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Abstract: The  trajectory  planning  of  multiple  unmanned  aerial  vehicles  (UAVs)  is  the  core  of  efficient  UAV

mission execution.  Existing  studies  have mainly  transformed this  problem into  a  single-objective  optimization

problem  using  a  single  metric  to  evaluate  multi-UAV  trajectory  planning  methods.  However,  multi-UAV

trajectory  planning  evolves  into  a  many-objective  optimization  problem due  to  the  complexity  of  the  demand

and the environment.  Therefore, a multi-UAV cooperative trajectory planning model based on many-objective

optimization  is  proposed  to  optimize  trajectory  distance,  trajectory  time,  trajectory  threat,  and  trajectory

coordination  distance  costs  of  UAVs.  The  NSGA-III  algorithm,  which  overcomes  the  problems  of  traditional

trajectory planning, is used to solve the model.  This paper also designs a segmented crossover strategy and

introduces  dynamic  crossover  probability  in  the  crossover  operator  to  improve  the  solving  efficiency  of  the

model and accelerate the convergence speed of the algorithm. Experimental results prove the effectiveness of

the multi-UAV cooperative trajectory planning algorithm, thereby addressing different actual needs.

Key words: multiple  unmanned  aerial  vehicles  (multi-UAV);  coordinated  trajectory  planning;  NSGA-III;  many-objective

optimization

1    Introduction

Unmanned aerial vehicles (UAVs) continue to play an
increasingly  vital  role  in  numerous  future  combat
missions due to their easy control,  small size, and low
cost. In practice, the working capacity of a single UAV
and its  working  range  will  be  restricted.  For  example,
single UAVs can be damaged or underpowered during
missions, as well as significant miss information during
reconnaissance  missions  considering  the  trivial
observation range. These issues can cause incalculable
damage. UAVs currently need to perform increasingly
difficult missions, and the flight environment of UAVs
is  becoming  remarkably  complex.  Therefore,  single
UAVs  are  no  longer  partly  sufficient  for  many

missions.  Most  combat  missions  require  the  complete
cooperation of multi-UAVs. Therefore, the cooperative
mission  of  multiple  UAVs  has  become  a  trend  for
future research.

UAV  trajectory  planning  is  an  essential  component
of  the  UAV  mission  system.  Single  UAV  trajectory
planning  intends  to  find  a  trajectory  under  its
performance  constraints.  Nevertheless,  multi-UAV
cooperative  trajectory  planning  focuses  on  finding
multiple  trajectories  that  satisfy  the  cooperative
relationship  based  on  single  UAV trajectory  planning.
This task is not simply superimposing the trajectory of
each  UAV  but  requires  considering  numerous  factors,
including environmental, UAV performance, and space
and time coordination. The UAV time coordination can
be divided into three categories according to the needs
of  the  UAV  mission.  The  first  category  is  the  limited
time  period  sequence  restriction.  In  the  limited  time
period,  all  UAVs  follow  a  certain  flight  sequence  to
reach the mission target point sequentially. The second
category  is  the  limited  time  period  without  sequence
restriction.  All  UAVs  arrive  at  the  target  point  in  a
certain period, and the order of arrival does not need to
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be  considered.  Finally,  multi-UAVs  simultaneously
arrive at the target point. Space cooperation helps avoid
the  crashing  of  UAVs  performing  the  mission  with
other  UAVs  and  obstacles,  thus  ensuring  the  safe
completion  of  the  mission.  The  time  and  space
cooperation  of  UAVs  is  currently  the  focus  of  multi-
UAV trajectory research.

