
 

Distributed Flexible Job-Shop Scheduling Problem Based on
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Abstract: Economic  globalization  has  transformed  many  manufacturing  enterprises  from  a  single-plant

production  mode  to  a  multi-plant  cooperative  production  mode.  The  distributed  flexible  job-shop  scheduling

problem (DFJSP) has become a research hot topic in the field of scheduling because its production is closer to

reality.  The  research  of  DFJSP  is  of  great  significance  to  the  organization  and  management  of  actual

production  process.  To  solve  the  heterogeneous  DFJSP  with  minimal  completion  time,  a  hybrid  chemical

reaction optimization (HCRO) algorithm is  proposed in this  paper.  Firstly,  a novel  encoding-decoding method

for  flexible  manufacturing  unit  (FMU)  is  designed.  Secondly,  half  of  initial  populations  are  generated  by

scheduling rule. Combined with the new solution acceptance method of simulated annealing (SA) algorithm, an

improved  method  of  critical-FMU is  designed  to  improve  the  global  and  local  search  ability  of  the  algorithm.

Finally, the elitist selection strategy and the orthogonal experimental method are introduced to the algorithm to

improve  the  convergence  speed  and  optimize  the  algorithm  parameters.  In  the  experimental  part,  the

effectiveness of  the simulated annealing algorithm and the critical-FMU refinement methods is  firstly  verified.

Secondly,  in  the comparison with  other  existing algorithms,  the proposed optimal  scheduling algorithm is  not

only  effective  in  homogeneous  FMUs  examples,  but  also  superior  to  existing  algorithms  in  heterogeneous

FMUs arithmetic cases.

Key words: scheduling problem; distributed flexible job-shop; chemical reaction optimization algorithm; heterogeneous

factory; simulated annealing algorithm

1    Introduction

For  a  long time,  flexible  job-shop scheduling problem
(FJSP) is not only a hot topic in academic research, but
also  plays  an  important  role  in  modern  manufacturing
industries.  The  FJSP  is  an  extension  of  job-shop
scheduling  problem  (JSP),  which  is  NP-hard  problem
and  it  has  been  widely  studied  in  recent  decades[1−7].
However, many manufacturing industries are changing

from a traditional centralized manufacturing model to a
distributed  manufacturing  model  because  of  the
emergence  of  globalization.  The  manufacturing  of
products  is  completed  by  multiple  companies  or
factories  located  in  different  regions  instead  of  only
one  company  or  factory  because  cooperative
production  between  different  factories  can  reduce
response speed and production cost[8−12]. Therefore, the
distributed  flexible  job-shop  scheduling  problem
(DFJSP)  has  been  gradually  attracted  the  attention  of
scholars and applied in many fields, such as petroleum,
chemical, metallurgy, steel, textile, and pharmaceutical
industries[13].

The  DFJSP  solves  the  problem  of  production
scheduling  in  distributed  manufacturing  environments,
where  tasks  are  handled  cooperatively  by  several
flexible  manufacturing  units  (FMUs).  And  each
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operation  can  be  handled  by  one  or  more  available
machines.  DFJSP  can  be  divided  into  homogeneous
DFJSP  and  heterogeneous  DFJSP.  Under  the
homogeneous  FMU  environment,  the  number  and
performance  of  machines  in  each  FMU  are  the  same.
While in heterogeneous FMU environment, the number
and  performance  of  machines  in  each  FMU  are
different.  In  DFJSP,  the  three  sub-problems  of  FMU
selection, operation sequence scheduling, and machine
selection  must  be  solved,  which  is  more  difficult  than
FJSP.

To  date,  some  literatures  have  been  published  on
DFJSP.  Among them,  the  study with  makespan as  the
objective function is  the most.  Chan et  al.[14] designed
an encoding method with dominant genes (DG) which
called genetic algorithm with dominant genes (GADG)
to deal with DFJSP. Giovanni and Pezzella[15] extended
some classic FJSP instances to DFJSP and proposed an
improved genetic algorithm (IGA). Ziaee[16] developed
a  fast  heuristic  algorithm,  which  assigns  different
weights to factors such as machine limit time, average
job  time,  and  process  processing  time,  so  that  the
algorithm  can  quickly  locate  the  region  with  better
feasible  solutions.  To  balance  the  load  of  the  factory
and the machine in the DFJSP, Lu et al.[17] proposed a
concise  encoding  method  and  corresponding  3-D
decoding  method,  which  named  GA-JS.  The
experiment  was  compared  with  IGA  and  some  better
optimal  solutions  were  obtained.  Chang  and  Liu[18]

proposed  a  hybrid  genetic  algorithm  (HGA)  to  solve
the  DFJSP.  The  authors  used  three  methods  for  the
crossover  phase  and  divided  the  mutation  operation
into  two  parts.  In  comparison  with  GADG  and  IGA,
HGA obtained better  results  in  the  mean and standard
deviation.  Compared  with  the  above-mentioned
existing  genetic  encoding  methods,  Wu  et  al.[19]

developed  a  new  encoding  method  for  genetic
algorithm,  which  called  GA-OP,  and  designed
corresponding decoding methods for factory allocation
and  machine  allocation.  Marzouki  et  al.[20] used
chemical reaction optimization (CRO) to solve DFJSP.
However,  due  to  the  use  of  basic  CRO,  the
experimental  results  are  not  competitive  with  other
algorithms. To solve the DFJSPs subject to preventive
maintenance  (PM),  Chan et  al.[21] developed  a  genetic
algorithm  with  dominant  genes  (GADG)  to  identify
chromosomes  with  good  genes.  Based  on  GADG,
Chung  et  al.[22] added  a  local  search  mechanism  and
proposed  an  enhanced  genetic  algorithm  (GA).  Lin
et  al.[23] designed  two  incomplete  chromosome

representations  and  four  GAs  to  solve  DFJSP.
Furthermore,  an  effective  method  to  generate  new
chromosomes  from  high  quality  solutions  was
developed to improve the performance of the proposed
algorithms.  Considering  the  transportation  time
between  factories,  Chan  et  al.[24] proposed  a  hybrid
algorithm  based  on  tabu  search  and  sample  sort
simulated  annealing  to  solve  DFJSP.  Ziaee[25]

integrated  production  scheduling  and  work-in-process
planning decisions,  established a  corresponding mixed
integer  linear  programming  model,  and  developed  a
fast  heuristic  algorithm.  To  solve  multi-objective
DFJSPs, Li et al.[13] constructed a hybrid Pareto-based
tabu  search  algorithm  to  deal  with  multi-objective
DFJSP  in  steelmaking  systems,  and  developed  five
types  of  neighbourhood  structures  to  improve  the
algorithm  ability.  Luo  et  al.[26] proposed  a  model  of
DFJSP  with  transfers  time  and  designed  an  efficient
memetic  algorithm to  solve  multi-objective  DFJSP.  In
this  algorithm,  multiple  crossover  mutation  operators
and  three  kinds  of  neighbourhood  structures  are
designed  to  expand  the  search  space.  Xu  et  al.[27]

developed  a  hybrid  genetic  algorithm  and  tabu  search
with  three-layer  encoding  to  address  multi-objective
low  carbon  DFJSP  of  large-scale  and  complex
manufacturing  enterprises.  Du  et  al.[28] combined  a
distribution  estimation  algorithm  and  variable
neighbourhood  search  to  solve  multi-objective  DFJSP
with crane transportations.

In  summary,  the  existing  researches  on  DFJSP
mainly  focus  on  the  homogeneous  FMUs  where  the
number  and  the  processing  capacity  of  machines  in
each FMU are assumed to be the same, and rarely pay
attention  to  the  DFJSP  on  the  heterogeneous  FMUs.
Moreover, the experiments are mostly verified in small
examples.  The  largest  one  of  these  examples  contains
only 20 jobs. But in the actual production, most of the
FMUs  are  heterogeneous  and  the  scale  of  DFJSP  is
large.  Therefore,  a  new  algorithm  with  strong
applicability  is  proposed  in  this  paper  to  be  able  to
solve  homogeneous  and  heterogeneous  DFJSP  at  the
same  time,  and  its  effectiveness  is  verified  on  large-
scale examples.

