

Distributed Flexible Job-Shop Scheduling Problem Based on
Hybrid Chemical Reaction Optimization Algorithm

Jialei Li, Xingsheng Gu*, Yaya Zhang, and Xin Zhou

Abstract: Economic globalization has transformed many manufacturing enterprises from a single-plant

production mode to a multi-plant cooperative production mode. The distributed flexible job-shop scheduling

problem (DFJSP) has become a research hot topic in the field of scheduling because its production is closer to

reality. The research of DFJSP is of great significance to the organization and management of actual

production process. To solve the heterogeneous DFJSP with minimal completion time, a hybrid chemical

reaction optimization (HCRO) algorithm is proposed in this paper. Firstly, a novel encoding-decoding method

for flexible manufacturing unit (FMU) is designed. Secondly, half of initial populations are generated by

scheduling rule. Combined with the new solution acceptance method of simulated annealing (SA) algorithm, an

improved method of critical-FMU is designed to improve the global and local search ability of the algorithm.

Finally, the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to

improve the convergence speed and optimize the algorithm parameters. In the experimental part, the

effectiveness of the simulated annealing algorithm and the critical-FMU refinement methods is firstly verified.

Secondly, in the comparison with other existing algorithms, the proposed optimal scheduling algorithm is not

only effective in homogeneous FMUs examples, but also superior to existing algorithms in heterogeneous

FMUs arithmetic cases.

Key words: scheduling problem; distributed flexible job-shop; chemical reaction optimization algorithm; heterogeneous

factory; simulated annealing algorithm

1 Introduction

For a long time, flexible job-shop scheduling problem
(FJSP) is not only a hot topic in academic research, but
also plays an important role in modern manufacturing
industries. The FJSP is an extension of job-shop
scheduling problem (JSP), which is NP-hard problem
and it has been widely studied in recent decades[1−7].
However, many manufacturing industries are changing

from a traditional centralized manufacturing model to a
distributed manufacturing model because of the
emergence of globalization. The manufacturing of
products is completed by multiple companies or
factories located in different regions instead of only
one company or factory because cooperative
production between different factories can reduce
response speed and production cost[8−12]. Therefore, the
distributed flexible job-shop scheduling problem
(DFJSP) has been gradually attracted the attention of
scholars and applied in many fields, such as petroleum,
chemical, metallurgy, steel, textile, and pharmaceutical
industries[13].

The DFJSP solves the problem of production
scheduling in distributed manufacturing environments,
where tasks are handled cooperatively by several
flexible manufacturing units (FMUs). And each

 • Jialei Li, Xingsheng Gu, Yaya Zhang, and Xin Zhou are with

the Laboratory of Smart Manufacturing in Energy Chemical
Process, Ministry of Education, East China University of
Science and Technology, Shanghai 200237, China. E-mail:
xsgu@ecust.edu.cn.

 * To whom correspondence should be addressed.
 Manuscript received: 2022-03-29; revised: 2022-06-08;

accepted: 2022-06-20

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 04/06 pp 156−173
Volume 2, Number 2, June 2022
DOI: 10 .23919 /CSMS.2022 .0010

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

operation can be handled by one or more available
machines. DFJSP can be divided into homogeneous
DFJSP and heterogeneous DFJSP. Under the
homogeneous FMU environment, the number and
performance of machines in each FMU are the same.
While in heterogeneous FMU environment, the number
and performance of machines in each FMU are
different. In DFJSP, the three sub-problems of FMU
selection, operation sequence scheduling, and machine
selection must be solved, which is more difficult than
FJSP.

To date, some literatures have been published on
DFJSP. Among them, the study with makespan as the
objective function is the most. Chan et al.[14] designed
an encoding method with dominant genes (DG) which
called genetic algorithm with dominant genes (GADG)
to deal with DFJSP. Giovanni and Pezzella[15] extended
some classic FJSP instances to DFJSP and proposed an
improved genetic algorithm (IGA). Ziaee[16] developed
a fast heuristic algorithm, which assigns different
weights to factors such as machine limit time, average
job time, and process processing time, so that the
algorithm can quickly locate the region with better
feasible solutions. To balance the load of the factory
and the machine in the DFJSP, Lu et al.[17] proposed a
concise encoding method and corresponding 3-D
decoding method, which named GA-JS. The
experiment was compared with IGA and some better
optimal solutions were obtained. Chang and Liu[18]

proposed a hybrid genetic algorithm (HGA) to solve
the DFJSP. The authors used three methods for the
crossover phase and divided the mutation operation
into two parts. In comparison with GADG and IGA,
HGA obtained better results in the mean and standard
deviation. Compared with the above-mentioned
existing genetic encoding methods, Wu et al.[19]

developed a new encoding method for genetic
algorithm, which called GA-OP, and designed
corresponding decoding methods for factory allocation
and machine allocation. Marzouki et al.[20] used
chemical reaction optimization (CRO) to solve DFJSP.
However, due to the use of basic CRO, the
experimental results are not competitive with other
algorithms. To solve the DFJSPs subject to preventive
maintenance (PM), Chan et al.[21] developed a genetic
algorithm with dominant genes (GADG) to identify
chromosomes with good genes. Based on GADG,
Chung et al.[22] added a local search mechanism and
proposed an enhanced genetic algorithm (GA). Lin
et al.[23] designed two incomplete chromosome

representations and four GAs to solve DFJSP.
Furthermore, an effective method to generate new
chromosomes from high quality solutions was
developed to improve the performance of the proposed
algorithms. Considering the transportation time
between factories, Chan et al.[24] proposed a hybrid
algorithm based on tabu search and sample sort
simulated annealing to solve DFJSP. Ziaee[25]

integrated production scheduling and work-in-process
planning decisions, established a corresponding mixed
integer linear programming model, and developed a
fast heuristic algorithm. To solve multi-objective
DFJSPs, Li et al.[13] constructed a hybrid Pareto-based
tabu search algorithm to deal with multi-objective
DFJSP in steelmaking systems, and developed five
types of neighbourhood structures to improve the
algorithm ability. Luo et al.[26] proposed a model of
DFJSP with transfers time and designed an efficient
memetic algorithm to solve multi-objective DFJSP. In
this algorithm, multiple crossover mutation operators
and three kinds of neighbourhood structures are
designed to expand the search space. Xu et al.[27]

developed a hybrid genetic algorithm and tabu search
with three-layer encoding to address multi-objective
low carbon DFJSP of large-scale and complex
manufacturing enterprises. Du et al.[28] combined a
distribution estimation algorithm and variable
neighbourhood search to solve multi-objective DFJSP
with crane transportations.

In summary, the existing researches on DFJSP
mainly focus on the homogeneous FMUs where the
number and the processing capacity of machines in
each FMU are assumed to be the same, and rarely pay
attention to the DFJSP on the heterogeneous FMUs.
Moreover, the experiments are mostly verified in small
examples. The largest one of these examples contains
only 20 jobs. But in the actual production, most of the
FMUs are heterogeneous and the scale of DFJSP is
large. Therefore, a new algorithm with strong
applicability is proposed in this paper to be able to
solve homogeneous and heterogeneous DFJSP at the
same time, and its effectiveness is verified on large-
scale examples.

In recent years, various intelligent optimization
algorithms have been proposed to solve different
production scheduling problem. Zhao et al.[29] proposed
an ensemble discrete differential evolution algorithm to
solve the blocking flow-shop scheduling problem with
the minimization of the makespan in the distributed
manufacturing environment. To solve the multi-

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 157

objective energy-efficient no-wait flow shop
scheduling problem and the multi-objective energy-
efficient distributed no-idle flow shop scheduling
problem, Zhao et al. designed a two-stage cooperative
evolutionary algorithm with problem-specific
knowledge[30] and a self-learning discrete Jaya
algorithm[31], respectively. Wang et al.[32] used the
multi-objective whale algorithm to study the energy-
efficient distributed permutation flow shop scheduling
problem with sequence dependent setup times. Lei
et al. proposed an imperialist competition algorithm
with memory[33] and an artificial bee colony algorithm
with partitioning properties[34] to solve the distributed
unrelated parallel machines scheduling problem,
respectively. Şahman[35] employed discrete spotted
hyena optimization algorithm to solve distributed job
shop scheduling problem.

The above-mentioned researchers try to solve the
scheduling problem with different intelligent
optimization algorithms to expect close to the optimal
solution. The experimental results also show that some
new algorithms can obtain better solutions than other
algorithms. It is very necessary to develop different
intelligent optimization algorithms to solve different
scheduling problems. Therefore, a hybrid chemical
reaction optimization algorithm is proposed in this
paper, which is suitable for solving DFJSP with the
goal of minimizing the maximum makepan in both
homogeneous and heterogeneous environments. The
main reasons for using the chemical reaction
optimization (CRO) algorithm to solve DFJSP in this
paper are as follows. First, the CRO has been widely
used to solve different combinatorial optimization
problems, such as the resource constrained project
scheduling problem[36], directed acyclic graph
scheduling[37], the 0–1 knapsack problem[38], the
FJSP[39, 40] , and distributed flow shop scheduling
problem[41, 42] , but CRO is less used in DFJSP.
Furthermore, evolutionary algorithms can explore a
huge search space, but their ability to converge to the
optimal solution is poor, while CRO can balance
diversified search and intensive search. Therefore,
CRO has good convergence and can obtain feasible
solutions in a short time. Finally, CRO can adapt to
different optimization problems by utilizing the defined
molecular representation and the basic four reaction
operations. This variety of operators helps us tailor
algorithm to suit different problems. Based on the
above advantages, it is considered that CRO can

satisfactorily improve DFJSP based on the makespan
criterion.

