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Abstract: For  sudden  drinking  water  pollution  event,  reasonable  opening  or  closing  valves  and  hydrants  in  a

water  distribution  network  (WDN),  which  ensures  the  isolation  and  discharge  of  contaminant  as  soon  as

possible,  is  considered  as  an  effective  emergency  measure.  In  this  paper,  we  propose  an  emergency

scheduling algorithm based on evolutionary reinforcement learning (ERL),  which can train a good scheduling

policy  by  the  combination  of  the  evolutionary  computation  (EC)  and  reinforcement  learning  (RL).  Then,  the

optimal  scheduling  policy  can  guide  the  operation  of  valves  and  hydrants  in  real  time  based  on  sensor

information,  and  protect  people  from  the  risk  of  contaminated  water.  Experiments  verify  our  algorithm  can

achieve good results and effectively reduce the impact of pollution events.
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1    Introduction

Clean  drinking  water  is  directly  related  to  people’s
health and safety. Water distribution networks (WDNs)
are  the  critical  infrastructures  which  convey  drinking
water from sources to consumers. However, WDNs are
widely  covered  in  cities  and  towns  and  remain  open
days and nights, making it extremely prone to pollution
events.  Harmful  chemicals  and  pathogens  can  easily
enter  a  WDN  because  of  the  breakage  of  any  pipe.
Once drinking water pollution occurs, the contaminant
will  quickly  spread  in  the  WDN,  causing  health
problems.  In  recent  years,  drinking  water  pollution
incidents  have  caused  major  economic  losses  and  bad
social  impacts  on  our  country.  Therefore,  it  is
necessary  to  find  a  good  way  to  automatically  cope
with  sudden  pollution  events  and  reduce  their

negative[1, 2].
In  a  WDN,  many  water  quality  sensors  are  usually

deployed[3–5].  They  monitor  the  water  quality  in  real
time and quickly raise an early warning once pollution
events  occur[6, 7].  For  sudden  pollution  events,  the
intuitive  and  easiest  response  is  to  cut  off  the  water
supply of the entire WDN. However, this causes large-
scale  water  cuts  and serious economic losses.  Another
method  is  to  locally  operate  valves  and  hydrants  and
ensure  that  contaminant  is  only  discharged  in  the
polluted WDN. By closing some valves,  contaminated
water  can  be  isolated  within  a  certain  range.  By
opening some hydrants, contaminant can be discharged
as  soon  as  possible.  The  last  method  can  effectively
reduce  the  impact  of  pollution  events.  However,  the
challenging  problem  is  which  of  the  valves  and
hydrants to use so that they will be optimally operated
in real time.

Due  to  the  large  scale  of  urban  WDNs  and  many
random factors  in  the  complex  WDNs,  the  scheduling
problem  of  valves  and  hydrants  has  evolved  into  a
high-dimensional  spatial  combinatorial  optimization
problem  under  uncertain  environments.  Many
researchers have used heuristic optimization algorithms
to  solve  the  scheduling  problems  of  valves  and
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hydrants[8, 9].  However,  this  problem  involves  many
large-scale  computation-intensive  tasks,  such  as
hydraulic  and  water  quality  simulations,  which  cause
huge computational overhead, so heuristic optimization
algorithms  cannot  meet  the  requirement  of  real-time
computing[10].  Additionally,  the  randomness  of
pollution  events  makes  it  hard  to  gain  an  optimal
solution by the heuristic optimization algorithm[11].

Deep  reinforcement  learning  (DRL)  is  one  of  the
most  rapidly  developing  methods  in  the  field  of
artificial  intelligence.  By  combining  the  learning  and
expression  mechanism  of  deep  learning,  DRL  fully
exploits  both  the  decision-making  and  perceptual
abilities  of  complex  control  problems.  It  has  been
widely  used  in  many  fields[12, 13].  Evolutionary
reinforcement  learning  (ERL)  is  a  hybrid  algorithm
which  combines  the  advantages  of  evolutionary
computation  (EC)  and  reinforcement  learning  (RL),
including  two  stages  of  population  optimization  and
agent  policy  update.  The  parameters  of  the  strategy
network  trained  by  RL  are  copied  to  the  population
regularly.  The  excellent  experiences  generated  by  EC
in  the  evaluation  process  fill  the  replay  buffers  of  the
DRL  method  and  help  the  agent  to  perform  gradient
updating,  thus,  the  agent  learns  the  optimal  strategy
faster.