In  recent  years,  various  intelligent  optimization
algorithms  have  been  proposed  to  solve  different
production scheduling problem. Zhao et al.[29] proposed
an ensemble discrete differential evolution algorithm to
solve the blocking flow-shop scheduling problem with
the  minimization  of  the  makespan  in  the  distributed
manufacturing  environment.  To  solve  the  multi-
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objective  energy-efficient  no-wait  flow  shop
scheduling  problem  and  the  multi-objective  energy-
efficient  distributed  no-idle  flow  shop  scheduling
problem,  Zhao et  al.  designed a  two-stage cooperative
evolutionary  algorithm  with  problem-specific
knowledge[30] and  a  self-learning  discrete  Jaya
algorithm[31],  respectively.  Wang  et  al.[32] used  the
multi-objective  whale  algorithm  to  study  the  energy-
efficient  distributed  permutation  flow shop  scheduling
problem  with  sequence  dependent  setup  times.  Lei
et  al.  proposed  an  imperialist  competition  algorithm
with memory[33] and an artificial bee colony algorithm
with  partitioning  properties[34] to  solve  the  distributed
unrelated  parallel  machines  scheduling  problem,
respectively.  Şahman[35] employed  discrete  spotted
hyena  optimization  algorithm  to  solve  distributed  job
shop scheduling problem.

The  above-mentioned  researchers  try  to  solve  the
scheduling  problem  with  different  intelligent
optimization  algorithms to  expect  close  to  the  optimal
solution. The experimental results also show that some
new  algorithms  can  obtain  better  solutions  than  other
algorithms.  It  is  very  necessary  to  develop  different
intelligent  optimization  algorithms  to  solve  different
scheduling  problems.  Therefore,  a  hybrid  chemical
reaction  optimization  algorithm  is  proposed  in  this
paper,  which  is  suitable  for  solving  DFJSP  with  the
goal  of  minimizing  the  maximum  makepan  in  both
homogeneous  and  heterogeneous  environments.  The
main  reasons  for  using  the  chemical  reaction
optimization  (CRO)  algorithm  to  solve  DFJSP  in  this
paper  are  as  follows.  First,  the  CRO  has  been  widely
used  to  solve  different  combinatorial  optimization
problems,  such  as  the  resource  constrained  project
scheduling  problem[36],  directed  acyclic  graph
scheduling[37],  the  0–1  knapsack  problem[38],  the
FJSP[39, 40] ,  and  distributed  flow  shop  scheduling
problem[41, 42] ,  but  CRO  is  less  used  in  DFJSP.
Furthermore,  evolutionary  algorithms  can  explore  a
huge  search  space,  but  their  ability  to  converge  to  the
optimal  solution  is  poor,  while  CRO  can  balance
diversified  search  and  intensive  search.  Therefore,
CRO  has  good  convergence  and  can  obtain  feasible
solutions  in  a  short  time.  Finally,  CRO  can  adapt  to
different optimization problems by utilizing the defined
molecular  representation  and  the  basic  four  reaction
operations.  This  variety  of  operators  helps  us  tailor
algorithm  to  suit  different  problems.  Based  on  the
above  advantages,  it  is  considered  that  CRO  can

satisfactorily  improve  DFJSP  based  on  the  makespan
criterion.

The  main  contributions  of  this  work  are  as  follows.
(1)  An  operation-FMU  encoding-decoding  method  is
designed.  (2)  Corresponding  operations  are  designed
for  four  kinds  of  collisions  of  the  algorithm.  (3)  The
CRO  algorithm  is  improved  by  combining  with
simulated annealing (SA) and critical-FMU refinement
methods.  In addition,  orthogonal  experiments are used
for  exploring  the  influence  of  parameters  and  the
comparison  with  existing  algorithms  in  homogeneous
FMU  cases  and  self-generated  heterogeneous  FMU
cases  are  completed  in  the  experimental  part  which
verify the effectiveness and superiority of the proposed
algorithm.

The remaining of this paper is organized as follows.
The  description  of  DFJSP  is  stated  in  Section  2.  In
Section 3, the proposed algorithm is described in detail,
including  basic  chemical  reaction  optimization
algorithm,  encoding  and  decoding  methods,  four
collision  operators,  SA  new  solution  acceptance
method,  and  critical-FMU  refinement  methods.  The
related  parameters  are  designed  in  the  anterior  part  of
Section 4, and the experimental results are analysed in
the posterior part of Section 4. Finally, the conclusions
and future work are provided in Section 5.

2    Problem Description

For convenience, the notations used in this section are
listed as follows.

Index
i　index for job, i = 1, 2, …, N;
j　index for operation, j = 1, 2, …, pi;
f　index for FMU, f = 1, 2, …, Q;
k　index for machine, k = 1, 2, …, mf;
r　index for processing sequence, r = 1, 2, …, qf,k.
Parameter
N　total number of jobs;
pi　total number of operations for job i;
Q　total number of FMUs;
mf　total number of machines in FMUf;
t f ,k
i, j 　 processing  time  of  operation Oij  on  machine

Mf,k.
Variable
Ji　the i-th job;
Oij　the j-th operation of job Ji;
FMUf　the f-th FMU;
Mf,k　the k-th machine in FMUf ;
Si,j　starting time of operation Oij;

    158 Complex System Modeling and Simulation, June  2022, 2(2): 156−173

 



Di,j　ending time of operation Oij;
Fi　completion time of job i;
Cmax　maximum completion time;
Ef,k,r　 starting  time  of  the r -th  processing  sequence

on machine k in FMUf ;
qf,k　 total  number  of  operations  processed  on

machine k in FMUf.
Binary variable
x f ,k

i, j 　 binary  variable  that  takes  value  1  if Oij  is
processed on machine k in FMUf, and 0 otherwise.

z f ,k,r
i, j 　 binary  variable  that  takes  value  1  if  the

processing sequence of Oij on machine k in FMUf is r,
and 0 otherwise.

The DFJSP can be stated as follows. A set of jobs J =
{J1, J2, …, JN} is given, which must be processed in a
set  of  FMUs FMU  =  {FMU1, FMU2 ,  …, FMUQ}.
FMUf is  equipped  with  a  set  of  machines M  =  {M1,
M2,  …, Mmf }.  It  is  worth  noting  that  the  number  of
machines  in  each  FMU  is  not  the  same  and  each
machine k  exhibits  a  different  level  of  performance.
Each job Ji has an ordered set of operations Oij = {Oi1,
Oi2,  …, Oipi },  each  operation  can  be  assigned  only  to
one  flexible  manufacturing  unit FMUf  for  processing.
The  system  schematic  diagram  of  DFJSP  is  shown  in
Fig. 1.

The paper considers the following assumptions:
(1)  All  flexible  manufacturing  units,  jobs,  and

machines are available at time zero.
(2) The machining time of all operations is known in

advance.
(3)  Each  operation  that  is  processed  by  different

machines may have different time.
(4)  No consideration is  given to  transportation time,

preparation time, release time, etc.
Based on the above assumptions, the model with the

optimization  objective  of  minimizing  makespan  is
established as follows by referring to Ref. [43]:
 

min Cmax =
N

max
i=1
{Fi} (1)

 

Fi = Di,pi (2)
 

Di, j = S i, j+

Q∑
f=1

m f∑
k=1

x f ,k
i, j × t f ,k

i, j , j ∈ {1, 2, ..., pi} (3)

 

S i, j+1 ⩾ Di, j, j ∈ {1, 2, ..., pi−1} (4)
 

E f ,k,r+1 ⩾ E f ,k,r +

N∑
i=1

pi∑
j=1

t f ,k
i, j × z f ,k,r

i, j ,

 

f ∈ {1, 2, ..., Q}, k ∈ {1, 2, ..., m f }, r ∈ {1, 2, ..., q f ,k −1}
(5)

 

pi∑
j=1

m f∑
k=1

x f ,k
i, j ∈ {0, pi} (6)

 

Q∑
f=1

m f∑
k=1

x f ,k
i, j = 1, j ∈ {1, 2, ..., pi} (7)

 

q f ,k∑
r=1

z f ,k,r
i, j = x f ,k

i, j , j ∈ {1, 2, ..., pi} (8)

Equation  (1)  is  the  objective  function,  which  means
that the makespan is equal to the maximum completion
time  of  all  jobs.  Equation  (2)  indicates  that  the
completion  time  of  the  job  is  equal  to  the  completion
time of the last operation of this job. Equation (3) states
that the completion time of the operation is equal to the
starting  processing  time  plus  the  actual  processing
time.  Formula  (4)  is  the  operation constraint,  meaning
that  the  operations  of  the  same job  must  be  processed
in  order.  Formula  (5)  ensures  that  the  same  machine
can  only  process  an  operation  at  a  time.  Formula  (6)
represents  that  all  operations  of  a  job  can  only  be
processed in the same FMU. Equation (7)  assures that
an operation can only be processed by one machine in
one  FMU.  Equation  (8)  defines  that  an  operation  can
only  be  processed  once  by  the  selected  processing
machine.