The main contributions of this work are as follows.
(1) An operation-FMU encoding-decoding method is
designed. (2) Corresponding operations are designed
for four kinds of collisions of the algorithm. (3) The
CRO algorithm is improved by combining with
simulated annealing (SA) and critical-FMU refinement
methods. In addition, orthogonal experiments are used
for exploring the influence of parameters and the
comparison with existing algorithms in homogeneous
FMU cases and self-generated heterogeneous FMU
cases are completed in the experimental part which
verify the effectiveness and superiority of the proposed
algorithm.

The remaining of this paper is organized as follows.
The description of DFJSP is stated in Section 2. In
Section 3, the proposed algorithm is described in detail,
including basic chemical reaction optimization
algorithm, encoding and decoding methods, four
collision operators, SA new solution acceptance
method, and critical-FMU refinement methods. The
related parameters are designed in the anterior part of
Section 4, and the experimental results are analysed in
the posterior part of Section 4. Finally, the conclusions
and future work are provided in Section 5.

2 Problem Description

For convenience, the notations used in this section are
listed as follows.

Index
i　index for job, i = 1, 2, …, N;
j　index for operation, j = 1, 2, …, pi;
f　index for FMU, f = 1, 2, …, Q;
k　index for machine, k = 1, 2, …, mf;
r　index for processing sequence, r = 1, 2, …, qf,k.
Parameter
N　total number of jobs;
pi　total number of operations for job i;
Q　total number of FMUs;
mf　total number of machines in FMUf;
t f ,k
i, j 　 processing time of operation Oij on machine

Mf,k.
Variable
Ji　the i-th job;
Oij　the j-th operation of job Ji;
FMUf　the f-th FMU;
Mf,k　the k-th machine in FMUf ;
Si,j　starting time of operation Oij;

 158 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

Di,j　ending time of operation Oij;
Fi　completion time of job i;
Cmax　maximum completion time;
Ef,k,r　 starting time of the r -th processing sequence

on machine k in FMUf ;
qf,k　 total number of operations processed on

machine k in FMUf.
Binary variable
x f ,k

i, j 　 binary variable that takes value 1 if Oij is
processed on machine k in FMUf, and 0 otherwise.

z f ,k,r
i, j 　 binary variable that takes value 1 if the

processing sequence of Oij on machine k in FMUf is r,
and 0 otherwise.

The DFJSP can be stated as follows. A set of jobs J =
{J1, J2, …, JN} is given, which must be processed in a
set of FMUs FMU = {FMU1, FMU2 , …, FMUQ}.
FMUf is equipped with a set of machines M = {M1,
M2, …, Mmf }. It is worth noting that the number of
machines in each FMU is not the same and each
machine k exhibits a different level of performance.
Each job Ji has an ordered set of operations Oij = {Oi1,
Oi2, …, Oipi }, each operation can be assigned only to
one flexible manufacturing unit FMUf for processing.
The system schematic diagram of DFJSP is shown in
Fig. 1.

The paper considers the following assumptions:
(1) All flexible manufacturing units, jobs, and

machines are available at time zero.
(2) The machining time of all operations is known in

advance.
(3) Each operation that is processed by different

machines may have different time.
(4) No consideration is given to transportation time,

preparation time, release time, etc.
Based on the above assumptions, the model with the

optimization objective of minimizing makespan is
established as follows by referring to Ref. [43]:

min Cmax =
N

max
i=1
{Fi} (1)

Fi = Di,pi (2)

Di, j = S i, j+

Q∑
f=1

m f∑
k=1

x f ,k
i, j × t f ,k

i, j , j ∈ {1, 2, ..., pi} (3)

S i, j+1 ⩾ Di, j, j ∈ {1, 2, ..., pi−1} (4)

E f ,k,r+1 ⩾ E f ,k,r +

N∑
i=1

pi∑
j=1

t f ,k
i, j × z f ,k,r

i, j ,

f ∈ {1, 2, ..., Q}, k ∈ {1, 2, ..., m f }, r ∈ {1, 2, ..., q f ,k −1}
(5)

pi∑
j=1

m f∑
k=1

x f ,k
i, j ∈ {0, pi} (6)

Q∑
f=1

m f∑
k=1

x f ,k
i, j = 1, j ∈ {1, 2, ..., pi} (7)

q f ,k∑
r=1

z f ,k,r
i, j = x f ,k

i, j , j ∈ {1, 2, ..., pi} (8)

Equation (1) is the objective function, which means
that the makespan is equal to the maximum completion
time of all jobs. Equation (2) indicates that the
completion time of the job is equal to the completion
time of the last operation of this job. Equation (3) states
that the completion time of the operation is equal to the
starting processing time plus the actual processing
time. Formula (4) is the operation constraint, meaning
that the operations of the same job must be processed
in order. Formula (5) ensures that the same machine
can only process an operation at a time. Formula (6)
represents that all operations of a job can only be
processed in the same FMU. Equation (7) assures that
an operation can only be processed by one machine in
one FMU. Equation (8) defines that an operation can
only be processed once by the selected processing
machine.

3 Hybrid Chemical Reaction Optimization
Algorithm for DFJSP

In this part, the specific content of the proposed
algorithm is introduced with details. For convenience,
the parameters involved are shown in Table 1.

The algorithm of HCRO is shown in Algorithm 1.
Basic chemical reaction optimization algorithm is
introduced in Section 3.1; Molecular encoding and
decoding method is presented in Section 3.2; The
population initialization is stated in Section 3.3; Four
collisions are presented in Sections 3.4−3.7; Elitist

Jobs
J1,J2,…,JN

FMU1
M11,M12,…,M1m

FMU2
M21,M22,…,M2m

FMUQ

MQ1,MQ2,…,MQm

......

M21

M22

M2m

Og1,Og2,…,Oh5

Oh1,Og3,…,Oh4

Oh2,Oh3,…,Og5

Fig. 1 DFJSP system diagram.

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 159

selection strategy is introduced in Section 3.8; A new
solution acceptance method based on simulated
annealing algorithm and critical-FMU refinement
methods are introduced in Sections 3.9 and 3.10.

3.1 Basic chemical reaction optimization
algorithm

CRO is an emerging population evolution algorithm
that appeared in 2012, which simulates the process of
constantly changing molecules in a chemical reaction
system trying to obtain the lowest potential energy[36].
The algorithm uses the concept of molecular structure
ω to describe the solution of the optimization problem
and describes the optimization process as a chemical
reaction process. The molecular structure ω represents
a feasible solution, and each molecule has two types of
energies: potential energy PEω and kinetic energy KEω.
PEω represents the objective function value of the
corresponding solution ω while KEω represents the
tolerance of the system to accept a worse solution. In
this paper, KE of the new molecule is defined as the KE
and PE of the old molecule minus the PE of the new
molecules[44]. The specific formula expression will be
listed in the following four collisions. CRO defines
four basic reaction operators to search for feasible
solutions: on-wall ineffective collision, decomposition
reaction, inter-molecular ineffective collision, and
synthesis reaction. These four reactions can be
classified into uni-molecular collisions and bi-
molecular collisions. The on-wall ineffective collision
and decomposition reaction are single molecular
collisions, while inter-molecular ineffective collision
and synthesis reaction are of the second category.

Like other evolutionary algorithms, CRO contains
three basic steps: initialization, iteration, and
termination conditions. During the first step, Popsize,
MoleColl, InitialKE, buffer, a , and b are initialized. In
the iteration phase, CRO explores the solution space
through four different collision reactions. The
molecular changes caused by these collisions can be
subtle or dramatic. Slight collision focuses on intensive
search, which refers to searching the neighborhood of
the current solution to improve the quality of the
algorithm. In CRO, it is realized by on-wall ineffective
collision and inter-molecular ineffective collision.
While violent collisions focus on intensive search, they
tend to search for different regions of the solution
space through decomposition and synthesis reactions.
The CRO algorithm will go through these four basic
reactions until the termination conditions are met and

Table 1 Parameters of hybrid chemical reaction
optimization (HCRO) algorithm.

Parameter Description
ω Molecular structure and solution of the problem

PEω Potential energy of ω
KEω Kinetic energy of ω

buffer Central energy buffer, and initial buffer is 0.
InitialKE Initial kinetic energy

MoleColl
A random number between 0 and 1 to control the
occurrence of a uni-molecular or inter-molecular

collision
a Control parameter of decomposition reaction
b The lower kinetic energy limit

p Control parameter of critical-FMU refinement
methods

T0 Initial temperature
Tf Threshold temperature

Beta Value of attenuation factor
Popsize Molecular population size
Maxgen Maximum number of iterations

Algorithm 1　Hybrid chemical reaction optimization
algorithm
1.Set parameters: Popsize, Maxgen, InitialKE, MoleColl, b, a, p,
T0, Tf, and Beta
2.Population initialization;
3.While the number of iterations does not reach Maxgen or the
running time is less than 5000 s do
4.　Select molecules for optimal operations according to the
elitist selection strategy;
5.　 while go through the rest of the molecules do
6.　　 if rand(0,1) > MoleColl then
7.　　　if the optimal value of an iteration is not updated then
8.　　　 Trigger decomposition reaction and accept the new
molecule by simulated annealing algorithm;
9.　　　else
10.　　　Trigger on-wall ineffective collision and accept the
new molecule by simulated annealing algorithm;
11.　　　end
12.　　else
13.　　 if the kinetic energies of two molecules are all less than
b then
14. 　　　Trigger inter-molecular ineffective collision and
accept the new molecule by simulated annealing algorithm;
15.　　　else
16.　　　Trigger synthesis reaction and accept the new
molecule by simulated annealing algorithm;
17.　　　end
18.　　 end
19.　 end
20.　Apply critical-FMU refinement methods to molecules
with the top 20% fitness value;
21. end

 160 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

the optimal solution is output.