ERL  can  fittingly  deal  with  emergency  scheduling
problems for sudden pollution events. It not only meets
the  high  performance  requirements,  but  it  can  also
schedule  valves  and  hydrants  in  real  time.  In  order  to
further enhance the performance of the ERL and make
it more suitable to solve dynamic scheduling problems,
in this paper,  a novel emergency scheduling algorithm
based  on  ERL  (ESERL)  is  proposed  to  cope  with
drinking  water  pollution  incidents  in  a  WDN.  The
algorithm  trains  the  deep  neural  network  offline,  and
then the learned strategy is applied to the control center
to  schedule  the  valves  and  hydrants  in  real-time
according  to  incoming  sensor  information,  so  as  to
meet the high real-time requirements of the problem.

Specifically, the main contributions of this paper are
as follows:

●  The  valve  and  hydrant  scheduling  problem  is
modeled  as  a  Markov  decision  optimization  problem,
and  a  novel  ERL  algorithm  which  combines  EC  and
RL is proposed. The offline optimal scheduling policy
is learned to meet the time requirements of emergency
scheduling problems.

●  The  EPANET  simulator  is  employed  to  simulate

the transform of hydraulic and water quality. Extensive
simulation  results  show that  the  ERL is  a  competitive
method  which  can  solve  the  problem  of  valve  and
hydrant scheduling and effectively reduce the impact of
pollution events.

The  rest  of  this  paper  is  structured  as  follows.
Section 2 introduces the related work of the scheduling
of valves and hydrants in a WDN. Section 3 elaborates
on  valve  and  hydrant  scheduling  problems.  Section  4
introduces  our  proposed  ERL-based  scheduling
algorithm.  Section 5  presents  the  experimental  results.
Finally, the paper is summarized in Section 6.

2    Related Work

2.1    Emergency scheduling in WDNs

WDN  emergency  scheduling  involves  opening  and
closing  valves  and  hydrants  to  isolate  and  discharge
contaminants. An optimal scheduling policy effectively
reduces the impact of pollution events and provides the
quick return of a normal water supply. In recent years,
heuristic  optimization  algorithms  have  been  used  to
compute  an  optimal  scheduling  scheme.  For  example,
aiming  to  minimize  the  consumption  of  contaminated
water,  Gavanelli  et  al.[14] used  heuristic  methods  to
solve  the  scheduling  problem  when  pollution  events
occurred,  and  genetic  algorithm  (GA)  was  used  as  a
feasible  tool  to  solve  the  optimization  simulation
problem.  Rasekh  and  Brumbelow[15] established  a
dynamic  decision  support  model  that  can  adaptively
simulate the time-varying emergency environment and
track the changes of the best health protection response
measures  at  each  stage  of  an  emergency  in  real  time.
Shafiee  and  Berglund[16] proposed  a  sensor-hydrant
decision  tree.  After  training,  the  optimal  scheduling
policy  can  be  automatically  given  by  the  hydrant
activated  by  induction,  without  the  need  for
information  about  the  characteristics  of  the  pollution
source.  They  also  further  constructed  an  adaptive
emergency  response  framework[17].  By  integrating
decision  tree  model  and  agent  simulation  technology,
the framework can easily evaluate the effectiveness of
a scheduling policy under different pollution events.