Multi-UAV  cooperative  trajectory  planning  is  a
multi-objective  optimization  problem  (MOP).  Among
these  existing  studies,  the  length  and  threat  of  the
trajectory  are  concerned  with  solving  the  UAV
trajectory  using  a  multi-objective  evolutionary
algorithm (MOEA). However, MOEA is ineffective in
solving  models  with  more  than  four  objectives.  With
increasing  objectives,  non-dominated  solutions
comprise  the  majority  of  the  candidate  solutions  in
MOEA.  The  Pareto  dominance  relation  cannot  select
well  converged and diverse candidate solutions during
this  time.  The  selection  mechanism  of  the  Pareto
dominance  relation  will  fail  in  solving  the  MOP.
Therefore,  the  many-objective trajectory cost  model  is
constructed  by  considering  the  trajectory  distance,
trajectory  time,  trajectory  threat,  and  trajectory
cooperative  distance  costs  and  utilizing  the  many-
objective  evolutionary  algorithm  (MaOEA)[1, 2]  is
necessary  to  address  trajectory  problems  of  multiple
UAVs.

A  3D  multi-UAV  cooperative  trajectory  planning
model  based  on  MaOEA,  which  can  simultaneously
optimize  trajectory  distance,  trajectory  time,  trajectory
threat,  and  trajectory  cooperative  distance  costs,  is
presented.  This  model  avoids  the  conversion  of
multiple  objectives  into  a  single  objective.  A dynamic
segmentation  crossover  strategy  is  also  designed.  In
this  model,  the  multi-UAV  trajectory  is  generally
treated  as  an  individual  in  the  population  in  the
algorithm and simultaneously optimized.

The remainder of this paper is organized as follows.
The  related  work  of  UAV  trajectory  planning  is
presented  in  Section  2.  The  modeling  of  the  multi-
UAV  cooperative  trajectory  planning  is  provided  in
Section  3.  A  segmented  crossover  strategy  based  on
NSGA-III  is  also  proposed,  and  dynamic  crossover
probabilities are designed in Section 4.  A comparative
experiment,  as  well  as  an  experimental  analysis,
subsequently followed in Section 5. Finally, a summary
and  outlook  of  the  current  work  are  presented  in
Section 6.

2    Related Work

UAVs play an influential role in urban reconnaissance

and  strike  as  well  as  battlefield  environment
assessment. The planning of multiple UAV trajectories
is  also  fundamental  to  their  safe  and  efficient  mission
execution  in  complex  environments.  UAV  trajectory
planning  algorithms  are  the  core  of  UAV  trajectory
planning.  Researchers  have  developed  a  variety  of
methods  to  handle  the  multiple  factors  and  complex
environments  of  UAV  trajectory  planning.  The
generally  used  research  methods  for  multi-UAV
trajectory  planning  are  currently  classified  into  four
categories as follows.

The  mathematical  optimization  and  graph  theory
methods  are  both  mathematical  methods.  The  first
method  is  based  on  mathematical  optimization
methods[3−6],  such  as  dynamic  programming  and  the
exhaustive  method.  These  algorithms  obtain  the
optimal  path  by  adjusting  the  model  parameters  to
minimize  the  cost  function.  However,  these  methods
are too computationally time-consuming for large-scale
problems. The second method is based on graph theory
methods,  such  as  the  random  tree  and  the  Voronoi
diagram methods. In these methods, a pathway graph is
formed in accordance with various conditions,  and the
optimal  path  is  obtained  in  the  pathway  graph.  The
Voronoi diagram method divides the space into several
co-sided  polygons  according  to  the  threat,  and  these
polygons  are  connected  to  form  a  pathway  diagram.
However,  the  division  approach  of  the  space  in  three
dimensions must be studied.

The  heuristic  search  and  intelligent  optimization
algorithms are employed in searching by using certain
heuristic  information  or  behaviors.  The  first  algorithm
is based on heuristic search algorithms[7−10], such as A*
and  D*  Lite.  These  algorithms  use  heuristic
information to estimate the next node position and keep
searching  for  the  optimal  trajectory.  Therefore,  these
methods  have  additional  nodes  and  require  additional
time  and  large  memory.  The  intelligence  optimization
algorithms[11−16] include ant colony algorithms (ACO),
particle  swarm  algorithms  (PSO),  and  genetic
algorithms.  Intelligent  optimization  algorithms  use  the
idea  of  biological  behavior  to  search  for  the  optimal
path  and  are  often  employed  in  UAV  trajectory
planning.