3.2 Molecular encoding and decoding

This section takes the data in Table 2 as an example
and lists three relatively new encoding methods of
DFJSP with Cmax as the optimization goal, which are
selected from HGA[18], GA-JS[17], and GA-OP[19], to
explain the advantages of the encoding method
proposed in this paper.

HGA explicitly expresses the three sub-problems of
DFJSP using the encoding method shown in Fig. 2a.
The integer part represents the sequence order of the
operations, and the process sequence shown in
Fig. 2a is 1213321 ; the decimal part uses the roulette
wheel method to determine the machine selection, and
the corresponding FMU selection is determined
through the machine selection. This method does not
need to use rules to decode and can search the whole
solution space well. However, the FMU selection is
determined by machine selection; DFJSP considers the
constraint that operations of the same job are processed
in the same FMU, so it is easy to generate illegal
solutions, which will increase the running time of the
algorithm to a certain extent.

The encoding of GA-JS only expresses the job
processing sequence and decodes three sub-problems
of DFJSP through three heuristic rules. As shown in
Fig. 2b, this encoding method is simple, but too many
heuristic rules can easily make the algorithm fall into a
local optimum.

As shown in Fig. 2c, the encoding method of GA-OP
explicitly expresses the sequence order of the
operations, and the remaining machine selection and
FMU selection are obtained by two heuristic rules to
balance the load. The FMU selection of this method is
greatly affected by the number of machines in the
FMUs and is not suitable for DFJSP in a heterogeneous
environment.

To overcome the above-mentioned shortcomings of
encoding, we propose a novel operation-FMU
encoding method to explicitly express the two sub-
problems of DFJSP.

N

Each molecule ω has two parts of information. The
first part of the molecule is the operation information,
which adopts from the JSP solution encoding method
proposed by Bierwirth[45]. The second part is the FMU
information, whose length is , indicating the FMU
number of the corresponding job. Figure 3 shows a
molecule ω based on Table 2. The right side of the
dotted line is the FMU information. “2” in the first
position means that job J1 is allocated to FMU2, “2” in
the second position means that job J2 is allocated to
FMU2, “1” in the third position means that job J3 is
allocated to FMU1 , and so on. This encoding method
does not generate illegal solutions, which can save the
time to check illegal solutions. The FMU selection is
reflected in the encoding, so that the algorithm has
strong applicability and can solve DFJSP in
homogeneous and heterogeneous FMU environments
at the same time.

DFJSP needs to solve three sub-problems, among
which the processing order and FMU allocation can be
obtained by the corresponding decoding of the above
ω. Take the problem in Table 2 and the molecule
representation in Fig. 3 as an example: J1 and J2 are
assigned to FMU2 . Therefore, the operation sequence
in FMU2 (called Cop2) is O11→O21→O12→O22→O13;

Table 2 A sample DFJSP instance.

Job Operation
FMU1 FMU2

M11 M12 M13 M21 M22 M23

J1

O11 2 1 3 3 − 2
O12 − 5 1 3 3 3
O13 3 5 1 2 1 −

J2
O21 4 6 2 5 4 −
O22 3 2 7 5 4 3

J3
O31 3 2 4 3 5 4
O32 − 3 4 5 3 4

232 31 11 2ω: 2 1

FMU 1

FMU 2

FMU 2O11 O21 O12 O31 O32 O22 O13

Fig. 3 Molecule representation.

2.543.332.90 3.111.74 1.701.98

O11

J1 J2 J3

O21 O12 O31 O32 O22 O13

O11 O21 O12 O31 O32 O22 O13

(a) Encoded representation of HGA

21 3

(b) Encoded representation of GA-JS

232 31 11

(c) Encoded representation of GA-OP

M21 M22 M23 M11 M13 M21 M21

Fig. 2 Three encoding methods of DFJSP.

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 161

and the operation sequence in FMU1 (called Cop1) is
O31→O32 because J3 is assigned to FMU1. For the rest
of the machine allocation, a heuristic rule is used for
decoding to balance the FMU load to reduce makespan.
Take the FMU2 as an example, the specific operation of
the rule is as follows: All Cop2 operations are assigned
to the FMU2 machines in turn. Each operation is
allocated to the machines with the lowest workload.
O11 can be processed on M21 and M23. M23 is selected
since it has a lower workload, and the workload of each
machine is then updated. O21 is allocated to M22
because of its lower workload, and the workload of
each machine is updated again. If the same workload is
obtained by several machines, then one of them will be
selected randomly. Follow the above process to
complete the process of machine selection, the final
scheduling result can be obtained.

3.3 Population initialization

The initial population is crucial for an algorithm since
it has influence on the following iterations[46]. To
balance the load between FMUs and shorten Cmax as
much as possible, heuristic rules are developed to
generate half of the initial population in this paper,
while the remaining half of the population is randomly
generated to maintain diversity.

Heuristic rule 1
This rule applies to the operation information in the

first part of the molecule. Priority is given to the jobs
with the most remaining operations. Once there exist
some jobs with the same number of remaining
operations, one of them is selected randomly.

Take the data in Table 2 as an example again, there
are 3 operations left for J1, 2 operations left for J2, and
3 operations left for J3. J1 has the most remaining
operations, so the operation of J1 is processed first.
After that, J1, J2, and J3 are all remaining 2 operations,
and one of them is randomly selected for processing
and so on. One such operation sequence
O11→O21→O12→O31→O32→O22→O13 can be
generated as the first part of the molecule.

Heuristic rule 2
This rule applies to the FMU information in the

second part of the molecule, which calculates the
average processing time of each job in each FMU
firstly. And then, the FMU with the lowest average
processing time is preferred. If there are some FMUs
with the same average processing time, one of them is
selected randomly.

Take the data in Table 2 as an example. Firstly,

calculate the average processing time of each job in
each FMU. The calculation formula is as follows:

avg f
i =
∑

j
avg f

i, j,

avg f
i, j =
∑

k t f ,k
i, j /m fwhere denotes the average

processing time of operation Oij in FMUf. Each element
in Table 3 can be accordingly obtained.

Secondly, the FMU allocations are completed. The
average processing time of J1 in FMU2 is the least, so
the first place of the second part of molecule is “2”; J2
has the lowest average processing time in FMU1, so the
second place is “1”; J3 also has less average processing
time in FMU1, so the third place is “1”.

So, the resulting molecule from the heuristic rules is
1213321211.

3.4 On-wall ineffective collision

On-wall ineffective collision is a process in which one
molecule ω produces another molecule ω' . Since this
collision does not change the molecular structure
greatly, this paper adopts the method of exchanging
two coded positions randomly to realize the on-wall
ineffective collision. Specific operations are as follows.

ω

Step 1: If the on-wall ineffective collision conditions
are met, molecule is randomly selected. Random
numbers r1 , r2∈ [1, l1] and r3 , r4∈ [l1+1, l1+l2] are
generated for the operation part and FMU part of the
molecular, and r1≠r2, r3≠r4.

Step 2: Swap the element in position r1 and r2, r3 and
r4. If r1=3, r2=5; r3=8, r4 =10, the process of on-wall
ineffective collision is shown in Fig. 4.

Step 3: If the new molecule is accepted, the old
molecule is replaced by new molecule in order. During
this collision, the lost energy is stored in the buffer.

Table 3 Average processing time of each job in each FMU.

Job
Average processing time

FMU1 FMU2

J1 8.0 6.0
J2 8.0 8.5
J3 6.5 8.0

232 31 11 2ω: 2 1

312 31 13 1ω′: 2 2

r1=3, r2=5 r3=8, r4=10

Fig. 4 On-wall ineffective collision diagram.

 162 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

And the KE of the ω' and buffer are updated by Eqs. (9)
and (10)[44].

KEω′ = KEω+PEω−PEω′ (9)

bu f f er = bu f f er+KEω+PEω−KEω′ −PEω′ (10)

3.5 Decomposition reaction

The decomposition reaction is the decomposition of
one molecule ω into ω1' and ω2' molecules. If the
algorithm cannot update the current optimal solution
after iterating “a” times, it indicates that the algorithm
may be trapped in a local optimum. In this paper, cyclic
movement operation[36] is used to realize the
decomposition reaction. The specific steps are as
follows.

Step 1: If the decomposition conditions are met,
molecule ω is randomly selected. Random numbers r1
∈[−l1, l1] and r2 ∈[−l2, l2] are generated for the
operation part and the FMU part of the molecule,
respectively, where l1 and l2 are the encoding lengths of
these two parts. Take Fig. 3 for example, l1=7 and l2=3.

Step 2: If r1 <0, the former r1 elements in the
encoding are moved to the end; if r1 ≥0, the last r1
elements are moved to the front of the encoding. The
judgment and operation for r2 are the same as for r1. If
r1=r2=−1 and r1=r2 =2, the process of decomposition
reaction is shown in Fig. 5.

Step 3: If the new molecule is accepted, one of the
new molecules is selected at random to replace the old
molecules in order. Since decomposition produces two
molecules from one molecule, the KE and PE of the
old molecule may not be enough to produce two
molecules. So, the energy in the buffer is used for
facilitating the reaction. And the kinetic energy of the
ω1' and ω2' are updated by Eqs. (11) and (12)[44].

KEω1′ = bu f f er+KEω+PEω−PEω1′ −PEω2′ (11)

KEω2′ = bu f f er+KEω+PEω−PEω1′ −PEω2′ (12)

3.6 Inter-molecular ineffective collision

The inter-molecular ineffective collision is a process in
which two molecules ω1 and ω2 generate ω1' and ω2'.
The specific steps are listed as follows.

Step 1: If the inter-molecular ineffective collision is
met, two different molecules are selected randomly. J =
{J1, J2 , …, JN} is divided into two sets Job1 and Job2
randomly; FMU = {FMU1, FMU2 , …, FMUQ } is
divided into two sets Fmu1 and Fmu2 randomly.