In  order  to  deal  with  randomness  in  an  emergency
scheduling  problem,  Schwartz  et  al.[18] proposed  a
limited  multistage  stochastic  programming  algorithm
for  optimal  scheduling  of  pumps  and  reduced  the
complexity  of  classical  multi-stage  stochastic
programming  by  adding  constraints.  Khatavkar  and
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Mays[19],  aiming  to  minimize  the  difference  between
the  required  demand  and  the  satisfied  demand,
proposed a framework of optimal control to determine
the real-time scheduling policy of the WDN.

Although heuristic optimization algorithms can solve
some simple scheduling problems, they cannot respond
in  real-time  to  random  pollution  events.  The  first
reason  is  that  the  optimization  algorithm’s  online
search process takes a long time to evaluate the fitness
function,  so  it  is  too  slow for  emergency events  when
quick responses  are  needed.  The second reason is  that
the randomness of pollution events and the uncertainty
of  water  demand  often  make  the  optimal  solution
ineffective.

RL  is  one  critical  method  for  dealing  with  dynamic
and real-time sequential decision optimization problem.
RL can  learn  an  emergency  scheduling  policy  offline.
By  conducting  scheduling  operations  on  valves  and
hydrants  according  to  sensor  readings,  the  agent  can
learn  an  optimal  scheduling  policy  which  can  control
the  valves  and  hydrants  in  real  time  when  there  are
dynamic  and  uncertain  environments.  Simulation
results  show  that  the  RL  method  can  solve  the
problems  of  the  timeliness  of  emergency  scheduling
and the randomness of pollution events[20].

2.2    ERL for scheduling problems

ERL  inherits  the  advantages  of  EC  and  RL.  On  one
hand,  population  can  enhance  the  agent’s  learning
ability  and  produce  excellent  policy  network
parameters,  and  thus  the  agent  gets  high  rewards.  On
the  other  hand,  the  agent  can  accelerate  the  search
speed of the population by random gradient algorithm.
The  collaborative  search  can  make  the  ERL  have  a
strong ability of “exploration” and “exploitation”[21].

Khadka  et  al.[22] proposed  an  ERL  algorithm
combining  the  GA  and  the  deep  deterministic  policy
gradient  (DDPG).  Experiments  showed  that  this
algorithm performed better  than  RL or  EC in  MuJuco
continuous  control  tasks.  Lü  et  al.[23] proposed  an
extensible framework combining the advantages of RL,
EC,  and  imitation  learning,  which  improves  the
learning process of agents in traditional ERL methods.
Gupta  et  al.[24] introduced  a  deep  ERL  framework,  in
which different agent forms evolve to learn challenging
motor and operational tasks in a complex environment.

ERL has demonstrated its performance advantages in
many  scheduling  problems[25, 26].  For  example,  in  the
field of job shop scheduling, most problems are solved
by heuristic algorithms[27–29]. Wei et al.[30] proposed an

iterative  optimization  framework  for  a  dynamic
scheduling  system  based  on  RL  and  GA.  This
framework  is  used  to  schedule  jobs  in  a  dynamic  job
shop.  The  GA  is  used  to  drive  parallel  search  and
evolution direction, and the phased Q-learning method
is used to realize RL system. Zeng et al.[31] proposed a
DRL-based  data  representation  method  and  an
evolutionary  job  scheduling  algorithm  based  on
population optimization. DRL was used to initialize the
GA population, and then the final scheduling result was
obtained by GA evolution population.

Kamiya et al.[32] combined neural network based RL
with  the  GA  in  order  to  improve  the  online
performance  of  an  optimal  or  near-optimal  start-up
plan  search  in  power  plant  operations.  The  algorithm
searchs for optimal or near-optimal start-up plans under
a  given  set  of  stress  limits.  In  order  to  improve  the
efficiency  of  the  multi-robot  intelligent  warehouse
system,  Dou  et  al.[33] combined  task  scheduling  based
on the GA with path planning based on RL to form an
effective  ERL  algorithm,  which  was  verified  by
simulation results.