In  recent  years,  optimization  algorithms  have  been
rapidly developed and used in various aspects, such as
production  scheduling,  circuit  design,  and  mechanical
design.  In  practical  problems,  the  number  of
optimization  objectives  is  not  only  limited  to  two  or

  Hui Bai et al.:   Multi-UAV Cooperative Trajectory Planning Based on Many-Objective Evolutionary Algorithm 131

 



three but often reaches four or more. In such a case, the
traditional  MOEAs  encounter  the  problems  of  search
capability,  computational  cost,  and  visualization  in
solving  many-objective  optimization  problems
(MAOPs).  Therefore,  MaOEAs  are  becoming  a
research hotspot[17].

Thus  far,  optimization  algorithms  have  also  been
applied  by  numerous  researchers  to  address  UAV
trajectory  planning  issues[18−23].  In  3D  trajectory
planning,  Wang  et  al.[24] proposed  an  adaptive
sensitivity decision operator with the PSO algorithm to
improve  the  convergence  speed.  Shao  et  al.[25]

optimized  the  UAV  trajectory  by  adopting  the  PSO
algorithm. Chen et al.[26] presented the ACO algorithm
with  adaptive  parameters  and  bidirectional  tuning,
which  handles  the  optimization  of  UAV  trajectories
with multiconstraints. However, these researchers only
considered  single  factors  and  did  not  meet  the  actual
needs.  Qu  et  al.[27] proposed  a  new  hybrid  algorithm
that combines SGWO and an improved MSOS, leading
to  enhanced  convergence  and  diversity  of  the
algorithm. Therefore, MOEA is applied for addressing
multi-UAV trajectory planning issues.

Some  researchers  have  recently  utilized  MOEA  to
deal  with  the  aforementioned  issue[28].  Xu  et  al.[29]

introduced an improved multi-objective PSO algorithm
for  path  planning  of  R-UAVs  to  optimize  the  length,
height,  and  angle  of  the  path.  The  efficiency  of  the
algorithm  is  improved  by  adding  vibration  functions.
Xu  et  al.[30] presented  a  constrained  evolutionary
algorithm  for  path  planning  of  single  UAVs,  which
optimizes  the  flight  distance  and  risk  under  the
constraints  of  UAV  height,  angle,  and  slope.  Xu
et al.[31] modeled the two objectives of threats and fuel
cost  with  cooperative  constraints.  An  improvement  of
the gray wolf optimization algorithm was then utilized
to  solve  the  aforementioned  issue.  The  algorithm  can
obtain  optimal  paths  and  converge  quickly.  Numerous
factors lead to poor results when using MAOP to solve
the above-mentioned issue in the multi-UAV trajectory
planning  problem.  Therefore,  this  problem  should  be
addressed using MaOEA[32, 33].

Overall,  most  researchers  did not  consider  sufficient
factors, and the constructed UAV mission environment
was  unsuitable  in  reality.  The  cost  model  of  the
trajectory  is  established  considering  the  complex
environment,  the  UAV  performance,  and  cooperation
to  deal  with  the  above-mentioned  problems,  and
MaOEA is used to optimize the multi-UAV trajectory.

3    Multi-UAV  Cooperative  Trajectory
Planning Model

3.1    Description of the problem

In a complex environment, a cluster of multiple UAVs
performs  a  certain  coordinated  combat  mission.  This
cluster  of  UAVs  will  move  from  different  starting
positions  to  the  same  target  point.  This  condition  is  a
problem of multi-UAV coordinated trajectory planning.
In  this  process,  considering  factors  such  as  terrain,
weather,  threats,  and the performance of  the UAVs, is
necessary.  A  certain  distance  must  be  maintained
between the UAVs during the flight of the UAV cluster
to  ensure  the  absence  of  collision,  and  the  mission
completion  time  for  the  UAVs  should  be  considered.
The  trajectory  planning  problem  is  the  path
optimization  problem,  which  aims  to  search  for  the
optimal trajectory in the determined space. MOP is the
search  for  the  Pareto  optimal  solution  by  optimizing
more  than  three  objectives  in  a  certain  region.  The
Pareto  optimal  solution  is  not  only  a  globally  optimal
solution but a collection of multiple optimal solutions.
Multi-UAV  trajectory  planning  has  many  factors,  and
finding  more  than  three  objectives  is  easy.  Therefore,
the  problem  can  be  solved  by  many-objective
optimization.

