semisupervised approach
is introduced to exploit unlabeled data. Another semisupervised
method is suggested in [24] to estimate the CO2 concentration
in an ammonia synthesis process. A spatiotemporal attention-
based long short-term memory network is proposed in [26]
and is evaluated on an industrial hydrocracking process use
case.

III. PROPOSED METHODOLOGY

In this section, the proposed methodology is outlined. First,
an overview of our method is given and the studied use case
is described in detail. Next, the in situ sensing module under
consideration is introduced along with the high-end sensor that is
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Fig. 1. Schematic overview of the proposed methodology. During train-
ing a high-end sensor is used to extract ground truth measurements.
Subsequently the low cost sensor along with the trained model are
deployed in the shop floor.

replaced. Finally, our R2esNet architecture and the segmentation
model for glue detection are described.

A. Overview

In order to transfer the accuracy and robustness of a laboratory
sensor in the shop floor we adopt the following approach: For
each data sample, we obtain two distinct representations xl and
xs, corresponding to the measurements acquired using a high-
end laboratory sensor and a low-cost in situ one, respectively.
Subsequently, measurements xl are used to create annotated
samples by analytically estimating the quality variable under
consideration through y = f(xl), where f(·) is considered to
be known. Exploiting the existing correspondence between the
samples we create a dataset {(xs

i , yi)}Ni=1, which is then used
to train a deep network h(xs, θ) such that

h(xs, θ∗) ≈ f(xl) (1)

where θ∗ are the optimal network parameters estimated by
minimizing the empirical cost as

θ∗ = argmin
θ

N∑
i=1

L(h(xs
i , θ), yi) (2)

and L(h(xs
i , θ), yi) is any valid cost function. A schematic

overview of this approach is given in Fig. 1. The deep network
predicts the value h(xs, θ) = ŷ, and its parameters are tuned to
minimize the prediction error e = y − ŷ.

B. Studied Use Case

The growing wave of small electronics products, such as
wearables and Internet of Things devices has led to increased
demand for small-scale printed circuit boards. A critical stage
in the microelectronics manufacturing industry is the dispensing
of conductive glue on an liquid crystal polymer (LCP) substrate
surface placed by a glue dispensing machine before the attach-
ment of integrated circuits.

The volume of the dispensed glue deposit is a crucial variable
that needs to be monitored during production as it directly affects
the quality of the produced circuit. Specifically, excessive glue
may lead to internal short-circuits, whereas insufficient glue
leads to weak die bonding. The current practice for the detection
of such faulty conditions is the manual inspection of the PCB,
which is both a time-consuming and highly inaccurate process.

The development of a soft sensor model for the monitoring of
the dispensed glue volume and the inspection of a part benefits
production and is considered crucial toward the automation of

Fig. 2. Example of printed circuit board used for the development of
the proposed system. Each PCB consists of two rows and contains 18
circuit modules in total.

Fig. 3. Examples of three circuit modules, each corresponding to a
different state. The glue dispensed on circuit (a) is insufficient, on circuit
(b) normal, whereas on circuit (c) it is excessive.

quality control. The use of a laboratory sensor, such as a laser
profilometer [3], even though produces highly accurate and reli-
able measurements, is expensive and may slow down production.
Our proposed methodology aims to transfer the accuracy of a
high-end sensor on the shop floor, while simultaneously offering
increased flexibility during the acquisition of measurements and
highly reducing inspection time and cost. An example of a PCB
consisting of 18 identical circuit modules is shown in Fig. 2. Each
module contains several glue deposits whose volume needs to
be monitored during inspection. There are five different types
of glue containers, as can be seen in Fig. 3, which we label A,
B, C, D, and E.

C. Sensing Module

For PCB inspection, the sensing modules under considera-
tion include a modular laser scanning system (high-end sensor)
and an industrial RGB camera (low-end sensor). The high-end
setting comprises an Optimet Conopoint-10 sensor, a Newport
XPS-RL2 motion controller, two linear stages, and the support
breadboards. The same zig-zag scanning strategy, as in [3], has
been employed to reduce inspection time. Each glue deposit is
scanned twice, once with a resolution of 50 μm and once with
20 μm. Indicative point cloud representations of the acquired
scans can be seen in Fig. 4, from where it is evident that the 3-D
geometric structure of the glues is successfully captured. The
low-cost setup consists of a Baumer VCXG-201 C.R industrial
camera and a Fujinon machine vision CF25ZA-1S lens. The
lens’ focal length is 25 mm, and, thus, when placed in the right
height, the PCB captures a large part of the image compared
to the background, thus fully exploiting the setup’s potential.
All inference computations are performed using a Jetson AGX
Xavier, and, thus, the whole system can easily be deployed in
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Fig. 4. 3-D scans of glue types A, B, C, D, and E taken with a resolution of 20 µm. (a) Type A. (b) Type B. (c) Type C. (d) Type D. (e) Type E.