Ahmed  et  al.[34] proposed  an  algorithm  integrating
RL  and  the  particle  swarm  optimization  algorithm
(PSO)  for  school  bus  scheduling  optimization.  Xu
et al.[35] proposed an industrial multi-energy scheduling
framework to optimize the use of renewable energy and
reduce  energy  costs.  To  solve  this  problem,  a
differential  evolution  algorithm  based  on  RL
determines  the  optimal  mutation  strategy  and  related
parameters in an adaptive way. The effectiveness of the
algorithm  in  reducing  energy  costs  in  an  industrial
environment was demonstrated through a case study of
real world data. Li et al.[36] improved the GA based on
RL and used it  for the scheduling of multi-agent tasks
in intelligent control systems.

To sum up, ERL algorithms can effectively solve the
scheduling  problem  and  have  achieved  good  research
results in the field of control and scheduling. Therefore,
we have also used a  modified ERL algorithm to solve
the  emergency  scheduling  problem  of  the  WDN
studied in this paper.

3    System Architecture and Formulation

3.1    System formulation

Once a contaminant enters the WDN, it moves through
the  entire  system with  water  flow over  time,  affecting
large  parts  of  the  population.  Closing  a  valve  can
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isolate  contaminated  water,  and  opening  a  valve  in
uncontaminated  areas  can  ensure  the  normal  use  of
water  by  residents.  Opening  the  hydrant  can  release
sewage,  and  closing  it  prevents  uncontaminated  water
from being wasted. However, it is challenging to find a
good  control  strategy  to  close  or  open  valves  and
hydrants because of the large size of a WDN.

To  minimize  the  impact  of  pollution,  it  is  better  to
discharge the contaminant as soon as possible. That is,
during  the  period  from  the  occurrence  of  pollution  to
the  restoration  of  the  water  supply,  the  goal  is  to
maximize  the  cumulative  amount  of  contaminant
discharged  by  the  hydrant.  The  optimization  model  is
as follows:
 

max
T∑

t=1

H∑
h=1

Dh (v1,v2, . . . ,vN ,h1,h2, . . . ,hH) (1)

v

h

Dh

h

N

where  is the decision variable of the valve; the value
is 1 or 0,  which means opening and closing the valve,
respectively;  is  the  decision  variable  of  the  hydrant,
and  the  value  is  0  and  1,  which  means  closing  and
opening  the  hydrant,  respectively.  indicates  the
quantity of contaminant discharged by the hydrant  by
performing  the  operations  on  the  valve  and  hydrant,
which  can  be  simulated  through  the  open-source
software EPANET[37].  is the number of valves; H is
the number of hydrants. t is the simulation step; T is the
total simulation time.

Once  the  water  quality  sensor  issues  a  warning
alarm, we need to quickly respond and give the optimal
scheduling policy by operating the valves and hydrants.
Therefore,  a  deep  neural  network  should  be  trained
offline  by  ERL  in  advance.  A  better-trained  network
can  give  optimal  scheduling  schemes  in  real  time
according  to  the  information  provided  by  the  sensors.
The scheduling policy is expressed as follows:
 

v1,v2, . . . ,vN ,h1,h2, . . . ,hH = π (e1,e2, . . . ,eM) ,
a = π (st)

(2)

e
t s

a π a
s t

where  is the information provided by the sensors; all
sensor readings at time  are regarded as state , and the
set  of  valve  and  hydrant  operations  is  regarded  as
action .  The  scheduling  policy  outputs  action 
according to state  at time .

3.2    System architecture

The  valves  and  hydrants  in  a  WDN  are  controlled  by
the control center. When the water quality sensors give
an  early  warning,  the  control  center  uses  the  better-
trained  deep  neural  network  to  generate  an  optimal

policy;  it  isolates  some  valves,  discharges  the
contaminant, and minimizes the impact of the pollution
event. The scheduling framework is shown in Fig. 1.