3    Hybrid  Chemical  Reaction  Optimization
Algorithm for DFJSP

In  this  part,  the  specific  content  of  the  proposed
algorithm is  introduced  with  details.  For  convenience,
the parameters involved are shown in Table 1.

The  algorithm  of  HCRO  is  shown  in Algorithm  1.
Basic  chemical  reaction  optimization  algorithm  is
introduced  in  Section  3.1;  Molecular  encoding  and
decoding  method  is  presented  in  Section  3.2;  The
population  initialization  is  stated  in  Section  3.3;  Four
collisions  are  presented  in  Sections  3.4−3.7;  Elitist

 

Jobs
J1,J2,…,JN

FMU1
M11,M12,…,M1m

FMU2
M21,M22,…,M2m

FMUQ

MQ1,MQ2,…,MQm

......

M21

M22

M2m

Og1,Og2,…,Oh5

Oh1,Og3,…,Oh4

Oh2,Oh3,…,Og5

 
Fig. 1    DFJSP system diagram.
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selection  strategy  is  introduced  in  Section  3.8;  A  new
solution  acceptance  method  based  on  simulated
annealing  algorithm  and  critical-FMU  refinement
methods are introduced in Sections 3.9 and 3.10.

3.1    Basic  chemical  reaction  optimization
algorithm

CRO  is  an  emerging  population  evolution  algorithm
that  appeared  in  2012,  which  simulates  the  process  of
constantly  changing  molecules  in  a  chemical  reaction
system trying to obtain the lowest  potential  energy[36].
The  algorithm uses  the  concept  of  molecular  structure
ω to describe the solution of the optimization problem
and  describes  the  optimization  process  as  a  chemical
reaction process.  The molecular  structure ω  represents
a feasible solution, and each molecule has two types of
energies: potential energy PEω and kinetic energy KEω.
PEω represents  the  objective  function  value  of  the
corresponding  solution ω  while  KEω  represents  the
tolerance  of  the  system  to  accept  a  worse  solution.  In
this paper, KE of the new molecule is defined as the KE
and PE  of  the  old  molecule  minus  the PE  of  the  new
molecules[44].  The  specific  formula  expression  will  be
listed  in  the  following  four  collisions.  CRO  defines
four  basic  reaction  operators  to  search  for  feasible
solutions:  on-wall  ineffective  collision,  decomposition
reaction,  inter-molecular  ineffective  collision,  and
synthesis  reaction.  These  four  reactions  can  be
classified  into  uni-molecular  collisions  and  bi-
molecular  collisions.  The  on-wall  ineffective  collision
and  decomposition  reaction  are  single  molecular
collisions,  while  inter-molecular  ineffective  collision
and synthesis reaction are of the second category.

Like  other  evolutionary  algorithms,  CRO  contains
three  basic  steps:  initialization,  iteration,  and
termination  conditions.  During  the  first  step, Popsize,
MoleColl, InitialKE,  buffer,  a ,  and b  are initialized. In
the  iteration  phase,  CRO  explores  the  solution  space
through  four  different  collision  reactions.  The
molecular  changes  caused  by  these  collisions  can  be
subtle or dramatic. Slight collision focuses on intensive
search,  which  refers  to  searching  the  neighborhood  of
the  current  solution  to  improve  the  quality  of  the
algorithm. In CRO, it is realized by on-wall ineffective
collision  and  inter-molecular  ineffective  collision.
While violent collisions focus on intensive search, they
tend  to  search  for  different  regions  of  the  solution
space  through  decomposition  and  synthesis  reactions.
The  CRO  algorithm  will  go  through  these  four  basic
reactions  until  the  termination  conditions  are  met  and

 

Table  1    Parameters  of  hybrid  chemical  reaction
optimization (HCRO) algorithm.

Parameter Description
ω Molecular structure and solution of the problem

PEω Potential energy of ω
KEω Kinetic energy of ω

buffer Central energy buffer, and initial buffer is 0.
InitialKE Initial kinetic energy

MoleColl
A random number between 0 and 1 to control the
occurrence of a uni-molecular or inter-molecular

collision
a Control parameter of decomposition reaction
b The lower kinetic energy limit

p Control parameter of critical-FMU refinement
methods

T0 Initial temperature
Tf Threshold temperature

Beta Value of attenuation factor
Popsize Molecular population size
Maxgen Maximum number of iterations

 

 

Algorithm 1　Hybrid chemical reaction optimization
algorithm
1.Set parameters: Popsize, Maxgen, InitialKE, MoleColl, b, a, p,
T0, Tf, and Beta
2.Population initialization;
3.While the number of iterations does not reach Maxgen or the
running time is less than 5000 s do
4.　Select molecules for optimal operations according to the
elitist selection strategy;
5.　 while go through the rest of the molecules do
6.　　 if rand(0,1) > MoleColl then
7.　　　if the optimal value of an iteration is not updated then
8.　　　 Trigger decomposition reaction and accept the new
molecule by simulated annealing algorithm;
9.　　　else
10.　　　Trigger on-wall ineffective collision and accept the
new molecule by simulated annealing algorithm;
11.　　　end
12.　　else
13.　　 if the kinetic energies of two molecules are all less than
b then
14. 　　　Trigger inter-molecular ineffective collision and
accept the new molecule by simulated annealing algorithm;
15.　　　else
16.　　　Trigger synthesis reaction and accept the new
molecule by simulated annealing algorithm;
17.　　　end
18.　　 end
19.　 end
20.　Apply critical-FMU refinement methods to molecules
with the top 20% fitness value;
21. end
 

    160 Complex System Modeling and Simulation, June  2022, 2(2): 156−173

 



the optimal solution is output.

3.2    Molecular encoding and decoding

This  section  takes  the  data  in Table  2 as  an  example
and  lists  three  relatively  new  encoding  methods  of
DFJSP  with Cmax  as  the  optimization  goal,  which  are
selected  from  HGA[18],  GA-JS[17],  and  GA-OP[19],  to
explain  the  advantages  of  the  encoding  method
proposed in this paper.

HGA explicitly  expresses  the  three  sub-problems  of
DFJSP  using  the  encoding  method  shown  in Fig.  2a.
The  integer  part  represents  the  sequence  order  of  the
operations,  and  the  process  sequence  shown  in
Fig.  2a is  1213321 ;  the  decimal  part  uses  the  roulette
wheel method to determine the machine selection, and
the  corresponding  FMU  selection  is  determined
through  the  machine  selection.  This  method  does  not
need  to  use  rules  to  decode  and  can  search  the  whole
solution  space  well.  However,  the  FMU  selection  is
determined by machine selection; DFJSP considers the
constraint that operations of the same job are processed
in  the  same  FMU,  so  it  is  easy  to  generate  illegal
solutions,  which  will  increase  the  running  time  of  the
algorithm to a certain extent.

The  encoding  of  GA-JS  only  expresses  the  job
processing  sequence  and  decodes  three  sub-problems
of  DFJSP  through  three  heuristic  rules.  As  shown  in
Fig. 2b, this encoding method is simple,  but too many
heuristic rules can easily make the algorithm fall into a
local optimum.

As shown in Fig. 2c, the encoding method of GA-OP
explicitly  expresses  the  sequence  order  of  the
operations,  and  the  remaining  machine  selection  and
FMU  selection  are  obtained  by  two  heuristic  rules  to
balance the load. The FMU selection of this method is
greatly  affected  by  the  number  of  machines  in  the
FMUs and is not suitable for DFJSP in a heterogeneous
environment.

To  overcome  the  above-mentioned  shortcomings  of
encoding,  we  propose  a  novel  operation-FMU
encoding  method  to  explicitly  express  the  two  sub-
problems of DFJSP.