Fig. 5. Proposed setup consisting of a Jetson AGX Xavier and a
machine vision camera.

the shop floor following the edge computing paradigm. The
proposed setup is shown in Fig. 5.

D. Generating a Dataset

Obtaining an annotated dataset requires expert knowledge and
is usually a challenging and time-consuming process, especially
in industrial applications, where the sample parts, particularly
defective ones, are scarce. Automating the annotation process
is highly beneficial as it largely reduces the time and workload
needed. To address this common issue, we propose two differ-
ent glue volume estimation processes, one using the 50 μm to
automatically generate a noisy dataset for training, and another
using the 20 μm to manually generate a reliable and accurate set
of measurements for validation purposes.

In both cases, for each regional scan RANSAC [25] is applied
to estimate the substrate LCP surface plane. Subsequently, for
the low resolution scans the points belonging to the glue deposits
are identified as the outliers of the plane’s model, whereas for the
high resolution scans they are manually cropped. Each 3-D point
of the glue point cloud is then projected onto the estimated sub-
strate plane to form a closed surface. Following this process, the
resulting 3-D representation is xl = G ∪ S, whereG = {gi}Mi=1
is the glue cloud and S = {g′i}Mi=1 the corresponding projected
substrate surface cloud. Glue volume is approximated using the
formula

V (xl) =

M∑
i=1

‖gi − g′i‖2 Δsi (3)

where Δsi is the rectangular surface area element and ‖ · ‖2

the standard Euclidean 2-norm of a vector. Δsi depends on the
resolution r of the point cloud through the relation Δsi = r2.
Equation (3) is geometrically interpreted in Fig. 6. Essentially,
the above formula is a discrete approximation of its continuous

Fig. 6. Illustration of the analytical volume estimation process. Every
point gi ∈ G is projected onto the substrate plane p, and the elementary
volume Δvi is calculated. The sum of all Δvi approximates the total
glue volume.

counterpart

V =

∫∫
D

g(x, y) dx dy (4)

where D is the domain of integration, and g(x, y) the height of
the glue deposit at any point. The coordinate system chosen is
such that the substrate surface plane corresponds to z = 0.

Due to the existence of sensor noise during scanning, the
imperfect plane fitting and glue-substrate segmentation of the
point cloud, and the discretization error introduced in (3), the
estimated glue volume is unavoidably corrupted by noise. Let
vi be the true volume value for sample i. By construction, we
obtain a set of measurements{ydi }Ni=1, estimated from the 20-μm
resolution point clouds and a corresponding set {ysi }Ni=1, esti-
mated from the 50-μm glue clouds. Both sets of measurements
are corrupted by noise such that

ydi = vi + nd
i (5)

ysi = vi + ns
i (6)

where ns
i ∼ WN(μs

i , σ
s) and nd

i ∼ WN(μd
i , σ

d) are modeled
as white noise random processes, where it is assumed that
σd � σs and that μd

i ≈ 0. After acquiring the PCB images,
all glue regions are manually cropped thus obtaining repre-
sentations xs

i , which are used to form a noisy training set
DTrain = {(xs

i , y
s
i )}Ni=1 and a testing set DTest = {(xs

i , y
d
i )}Mi=1

using the more reliable, dense resolution measurements for
evaluation purposes.

E. Deep Architectures

The developed system consists of a two step process. First, the
acquired image is fed into an instance segmentation network that
predicts the pixel coordinates of each glue deposit and classifies
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Fig. 7. Schematic representation of the proposed segmentation and
detection system. The raw PCB image is fed into the segmentation net-
work, and subsequently the extracted modules are fed into the detection
network which regresses a bounding box for each glue deposit.

its type. Subsequently, each detected glue deposit is fed into a
regression network that estimates its volume.