Sensors  constantly  monitor  the  water  quality.  When
contamination  occurs,  the  control  center’s  scheduling
policy  outputs  actions  based  on  input  concentration
information.  Valves  and  hydrants  in  the  WDN  are
opened and closed according to the action information,
while  the  pollutants  spread  with  the  water  flow  and
discharge  through  the  hydrant.  In  this  way,  the
concentration  of  pollutants  in  the  pipe  network
changes,  and  the  scheduling  policy  takes  appropriate
actions  based  on  the  latest  concentration  information.
After  a  period  of  time,  if  the  concentration  of  water
detected by the sensors has not returned to normal, the
control  center  will  continue to dispatch the valves and
hydrants  until  it  does.  Sensors  are  still  monitoring
water  quality  information,  and  the  above  scheduling
process will be repeated once pollution occurs.

4    ERL-Based Scheduling Algorithm

4.1    Markov decision processes

Emergency  scheduling  optimization  for  sudden
drinking water pollution is not only a high-dimensional
space  combinatorial  optimization  problem,  but  also  a
discrete  control  optimization  problem  with  real-time
requirements. That is, once a sensor detects a pollution
event,  an  emergency  scheduling  policy  needs  to  be
given  immediately.  However,  due  to  the  huge
computational overhead of simulating the transform of
hydraulic  and  water  quality,  until  now,  there  has  not
been  an  efficient  method  that  can  solve  scheduling
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Fig. 1    System  architectures  of  emergency  response  in  a
WDN.
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optimization  problems  in  time  under  real
environmental conditions.

In  recent  years,  RL  has  been  considered  as  an
alternative  method  to  solve  sequential  decision
tasks[38].  The  emergency  scheduling  problem,  by  its
nature,  is  sequential  decision  optimization.  Thus,  we
solve this problem with ERL.

s a p r s
a p

In addition, the Markov decision process (MDP) is a
general model for sequential decision tasks[39]. MDP is
composed of  a  four-tuple  ( , , , ):  represents  the
state;  represents  the  action;  represents  the  state
transition  probability;  and r represents  the  reward
function.  In  the  emergency  scheduling  problem,  MDP
is defined as follows:

s s● :  is  an M-dimensional  vector  composed  of  the
readings  of  all  water  quality  sensors  in  a  WDN,
representing the state of the agent, and M is the number
of sensors.

N +H

● a: a represents  the  operation  of  valves  and  fire
hydrants  in  a  WDN.  The  actions  of N valves  and H
hydrants  can  be  represented  by  an  dimensional
vector.  The first N dimension represents  the switching
operation  of  the  valves,  and  the  latter H dimension
represents the switching operation of the hydrants.

a s

s
a

● p: p represents the probability of performing action
 in  state  and  transferring  the  state  to  another  state.

The  emergency  scheduling  problem  is  a  model-free
problem.  In  state ,  the  probability  of  transitioning  to
the next state after action  is executed is unknown.

a s
r(s,a)

● r: r represents the reward obtained after performing
action  in state , and the reward function is expressed
as .  The  reward  is  accumulated  through
continuous  interaction  with  the  environment,  and  the
goal of RL is to maximize the accumulated reward. The
goal  of  the  emergency  scheduling  problem  is  to
minimize  the  impact  of  pollution.  That  is,  the  agent
continuously  trains,  learns  the  optimal  policy,  and
reduces the impact of pollution events.

a
s

s′

The  training  process  is  as  follows.  First,  the  agent
randomly  takes  action  according  to  sensor  reading
state ,  then  opens  or  closes  the  valve  and  hydrant,
obtains the return value r, and transfers to the next state

. The process continues in a circular manner until the
contaminants  are  completely  discharged and the  water
supply  resumes.  After  continuous  training,  the  agent
learns the optimal policy. Finally, the well-trained deep
neural  network  is  deployed  to  the  control  center  to
output  optimal  policy,  which  can  deal  with  sudden
drinking water pollution events in real-time.

4.2    ERL algorithm

In  order  to  learn  an  optimal  policy,  we  propose  an
emergency  scheduling  algorithm  based  on  ERL
(ESERL)  to  train  the  deep  neural  network.  ESERL  is
divided  into  two  parts,  which  are  the  cross-entropy
method (CEM) and DDPG. The framework of ESERL
is shown in Fig. 2.