Step 2: The elements in ω1 that belong to the sets
Job1 and Fmu1 are retained in ω1' directly and remain
in their original positions. Similarly, elements in ω2
that belong to the sets Job1 and Fmu1 are retained in
ω2' and remain in their original positions. Take Fig. 3
as an example, Job1 = {1} and Fmu1 = {1}, so element
“1” in two old molecules is retained directly and
remain in original positions on the new molecules.

Step 3: The elements belonging to the sets Job2 and
Fmu2 in ω2 are filled into the gaps in ω1' in order. As
shown in Fig. 6, Job2 = {2, 3} and Fmu2 = {2}, so the
elements belonging to the sets Job2 and Fmu2 in ω2 in
order is 223322. And then these elements are filled into
the gaps in ω1' in order. Similarly, the elements in ω1
that belong to the sets Job2 and Fmu1 are filled into the
ω2 space in turn.

Step 4: If the new molecules are accepted, the old
molecules are replaced by new molecules in order. And
the kinetic energy of the ω1' and ω2' are updated by
Eqs. (13) and (14)[44].

KEω1′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω1′ −PEω2′

(13)

KEω2′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω1′ −PEω2′

(14)

3.7 Synthesis reaction

The synthesis reaction is a process in which two

121 32 13 2ω1′: 1 2

232 31 11 2ω: 2 1

311 22 31 2ω2′: 1 2

r1=r2=−1

r1=r2=2

Fig. 5 Decomposition reaction diagram.

332 21 11 2ω1′: 2 1

232 31 11 2ω1: 2 1

311 22 31 2ω2: 1 2

311 32 21 2ω2′: 1 2

Job1={1}, Job2={2,3}
Fmu1={1}, Fmu1={2}

Fig. 6 Inter-molecular ineffective collision diagram.

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 163

KEω1 ⩽ b KEω2 ⩽ b
molecules ω1 and ω2 are synthesized into the molecule
ω'. If and , which means that both
ω1 and ω2 have a little kinetic energy, and the
probability of collisions is very small. So synthetic
reaction takes place to diversify the solutions. In this
paper, a distance keeping crossover operation[36] is
used to realize the synthesis reaction. The specific steps
are as follows.

Step 1: If the synthesis conditions are met, two
different molecules are selected randomly. And the
elements in two molecules are compared.

Step 2: Copy the same elements at the same location
in the old molecules to the new molecule. In a
reasonable range, generate elements at other locations
randomly to obtain the new molecules. The process of
the synthesis reaction is shown in Fig. 7.

Step 3: If the new molecule is accepted, the old
molecule is replaced by the new molecule in order.
And the kinetic energy of ω' is updated by the Eq.
(14)[44].

KEω′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω′ (15)

3.8 Elitist selection

In the CRO algorithm, molecules with high fitness can
generate new molecules with low fitness[36]. This
phenomenon ensures the diversity of molecule
population but also reduces the convergence speed of
the algorithm. Therefore, elite retention scheme is
introduced to the improved algorithm. This scheme
reserves 20% of the optimal old molecules directly to
the next iteration without reaction operations.

3.9 A new solution acceptance method based on
simulated annealing algorithm

Since the new solutions generated by the chemical
reaction optimization algorithm will change the number
of population. To ensure that the overall population
size remains unchanged, certain methods need to be

adopted to accept new solutions. The calculation
process of simulated annealing algorithm[47] is simple
and general, and it can help the algorithm to jump out
of the local optimum to a certain extent. SA has also
shown its superiority in scheduling problem[48−50].
Therefore, we choose to integrate SA into HCRO to
accept the new solutions after the four reactions of
HCRO. Algorithm 2 displays the detailed pseudo-code
of the SA algorithm.

3.10 Critical-FMU refinement methods

For DFJSP, the maximum makespan in the whole
production process depends on the FMU with the latest
completion time, which is called critical FMU. Clearly,
scheduling results can only be improved if the
makespan of the critical FMU is reduced. Therefore,

Algorithm 2　A new solution acceptance method based on
simulated annealing algorithm
1. if T0>Tf then

2.　if trigger on-wall ineffective collison then
3.　　if ∆T=PEω'−PEω < 0 then
4.　　　ω=ω';
5.　　else if rand(0,1) < exp(−∆T/T0) then
6.　　　ω=ω';
7.　　end if
8.　 end if
9.　 if trigger decomposition then

PEω1′ PEω2′10.　 if ∆T=max()−PEω < 0 then
11. 　　ω=ω1' or ω=ω2';
12.　 else if rand(0,1) < exp (−∆T/T0) then
13. 　　ω=ω1' or ω=ω2';
14.　 end if
15.　end if
16. if trigger inter molecular ineffective collision then

PEω1′ PEω2′ PEω1′ PEω2′17.　 if ∆T=max(,)−max(,)PEω < 0 then
18.　　 ω1=ω1' and ω2=ω2';
19.　 else if rand(0,1) < exp(−∆T/T0) then
20.　　 ω1=ω1' and ω2=ω2';
21.　 end if
22.　end if
23. if trigger synthesis then

PEω1′ PEω2′24.　 if ∆T= PEω' −max(,)PEω then
25.　　 ω1=ω' or ω2=ω';
26.　 else if rand(0,1) < exp(−∆T/T0) then
27.　　 ω1=ω' or ω2=ω';
28.　 end if
29.　end if
30. end if

232 31 11 2ω1: 2 1

311 22 31 2ω2: 1 2

112 33 21 2ω′: 1 1

Fig. 7 Synthesis reaction diagram.

 164 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

the critical-FMU refinement methods are designed to
adjust the job allocation and the processing order of the
jobs. The specific ways are as follows and algorithm
shows in Algorithm 3.

Method 1: In the FMU part of the molecule, a job is
selected randomly from the critical FMU to the FMU
with the shortest completion time. Take Fig. 3 as an
example again, the critical FMU is FMU2 and the FMU
with the shortest completion time is FMU1 . While J1
and J2 are allocated to FMU2. So, J1 or J2 is selected to
allocate to FMU1. And then, in the operation part of the
molecule, operations of jobs are exchanged and
inserted randomly.

Method 2: Rearrangement of operations in the
critical FMU. Take Fig. 3 as an example, J1 and J2 are
allocated to FMU2 . Rearrange the operations of J1 and
J2 while keeping the same processing order of each
operation in J3.

4 Numerical Experiment

4.1 Introduction of the DFJSP instance

Experiment 1 involves 3 DFJSP instances, which is
referenced by Chang and Liu[18]. Of these 3 DFJSP
instances, one is a small-scale heterogeneous example,
and the others are homogeneous FMUs examples. Five
algorithms are compared in Experiment 1. Set
parameter Popsize =100 and Maxgen=1000 in HGA,
GA-JS, GA-OP, and HCRO, other parameter settings
are the same as those in their articles.

Experiment 2 involves 23 DFJSP instances, which
are proposed by Giovanni and Pezzella[15]. In Chang
and Liu’s research[18], experimental results of the 23
DFJSP instances are not available. Therefore, the lower
bound, IGA[15], GA-JS[17], and GA-OP[19] are

compared in this experiment. Set parameter
Popsize=50 in IGA, GA-JS, GA-OP, and HCRO, and
the other parameter settings are the same as those in
their articles.

However, there is no standard heterogeneous FMUs
example that can be used to test DFJSP, and the current
experimental examples are all small-scale examples
within 20 jobs. To study the different scales DFJSP on
heterogeneous FMUs, examples of 10 to 120 jobs
considering the case of 3, 4, 5 FMUs are generated in
Experiment 3. The generated examples are named “SL
number of jobs-number of FMUs”. For example, when
10 jobs are assigned to 3 FMUs, the new example is
named “SL10-3”. The parameters used to generate the
examples are shown in Table 4.

Take SL10-3 as an example, the number of jobs is
10, the number of operations in each job is a random
integer from 5 to 7. The jobs need to be assigned to 3
FMUs. The number of machines in each FMU is a
random integer from 5 to 7, and the processing time is
a random integer from 1 to 7. Each FMU can process
all operations. Among them, the size is measured by
the number of jobs. 10 to 20 jobs are defined as small-
scale examples; 30 to 60 jobs are defined as medium-
scale examples; 80 to 120 jobs are defined as large-
scale examples. For time comparison, the experiment
reproduces HGA and GA-OP for comparison. To
verify the effectiveness of rule initialization, SA new
solution acceptance method, and critical-FMU
refinement methods, the proposed algorithm without
rule initialization is named HCRO1, and the proposed
algorithm without SA new solution acceptance method
is called HCRO2. The proposed algorithm without
critical-FMU refinement methods is addressed as
HCRO3. The better and newer HGA and GA-OP of
Experiments 1 and 2 are selected as the comparison
algorithms for Experiment 3.

Algorithm 3　Critical-FMU refinement algorithm
1. if rand(0,1)>p　then
2.　a new molecule ω' is obtained by performing the operation
of Method 1;
3.　 if PEω' < PEω then
4.　　 ω=ω';
5.　 end
6. else
7.　a new molecule ω' is obtained by performing the operation
of Method 2;
8.　 if PEω' < PEωthen
9.　　 ω=ω';
10.　end
11. end

Table 4 Parameters used to generate the examples.