3.2    Model establishment
3.2.1    Multi-UAV cooperative trajectory cost model
Trajectory cost, UAV attributes, and UAV coordination
must be considered for coordinated trajectory planning
of  multiple  UAVs.  However,  trajectory  cost  includes
trajectory  distance,  trajectory  time,  trajectory  threat,
and  trajectory  coordination  distance  costs.  UAV
trajectory  cost  is  an  objective  function,  and  the
attributes of the UAV and the time coordination of the
UAV  are  constraints.  The  trajectory  planning  aims  to
maintain  a  small  trajectory  cost  under  constrained
conditions.

(1) Distance cost of trajectory
In  the  process  of  trajectory  planning,  the  entire

trajectory  is  divided  into n  trajectory  segments,  and q
UAVs perform coordinated combat tasks. The distance
cost  of  the  trajectory  is  the  distance  of q  UAVs  in n
trajectory segments. The distance cost of the track is as
follows:
 

fdistance =

q∑
u=1

n∑
l=1

dul (1)

    132 Complex System Modeling and Simulation, June  2022, 2(2): 130−141

 



dulwhere  refers  to  the  length  of  the u -th  UAV  in  the
l-th track segment.

(2) Time cost of trajectory
In  the  process  of  trajectory  planning,  the  entire

trajectory  is  divided  into n  trajectory  segments,  and
each  trajectory  segment  has  a  flight  speed.  The
trajectory  time  cost  is  the  time  of q  UAVs  in n
trajectory  segments.  The  time  cost  of  the  trajectory  is
specifically expressed as follows:
 

ftime =

q∑
u=1

n∑
l=1

dul

vul
(2)

vulwhere  represents the flight speed of the u-th UAV in
the l-th track segment.

(3) Threat cost of trajectory
UAVs will be threatened by radars and environments

when  encountering  dangerous  areas  during  flight.  The
threat cost of the trajectory aims to stay away from the
threat  as  much  as  possible.  The  threat  area  is
represented  by  a  spherical  area  in  this  paper.  The
trajectory threat cost of q UAVs is as follows:
 

fthreat =

q∑
u=1

n∑
l=1

wul (3)

wulwhere  refers  to  the  length  of  the u -th  UAV in  the
threat zone on the l-th trajectory.

(4) Coordination distance cost of the trajectory
The  UAV  must  collect  a  considerable  amount  of

different  information  and  send  it  back  to  the  base
station,  and  the  UAV  must  safely  complete  this
mission.  Therefore,  the  distance  of  UAVs  from  each
other  must  be  as  large  as  possible,  thus  enabling
increased  drone  coverage.  The  coordination  distance
cost  of  the  trajectory  of  multiple  UAVs  is  shown
below.
 

fcoordination = (
q∑

u=1

n∑
l=1

d(k1,k2))/2 (4)

d(k1,k2)where  represents  their  distance  between  two
different UAVs in a certain track segment.
3.2.2    UAV performance constraints
(1) Flying height

The flying height of the UAV must be considered in
trajectory  planning.  The  flying  height  of  the  UAV
cannot  be  too  high  or  low.  If  the  flying  height  is  too
high,  then  the  UAV  will  encounter  threats,  such  as
enemy  radar.  If  the  flying  height  is  too  low,  then  the
danger  of  hitting  the  mountain  is  also  possible.  The
flying height of the UAV should be controlled within a
certain range to complete the mission safely. The flight

hlheight of each trajectory  is expressed as follows:
 

hmin < hl < hmax, l = 1,2,3, . . . ,n (5)

hlwhere  represents  the  flight  altitude  of  the l -th  track
segment.