θπThe  agent  is  parameterized  as ;  the  information
provided  by  the  sensors  is  input,  and  the  operation  of
the  valve  and hydrant  is  output.  The reward evaluated
in  the  environment  is  the  volume  of  contaminant
discharged  from  the  hydrants,  which  is  calculated  by
the  open-source  software  EPANET.  The  reward R is
calculated as follows:
 

R =
T∑

t=1

H∑
h=1

Dh
(
θπ
)

(3)

µ Σ

As shown in Fig. 2, the left side is the cross-entropy
algorithm. First,  the agent population is initialized and
evaluated  in  the  environment,  and  the  reward  is
obtained  according  to  Eq.  (3).  Then,  half  of  the
individuals  with  the  higher  reward  are  selected  to
update  the  mean  and  covariance  matrix  as  in  the
Eqs. (4) and (5):
 

µnew =

k∑
i=1

λizi (4)

 

Σnew =

k∑
i=1

λi(zi−µold)(zi−µold)T+ ϵI (5)

λi

λi =
1
k

ϵ

where  is  the  weight  coefficient  of  the  individual,

commonly chosen with . zi is the i-th sample. I is
the  identity  matrix.  is  an  exponentially  decaying
factor. In Fig. 2, the right side is the DDPG algorithm.
An individual in the population is selected as the actor
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Fig. 2    ERL framework for emergency scheduling problem.
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θπ θQ θπ
′

θQ
′; the critic , target actor  , and target critic  are

initialized. The experience of the replay buffer is  used
to update the actor and critic. Finally, the trained actor
randomly replaces one actor in the population, and the
iteration continues.

The critic is trained by minimizing the loss function:
 

L(θQ) =
1
T
Σi(yi−Q(si,ai | θQ))2,

yi = ri+γQ′(si+1,π
′(si+1 | θπ

′
) | θQ′ )

(6)

The Actor is trained using the policy gradient:
 

∇θπ J ∽
1
T
Σ ∇a Q(s,a | θQ) |s=si,a=ai ∇θπ π(s | θπ) |s=si

(7)

In  the  ESERL  algorithm,  agents  and  the  population
cooperatively  learn  an  optimal  policy.  The  agent  in
DRL  can  learn  a  policy  in  a  dynamic  environment.
Nevertheless,  the  agent  may  be  stuck  on  a  plateau
because  of  deceptive  gradient  information.  By
combining population-based algorithms, such as cross-
entropy  algorithms,  the  agent  can  quickly  learn  a
scheduling  policy.  The  pseudo  code  of  the  algorithm
ESERL is shown in Algorithm 1.

5    Experiment

5.1    Experimental setup

_A typical  WDN of  Net3 Rossman200  is  employed  in
our  simulation  which  is  shown  in Fig.  3.  The  WDN
contains  97  nodes,  119  pipes,  2  water  sources,  and  3
water  tanks.  Drinking  water  quality  sensors  are
deployed at nodes 151,111,161, and 207. Hydrants are
located at  nodes  197,169,  and 206.  Valves  are  located
at  pipes  173,116,  and  233.  The  maximum  simulation
period T is  24  h;  the  operation  interval  is  30  min;  the
hydraulic  and  water  quality  simulation  steps  are  both
5  min,  and  the  discharge  volume  of  a  hydrant  is
400 gallons per minute.

1×10−3

lr 1×10−2

γ τ

5×10−3

The structure of the target actor and critic network in
the  ESERL  algorithm  is  consistent  with  the  actor  and
critic  network.  In  addition,  the  network  is  trained  by
the Adam optimizer with a learning rate of [40].
The  actor  and  critic  neural  network  parameters  are
shown  in Table  1.  The  learning  rate  is ,  the
discount rate  is set to 0.99, and the target weight  is

. The agent population size is five. The number
of training iterations is 500.