N

Each  molecule ω  has  two  parts  of  information.  The
first  part  of  the  molecule  is  the  operation information,
which  adopts  from  the  JSP  solution  encoding  method
proposed by Bierwirth[45]. The second part is the FMU
information,  whose  length  is ,  indicating  the  FMU
number  of  the  corresponding  job. Figure  3 shows  a
molecule ω  based  on Table  2.  The  right  side  of  the
dotted  line  is  the  FMU  information. “2”  in  the  first
position means that job J1 is allocated to FMU2, “2” in
the  second  position  means  that  job J2  is  allocated  to
FMU2, “1”  in  the  third  position  means  that  job J3  is
allocated  to FMU1 ,  and  so  on.  This  encoding  method
does not generate illegal solutions, which can save the
time  to  check  illegal  solutions.  The  FMU  selection  is
reflected  in  the  encoding,  so  that  the  algorithm  has
strong  applicability  and  can  solve  DFJSP  in
homogeneous  and  heterogeneous  FMU  environments
at the same time.

DFJSP  needs  to  solve  three  sub-problems,  among
which the processing order and FMU allocation can be
obtained  by  the  corresponding  decoding  of  the  above
ω.  Take  the  problem  in Table  2 and  the  molecule
representation  in Fig.  3 as  an  example: J1  and  J2  are
assigned  to FMU2 .  Therefore,  the  operation  sequence
in FMU2  (called  Cop2 )  is O11→O21→O12→O22→O13;

 

Table 2    A sample DFJSP instance.

Job Operation
FMU1 FMU2

M11 M12 M13 M21 M22 M23

J1

O11 2 1 3 3 − 2
O12 − 5 1 3 3 3
O13 3 5 1 2 1 −

J2
O21 4 6 2 5 4 −
O22 3 2 7 5 4 3

J3
O31 3 2 4 3 5 4
O32 − 3 4 5 3 4

 

 

232 31 11 2ω: 2 1

FMU 1

FMU 2

FMU 2O11 O21 O12 O31 O32 O22 O13

 
Fig. 3    Molecule representation.

 

 

2.543.332.90 3.111.74 1.701.98

O11

J1 J2 J3

O21 O12 O31 O32 O22 O13

O11 O21 O12 O31 O32 O22 O13

(a) Encoded representation of HGA

21 3

(b) Encoded representation of GA-JS

232 31 11

(c) Encoded representation of GA-OP

M21 M22 M23 M11 M13 M21 M21

 
Fig. 2    Three encoding methods of DFJSP.
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and  the  operation  sequence  in FMU1  (called  Cop1 )  is
O31→O32 because J3 is assigned to FMU1. For the rest
of  the  machine  allocation,  a  heuristic  rule  is  used  for
decoding to balance the FMU load to reduce makespan.
Take the FMU2 as an example, the specific operation of
the rule is as follows: All Cop2  operations are assigned
to  the FMU2  machines  in  turn.  Each  operation  is
allocated  to  the  machines  with  the  lowest  workload.
O11 can be processed on M21  and M23.  M23  is  selected
since it has a lower workload, and the workload of each
machine  is  then  updated. O21  is  allocated  to M22
because  of  its  lower  workload,  and  the  workload  of
each machine is updated again. If the same workload is
obtained by several machines, then one of them will be
selected  randomly.  Follow  the  above  process  to
complete  the  process  of  machine  selection,  the  final
scheduling result can be obtained.

3.3    Population initialization

The initial  population is  crucial  for  an algorithm since
it  has  influence  on  the  following  iterations[46].  To
balance  the  load  between  FMUs  and  shorten Cmax  as
much  as  possible,  heuristic  rules  are  developed  to
generate  half  of  the  initial  population  in  this  paper,
while the remaining half of the population is randomly
generated to maintain diversity.

Heuristic rule 1
This  rule  applies  to  the  operation information in  the

first  part  of  the  molecule.  Priority  is  given  to  the  jobs
with  the  most  remaining  operations.  Once  there  exist
some  jobs  with  the  same  number  of  remaining
operations, one of them is selected randomly.

Take the data  in Table 2 as  an example again,  there
are 3 operations left for J1, 2 operations left for J2, and
3  operations  left  for J3.  J1  has  the  most  remaining
operations,  so  the  operation  of J1  is  processed  first.
After that, J1, J2, and J3 are all remaining 2 operations,
and  one  of  them  is  randomly  selected  for  processing
and  so  on.  One  such  operation  sequence
O11→O21→O12→O31→O32→O22→O13 can  be
generated as the first part of the molecule.

Heuristic rule 2
This  rule  applies  to  the  FMU  information  in  the

second  part  of  the  molecule,  which  calculates  the
average  processing  time  of  each  job  in  each  FMU
firstly.  And  then,  the  FMU  with  the  lowest  average
processing  time  is  preferred.  If  there  are  some  FMUs
with the same average processing time, one of them is
selected randomly.

Take  the  data  in Table  2 as  an  example.  Firstly,

calculate  the  average  processing  time  of  each  job  in
each FMU. The calculation formula is as follows:
 

avg f
i =
∑

j
avg f

i, j,

avg f
i, j =
∑

k t f ,k
i, j /m fwhere  denotes  the  average

processing time of operation Oij in FMUf. Each element
in Table 3 can be accordingly obtained.

Secondly,  the  FMU  allocations  are  completed.  The
average processing time of J1  in FMU2  is  the least,  so
the first place of the second part of molecule is “2”; J2
has the lowest average processing time in FMU1, so the
second place is “1”; J3 also has less average processing
time in FMU1, so the third place is “1”.

So, the resulting molecule from the heuristic rules is
1213321211.

3.4    On-wall ineffective collision

On-wall ineffective collision is a process in which one
molecule ω  produces  another  molecule ω' .  Since  this
collision  does  not  change  the  molecular  structure
greatly,  this  paper  adopts  the  method  of  exchanging
two  coded  positions  randomly  to  realize  the  on-wall
ineffective collision. Specific operations are as follows.

ω

Step 1: If the on-wall ineffective collision conditions
are  met,  molecule  is  randomly  selected.  Random
numbers r1 ,  r2∈ [1,  l1 ]  and r3 ,  r4∈ [l1+1,  l1+l2 ]  are
generated  for  the  operation  part  and  FMU  part  of  the
molecular, and r1≠r2, r3≠r4.

Step 2: Swap the element in position r1 and r2, r3 and
r4.  If r1=3,  r2=5;  r3=8,  r4 =10,  the  process  of  on-wall
ineffective collision is shown in Fig. 4.

Step  3: If  the  new  molecule  is  accepted,  the  old
molecule is replaced by new molecule in order. During
this  collision,  the  lost  energy  is  stored  in  the buffer.
 

Table 3    Average processing time of each job in each FMU.

Job
Average processing time

FMU1 FMU2

J1 8.0 6.0
J2 8.0 8.5
J3 6.5 8.0

 

 

232 31 11 2ω: 2 1

312 31 13 1ω′: 2 2

r1=3, r2=5      r3=8, r4=10

 
Fig. 4    On-wall ineffective collision diagram.
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And the KE of the ω' and buffer are updated by Eqs. (9)
and (10)[44].
 

KEω′ = KEω+PEω−PEω′ (9)
 

bu f f er = bu f f er+KEω+PEω−KEω′ −PEω′ (10)

3.5    Decomposition reaction

The  decomposition  reaction  is  the  decomposition  of
one  molecule ω  into  ω1'  and  ω2'  molecules.  If  the
algorithm  cannot  update  the  current  optimal  solution
after iterating “a” times, it  indicates that the algorithm
may be trapped in a local optimum. In this paper, cyclic
movement  operation[36] is  used  to  realize  the
decomposition  reaction.  The  specific  steps  are  as
follows.

Step  1: If  the  decomposition  conditions  are  met,
molecule ω  is  randomly selected.  Random numbers r1
∈[−l1, l1 ]  and r2  ∈[−l2,  l2 ]  are  generated  for  the
operation  part  and  the  FMU  part  of  the  molecule,
respectively, where l1 and l2 are the encoding lengths of
these two parts. Take Fig. 3 for example, l1=7 and l2=3.

Step  2: If  r1 <0,  the  former r1  elements  in  the
encoding  are  moved  to  the  end;  if r1 ≥0,  the  last r1
elements  are  moved  to  the  front  of  the  encoding.  The
judgment and operation for r2 are the same as for r1. If
r1=r2=−1  and r1=r2 =2,  the  process  of  decomposition
reaction is shown in Fig. 5.