Segmentation and Detection: During the last few years,
computer vision has immensely advanced, especially regarding
object detection and instance segmentation tasks. Extensive
research in the field has led to the development of two-stage
detection methods, like the seminal Faster R-CNN [27] method
that is capable of fast and accurate object detection through
the utilization of a region proposal network. A variant of faster
R-CNN, called Mask R-CNN, is introduced in [28] to perform
semantic segmentation on the detected objects.

Since it is necessary to identify all glue deposits within an
image, we use Mask R-CNN to first segment the PCB into its
constituent modules and Faster R-CNN to detect and classify the
glue deposits within each module. For each PCB, the coordinates
of its modules are manually annotated. Five of the PCBs are kept
for training and one for testing. Due to the small-scale dataset
available, we perform heavy data augmentation by applying
random rotations, crops, random scaling, and random horizontal
and vertical flips during training. Besides increasing the size of
the dataset, augmentation also contributes to the development
of the desired invariances. Subsequently, for every detected
module, we fit the minimum area rectangle to its binary mask
and warp the image using the rectangle’s four corners. The glue
detection faster R-CNN is trained to localize all glue deposits
within a module and classify their type. To this end, the pixel
coordinates of all glue deposits are manually annotated to create
a dataset. The same kind of augmentation is used as before to
develop translational, rotational, and scaling invariance. Both
networks use a ResNet50 backbone and are pretrained on the
ImageNet dataset [29]. Finally, by performing another affine
coordinate transform using the detected bounding boxes, the
glue deposit images are isolated. A schematic representation of
the instance segmentation system is shown in Fig. 7.

Volume Regression: To automate the glue volume estimation
process, we develop R2esNet, a deep regression network based
on the well-known ResNet architecture [5]. ResNets exploit
the use of shortcut connections between intermediate layers,
and by doing so can define very deep architectures that avoid
overfitting and increase the convergence rate during training.
As the authors advocate, it is easier to learn residual rather

Fig. 8. Schematic overview of the proposed R2esNet10 architecture.
The model consists of four residual blocks, an output, and an input
block. Each block sequentially performs convolution, layer normalization,
rectification, convolution, and layer normalization.

than direct mappings. The final layers of the network consist
of a global average pooling layer, along with a 1000-way fully
connected layer with softmax for classification.

To perform regression, we modify the existing ResNet archi-
tecture by replacing the last classification layer with a single-
output fully connected layer and omit the use of the softmax
activation function. We experiment with three choices of depth
by stacking 4, 8, and 16 residual blocks, which correspond to
10, 18, and 34 layers, respectively. Each network is trained for
90 epochs using Adam with an initial learning rate of 10−4,
which is divided by 10 every 30 epochs. Weights are initialized
as in [30] and trained from scratch. All training samples are
normalized by subtracting the per-channel mean and dividing by
the standard deviation over the whole dataset, whereas the labels
are scaled to the interval 0-1. Data augmentation is applied in the
form of random rotations, translations, horizontal and vertical
flips, as well as brightness, contrast, saturation, and hue jitter.
Moreover, due to the small dataset available, we use a mini-batch
size of one and, therefore, replace all batch normalization layers
with layer normalization. The cost function used is the typical
for regression mean square loss (MSE) loss. The schematic
overview of the proposed architecture is shown in Fig. 8.

Compared to other deep architectures, R2esNet achieves faster
inference due to its reduced size, while the use of residual
connections lowers the risk of overfitting. As in most industrial
applications, annotated data are scarce, and computational re-
sources are limited, we conclude that R2esNet is well suited for
edge deployment. In general, the few hundred samples available
would be inadequate to train a deep network and would likely
result to the model overfitting the training data. However, due to
the controlled image acquisition environment and the relatively
small variability of the glue samples, even a small dataset is
enough to successfully capture the problem’s statistics.

Error Correction: As has been described in Section III-D,
the available measurements for training are corrupted by white
noise, and, thus, it is necessary to employ some regularization
strategy to cope with this issue and develop robustness for the
trained model. The two sets of measurements for type A glues
are illustrated in Fig. 9. It is made evident that besides the ran-
dom fluctuations present in the sparse resolution measurements,
there also exists a deterministic bias directly correlated with
the amount of the dispensed glue. The existence of this bias is
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Fig. 9. Plot of ysi and yci on the left (a) figure, and their difference
yci − ysi on the right (b) for type A glues. For better illustration purposes
measurements yci are sorted in ascending order.