In the experiment, in order to show the effectiveness
of  ESERL,  the  baseline  scheduling  policies  tested  are
VCHO and VOHO. VCHO is to keep all hydrants open
and valves closed during the scheduling period. VOHO
is to keep all hydrants open and valves open.

5.2    Single pollution event simulation in WDS

We assume that  each pollution event  can occur  at  one
point in the WDN. Three single pollution events—PS1,
PS2,  and  PS3 —were  randomly  selected  to  show  the
scheduling  effect  of  the  ESERL  algorithm.  Three

 

Algorithm 1　ESERL
πµ1:  Initialize  a  random actor   to  be  the  mean  of  the  CEM

　 algorithm
Qπ Qπt2: Initialize the critic  and the target critic 

pop_size pop3: Initialize a population of  actors 
T

G
4: Initialize the scheduling period  and the maximum number
　 of iterations 

generation ∈ [1,G]5: for  do
6:　　Simulate pollution scene in WDN;

s7:　　Observe the initial state 
i ∈ [0, pop_size]8:　　for  do

k ∈ [0,T ]9:　　　for  do
a = π(s) a10:　　　　 , execute action  in simulator;

11:　　　　Calculate the quality of the pollutant emitted as
　　 　　　reward r.

s′12:　　　　Observe the next state .
13:　　　end for
14:　　end for

πµ15:　Update   and  Σ  with  the  top  half  of  the  population
　  　based on reward r according to Eqs. (4) and (5)

N(πµ,Σ)16:　　Generate the next generation from 
π pop[0]17:　　Set the actor policy  to 
πt π18:　　Initialize a target actor  with the weights of 

Qπ π19:　　Train  and  using the policy gradient according to
　　  　Eq. (6) and Formula (7)

π pop20:　　Reintroduce the weight of  in 
21: end for
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Fig. 3    Water distribution network.
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pollution events happened at nodes 105, 120, and 261,
respectively. As shown in Fig. 4, different colored stars
represent pollution events PS1, PS2, and PS3.

Figure  5 shows  the  volume  of  discharged
contaminant  by  different  scheduling  policies  which
were  trained  by  ESERL,  VCHO,  and  VOHO
algorithms.  As  can  be  seen  in Fig.  5,  the  volume  of
discharged  contaminant  is  the  largest  when  the
scheduling  policy  trained  by  ESERL  is  used.  The
experimental  results  showed  that  the  performance  of
the ESERL algorithm is better than that of VOHO and
VCHO for three different single pollution events.

ESERL  was  compared  to  the  ESPPO  algorithm.
Figure  6 shows  the  performance  of  different  policies
which were trained by ESERL and ESPPO algorithms.

It can be seen from Fig. 6 that for different pollution
events,  the  performance  of  ESERL algorithm is  better
than  ESPPO.  From  the  perspective  of  computational
overhead,  the  number  of  iterations  of  the  ESERL

algorithm  is  500,  and  the  population  consists  of  five
agents,  so  the  total  training  step  of  the  ESERL
algorithm is 2500. The total training step of the ESPPO
algorithm  is  5000.  As  a  result,  the  computational
overhead  of  ESPPO  is  two  times  of  the  ESERL
algorithm.

5.3    Multiple pollution events simulation in WDS

In order to further investigate the ability of the ESERL
algorithm  to  deal  with  complex  pollution  events,  we
assume  that  each  pollution  event  can  occur
simultaneously  at  multiple  points  in  the  WDN.  In  our

 

Table 1    Structures of actor and critic network.

Network Layer Number of units Activation function

Actor
Fully connected 64 Tanh
Fully connected 64 Tanh
Fully connected 64 Tanh

Critic
Fully connected 64 ReLU
Fully connected 64 ReLU
Fully connected 1 Linear
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Fig. 5    Volume of discharged contaminants for different single polution events by ESERL, VCHO, and VOHO.
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Fig. 6    Volume of discharged contaminants for different single polution events by ESERL and ESPPO.
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experiments,  PS4  means  that  pollution  events  occur
simultaneously  at  the  nodes  105,  117,  and  261.  PS5
means  that  pollution  events  occur  simultaneously  at
nodes  120  and  113.  In Fig.  7,  the  green  and  orange
stars  represent  the  contaminant  events  PS4  and  PS5,
respectively.