(2) Flight distance
The  fuel  carried  by  the  UAV  and  the  time  for  the

mission  completion  are  limited.  Thus,  the  flying
distance of the UAV is also limited. The UAV checks
the total  distance flown at  this  point  in each trajectory
segment  during  the  trajectory  planning  process.  If  the
distance is invalid, then the trajectory is replanned. The
flying distance L of the UAV is expressed as follows:
 

L < Lmax (6)

Lmaxwhere  represents  the  farthest  distance  flown  by
the UAV.
3.2.3    UAV collaborative constraints
(1) Space coordination constraints

The  UAV  will  not  be  able  to  collide  with  other
UAVs  and  obstacles  in  the  environment  to  complete
the  combat  mission  safely.  Therefore,  the  distance
between  UAVs  at  any  one  time  in  multi-UAV
trajectory  planning  is  larger  than  the  safety  distance
between UAVs, and the UAV cannot hit the mountain.
The specific representation is as follows:
 

∥di(t)− d j(t)
∥∥∥ ⩾ dsafe, i , j (7)

 

h > dmountain (8)

where i and j represent different UAVs, dsafe represents
the  safe  distance  between  UAVs, dmountain  represents
the actual height of the mountain, and h  represents the
altitude of the UAV at this moment.

(2) Time constraints
The  mission  completion  time  for  each  UAV  is

determined  by  its  trajectory  length  and  flight  speed.
Each  UAV  does  not  need  to  arrive  in  order  but  must
safely  arrive  at  its  target  point  within  the  specified
period. The specific expression is as follows:
 

tmin < ti < tmax (9)

tiwhere  represents  the  time  for  the i -th  UAV  to
complete the mission.

4    Dynamic  Segmentation  Crossover
Strategy Based on NSGA-III

4.1    NSGA-III

Most MOEAs are only suitable for issues with less than
four  objectives.  However,  more  than  four  objectives
that  must  be  optimized  are  often  observed  in  reality.
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Therefore,  Deb  and  Jain[34] proposed  NSGA-III  based
on  NSGA-II.  Non-dominated  sorting  was  applied  to
NSGA-II  and  NSGA-III.  However,  their  selection
strategies  at  the  critical  level  are  different.  A
congestion  distance  is  used  for  NSGA-II.  However,
NSGA-III  adopts  a  strategy  of  reference  points.  This
algorithm  solves  the  overcomplicated  computation
problem  of  congestion  between  numerous  non-
dominated  solutions  for  high-dimensional  spaces.  The
core of this algorithm lies in the non-dominant sorting
and reference point methods. This algorithm selects the
solutions with good convergence in the population via
non-dominated  ranking,  while  the  best  solution  is
identified by filtering a large amount of non-dominated
solutions  through  a  reference  point  strategy.  The
algorithm flow of NSGA-III is shown in Algorithm 1.

4.2    Individual representation

The  real  coded  approach  is  used  in  this  paper  to  plan
the  trajectories  of q  UAVs  in  3D  space.  The  three-
dimensional space is divided into n track segments, and
each track point is generated on each track segment of
each  UAV.  The  line  comprising L  trajectory  points
forms  the  flight  trajectory  of  UAVs.  An  individual
represents the trajectory of q UAVs, and the individual

X = [X1, X2, X3, . . . ,

Xu, . . . , Xq]T

Xu

is  represented  by  a  matrix 
,  where q  represents  the  number  of  UAVs,

and  is  the  trajectory  of  the u -th  UAV  in  the
individual.  Individuals  are  represented  as  shown  in
Fig. 1.