Fig. 10. Schematic representation of the proposed noise compensa-
tion methodology.

attributed to the overestimation of the substrate plane’s height, as
well as the inability of RANSAC to correctly classify the points
near the boundaries of the glue. Inspired by this observation,
we hypothesize that the existent error is related to several other
characteristics, such as glue shape, and can thus be partially
predicted from the 2-D input images. Formally, we assume that
there exists a deterministic error term esi such that

ysi = vi + esi + ns
i . (7)

In order to refine the network’s predictions, we employ a parallel
error-correction network that functions as a regularizer and
whose aim is to regress the deterministic error from the input
image xi. The structure of the proposed model is illustrated in
Fig. 10.

To minimize the computational load added through the error-
correction network, we choose to employ a R2esNet architecture
of depth 10 in every case. A small number of reliable dense
resolution measurements acquired from the 20 μm scans is
used for training, during which the parameters of the volume
prediction network remain frozen. The same optimization and
augmentation strategy is used as before. The small number
of available training samples further justifies the choice of a
shallower architecture.

IV. EXPERIMENTAL EVALUATION

In this section, our proposed methodology is evaluated. First,
our instance segmentation system is visually evaluated, and its
robustness to translations and rotations of the input image is
demonstrated. Subsequently, we evaluate the developed regres-
sion model R2esNet. The three different choices of depth are
compared through the use of tenfold cross-validation, whereas
testing set predictions are shown. Finally, inspection times for

Algorithm 1: Printed Circuit Board Inspection.

Input: Raw RGB image x ∈ R3×H×W

Output: Estimated glue volumes V = {vij}K,M
i=1,j=1

K : Number of Modules
M : Number of glue deposits per module

1: PCB Segmentation (mi)
K
i=1 �mi: Circuit module i

2: for i = 1 : K do
3: Glue Localization (gij)

M
j=1 �gij Glue deposit j

4: for j = 1 : M do
5: Volume Estimation vij = R2esNet(gij)
end for
end for

Fig. 11. Testing PCB segmentation results. In the first column the
original image (a) is segmented (d), in the second the image is translated
(b) before segmentation (e), whereas in the third it is rotated (c) and
segmented (f).

the six defective and nondefective parts are calculated and
presented.

A. Module Segmentation and Glue Detection

To evaluate the robustness of our segmentation model, we ar-
tificially apply random rotations and translations to the acquired
input images to simulate the effect of part misplacement. As can
be seen in Fig. 11, the developed system successfully segments
the PCB into its modules in all three cases. Even in the more
challenging cases, where the image is either rotated or translated,
all modules are detected despite the partial occlusion near the
boundaries of the PCB, which indicates that the system has
learned to generalize. Qualitative results of our glue detection
system are shown in Fig. 12. Notice that despite the large
difference in both illumination and the amount of the dispensed
glue deposits, all regions are accurately localized and their type
is correctly predicted.

B. Glue Volume Estimation

The available data for the development of the proposed system
consists of six PCBs, each containing 18 circuit modules, as
shown in Fig. 2. There are five different types of glue containers
annotated A, B, C, D, and E, each corresponding to a different
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Fig. 12. Examples of the detected glue regions within two PCB circuit
modules under: (a) regular illumination conditions and (b) low illumina-
tion conditions.

shape and amount of glue that needs to be placed on the LCP
substrate surface, as is illustrated in Fig 3. Within each circuit
module, there are four placeholders for each glue type thus
resulting in a total number of 20 placeholders per module. On
the top row of one of the PCBs dies have been attached, and
hence the total number of available samples per glue type is
5 × 4 × 18 + 4 × 9 = 396.

To obtain reliable testing results we adopt the following
strategy to split the dataset into training, validation, and testing
sets: We keep the glues located in the third row of every module
for testing, whereas the remaining samples are randomly divided
into training and validation samples. This results in a 75%–25%
training\validation-testing split, in which the testing set contains
glues from all PCBs, and whose volume varies from very little
to excessive, that way successfully capturing the whole dataset’s
statistics. For the same reasons, we use the ground truth volumes
estimated using the 20-μm resolution scans from the first row
of each PCB to obtain a clean dataset, which is used to train the
error-correction network. That way, the number of the resulting
reliable training samples is 99. The average validation error
over all tenfolds is shown in Fig. 13. We observe that the
deepest model trained consisting of 34 layers performs the worst,
whereas R2esNet10 and R2esNet18 perform comparably with
R2esNet10 converging faster in most cases.