Figure  8 shows  the  volume  of  discharged

contaminant  by  different  scheduling  policies  which
were  trained  by  ESERL,  VCHO,  and  VOHO
algorithms when multiple pollution events occur. It can
be seen from Fig. 8 that ESERL algorithm is not stable
at  initial  stages  and  generally  converges  in  the  later
stages  of  the  iteration.  In  addition,  it  can  be  seen  that
the  volume  of  discharged  contaminant  is  the  largest
when the scheduling policy by ESERL is used, thus we
can  conclude  that  the  performance  of  the  ESERL
algorithm is  better  than that  of  VOHO and VCHO for
PS4 and PS5.

The  ESERL  algorithm  was  also  compared  with  the
ESPPO  algorithm.  As  can  be  seen  in Fig.  9,  the
performance  of  ESERL  algorithm  is  still  better  than
ESPPO  no  matter  single  or  multiple  pollution  events,
while  the  computational  overhead  of  the  ESERL  is
only half of the ESPPO.

5.4    Control center scheduling process

In  order  to  intuitively  observe  the  effectiveness  of  the
scheduling policy of the ESERL, we deployed the well-
trained  deep  neural  network  on  the  control  center  and
used the  optimal  policy  to  generate  a  series  of  actions
according  to  the  real-time  sensor  data. Table  2 shows
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Fig. 8    Volume of discharged contaminants for multiple pollution events by ESERL, VOHO, and VCHO.
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Fig. 9    Volume of discharged contaminants for multiple pollution events by ESERL and ESPPO.
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the  status  of  the  sensors,  valves,  and  hydrants  for  the
contaminant event PS5.

It  can  be  seen  from Table  2 that  13  dispatch
operations  were  carried  out  to  discharge  the
contaminant. The reading data from sensor 2 decreased
from 51.1459 mg/L  to  0.  After  the  contaminant  event
PS5,  the  hydrants  were  gradually  turned  on,  because
the  goal  was  to  maximize  emissions.  However,  in  the
dispatching  process,  the  hydrants  were  not  always
open,  which  effectively  prevented  the  waste  of
unpolluted  water.  The  valves  were  also  not  always
closed,  which  prevented  large  regional  water  cuts  and
effectively  reduced  the  impact  of  pollution  events.
After the pollution was eliminated, all  the valves were
turned on, the town resumed normal water supply, and
all  the  fire  hydrants  were  turned off  to  ensure  that  the
water  with  normal  water  quality  was  not  wasted.
Therefore,  it  can  be  concluded  that  the  emergency
scheduling  model  based  on  ERL  algorithm  is  feasible
and  effective  for  emergency  handling  of  pollution
emergencies.

6    Conclusion

In  this  paper,  we  studied  the  emergency  scheduling
optimization  problem  for  a  sudden  drinking  water
pollution event. In order to solve the need for real-time
control  and  quick  response,  we  proposed  the  ESERL
algorithm,  which  combines  cross-entropy  and  DDPG.
By offline training, a well-trained deep neural network
was deployed on the control center to generate optimal
policies  in  real  time  according  to  sensor  information.

Consequently,  a  series  of  actions  were  carried  out  to
discharge  the  contamination  as  soon  as  possible.  In
order  to  evaluate  the  performance  of  the  algorithm,  a
typical  WDN  with  97  nodes  was  employed.
Simulations  coupled  with  EPANET  were  carried  out
for  single  and  multiple  contamination  events.  The
experimental  results  show  that  ESERL  performed
better than the other algorithms.

A large-scale WDN will be employed for simulation
in  future  work;  distributed  DRL  and  EC  will  also  be
studied  to  solve  other  large-scale  and  real-time
scheduling optimization problems.
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