4.3    Mutation  and  crossover  operations  based  on
dynamic segmentation strategy

pc1(s)

A dynamic segmentation crossover strategy is designed
in  this  paper  to  accelerate  the  searching  speed  of  the
algorithm.  The  probability  of  mutation  operator  is  set
to 0.1 to prevent the algorithm from turning into a local
optimal. The entire trajectory for the model built in this
paper is segmented: the threat area containing radar and
harsh weather is regarded as one segment, and the rest
of  the  non-threat  area  is  taken  as  another  segment.
Dynamic crossover probabilities are set within different
segments  and  depend  on  individual  fitness  values  of
current  and  previous  generation  populations.  In  threat
areas,  it  depends  on  trajectory  threat  and  time  costs.
Meanwhile, in non-threatened areas, it is determined by
trajectory distance and trajectory coordination distance
costs. If the mean value of all individuals in the current
population  is  greater  or  less  than  the  previous
generation  on  the  two  objectives,  then  the  crossover
probability  of  the  threat  area  is  set  to  0.8.  Otherwise,
this  probability  is  determined  by  the  ratio  of  the
average value of all individuals in current and previous
generation  populations  on  the  two  objectives.  The
crossover probability  equation of the threat  area
is as follows:
 

f (s) = (
N∑

k=1

f (s))/N (10)

f (s)
where f (s )  represents  the  fitness  value  after
normalization  of  the  current  population,  and 
represents  the  average  of  the  fitness  values  of  all
individuals in the current population.
 

pc1(s) =


max(

fthreat(s)

fthreat(s−1)
,

ftime(s)

ftime(s−1)
)×0.8,

Formula (12);
0.8, other

(11)
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Fig. 1    Individual representation.

 

 

Algorithm 1　NSGA-III
　　Input: Reference points, initial population
1.  　Calculating population size N
2.   　Cross mutation generates offspring
3.    　Paternal  and  offspring  integration,  generating  new
　　 populations Rt

4.   　Calculate the ideal point Zmin

5.  　 Non-dominated sorting
6.   　Select non-dominated layers with high priority and retain
　　individuals
7.  　While (Selected individuals<N)
8. 　　Reference point strategy
9. 　　Calculate the achievement scalarizing function ASF
10. 　　Calculate the extreme point
11. 　　Solving for hyperplane
12. 　　Compute intercepts
13. 　　Standardization of populations
14. 　　Calculate the distance from the solution to the reference
　　 vector
15. 　　Association operation
16. 　　Select the remaining individuals
13. 　　Standardization of populations
17. 　End

Pt+1 　　Output: New populations 
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 {
fthreat(s) ⩾ fthreat(s−1) and ftime(s) ⩾ ftime(s−1),
fthreat(s) ⩽ fthreat(s−1) and ftime(s) ⩽ ftime(s−1)

(12)

fthreat(s) ftime(s)
where s represents the current number of iterations, and

 and   indicate  the  individual  fitness
value  on  this  trajectory  threat  and  time  costs,
respectively.

The  calculation  method  of  the  crossover  probability
of  this  non-threatened  area  is  the  same  as  that  of  the
threat area. The specific formula is as follows:
 

pc2(s) =


max(

fdistance(s)

fdistance(s−1)
,

fcoordination(s)

fcoordination(s−1)
)×0.8,

Formula (14);
0.8, other

(13)
 

fdistance(s) ⩾ fdistance(s−1) and fcoordination(s) ⩾
fcoordination(s−1),

fdistance(s) ⩽ fdistance(s−1) and fcoordination(s) ⩽
fcoordination(s−1)

(14)

fdistance fcoordinationwhere  and   denote  the  individual
fitness  value  of  the  current  trajectory  distance  and
trajectory coordination distance costs, respectively.

Each subpopulation is optimized using the NSGA-III
algorithm,  and  the  basic  genetic  operation  operator  is
used for the other evolutionary operations. Whether the
constraints  of  UAV  performance  and  cooperation  are
satisfied  is  determined  by  the  individuals  in  the
population.  Otherwise,  the  waypoints  that  do  not
satisfy the constraints are regenerated.

4.4    Algorithm framework

Figure  2 is  an  algorithm  flowchart  based  on  UAV
trajectory planning.

The  detailed  steps  of  multi-UAV  coordinated
trajectory  planning  based  on  DSNSGA-III  are  as
follows.

(1) Create a three-dimensional environment model of
the UAV and define UAV mission starting and aiming
points and the parameters in the NSGA-III algorithm.