In order to quantitatively evaluate and compare the developed
models, we use the normalized root mean square error (NRMSE)
metric as

NRMSE = 100 ×
√∑M

i=1(ŷi − ydi )
2∑M

i=1(y
d
i )

2
. (8)

To evaluate the effectiveness of R2esNet compared to other
popular backbone architectures we perform the same experi-
ments using VGG, DenseNet, and MobileNetV2. For training,
all hyperparameters are kept the same as in R2esNet, whereas
batch normalization layers are replaced with layer normaliza-
tion. As in R2esNet, we decrease the number of layers used by
stacking eight densely connected blocks for DenseNet, which
results to a 20-layer network. Due to its efficient and lightweight

TABLE I
AVERAGE VALIDATION NRMSE × 100%, 50µm

TABLE II
TESTING NRMSE × 100% 20µm

TABLE III
PART INSPECTION TIMES IN SECONDS

implementation MobileNetV2 is kept intact, whereas a VGG
network consisting of 11 layers is used. The average validation
NRMSE and testing NRMSE are reported in Tables I and II, re-
spectively. Contrary to the usual case, where deeper architectures
yield improved results, we observe the opposite, even though
ResNets are known to tackle the degradation problem associated
with increased depth. During cross-validation, in most cases
R2esNet10 produces the best results, whereas R2esNet34 per-
forms worse by a significant margin. In the testing set, irrespec-
tive of the choice of depth, all networks perform approximately
the same, whereas we observe a significant improvement when
using a parallel error-correction network. Compared to other
backbone architectures, R2esNet performs better by a small
margin in most cases, whereas the classical convolutional VGG
network performs significantly worse.

Inspection times for all six PCBs are shown in Table III.
We observe that for the most shallow models R2esNet10 and
ec-R2esNet10 it takes less than a minute for the inspection
of a part, which is a drastic reduction compared to the 20–30
min needed in [3] only for the scanning module to operate, as
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Fig. 13. Average cross-validation loss of the three trained models for all glue types. (a) Type A validation loss. (b) Type B validation loss. (c) Type
C validation loss. (d) Type D validation loss. (e) Type E validation loss.

Fig. 14. Testing set predictions for the trained models. On the top row predictions without the use of error-correction are shown, whereas on the
bottom the predictions are regularized.

TABLE IV
SCANNING AND INSPECTION TIME COMPARISON IN SECONDS BETWEEN [3]

AND OUR METHOD

shown in Table IV. It is also noted that we have not optimized
our implementation for the Jetson so there is further room for
improvement in terms of execution time.

Testing set predictions for all the developed models are shown
in Fig. 14. We observe that the predictions follow the increasing
ground truth trend, and, thus, offer insight into the amount
of the dispensed glue. Without error correction to regularize
the outputs, the predicted volume is usually underestimated,
which is attributable to the bias existent in the training samples.
On the other hand, after regularization, predictions accurately
follow the mean. Furthermore, we notice that the performance
of the models is directly related to the variance of label noise.
Specifically, the MSE is lowest for types A and E, which are
the least affected by noise, whereas it is maximal for types
B and D.

V. CONCLUSION

In this article, we propose a methodology to replace expen-
sive laboratory sensors with in situ ones, and demonstrate its
potential by applying it for the development of a PCB inspection
system that only relies on the use of an industrial camera and
a Jetson unit. The developed system makes use of our R2esNet
architecture to perform glue volume regression along with an
error-correction network to cope with label noise. Moreover, a
segmentation and detection system that significantly simplifies
the data acquisition process was developed. An important con-
tribution of this work is the ability of R2esNet to regress a 3-D
geometric quantity from 2-D data.

The effectiveness of our system was demonstrated by the var-
ious experiments performed. Despite the challenging nature of
the problem addressed, we obtained satisfactory results. Specif-
ically, predictions were accurate enough to facilitate the quality
inspection process and hence reduce inspection time, which
is a crucial factor toward the optimization of the production
process. Another interesting finding is the performance degra-
dation observed for deeper architectures, even though ResNets
are specifically build to address this issue.

To further benchmark and evaluate the limitations of the
proposed methodology, a potential extension is its deployment
in other industrial use cases, where we can explore how well
it can generalize in terms of domain adaptation and inferring
values outside the nominal ones used during training. Another
interesting extension that can further improve the inspection
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process is the deployment of the proposed system on augmented
reality gear.
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