Step  3: If  the  new molecule  is  accepted,  one  of  the
new molecules is selected at random to replace the old
molecules in order. Since decomposition produces two
molecules  from  one  molecule,  the KE  and  PE  of  the
old  molecule  may  not  be  enough  to  produce  two
molecules.  So,  the  energy  in  the buffer  is  used  for
facilitating  the  reaction.  And the  kinetic  energy  of  the
ω1' and ω2' are updated by Eqs. (11) and (12)[44].
 

KEω1′ = bu f f er+KEω+PEω−PEω1′ −PEω2′ (11)
 

KEω2′ = bu f f er+KEω+PEω−PEω1′ −PEω2′ (12)

3.6    Inter-molecular ineffective collision

The inter-molecular ineffective collision is a process in
which two molecules ω1  and ω2  generate  ω1'  and ω2'.
The specific steps are listed as follows.

Step 1: If the inter-molecular ineffective collision is
met, two different molecules are selected randomly. J =
{J1, J2 ,  …, JN} is  divided into two sets Job1  and Job2
randomly; FMU  =  {FMU1, FMU2 ,  …, FMUQ }  is
divided into two sets Fmu1 and Fmu2 randomly.

Step  2: The  elements  in ω1  that  belong  to  the  sets
Job1 and Fmu1  are  retained in ω1'  directly  and remain
in  their  original  positions.  Similarly,  elements  in ω2
that  belong  to  the  sets Job1  and  Fmu1  are  retained  in
ω2' and remain in  their  original  positions.  Take Fig.  3
as an example, Job1 = {1} and Fmu1 = {1}, so element
“1” in  two  old  molecules  is  retained  directly  and
remain in original positions on the new molecules.

Step 3: The elements belonging to the sets Job2  and
Fmu2 in  ω2  are  filled into the gaps in ω1'  in  order.  As
shown in Fig. 6, Job2 = {2, 3} and Fmu2 = {2}, so the
elements belonging to the sets Job2 and Fmu2  in ω2  in
order is 223322. And then these elements are filled into
the gaps  in ω1'  in  order.  Similarly,  the  elements  in ω1
that belong to the sets Job2 and Fmu1 are filled into the
ω2 space in turn.

Step  4: If  the  new  molecules  are  accepted,  the  old
molecules are replaced by new molecules in order. And
the  kinetic  energy  of  the ω1'  and  ω2'  are  updated  by
Eqs. (13) and (14)[44].
 

KEω1′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω1′ −PEω2′

(13)
 

KEω2′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω1′ −PEω2′

(14)

3.7    Synthesis reaction

The  synthesis  reaction  is  a  process  in  which  two

 

121 32 13 2ω1′: 1 2

232 31 11 2ω: 2 1

311 22 31 2ω2′: 1 2

r1=r2=−1

r1=r2=2

 
Fig. 5    Decomposition reaction diagram.

 

 

332 21 11 2ω1′: 2 1

232 31 11 2ω1: 2 1

311 22 31 2ω2: 1 2

311 32 21 2ω2′: 1 2

Job1={1}, Job2={2,3}
Fmu1={1}, Fmu1={2}

 
Fig. 6    Inter-molecular ineffective collision diagram.
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KEω1 ⩽ b KEω2 ⩽ b
molecules ω1 and ω2 are synthesized into the molecule
ω'.  If  and  ,  which  means  that  both
ω1 and  ω2  have  a  little  kinetic  energy,  and  the
probability  of  collisions  is  very  small.  So  synthetic
reaction  takes  place  to  diversify  the  solutions.  In  this
paper,  a  distance  keeping  crossover  operation[36] is
used to realize the synthesis reaction. The specific steps
are as follows.

Step  1: If  the  synthesis  conditions  are  met,  two
different  molecules  are  selected  randomly.  And  the
elements in two molecules are compared.

Step 2: Copy the same elements at the same location
in  the  old  molecules  to  the  new  molecule.  In  a
reasonable  range,  generate  elements  at  other  locations
randomly to obtain the new molecules. The process of
the synthesis reaction is shown in Fig. 7.

Step  3: If  the  new  molecule  is  accepted,  the  old
molecule  is  replaced  by  the  new  molecule  in  order.
And  the  kinetic  energy  of ω'  is  updated  by  the  Eq.
(14)[44].
 

KEω′ = KEω1 +KEω2 +PEω1 +PEω2 −PEω′ (15)

3.8    Elitist selection

In the CRO algorithm, molecules with high fitness can
generate  new  molecules  with  low  fitness[36].  This
phenomenon  ensures  the  diversity  of  molecule
population  but  also  reduces  the  convergence  speed  of
the  algorithm.  Therefore,  elite  retention  scheme  is
introduced  to  the  improved  algorithm.  This  scheme
reserves  20% of  the  optimal  old  molecules  directly  to
the next iteration without reaction operations.

3.9    A  new  solution  acceptance  method  based  on
simulated annealing algorithm

Since  the  new  solutions  generated  by  the  chemical
reaction optimization algorithm will change the number
of  population.  To  ensure  that  the  overall  population
size  remains  unchanged,  certain  methods  need  to  be

adopted  to  accept  new  solutions.  The  calculation
process  of  simulated  annealing  algorithm[47] is  simple
and general,  and it  can help the algorithm to jump out
of  the  local  optimum  to  a  certain  extent.  SA  has  also
shown  its  superiority  in  scheduling  problem[48−50].
Therefore,  we  choose  to  integrate  SA  into  HCRO  to
accept  the  new  solutions  after  the  four  reactions  of
HCRO. Algorithm 2 displays the detailed pseudo-code
of the SA algorithm.

3.10    Critical-FMU refinement methods

For  DFJSP,  the  maximum  makespan  in  the  whole
production process depends on the FMU with the latest
completion time, which is called critical FMU. Clearly,
scheduling  results  can  only  be  improved  if  the
makespan  of  the  critical  FMU  is  reduced.  Therefore,
 

Algorithm 2　A new solution acceptance method based on
simulated annealing algorithm
1. if T0>Tf then

2.　if trigger on-wall ineffective collison then
3.　　if ∆T=PEω'−PEω < 0 then
4.　　　ω=ω';
5.　　else if rand(0,1) < exp(−∆T/T0) then
6.　　　ω=ω';
7.　　end if
8.　 end if
9.　 if trigger decomposition then

PEω1′ PEω2′10.　 if ∆T=max(  )−PEω < 0 then
11. 　　ω=ω1' or ω=ω2';
12.　 else if rand(0,1) < exp (−∆T/T0) then
13. 　　ω=ω1' or ω=ω2';
14.　 end if
15.　end if
16. if trigger inter molecular ineffective collision then

PEω1′ PEω2′ PEω1′ PEω2′17.　 if ∆T=max( , )−max( , )PEω < 0 then
18.　　 ω1=ω1' and ω2=ω2';
19.　 else if rand(0,1) < exp(−∆T/T0) then
20.　　 ω1=ω1' and ω2=ω2';
21.　 end if
22.　end if
23. if trigger synthesis then

PEω1′ PEω2′24.　 if ∆T= PEω' −max( , )PEω then
25.　　 ω1=ω' or ω2=ω';
26.　 else if rand(0,1) < exp(−∆T/T0) then
27.　　 ω1=ω' or ω2=ω';
28.　 end if
29.　end if
30. end if
 

 

232 31 11 2ω1: 2 1

311 22 31 2ω2: 1 2

112 33 21 2ω′: 1 1

 
Fig. 7    Synthesis reaction diagram.
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the  critical-FMU  refinement  methods  are  designed  to
adjust the job allocation and the processing order of the
jobs.  The  specific  ways  are  as  follows  and  algorithm
shows in Algorithm 3.

Method 1: In the FMU part of the molecule, a job is
selected  randomly  from  the  critical  FMU  to  the  FMU
with  the  shortest  completion  time.  Take Fig.  3 as  an
example again, the critical FMU is FMU2 and the FMU
with  the  shortest  completion  time  is FMU1 .  While J1
and J2 are allocated to FMU2. So, J1 or J2 is selected to
allocate to FMU1. And then, in the operation part of the
molecule,  operations  of  jobs  are  exchanged  and
inserted randomly.

Method  2: Rearrangement  of  operations  in  the
critical FMU. Take Fig. 3 as an example, J1 and J2 are
allocated to FMU2 .  Rearrange the operations of J1  and
J2 while  keeping  the  same  processing  order  of  each
operation in J3.