Instance Number
of jobs

Number of
operations

Number of
FMUs

Number of
machines in
each FMU

Process
time

SL10 10 [5,7] 3,4,5 [5,7] [1, 7]
SL20 20 [3,10] 3,4,5 [6,10] [5, 20]
SL30 30 [5,10] 3,4,5 [6,12] [10, 30]
SL50 50 [5,10] 3,4,5 [6,12] [10, 30]
SL60 60 [5,10] 3,4,5 [8,12] [10, 30]
SL80 80 [8,12] 3,4,5 [8,17] [10, 30]
SL100 100 [8,12] 3,4,5 [12,17] [15, 30]
SL120 120 [10,15] 3,4,5 [12,17] [15, 30]

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 165

4.2 HCRO parameter design

In the HCRO algorithm, the following parameters
affect the performance: unimolecular collisions
reaction probability MoleColl , initial kinetic energy
InitialKE, the maximum number of iteration a in which
the optimal molecular potential energy has not been
improved, refinement operation probability p , and
lower kinetic energy limit b. In order to investigate the
influence of parameters on the algorithm performance,
the orthogonal test method is used in this paper. SL20-
3 is used for the test, and four different horizontal
values are chosen for each test parameter, as shown in
Table 5.

In the algorithm, the molecular population size
Popsize=150, maximum number of iterations
Maxgen=500, initial buffer =0, the initial temperature
T0=1000, the threshold temperature Tf =10−8 , and
attenuation factor Beta=0.97. To avoid the randomness
of test results, each group of experiments is run for 30
times. The average values of the results of 30 times are
listed in Table 6. Lines from 1 to 4 in Table 7 show the
average makespan at each level of different factors.
The last line lists the standard deviations (S.D) of these
means, indicating the importance of each factor. The
larger the S.D of factor is, the greater the impact on the
HCRO. Different parameter settings affect the
performance of HCRO algorithm. In the selection of
algorithm parameters, reasonable values of these five
parameters should be obtained according to the
problem. According to the experimental results, values
of these five parameters are determined as follows:
MoleColl=0.2, InitialKE=500, a=40, p=0.7, and b=20.

4.3 Experimental results and evaluation

The operating environment of the algorithm is: Intel

Core i7-8550U CPU 1.8 GHz, RAM 16 GB, Windows
10, 64-bit operating systems, and the programming
language is C.

The results of the three experiments are listed in
Tables 8−12, respectively. MK represents the optimal
solution in an instance, Av. denotes the average
solution of an instance, T represents the average
computation time to run the instance once,
Dev=(Deviation)÷Av., LB reports a lower bound
proposed by Giovanni and Pezzella[15].

Table 8 displays the experiment results after 50 runs
of the 3 DFJSP instances in Experiment 1. Five
algorithms (IGA[15], HGA[18], GA-JS[17], GA-OP[19],
and HCRO) are compared. In DFJSP1, HCRO

Table 5 Horizontal values of the parameters in HCRO
algorithm.

Set No. MoleColl InitialKE a p b
1 0.2 100 20 0.4 20
2 0.4 500 40 0.5 40
3 0.6 1000 60 0.6 60
4 0.8 1500 80 0.7 80

Table 6 Average values for different combinations of
parameters.

Test No. MoleColl InitialKE a p b Av.
1 1 1 1 1 1 61.90
2 1 2 2 2 2 62.10
3 1 3 3 3 3 62.10
4 1 4 4 4 4 62.17
5 2 1 2 3 4 62.23
6 2 2 1 4 3 61.90
7 2 3 4 1 2 62.20
8 2 4 3 2 1 62.70
9 3 1 3 4 2 62.53
10 3 2 4 3 1 61.60
11 3 3 1 2 4 62.23
12 3 4 2 1 3 62.23
13 4 1 4 2 3 63.43
14 4 2 3 1 4 62.47
15 4 3 2 4 1 62.00
16 4 4 1 3 2 63.07

Table 7 Average values for different parameters.

Set No. MoleColl InitialKE a p b
1 62.07 62.53 62.28 62.20 62.05
2 62.26 62.02 62.14 62.62 62.48
3 62.15 62.13 62.45 62.25 62.42
4 62.74 62.54 62.35 62.15 62.28

S.D 0.30 0.23 0.11 0.19 0.17

Table 8 Comparison of the results of the algorithms in Experiment 1.

Instance
IGA[15] HGA[18] GA-JS[17] GA-OP[19] HCRO

MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%)
DFJSP1 11 N/A N/A 9 N/A N/A 9 9.0 0.0 9 9.0 0.0 9 9.0 0.0
DFJSP2 37 38.6 1.9 37 37.6 0.4 38 38.0 0.0 37 37.0 0.0 37 37.1 0.0
DFJSP3 37 38.3 1.9 37 37.5 0.6 38 38.2 0.2 37 37.0 0.0 37 37.1 0.0

 166 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

Dev

outperforms IGA in MK and gets the same MK as
HGA, GA-JS, and GA-OP. HCRO can get the same
Av. and as GA-JS and GA-OP. Because there is no
Av. and Dev data in the original articles of IGA and
HGA, the mean and standard deviation of the
experiment are not compared with that of HGA and
IGA. Therefore, HCRO is competitive with GA-JS and
GA-OP in small-scale example on heterogeneous
FMUs. In DFJSP2 and DFJSP3, HCRO gets smaller
MK than GA-JS and has the same MK as IGA, HGA,
and GA-OP. HCRO outperforms IGA, HGA, and GA-
JS in terms of Av. and Dev . But HCRO has slightly
bigger Av. than GA-OP. This means that HCRO is
competitive with the other four improved genetic
algorithms in terms of the optimal solution. And the
stability of HCRO is slightly inferior to that of GA-OP
on homogeneous FMUs.

Table 9 displays the results of 23 DFJSP examples
after 50 runs from Experiment 2 on four homogeneous
FMUs. Four algorithms (IGA[15], GA-JS[17], GA-
OP[19], and HCRO) are compared. GA-JS, GA-OP, and
HCRO can obtain the lower bound of 23 examples

while IGA can only get the lower bound of 22
examples. Compared with GA-JS and GA-OP, HCRO
can get the same MK in all 23 examples, which means
that HCRO has the same advantage in obtaining the
optimal solution. In la13 and mt20, HCRO is slightly
bigger than IGA, GA-JS, and GA-OP in Av. . In la15,
HCRO is slightly bigger than GA-JS and GA-OP but
smaller than IGA in Av. . Therefore, HCRO is
competitive with IGA, GA-JS, and GA-OP in optimal
solutions and inferior to GA-JS and GA-OP in the
stability of solutions on homogeneous FMUs.

Tables 10 and 11 display the results of 24 DFJSP
examples after 50 runs from Experiment 3 on
heterogeneous FMUs. Six algorithms (HGA[18], GA-
OP[19], HCRO1, HCRO2, HCRO3, and HCRO) are
compared in Experiment 3. To ensure fairness, HGA
and GA-OP adopt the same population number and
iteration stop conditions as HCRO, and other parameter
settings are the same as those set in their articles.

In Table 10, it can be seen from the comparison
between HCRO1 and HCRO that HCRO can improve
the Av. and Dev in small-scale examples. HCRO can

Table 9 Performance comparison of 4-FMU DFJSP algorithms in Experiment 2.

Instance LB
IGA[15] GA-JS[17] GA-OP[19] HCRO

MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%)
la01 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la02 394 394 394.0 0.0 394 394.0 0.0 394 394.0 0.0 394 394.0 0.0
la03 349 349 349.0 0.0 349 349.0 0.0 349 349.0 0.0 349 349.0 0.0
la04 369 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0
la05 380 380 380.0 0.0 380 380.0 0.0 380 380.0 0.0 380 380.0 0.0
la06 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la07 376 376 376.0 0.0 376 376.0 0.0 376 376.0 0.0 376 376.0 0.0
la08 369 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0
la09 382 382 382.0 0.0 382 382.0 0.0 382 382.0 0.0 382 382.0 0.0
la10 443 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0
la11 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la12 408 408 408.0 0.0 408 408.0 0.0 408 408.0 0.0 408 408.0 0.0
la13 382 382 386.0 9.9 382 382.0 0.0 382 382.0 0.0 382 388.9 0.0
la14 443 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0
la15 378 397 402.0 2.3 378 381.9 4.7 378 385.8 7.8 378 395.5 5.2
la16 717 717 717.0 0.0 717 717.0 0.0 717 717.0 0.0 717 717.0 0.0
la17 646 646 646.0 0.0 646 646.0 0.0 646 646.0 0.0 646 646.0 0.0
la18 663 663 663.0 0.0 663 663.0 0.0 663 663.0 0.0 663 663.0 0.0
la19 617 617 617.0 0.0 617 617.0 0.0 617 617.0 0.0 617 617.0 0.0
la20 756 756 756.0 0.0 756 756.0 0.0 756 756.0 0.0 756 756.0 0.0
mt06 47 47 47.0 0.0 47 47.0 0.0 47 47.0 0.0 47 47.0 0.0
mt10 664 664 665.0 0.0 664 665.0 0.0 664 665.0 0.0 664 665.0 0.0
mt20 387 387 388.4 2.0 387 387.0 0.0 387 387.0 0.0 387 392.1 0.0

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 167

get better MK, Av. , and Dev than HCRO1 in medium-
scale and large-scale examples. Therefore, the
effectiveness of the rule initialization is verified. From
the comparison between HCRO2 and HCRO, HCRO
can get the same MK as HCRO2 and better Av. than
HCRO2 in small-scale examples. In the medium-scale
examples, HCRO2 and HCRO obtain the same MK in
SL30-3, SL30-4, and SL60-4, while HCRO obtains
better MK than HCRO2 in other medium-scale
examples. And HCRO gets better Av. in all medium-
scale examples. In the large-scale examples, HCRO
can obtain better MK than HCRO2 in all large-scale
examples except SL80-5 and SL120-5. And HCRO
also shows its advantage in Av. . The results reveal the
effectiveness of SA. It can be seen from the
comparison between HCRO3 and HCRO that HCRO
can improve Av. and Dev in small-scale examples.

HCRO can optimize the MK and Av. of all medium-
scale examples. In the large-scale examples, HCRO
can obtain better MK than HCRO2 except SL80-5 and
SL120-5 and improve Av. in all large-scale examples.