(2)  Initialize  the  number  of  iterations G  and  the
population P.

(3)  Calculate  the  trajectory  distance,  trajectory  time,
trajectory  threat,  and  trajectory  coordination  distance
costs  of  the  individual  by  using  Eqs.  (2)−(4)  and
Formula (5).

(4)  Calculate  the  algorithm  crossover  probability
based  on  the  goals  of  the  current  and  previous
generation  populations  and  the  location  of  the
trajectory.

(5)  Offspring  is  produced  by  parents  through
crossover and mutation.

(6)  The  parent  and  offspring  merge  into  a  new
population, P1.

(7)  The  new  population P1  uses  the  standard
environmental  selection  strategy  in  NSGA-III  to
choose outstanding individuals. These individuals form
a  new  population,  and  the  number  of  algorithm
iterations is increased by one.

(8)  If  the  termination  condition  is  met,  then  the
procedure ends. Otherwise, skip to Step (3).

5    Experiment and Result

A  3D  multi-UAV  flight  trajectory  is  simulated  on
MATLAB  2019b.  The  space  size  of  this  operational
mission  is  100  ×  100  ×  650,  and  three  UAVs  are
available in the mission. Their starting positions are [1,
20, 160], [1, 35, 166], and [1, 50, 160]. The target point
coordinates  of  the  mission  are  [100,  80,  400].  Four
radars  are  located  in  the  mission  space  and  are
represented  by  spheres.  Their  central  coordinates  are

 

Start

Create environment model

Initialize n multi-UAV trajectory

Selection, crossover, and mutation

Merge parent and child

Calculate the cost of the UAVs trajectory

Non-dominant sorting and reference point method

Crossover  based on dynamic segmentation
strategy and mutation

Generate offspring

No

s+1

s>Gen?

Yes

Generate n multi-UAV trajectory

End
 
Fig. 2    Algorithm flowchart based on multi-UAV trajectory
planning.
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[26, 70, 480], [35, 20, 470], [60, 50, 500], and [80, 40,
460].  The  severe  weather  in  the  mission  space  is
represented by a rectangular parallelepiped. The length
of this rectangular tube is 20, the width is 100, and the
altitude is 650. The entire flight trajectory of the UAV
is  divided  into  50  segments,  yielding  51  trajectory
points.

5.1    Performance  analysis  of  individuals  and
iterations

One  hundred  individuals  are  selected  for  experiments
with  different  iteration  numbers  according  to  the
constructed  model.  The  iteration  number  ranges  from
generation 100 to 1200.  Each iteration is  run 20 times
independently. The results of the 20 runs are averaged.
Figure  3 shows  the  experimental  results  of  the  four
objectives  of  this  model  at  different  numbers  of
iterations. The horizontal coordinates in Fig. 3 indicate
the number of iterations for the individual. The vertical
coordinates  represent  the  objective  value  of  each
objective. Figure  3a shows  the  objective  of  trajectory

distance  cost  converges  after  900  generations.
Figure  3b  reveals  the  trajectory  time  cost  converges
after  900  generations. Figure  3c  demonstrates  that  the
trajectory  threat  cost  converges  to 1000  generations.
Figure  3d  shows  the  trajectory  coordination  distance
cost  converges  at 1100  generations.  Overall,  the
objective  values  of  all  objectives  after  the 1100
generations are in a state of convergence.

Figure  3  shows  that  the  number  of  convergence
generations  for  each  objective  is 1100 ;  therefore,  this
paper  uses 1100  iterations  for  different  individuals  to
perform the experiments. The number of individuals in
the  population  is  50,  75,  100,  125,  and  150. Figure  4
reveals  the  experimental  results  of  the  four  objectives
of this model on different numbers of individuals. The
horizontal and vertical coordinates indicate the number
of individuals in the population and the objective value
of  each  objective,  respectively. Figure  4a  shows  the
trajectory distance cost converges after 100 individuals.
Figure  4b  demonstrates  the  trajectory  time  cost
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Fig. 3    Results of each objective at different iterations.
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converges  after  100  individuals. Figure  4c  reveals  the
trajectory  threat  cost  converges  to  125  individuals.
Figure  4d  shows  the  trajectory  coordination  distance
cost  converges  at  100  individuals.  Overall,  the
objective  values  of  all  objectives  are  in  a  state  of
convergence at 125 individuals.