4    Numerical Experiment

4.1    Introduction of the DFJSP instance

Experiment  1  involves  3  DFJSP  instances,  which  is
referenced  by  Chang  and  Liu[18].  Of  these  3  DFJSP
instances, one is a small-scale heterogeneous example,
and the others are homogeneous FMUs examples. Five
algorithms  are  compared  in  Experiment  1.  Set
parameter Popsize =100  and Maxgen=1000  in  HGA,
GA-JS,  GA-OP,  and  HCRO,  other  parameter  settings
are the same as those in their articles.

Experiment  2  involves  23  DFJSP  instances,  which
are  proposed  by  Giovanni  and  Pezzella[15].  In  Chang
and  Liu’s  research[18],  experimental  results  of  the  23
DFJSP instances are not available. Therefore, the lower
bound,  IGA[15],  GA-JS[17],  and  GA-OP[19] are

compared  in  this  experiment.  Set  parameter
Popsize=50  in  IGA,  GA-JS,  GA-OP,  and  HCRO,  and
the  other  parameter  settings  are  the  same  as  those  in
their articles.

However,  there  is  no  standard  heterogeneous  FMUs
example that can be used to test DFJSP, and the current
experimental  examples  are  all  small-scale  examples
within 20 jobs. To study the different scales DFJSP on
heterogeneous  FMUs,  examples  of  10  to  120  jobs
considering the case of  3,  4,  5 FMUs are generated in
Experiment 3. The generated examples are named “SL
number of jobs-number of FMUs”. For example, when
10  jobs  are  assigned  to  3  FMUs,  the  new  example  is
named “SL10-3”.  The parameters used to generate the
examples are shown in Table 4.

Take  SL10-3  as  an  example,  the  number  of  jobs  is
10,  the  number  of  operations  in  each  job  is  a  random
integer from 5 to 7. The jobs need to be assigned to 3
FMUs.  The  number  of  machines  in  each  FMU  is  a
random integer from 5 to 7, and the processing time is
a  random integer  from 1 to  7.  Each FMU can process
all  operations.  Among  them,  the  size  is  measured  by
the number of jobs. 10 to 20 jobs are defined as small-
scale  examples;  30 to  60 jobs  are  defined as  medium-
scale  examples;  80  to  120  jobs  are  defined  as  large-
scale  examples.  For  time  comparison,  the  experiment
reproduces  HGA  and  GA-OP  for  comparison.  To
verify  the  effectiveness  of  rule  initialization,  SA  new
solution  acceptance  method,  and  critical-FMU
refinement  methods,  the  proposed  algorithm  without
rule  initialization  is  named HCRO1,  and  the  proposed
algorithm without SA new solution acceptance method
is  called  HCRO2.  The  proposed  algorithm  without
critical-FMU  refinement  methods  is  addressed  as
HCRO3.  The  better  and  newer  HGA  and  GA-OP  of
Experiments  1  and  2  are  selected  as  the  comparison
algorithms for Experiment 3.

 

Algorithm 3　Critical-FMU refinement algorithm
1. if rand(0,1)>p　then
2.　a new molecule ω' is obtained by performing the operation
of Method 1;
3.　 if PEω' < PEω then
4.　　 ω=ω';
5.　 end
6. else
7.　a new molecule ω' is obtained by performing the operation
of Method 2;
8.　 if PEω' < PEωthen
9.　　 ω=ω';
10.　end
11. end
 

 

Table 4    Parameters used to generate the examples.

Instance Number
of jobs

Number of
operations

Number of
FMUs

Number of
machines in
each FMU

Process
time

SL10 10 [5,7] 3,4,5 [5,7] [1, 7]
SL20 20 [3,10] 3,4,5 [6,10] [5, 20]
SL30 30 [5,10] 3,4,5 [6,12] [10, 30]
SL50 50 [5,10] 3,4,5 [6,12] [10, 30]
SL60 60 [5,10] 3,4,5 [8,12] [10, 30]
SL80 80 [8,12] 3,4,5 [8,17] [10, 30]
SL100 100 [8,12] 3,4,5 [12,17] [15, 30]
SL120 120 [10,15] 3,4,5 [12,17] [15, 30]
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4.2    HCRO parameter design

In  the  HCRO  algorithm,  the  following  parameters
affect  the  performance:  unimolecular  collisions
reaction  probability MoleColl ,  initial  kinetic  energy
InitialKE, the maximum number of iteration a in which
the  optimal  molecular  potential  energy  has  not  been
improved,  refinement  operation  probability p ,  and
lower kinetic energy limit b. In order to investigate the
influence of parameters on the algorithm performance,
the orthogonal test method is used in this paper. SL20-
3  is  used  for  the  test,  and  four  different  horizontal
values are chosen for each test parameter, as shown in
Table 5.

In  the  algorithm,  the  molecular  population  size
Popsize=150,  maximum  number  of  iterations
Maxgen=500,  initial buffer =0,  the  initial  temperature
T0=1000,  the  threshold  temperature Tf  =10−8 ,  and
attenuation factor Beta=0.97. To avoid the randomness
of test results, each group of experiments is run for 30
times. The average values of the results of 30 times are
listed in Table 6. Lines from 1 to 4 in Table 7 show the
average  makespan  at  each  level  of  different  factors.
The last line lists the standard deviations (S.D) of these
means,  indicating  the  importance  of  each  factor.  The
larger the S.D of factor is, the greater the impact on the
HCRO.  Different  parameter  settings  affect  the
performance  of  HCRO  algorithm.  In  the  selection  of
algorithm  parameters,  reasonable  values  of  these  five
parameters  should  be  obtained  according  to  the
problem. According to the experimental results, values
of  these  five  parameters  are  determined  as  follows:
MoleColl=0.2, InitialKE=500, a=40, p=0.7, and b=20.

4.3    Experimental results and evaluation

The  operating  environment  of  the  algorithm  is:  Intel

Core i7-8550U CPU 1.8 GHz, RAM 16 GB, Windows
10,  64-bit  operating  systems,  and  the  programming
language is C.

The  results  of  the  three  experiments  are  listed  in
Tables  8−12,  respectively. MK  represents  the  optimal
solution  in  an  instance, Av.  denotes  the  average
solution  of  an  instance, T  represents  the  average
computation  time  to  run  the  instance  once,
Dev=(Deviation)÷Av., LB  reports  a  lower  bound
proposed by Giovanni and Pezzella[15].

Table 8 displays the experiment results after 50 runs
of  the  3  DFJSP  instances  in  Experiment  1.  Five
algorithms  (IGA[15],  HGA[18],  GA-JS[17],  GA-OP[19],
and  HCRO)  are  compared.  In  DFJSP1,  HCRO

 

Table  5    Horizontal  values  of  the  parameters  in  HCRO
algorithm.

Set No. MoleColl InitialKE a p b
1 0.2 100 20 0.4 20
2 0.4 500 40 0.5 40
3 0.6 1000 60 0.6 60
4 0.8 1500 80 0.7 80

 

 

Table  6    Average  values  for  different  combinations  of
parameters.

Test No. MoleColl InitialKE a p b Av.
1 1 1 1 1 1 61.90
2 1 2 2 2 2 62.10
3 1 3 3 3 3 62.10
4 1 4 4 4 4 62.17
5 2 1 2 3 4 62.23
6 2 2 1 4 3 61.90
7 2 3 4 1 2 62.20
8 2 4 3 2 1 62.70
9 3 1 3 4 2 62.53
10 3 2 4 3 1 61.60
11 3 3 1 2 4 62.23
12 3 4 2 1 3 62.23
13 4 1 4 2 3 63.43
14 4 2 3 1 4 62.47
15 4 3 2 4 1 62.00
16 4 4 1 3 2 63.07

 

 

Table 7    Average values for different parameters.

Set No. MoleColl InitialKE a p b
1 62.07 62.53 62.28 62.20 62.05
2 62.26 62.02 62.14 62.62 62.48
3 62.15 62.13 62.45 62.25 62.42
4 62.74 62.54 62.35 62.15 62.28

S.D 0.30 0.23 0.11 0.19 0.17
 

 

Table 8    Comparison of the results of the algorithms in Experiment 1.