From the comparison between HCRO and HGA in
Table 11, HCRO gets smaller MK in SL20-5 and the
same MK as HGA in other small-scale examples.
HCRO obtains smaller MK than HGA in medium-scale
and large-scale examples. Wilcoxon signed rank test is
used to statistically justify the performance difference
between HCRO and HGA in terms of Av. HCRO
outperforms HGA with p-value=1.8×10−5 <0.05. The
average T of HCRO is 59.9 s and the average T of
HGA is 2289.0 s. So HCRO shows superiority than
HGA in terms of T . From the comparison between
HCRO and GA-OP, HCRO gets the same MK as GA-
OP in small-scale examples. This means that HCRO is
about as competitive as GA-OP in small-scale
examples. In medium-scale examples, GA-OP can get
smaller MK than HCRO in SL50-3, SL50-4, SL50-5,
and SL60-4. HCRO obtains the same MK as GA-OP in
SL30-3, SL30-4, and SL60-5. HCRO has smaller MK
than GA-OP in SL30-5 and SL60-3. HCRO can get
better MK than GA-OP in all large-scale examples. In
terms of Av. , HCRO outperforms GA-OP with p-

Table 10 Performance comparison of DFJSP in heterogeneous FMUs in Experiment 3.

Instance
HCRO1 HCRO2 HCRO3 HCRO

MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%)
SL10-3 11 11.5 3.4 0.1 11 11.4 3.6 0.0 11 11.0 2.0 0.0 11 11.0 7.2 0.0
SL10-4 10 10.4 3.8 0.1 10 10.4 5.4 0.1 10 10.3 2.1 0.0 10 10.1 6.4 0.0
SL10-5 9 9.2 3.4 0.1 9 9.2 5.6 0.0 9 9.1 2.0 0.0 9 9.0 9.8 0.0
SL20-3 60 61.0 8.1 0.0 60 61.2 8.4 0.0 60 60.6 4.3 0.1 60 60.6 13.3 0.0
SL20-4 59 60.1 8.1 0.0 59 59.1 12.1 0.0 59 59.2 4.7 0.0 59 59.1 12.7 0.0
SL20-5 59 59.4 8.2 0.0 59 59.1 11.8 0.0 59 59.6 5.0 0.0 59 59.0 12.0 0.0
SL30-3 133 140.2 16.7 0.0 130 136.2 21.5 0.0 131 136.2 8.1 0.0 130 135.0 21.5 0.0
SL30-4 109 110.3 15.4 0.0 109 109.7 18.9 0.0 109 109.7 8.8 0.0 109 109.4 19.6 0.0
SL30-5 113 116.3 16.6 0.0 110 113.4 20.9 0.0 111 113.0 9.0 0.0 109 110.9 22.0 0.0
SL50-3 177 185.8 23.2 0.0 171 178.5 30.9 0.0 170 177.5 13.4 0.0 169 176.8 31.0 0.0
SL50-4 163 169.2 21.0 0.0 155 162.0 30.0 0.0 155 159.9 12.9 0.0 153 159.8 34.6 0.0
SL50-5 153 159.0 24.6 0.0 144 148.3 30.5 0.0 143 147.2 13.7 0.0 142 145.7 31.8 0.0
SL60-3 232 238.6 25.8 0.0 225 231.7 33.0 0.0 224 230.1 13.9 0.0 223 229.0 35.0 0.0
SL60-4 199 207.9 27.4 0.0 190 195.7 34.8 0.0 191 196.0 15.4 0.0 190 195.4 37.1 0.0
SL60-5 147 152.4 28.0 0.0 133 138.7 33.7 0.0 137 140.4 16.1 0.0 132 136.1 35.9 0.0
SL80-3 275 281.5 55.7 0.0 252 259.3 75.8 0.0 252 259.2 34.4 0.0 251 257.0 76.2 0.0
SL80-4 225 232.4 57.3 0.0 202 208.6 75.3 0.0 203 207.4 34.5 0.0 201 206.3 76.6 0.0
SL80-5 190 196.9 58.4 0.0 169 173.7 71.7 0.0 169 173.0 36.7 0.0 169 172.7 78.1 0.0
SL100-3 410 418.5 76.0 0.0 385 390.7 111.6 0.0 380 388.0 46.7 0.0 379 386.0 118.4 0.0
SL100-4 370 378.5 74.9 0.0 336 344.6 110.1 0.0 336 344.4 43.6 0.0 334 342.6 116.3 0.0
SL100-5 297 305.2 73.9 0.0 266 268.8 107.1 0.0 264 268.1 46.1 0.0 263 267.1 109.8 0.0
SL120-3 739 748.5 102.7 0.0 701 709.6 139.7 0.0 698 706.3 59.6 0.0 693 703.7 146.7 0.0
SL120-4 520 534.3 112.3 0.0 479 487.8 155.7 0.0 479 485.5 66.3 0.0 476 483.3 175.4 0.0
SL120-5 428 436.5 115.8 0.0 377 383.3 179.1 0.0 377 384.6 77.1 0.0 377 381.4 209.7 0.0
Average − − 40.4 0.0 − − − 0.0 − − 24.0 0.0 − − 59.9 0.0

 168 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

value=0.0475<0.05, which means HCRO shows better
stability than GA-OP. In addition, the average T of
GA-OP is 249.8 s, slower than that of HCRO (59.9 s).
To sum up, HCRO gets the same optimal solutions as
HGA in small-scale examples and shows its advantages
in medium-scale and large-scale examples. Meanwhile,
HCRO outperforms HGA in terms of the stability of
solutions and computation time. HCRO is competitive
with GA-OP in small and medium-scale examples, but
HCRO is better than GA-OP in large-scale examples.

And HCRO is also better than GA-OP in the stability
of solutions and computation time.

To explore the influence of the number of machines
in each FMU on the algorithms, SL30-3, SL50-3, and
SL80-3 are selected for further experiments. The
second column of Table 12 indicates the number of
machines in the three FMUs. The third column of
Table 12 shows the standard deviation of machines in
three FMUs which indicates the difference in the
number of machines between three FMUs. When the

Table 11 Performance comparison between different algorithms in heterogeneous FMUs in Experiment 3.

Instance
HGA GA-OP HCRO

MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%)
SL10-3 11 12.5 33.4 0.1 11 11.0 10.9 0.0 11 11.0 7.2 0.0
SL10-4 10 11.2 36.6 0.1 10 10.0 10.9 0.0 10 10.1 6.4 0.0
SL10-5 9 9.9 38.7 0.1 9 9.0 12.1 0.0 9 9.0 9.8 0.0
SL20-3 60 63.2 96.6 0.0 60 60.4 25.3 0.0 60 60.6 13.3 0.0
SL20-4 59 62.1 94.1 0.0 59 59.1 30.3 0.0 59 59.1 12.7 0.0
SL20-5 60 63.5 96.6 0.0 59 59.2 32.1 0.0 59 59.0 12.0 0.0
SL30-3 140 151.4 391.6 0.0 130 135.5 52.9 0.0 130 135.0 21.5 0.0
SL30-4 116 123.2 475.9 0.0 109 109.9 56.0 0.0 109 109.4 19.6 0.0
SL30-5 119 121.7 447.3 0.0 110 114.4 63.7 0.0 109 110.9 22.0 0.0
SL50-3 180 193.0 1090.2 0.0 166 173.1 114.9 0.0 169 176.8 31.0 0.0
SL50-4 161 167.9 1058.4 0.0 144 150.9 112.5 0.0 153 159.8 34.6 0.0
SL50-5 147 159.2 1079.9 0.0 134 137.9 118.3 0.0 142 145.7 31.8 0.0
SL60-3 243 250.4 1790.5 0.0 225 230.7 123.1 0.0 223 229.0 35.0 0.0
SL60-4 218 226.3 1783.7 0.0 187 191.1 131.8 0.0 190 195.4 37.1 0.0
SL60-5 158 167.6 1908.4 3.0 132 137.5 136.1 0.0 132 136.1 35.9 0.0
SL80-3 389 307.7 4800.9 0.0 253 260.8 315.3 0.0 251 257.0 76.2 0.0
SL80-4 234 243.8 4787.9 0.0 206 211.7 414.6 0.0 201 206.3 76.6 0.0
SL80-5 205 209.8 4926.1 0.0 171 176.3 385.2 0.0 169 172.7 78.1 0.0
SL100-3 437 448.2 5000 0.0 394 402.9 498.1 0.0 379 386.0 118.4 0.0
SL100-4 393 406.1 5000 0.0 354 368.4 470.6 0.0 334 342.6 116.3 0.0
SL100-5 324 335.1 5000 0.0 264 267.7 464.1 0.0 263 267.1 109.8 0.0
SL120-3 764 787.6 5000 0.0 712 727.0 673.4 0.0 693 703.7 146.7 0.0
SL120-4 552 569.5 5000 0.0 527 537.5 769.7 0.0 476 483.3 175.4 0.0
SL120-5 467 480.7 5000 0.0 384 394.0 875.6 0.0 377 381.4 209.7 0.0
Average − − 2289.0 0.0 − − 249.8 0.0 − − 59.9 0.0

Table 12 Influence of the number of machines in the FMUs on the algorithms.

Instance
Number of machines

(FMU1, FMU2, and FMU3)
Standard deviation

HGA GA-OP HCRO
MK Av. MK Av. MK Av.