5.2    Comparison with proposed DSNSGA-III

In the case of 100 individuals and 1100 iterations, this
paper  compares  the  DSNSGA-III  with  the  standard
NSGA-III  algorithm[34],  RVEA  algorithm[35],  and
GrEA  algorithm[36].  NSGA-III  uses  a  reference  point
strategy  to  select  the  best  individuals  among  the  non-
dominated solutions to improve the convergence of the
algorithm.  RVEA  uses  a  uniformly  distributed
reference  vector  to  divide  the  decision  space  into
several small subspaces to determine the superiority of
an  individual  in  the  subspace.  GrEA  introduces  three
criteria  to  maintain  diversity  but  overemphasizes
diversity.  The  three  many-objective  algorithms  are
suitable  for  solving  the  proposed  model  in  this  paper.

Figure  5 shows  the  comparison  results  of  this  model
with multiple algorithms on each objective.

Based  on  the  multi-UAV  trajectory  coordination
planning  problem, Fig.  5 shows  that  the  DSNSGA-III
significantly surpasses the other algorithms considering
trajectory  distance,  trajectory  time,  and  trajectory
coordination distance costs.

The  trajectory  threat  cost  is  0  for  most  individuals;
therefore, the objective is not represented by a box plot.
Table  1 presents  the  results  of  the  experiments  using
DSNSGA-III,  standard  NSGA-III,  RVEA,  and  GrEA
algorithms under the trajectory threat cost.

5.3    Trajectory simulation results

Figures 6 and 7 are the simulation results of the multi-
UAV  coordinated  trajectory  planning  using  the
DSNSGA-III  algorithm  according  to  the  above
experiments  of  individuals  and  iterations.  The
trajectory planning results indicate that all UAV tracks
did  not  intersect,  satisfying  the  cooperativity  of
trajectory  planning.  Most  of  the  trajectories  also
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Fig. 4    Results of each objective at different individuals.
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successfully avoided mountainous and dangerous areas.
Simultaneously,  the  optimal  trajectory  of  trajectory
distance,  trajectory  time,  and  trajectory  coordination
distance costs is selected on the basis of the simulation
results  of  population  trajectory  planning,  as  shown  in
Table 2.
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Table 1    Values of the threat cost.

Algorithm Total cost of
the threat (km)

Number of
threatening tracks

DSNSGA-III 607.38 38
NSGA-III 213.88 46

RVEA 196.17 30
GrEA 458.32 33
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6    Conclusion

Traditional  UAV  trajectory  planning  methods  did  not
consider  sufficient  factors.  Therefore,  a  three-
dimensional  multi-UAV  coordinated  trajectory
planning is proposed in this paper based on DSNSGA-
III  in  complex  environments.  Under  the  conditions  of
the  UAV  and  cooperative  constraints,  trajectory
distance,  trajectory  time,  trajectory  threat,  and
trajectory  coordination  distance  costs  of  UAVs  are
optimized  simultaneously  to  find  a  set  of  effective
trajectories. A segment crossover method is designed in
accordance  with  the  characteristics  of  the  model
created  in  this  paper,  and  dynamic  probability  is
introduced  to  the  crossover  operator  to  accelerate  the
convergence  speed  of  the  operator.  The  simulation
results  in  this  paper  prove  that  the  algorithm can  plan
multiple  sets  of  trajectories  under  the  constraint
conditions and meet different actual needs. The results
also reveal the effectiveness of the algorithm in multi-
UAV trajectory planning.

The  coordinated  trajectory  planning  of  multiple
UAVs  under  uncertain  conditions  and  the  time  and
space coordination algorithms between UAVs are then
highlighted.
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