Instance
IGA[15] HGA[18] GA-JS[17] GA-OP[19] HCRO

MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%)
DFJSP1 11 N/A N/A 9 N/A N/A 9 9.0 0.0 9 9.0 0.0 9 9.0 0.0
DFJSP2 37 38.6 1.9 37 37.6 0.4 38 38.0 0.0 37 37.0 0.0 37 37.1 0.0
DFJSP3 37 38.3 1.9 37 37.5 0.6 38 38.2 0.2 37 37.0 0.0 37 37.1 0.0
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Dev

outperforms  IGA  in MK  and  gets  the  same MK  as
HGA,  GA-JS,  and  GA-OP.  HCRO  can  get  the  same
Av. and  as GA-JS and GA-OP. Because there is no
Av. and  Dev  data  in  the  original  articles  of  IGA  and
HGA,  the  mean  and  standard  deviation  of  the
experiment  are  not  compared  with  that  of  HGA  and
IGA. Therefore, HCRO is competitive with GA-JS and
GA-OP  in  small-scale  example  on  heterogeneous
FMUs.  In  DFJSP2  and  DFJSP3,  HCRO  gets  smaller
MK than  GA-JS and has  the  same MK  as  IGA,  HGA,
and GA-OP. HCRO outperforms IGA, HGA, and GA-
JS  in  terms  of Av.  and  Dev .  But  HCRO  has  slightly
bigger Av.  than  GA-OP.  This  means  that  HCRO  is
competitive  with  the  other  four  improved  genetic
algorithms  in  terms  of  the  optimal  solution.  And  the
stability of HCRO is slightly inferior to that of GA-OP
on homogeneous FMUs.

Table  9 displays  the  results  of  23  DFJSP  examples
after 50 runs from Experiment 2 on four homogeneous
FMUs.  Four  algorithms  (IGA[15],  GA-JS[17],  GA-
OP[19], and HCRO) are compared. GA-JS, GA-OP, and
HCRO  can  obtain  the  lower  bound  of  23  examples

while  IGA  can  only  get  the  lower  bound  of  22
examples.  Compared with  GA-JS and GA-OP,  HCRO
can get the same MK in all 23 examples, which means
that  HCRO  has  the  same  advantage  in  obtaining  the
optimal  solution.  In  la13  and  mt20,  HCRO  is  slightly
bigger  than  IGA,  GA-JS,  and  GA-OP  in Av. .  In  la15,
HCRO  is  slightly  bigger  than  GA-JS  and  GA-OP  but
smaller  than  IGA  in Av. .  Therefore,  HCRO  is
competitive  with  IGA,  GA-JS,  and  GA-OP in  optimal
solutions  and  inferior  to  GA-JS  and  GA-OP  in  the
stability of solutions on homogeneous FMUs.

Tables  10 and  11  display  the  results  of  24  DFJSP
examples  after  50  runs  from  Experiment  3  on
heterogeneous  FMUs.  Six  algorithms  (HGA[18],  GA-
OP[19],  HCRO1,  HCRO2,  HCRO3,  and  HCRO)  are
compared  in  Experiment  3.  To  ensure  fairness,  HGA
and  GA-OP  adopt  the  same  population  number  and
iteration stop conditions as HCRO, and other parameter
settings are the same as those set in their articles.

In Table  10,  it  can  be  seen  from  the  comparison
between HCRO1 and HCRO that  HCRO can  improve
the Av.  and  Dev  in  small-scale  examples.  HCRO  can

 

Table 9    Performance comparison of 4-FMU DFJSP algorithms in Experiment 2.

Instance LB
IGA[15] GA-JS[17] GA-OP[19] HCRO

MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%) MK Av. Dev (%)
la01 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la02 394 394 394.0 0.0 394 394.0 0.0 394 394.0 0.0 394 394.0 0.0
la03 349 349 349.0 0.0 349 349.0 0.0 349 349.0 0.0 349 349.0 0.0
la04 369 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0
la05 380 380 380.0 0.0 380 380.0 0.0 380 380.0 0.0 380 380.0 0.0
la06 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la07 376 376 376.0 0.0 376 376.0 0.0 376 376.0 0.0 376 376.0 0.0
la08 369 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0 369 369.0 0.0
la09 382 382 382.0 0.0 382 382.0 0.0 382 382.0 0.0 382 382.0 0.0
la10 443 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0
la11 413 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0 413 413.0 0.0
la12 408 408 408.0 0.0 408 408.0 0.0 408 408.0 0.0 408 408.0 0.0
la13 382 382 386.0 9.9 382 382.0 0.0 382 382.0 0.0 382 388.9 0.0
la14 443 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0 443 443.0 0.0
la15 378 397 402.0 2.3 378 381.9 4.7 378 385.8 7.8 378 395.5 5.2
la16 717 717 717.0 0.0 717 717.0 0.0 717 717.0 0.0 717 717.0 0.0
la17 646 646 646.0 0.0 646 646.0 0.0 646 646.0 0.0 646 646.0 0.0
la18 663 663 663.0 0.0 663 663.0 0.0 663 663.0 0.0 663 663.0 0.0
la19 617 617 617.0 0.0 617 617.0 0.0 617 617.0 0.0 617 617.0 0.0
la20 756 756 756.0 0.0 756 756.0 0.0 756 756.0 0.0 756 756.0 0.0
mt06 47 47 47.0 0.0 47 47.0 0.0 47 47.0 0.0 47 47.0 0.0
mt10 664 664 665.0 0.0 664 665.0 0.0 664 665.0 0.0 664 665.0 0.0
mt20 387 387 388.4 2.0 387 387.0 0.0 387 387.0 0.0 387 392.1 0.0
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get  better MK,  Av. ,  and Dev  than HCRO1 in medium-
scale  and  large-scale  examples.  Therefore,  the
effectiveness of the rule initialization is verified. From
the  comparison  between  HCRO2  and  HCRO,  HCRO
can  get  the  same MK  as  HCRO2  and  better Av.  than
HCRO2 in small-scale  examples.  In  the  medium-scale
examples,  HCRO2 and HCRO obtain the same MK  in
SL30-3,  SL30-4,  and  SL60-4,  while  HCRO  obtains
better MK  than  HCRO2  in  other  medium-scale
examples.  And  HCRO  gets  better Av.  in  all  medium-
scale  examples.  In  the  large-scale  examples,  HCRO
can  obtain  better MK  than  HCRO2  in  all  large-scale
examples  except  SL80-5  and  SL120-5.  And  HCRO
also shows its  advantage in Av. .  The results  reveal  the
effectiveness  of  SA.  It  can  be  seen  from  the
comparison  between  HCRO3  and  HCRO  that  HCRO
can improve Av. and Dev in small-scale examples.

HCRO can optimize the MK  and Av. of all medium-
scale  examples.  In  the  large-scale  examples,  HCRO
can obtain better MK  than HCRO2 except SL80-5 and
SL120-5 and improve Av. in all large-scale examples.

From  the  comparison  between  HCRO  and  HGA  in
Table  11,  HCRO  gets  smaller MK  in  SL20-5  and  the
same MK  as  HGA  in  other  small-scale  examples.
HCRO obtains smaller MK than HGA in medium-scale
and large-scale examples. Wilcoxon signed rank test is
used  to  statistically  justify  the  performance  difference
between  HCRO  and  HGA  in  terms  of Av.  HCRO
outperforms  HGA  with p-value=1.8×10−5 <0.05.  The
average T  of  HCRO  is  59.9  s  and  the  average T  of
HGA  is  2289.0  s.  So  HCRO  shows  superiority  than
HGA  in  terms  of T .  From  the  comparison  between
HCRO and GA-OP, HCRO gets the same MK  as GA-
OP in small-scale examples. This means that HCRO is
about  as  competitive  as  GA-OP  in  small-scale
examples.  In  medium-scale  examples,  GA-OP can  get
smaller MK  than  HCRO  in  SL50-3,  SL50-4,  SL50-5,
and SL60-4. HCRO obtains the same MK as GA-OP in
SL30-3,  SL30-4,  and  SL60-5.  HCRO has  smaller MK
than  GA-OP  in  SL30-5  and  SL60-3.  HCRO  can  get
better MK  than GA-OP in  all  large-scale  examples.  In
terms  of Av. ,  HCRO  outperforms  GA-OP  with p-

 

Table 10    Performance comparison of DFJSP in heterogeneous FMUs in Experiment 3.