SL30-3 9, 8,12 1.7 140 151.4 130 135.5 130 135.0
SL30-3* 10,6,12 2.5 144 152.0 135 143.7 130 134.7
SL50-3 12,9,11 1.2 180 193.0 166 173.1 169 176.8
SL50-3* 11,11, 6 2.4 215 222.0 224 244.7 189 202.1
SL80-3 16,13,15 1.2 389 307.7 253 260.8 251 257.0

SL80-3* 17,9,15 3.4 310 322.0 323 339.5 252 274.2

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 169

number of machines in the three FMUs is not much
different, GA-OP has absolute advantages in MK and
Av. than HGA. In SL80-3, GA-OP is worse than
HCRO both in MK and Av. . GA-OP can get the same
MK as HCRO in SL30-3 and even get smaller MK than
HCRO in SL50-3. When the number of machines in the
three FMUs differs greatly, in SL30-3*, GA-OP gets
the better MK than HGA and gets worse MK than
HCRO. HCRO has 3.7% improvement compared to
GA-OP in MK in SL30-3*. In SL50-3*, HGA can get
better MK and Av. than GA-OP and HCRO has 15.6%
improvement compared to GA-OP in MK. In SL80-3*,
HGA can also get better MK and Av. than GA-OP and
HCRO has 22.0% improvement compared to GA-OP in
MK. Therefore, the GA-OP is inferior to HCRO and
HGA when the number of machines in these FMUs
differs greatly. And as the size of the job increases, the
disadvantage becomes more obvious. This is because
the encoding method of GA-OP only involves the
arrangement of operations, and the choices of FMU
and machine are both subject to rules. Therefore, when
the number of machines differs greatly between FMUs,
the rule of FMU allocation makes the algorithm fall
into a local optimum. The operation-FMU encoding-
decoding method proposed in this paper can explicitly
express two of the three sub-problems of DFJSP. The
choice of the FMU is not affected by the rule, and the
solution space can be searched to a greater extent.
Therefore, GA-OP is affected by the number of
machines in each FMU while HCRO and HGA are
slightly affected by the number of machines in each
FMU.

In conclusion, the operation-FMU encoding-
decoding method can search the solution space to a
large degree without the affection of the number of
machines in each FMU, while the machine selection
rule can balance the workload of the machines at the
same time to get a better solution quickly. This
encoding and decoding method makes HCRO have
strong applicability to solve DFJSP in homogeneous
and heterogeneous environments at the same time.

The rule is used for initializing partial solutions,
which enables HCRO to search in a better area while
maintaining diversity in the initial stage of the
algorithm, which can improve the quality of the initial
solution and speed up the convergence rate. The new
solution acceptance method based on SA can improve
the optimization ability and stability of the algorithm
on the basis of ensuring the constant number of
molecular populations. The critical-FMU refinement

methods focus on critical FMU, which can optimize the
target to a certain extent and enhance the local search
ability of the algorithm. In this case, the HCRO
algorithm can search for better solutions compared
with the comparative algorithms, which is especially
outstanding in large-scale calculation examples. In
addition, HCRO is superior to the comparison
algorithms in terms of time due to the superior
convergence of CRO algorithm and its encoding
method.

5 Concluding Remark

In this paper, an HCRO algorithm is proposed to solve
DFJSP on heterogeneous FMUs. Aiming at the
characteristics of the problem, an operation-FMU
based encoding-decoding method is designed. The
method of random generation and rule generation is
used for generating initial population. Four collision
operations of CRO algorithm are designed and
simulated annealing algorithm is combined with CRO
algorithm to accept new solutions from the four
collision reactions to improve the search capability. In
addition, a refinement method is designed for critical-
FMU. Finally, three groups of comparative
experiments which include 50 DFJSP instances in total
are carried out. Compared with the existing algorithms
with better performance, HCRO has slightly less
stability but can get the same optimal solution in small-
scale examples on homogeneous FMUs. Compared
with two existing algorithms, the superiority of HCRO
in solving the large, medium, and small-scale examples
on heterogeneous FMUs is verified, and the
effectiveness of initialization rules, the critical-FMU
refinement methods, and new solution acceptance
method based on simulated annealing algorithm are
also verified. In future research, we try to apply
chemical reaction optimization algorithm to the energy-
efficient DFJSP because the energy-efficient DFJSP
has attracted significant attention from the viewpoint of
sustainable development and green manufacturing,
which includes developing a new chromosome
representation, establishing corresponding
mathematical model, and designing the corresponding
scheduling rules.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (Nos. 61973120,
62076095, 61673175, and 61573144).

 170 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

References

 H. J. Ding and X. S. Gu, Improved particle swarm
optimization algorithm based novel encoding and
decoding schemes for flexible job shop scheduling
problem, Computers & Operations Research, vol. 121,
p. 104951, 2020.

[1]

 K. Z. Gao, Z. G. Cao, L. Zhang, Z. H. Chen, Y. Y. Han,
and Q. K. Pan, A review on swarm intelligence and
evolutionary algorithms for solving flexible job shop
scheduling problems, IEEE/CAA Journal of Automatica
Sinica, vol. 6, no. 4, pp. 904–916, 2019.

[2]

 K. Z. Gao, F. J. Yang, M. C. Zhou, Q. K. Pan, and P. N.
Suganthan, Flexible job-shop rescheduling for new job
insertion by using discrete jaya algorithm, IEEE
Transactions on Cybernetics, vol. 49, no. 5, pp. 1944–
1955, 2019.

[3]

 R. L. Burdett, P. Corry, P. K. D. V. Yarlagadda, C.
Eustace, and S. Smith, A flexible job shop scheduling
approach with operators for coal export terminals,
Computers & Operations Research, vol. 104, pp. 15–36,
2019.

[4]

 D. Deliktas, O. Torkul, and O. Ustun, A flexible job shop
cell scheduling with sequence-dependent family setup
times and intercellular transportation times using conic
scalarization method, International Transactions in
Operational Research, vol. 26, no. 6, pp. 2410–2431,
2019.

[5]

 Q. W. Deng, G. L. Gong, X. R. Gong, L. K. Zhang, W.
Liu, and Q. H. Ren, A bee evolutionary guiding
nondominated sorting genetic algorithm II for
multiobjective flexible job-shop scheduling,
Computational Intelligence & Neuroscience , vol. 2017,
p. 5232518, 2017.

[6]

 G. L. Gong, Q. W. Deng, R. Chiong, X. Gong, and H. Z.
Y. Huang, An effective memetic algorithm for multi-
objective job-shop scheduling, Knowledge-Based Systems,
vol. 182, p. 104840, 2019.

[7]

 I. Chaouch, O. B. Driss, and K. Ghedira, A novel dynamic
assignment rule for the distributed job shop scheduling
problem using a hybrid ant-based algorithm, Applied
Intelligence, vol. 49, no. 5, pp. 1903–1924, 2019.

[8]

 Q. K. Pan, L. Gao, L. Wang, J. Liang, and X. Y. Li,
Effective heuristics and metaheuristics to minimize total
flowtime for the distributed permutation flowshop
problem, Expert Systems with Applications, vol. 124,
pp. 309–324, 2019.

[9]

 J. Q. Li, M. X. Song, L. Wang, P. Y. Duan, Y. Y. Han, H.
Y. Sang, and Q. K. Pan, Hybrid artificial bee colony
algorithm for a parallel batching distributed flow-shop
problem with deteriorating jobs, IEEE Transactions on
Cybernetics, vol. 50, no. 6, pp. 2425–2439, 2020.

[10]

 S. C. Zhang, X. Li, B. W. Zhang, and S. Y. Wang, Multi-
objective optimisation in flexible assembly job shop
scheduling using a distributed ant colony system,
European Journal of Operational Research, vol. 283, no.
2, pp. 441–460, 2020.

[11]

 J. Zheng, L. Wang, and J. J. Wang, A cooperative
coevolution algorithm for multi-objective fuzzy distributed
hybrid flow shop, Knowledge-Based Systems, vol. 194,

[12]

p. 105536, 2020.
 J. Q. Li, P. Y. Duan, J. D. Cao, X. P. Lin, and Y. Y. Han,
A hybrid Pareto-based tabu search for the distributed
flexible job shop scheduling problem with E/T criteria,
IEEE Access, vol. 6, no. 99, pp. 58883–58897, 2018.

[13]

 F. T. S. Chan, S. H. Chung, and P. L. Y. Chan,
Application of genetic algorithms with dominant genes in
a distributed scheduling problem in flexible manufacturing
systems, International Journal of Production Research,
vol. 44, no. 3, pp. 523–543, 2006.

[14]

 L. D. Giovanni and F. Pezzella, An improved genetic
algorithm for the distributed and flexible job-shop
scheduling problem, European Journal of Operational
Research, vol. 200, no. 2, pp. 395–408, 2010.

[15]

 M. Ziaee, A heuristic algorithm for the distributed and
flexible job-shop scheduling problem, Journal of
Supercomputing, vol. 67, no. 1, pp. 69–83, 2014.

[16]

 P. H. Lu, M. C. Wu, H. Tan, Y. H. Peng, and C. F. Chen,
A genetic algorithm embedded with a concise
chromosome representation for distributed and flexible
job-shop scheduling problems, Journal of Intelligent
Manufacturing, vol. 29, no. 1, pp. 19–34, 2018.

[17]

 H. C. Chang and T. K. Liu, Optimisation of distributed
manufacturing flexible job shop scheduling by using
hybrid genetic algorithms, Journal of Intelligent
Manufacturing, vol. 28, no. 8, pp. 1973–1986, 2017.

[18]

 M. C. Wu, C. S. Lin, C. H. Lin, and C. F. Chen, Effects of
different chromosome representations in developing
genetic algorithms to solve DFJS scheduling problems,
Computers & Operations Research, vol. 80, pp. 101–112,
2017.

[19]

 B. Marzouki, O. B. Driss, and K. Ghédira, Solving
distributed and flexible job shop scheduling problem using
a chemical reaction optimization metaheuristic, Procedia
Computer Science, vol. 126, no. 1, pp. 1424–1433, 2018.

[20]

 F. T. S. Chan, S. H. Chung, L. Y. Chan, G. Finke, and M.
K. Tiwari, Solving distributed FMS scheduling problems
subject to maintenance: Genetic algorithms approach,
Robotics and Computer-Integrated Manufacturing,
vol. 22, nos. 5&6, pp. 493–504, 2006.

[21]

 S. H. Chung, F. T. S. Chan, and H. K. Chan, A modified
genetic algorithm approach for scheduling of perfect
maintenance in distributed production scheduling,
Engineering Applications of Artificial Intelligence, vol. 22,
no. 7, pp. 1005–1014, 2009.

[22]

 C. S. Lin, I. L. Lee, and M. C. Wu, Merits of using
chromosome representations and shadow chromosomes in
genetic algorithms for solving scheduling problems,
Robotics and Computer-Integrated Manufacturing, vol.
58, no. 1, pp. 196–207, 2019.

[23]

 F. T. S. Chan, A. Prakash, H. L. Ma, and C. S. Wong, A
hybrid tabu sample-sort simulated annealing approach for
solving distributed scheduling problem, International
Journal of Production Research, vol. 51, no. 9,
pp. 2602–2619, 2013.

[24]

 M. Ziaee, Modeling and solving the distributed and
flexible job shop scheduling problem with WIPs supply
planning and bounded processing times, International
Journal of Supply and Operations Management, vol. 4, no.
1, pp. 78–89, 2017.

[25]

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 171

 Q. Luo, Q. W. Deng, G. L. Gong, L. K. Zhang, W. W.
Han, and K. X. Li, An efficient memetic algorithm for
distributed flexible job shop scheduling problem with
transfers, Expert Systems with Applications, vol. 160,
p. 113721, 2020.

[26]

 W. X. Xu, Y. W. Hu, W. Luo, L. Wang, and R. Wu, A
multi-objective scheduling method for distributed and
flexible job shop based on hybrid genetic algorithm and
tabu search considering operation outsourcing and carbon
emission, Computers & Industrial Engineering, vol. 157,
p. 107318, 2021.

[27]

 Y. Du, J. Q. Li, C. Luo, and L. L. Meng, A hybrid
estimation of distribution algorithm for distributed flexible
job shop scheduling with crane transportations, Swarm and
Evolutionary Computation, vol. 62, p. 100861, 2021.

[28]

 F. Q. Zhao, L. X. Zhao, L. Wang, and H. B. Song, An
ensemble discrete differential evolution for the distributed
blocking flowshop scheduling with minimizing makespan
criterion, Expert Systems with Applications, vol. 160,
p. 113678, 2020.

[29]

 F. Q. Zhao, X. He, and L. Wang, A two-stage cooperative
evolutionary algorithm with problem-specific knowledge
for energy-efficient scheduling of no-wait flow-shop
problem, IEEE Transactions on Cybernetics, vol. 51,
no. 11, pp. 5291–5303, 2020.

[30]

 F. Q. Zhao, R. Ma, and L. Wang, A self-learning discrete
jaya algorithm for multiobjective energy-efficient
distributed no-idle flow-shop scheduling problem in
heterogeneous factory system, IEEE Transactions on
Cybernetics, doi: 10.1109/TCYB.2021.3086181.

[31]

 G. C. Wang, X. Y. Li, L. Gao, and P. G. Li, A multi-
objective whale swarm algorithm for energy-efficient
distributed permutation flow shop scheduling problem
with sequence dependent setup times, IFAC-
PapersOnLine, vol. 52, no. 13, pp. 235–240, 2019.

[32]

 D. M. Lei, Y. Yuan, J. C. Cai, and D. Y. Bai, An
imperialist competitive algorithm with memory for
distributed unrelated parallel machines scheduling,
International Journal of Production Research, vol. 58, no.
2, pp. 597–614, 2020.

[33]

 D. M. Lei, Y. Yuan, and J. C. Cai, An improved artificial
bee colony for multi-objective distributed unrelated
parallel machine scheduling, International Journal of
Production Research, vol. 59, no. 17, pp. 5259–5271,
2021.

[34]

 M. A. Şahman, A discrete spotted hyena optimizer for
solving distributed job shop scheduling problems, Applied
Soft Computing, vol. 106, p. 107349, 2021.

[35]

 A. Y. S. Lam and V. O. K. Li, Chemical-reaction-inspired
metaheuristic for optimization, IEEE Transactions on
Evolutionary Computation, vol. 14, no. 3, pp. 381–399,
2010.

[36]

 Y. M. Xu, K. L. Li, L. G. He, and T. K. Truong, A DAG
scheduling scheme on heterogeneous computing systems
using double molecular structure-based chemical reaction
optimization, Journal of Parallel and Distributed
Computing, vol. 73, no. 9, pp. 1306–1322, 2013.

[37]

 T. K. Truong, K. L. Li, and Y. M. Xu, Chemical reaction
optimization with greedy strategy for the 0–1 knapsack
problem, Applied Soft Computing, vol. 13, no. 4,

[38]

pp. 1774–1780, 2013.
 J. Q. Li and Q. K. Pan, Chemical-reaction optimization for
solving fuzzy job-shop scheduling problem with flexible
maintenance activities, International Journal of
Production Economics, vol. 145, no. 1, pp. 4–17, 2013.

[39]

 B. Marzouki, O. B. Driss, and K. Ghédira, Multi agent
model based on chemical reaction optimization with
greedy algorithm for flexible job shop scheduling problem,
Procedia Computer Science, vol. 112, no. C, pp. 81–90,
2017.

[40]

 H. Bargaoui, O. B. Driss, and K. Ghédira, A novel
chemical reaction optimization for the distributed
permutation flowshop scheduling problem with makespan
criterion, Computers & Industrial Engineering, vol. 111,
no. C, pp. 239–250, 2017.

[41]

 H. Bargaoui, O. B. Driss, and K. Ghédira, Towards a
distributed implementation of chemical reaction
optimization for the multi-factory permutation flowshop
scheduling problem, Procedia Computer Science, vol. 112,
pp. 1531–1541, 2017.

[42]

 R. Wu, S. S. Guo, Y. B. Li, L. Wang, and W. X. Xu,
Improved artificial bee colony algorithm for distributed
and flexible job-shop scheduling problem, (in Chinese),
Control and Decision, vol. 34, no. 12, pp. 2527–2536,
2019.

[43]

 H. J. Xiao, Z. L. Chai, C. Y. Zhang, L. L. Meng, Y. P.
Ren, and H. W. Mei, Hybrid chemical-reaction
optimization and tabu search for flexible job shop
scheduling problem, (in Chinese), Computer Integrated
Manufacturing Systems, vol. 24, no. 9, pp. 2234–2245,
2018.

[44]

 C. Bierwirth, A generalized permutation approach to job
shop scheduling with genetic algorithms, OR Spectrum,
vol. 17, pp. 87–92, 1995.

[45]

 X. Han, Y. Y. Han, Q. D. Chen, J. Q. Li, H. Y. Sang, Y. P.
Liu, Q. K. Pan, and Y. S. Nojima, Distributed flow shop
scheduling with sequence-dependent setup times using an
improved iterated greedy algorithm, Complex System
Modeling and Simulation, vol. 1, no. 3, pp. 198–217,
2021.

[46]

 S. P. Brooks and B. J. T. Morgan, Optimization using
simulated annealing, Journal of the Royal Statistical
Society: Series D (The Statistician), vol. 44, no. 2,
pp. 241–257, 1995.

[47]

 L. Hernández-Ramírez, J. Frausto-Solis, G. Castilla-
Valdez, J. J. Gonzalez-Barbosa, D. Teran-Villanueva, and
M. L. Morales-Rodriguez, A hybrid simulated annealing
for job shop scheduling problem, International Journal of
Combinatorial Optimization Problems & Informatics, vol.
10, no. 1, pp. 6–15, 2019.

[48]

 C. Ramesh, R. Kamalakannan, R. Karthik, C. Pavin, and
S. Dhivaharan, A lot streaming based flow shop
scheduling problem using simulated annealing algorithm,
Materials Today: Proceedings , vol. 37, pp. 241–244,
2021.

[49]

 M. Wang, L. M. Liu, and K. Y. Song, Analysis of flexible
shop scheduling problem based on a genetic simulated
annealing algorithm, AIP Conference Proceedings,
vol. 2258, no. 1, p. 020016, 2020.

[50]

 172 Complex System Modeling and Simulation, June 2022, 2(2): 156−173

Jialei Li received the BSc degree from
Nanjing Tech University in 2019, and the
MSc degree from East China University of
Science and Technology in 2022. Her
research interests include production
scheduling and intelligent optimization
algorithms.

Xingsheng Gu received the BS degree
from Nanjing Institute of Chemical
Technology in 1982, the MS and PhD
degrees from East China University of
Chemical Technology in 1988 and 1993,
respectively. He is currently a professor at
East China University of Science and
Technology. His research interests include

planning and scheduling for process industry, modeling, control,
and optimization for industry processes, intelligent optimization,
faults detection and diagnosis, etc.

Yaya Zhang received the BSc degree from
East China University of Science and
Technology in 2017. She is pursuing the
PhD degree in East China University of
Science and Technology. Her research
interests include batch production
scheduling problems and distributed
scheduling problems in industry process.

Xin Zhou received the BEng degree from
Xi’an Jiaotong-Liverpool University and
University of Liverpool, UK in 2015, and
the MEng degree from Australian National
University, Australia in 2017. She received
the PhD degree from East China
University of Science and Technology in
2022. Her research interests include multi-/

many-objective optimization and welding robot path planning.

 Jialei Li et al.: Distributed Flexible Job-Shop Scheduling Problem Based on Hybrid Chemical Reaction… 173