Instance
HCRO1 HCRO2 HCRO3 HCRO

MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%)
SL10-3 11 11.5 3.4 0.1 11 11.4 3.6 0.0 11 11.0 2.0 0.0 11 11.0 7.2 0.0
SL10-4 10 10.4 3.8 0.1 10 10.4 5.4 0.1 10 10.3 2.1 0.0 10 10.1 6.4 0.0
SL10-5 9 9.2 3.4 0.1 9 9.2 5.6 0.0 9 9.1 2.0 0.0 9 9.0 9.8 0.0
SL20-3 60 61.0 8.1 0.0 60 61.2 8.4 0.0 60 60.6 4.3 0.1 60 60.6 13.3 0.0
SL20-4 59 60.1 8.1 0.0 59 59.1 12.1 0.0 59 59.2 4.7 0.0 59 59.1 12.7 0.0
SL20-5 59 59.4 8.2 0.0 59 59.1 11.8 0.0 59 59.6 5.0 0.0 59 59.0 12.0 0.0
SL30-3 133 140.2 16.7 0.0 130 136.2 21.5 0.0 131 136.2 8.1 0.0 130 135.0 21.5 0.0
SL30-4 109 110.3 15.4 0.0 109 109.7 18.9 0.0 109 109.7 8.8 0.0 109 109.4 19.6 0.0
SL30-5 113 116.3 16.6 0.0 110 113.4 20.9 0.0 111 113.0 9.0 0.0 109 110.9 22.0 0.0
SL50-3 177 185.8 23.2 0.0 171 178.5 30.9 0.0 170 177.5 13.4 0.0 169 176.8 31.0 0.0
SL50-4 163 169.2 21.0 0.0 155 162.0 30.0 0.0 155 159.9 12.9 0.0 153 159.8 34.6 0.0
SL50-5 153 159.0 24.6 0.0 144 148.3 30.5 0.0 143 147.2 13.7 0.0 142 145.7 31.8 0.0
SL60-3 232 238.6 25.8 0.0 225 231.7 33.0 0.0 224 230.1 13.9 0.0 223 229.0 35.0 0.0
SL60-4 199 207.9 27.4 0.0 190 195.7 34.8 0.0 191 196.0 15.4 0.0 190 195.4 37.1 0.0
SL60-5 147 152.4 28.0 0.0 133 138.7 33.7 0.0 137 140.4 16.1 0.0 132 136.1 35.9 0.0
SL80-3 275 281.5 55.7 0.0 252 259.3 75.8 0.0 252 259.2 34.4 0.0 251 257.0 76.2 0.0
SL80-4 225 232.4 57.3 0.0 202 208.6 75.3 0.0 203 207.4 34.5 0.0 201 206.3 76.6 0.0
SL80-5 190 196.9 58.4 0.0 169 173.7 71.7 0.0 169 173.0 36.7 0.0 169 172.7 78.1 0.0
SL100-3 410 418.5 76.0 0.0 385 390.7 111.6 0.0 380 388.0 46.7 0.0 379 386.0 118.4 0.0
SL100-4 370 378.5 74.9 0.0 336 344.6 110.1 0.0 336 344.4 43.6 0.0 334 342.6 116.3 0.0
SL100-5 297 305.2 73.9 0.0 266 268.8 107.1 0.0 264 268.1 46.1 0.0 263 267.1 109.8 0.0
SL120-3 739 748.5 102.7 0.0 701 709.6 139.7 0.0 698 706.3 59.6 0.0 693 703.7 146.7 0.0
SL120-4 520 534.3 112.3 0.0 479 487.8 155.7 0.0 479 485.5 66.3 0.0 476 483.3 175.4 0.0
SL120-5 428 436.5 115.8 0.0 377 383.3 179.1 0.0 377 384.6 77.1 0.0 377 381.4 209.7 0.0
Average − − 40.4 0.0 − − − 0.0 − − 24.0 0.0 − − 59.9 0.0
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value=0.0475<0.05,  which means HCRO shows better
stability  than  GA-OP.  In  addition,  the  average T  of
GA-OP is 249.8 s, slower than that of HCRO (59.9 s).
To sum up,  HCRO gets  the same optimal  solutions as
HGA in small-scale examples and shows its advantages
in medium-scale and large-scale examples. Meanwhile,
HCRO  outperforms  HGA  in  terms  of  the  stability  of
solutions and computation time.  HCRO is  competitive
with GA-OP in small and medium-scale examples, but
HCRO  is  better  than  GA-OP  in  large-scale  examples.

And  HCRO is  also  better  than  GA-OP in  the  stability
of solutions and computation time.

To explore the influence of the number of machines
in  each  FMU on the  algorithms,  SL30-3,  SL50-3,  and
SL80-3  are  selected  for  further  experiments.  The
second  column  of Table  12 indicates  the  number  of
machines  in  the  three  FMUs.  The  third  column  of
Table  12 shows the  standard  deviation  of  machines  in
three  FMUs  which  indicates  the  difference  in  the
number  of  machines  between  three  FMUs.  When  the

 

Table 11    Performance comparison between different algorithms in heterogeneous FMUs in Experiment 3.

Instance
HGA GA-OP HCRO

MK Av. T(s) Dev (%) MK Av. T(s) Dev (%) MK Av. T(s) Dev (%)
SL10-3 11 12.5 33.4 0.1 11 11.0 10.9 0.0 11 11.0 7.2 0.0
SL10-4 10 11.2 36.6 0.1 10 10.0 10.9 0.0 10 10.1 6.4 0.0
SL10-5 9 9.9 38.7 0.1 9 9.0 12.1 0.0 9 9.0 9.8 0.0
SL20-3 60 63.2 96.6 0.0 60 60.4 25.3 0.0 60 60.6 13.3 0.0
SL20-4 59 62.1 94.1 0.0 59 59.1 30.3 0.0 59 59.1 12.7 0.0
SL20-5 60 63.5 96.6 0.0 59 59.2 32.1 0.0 59 59.0 12.0 0.0
SL30-3 140 151.4 391.6 0.0 130 135.5 52.9 0.0 130 135.0 21.5 0.0
SL30-4 116 123.2 475.9 0.0 109 109.9 56.0 0.0 109 109.4 19.6 0.0
SL30-5 119 121.7 447.3 0.0 110 114.4 63.7 0.0 109 110.9 22.0 0.0
SL50-3 180 193.0 1090.2 0.0 166 173.1 114.9 0.0 169 176.8 31.0 0.0
SL50-4 161 167.9 1058.4 0.0 144 150.9 112.5 0.0 153 159.8 34.6 0.0
SL50-5 147 159.2 1079.9 0.0 134 137.9 118.3 0.0 142 145.7 31.8 0.0
SL60-3 243 250.4 1790.5 0.0 225 230.7 123.1 0.0 223 229.0 35.0 0.0
SL60-4 218 226.3 1783.7 0.0 187 191.1 131.8 0.0 190 195.4 37.1 0.0
SL60-5 158 167.6 1908.4 3.0 132 137.5 136.1 0.0 132 136.1 35.9 0.0
SL80-3 389 307.7 4800.9 0.0 253 260.8 315.3 0.0 251 257.0 76.2 0.0
SL80-4 234 243.8 4787.9 0.0 206 211.7 414.6 0.0 201 206.3 76.6 0.0
SL80-5 205 209.8 4926.1 0.0 171 176.3 385.2 0.0 169 172.7 78.1 0.0
SL100-3 437 448.2 5000 0.0 394 402.9 498.1 0.0 379 386.0 118.4 0.0
SL100-4 393 406.1 5000 0.0 354 368.4 470.6 0.0 334 342.6 116.3 0.0
SL100-5 324 335.1 5000 0.0 264 267.7 464.1 0.0 263 267.1 109.8 0.0
SL120-3 764 787.6 5000 0.0 712 727.0 673.4 0.0 693 703.7 146.7 0.0
SL120-4 552 569.5 5000 0.0 527 537.5 769.7 0.0 476 483.3 175.4 0.0
SL120-5 467 480.7 5000 0.0 384 394.0 875.6 0.0 377 381.4 209.7 0.0
Average − − 2289.0 0.0 − − 249.8 0.0 − − 59.9 0.0

 

 

Table 12    Influence of the number of machines in the FMUs on the algorithms.

Instance
Number of machines

(FMU1, FMU2, and FMU3)
Standard deviation

HGA GA-OP HCRO
MK Av. MK Av. MK Av.

SL30-3 9, 8,12 1.7 140 151.4 130 135.5 130 135.0
SL30-3* 10,6,12 2.5 144 152.0 135 143.7 130 134.7
SL50-3 12,9,11 1.2 180 193.0 166 173.1 169 176.8
SL50-3* 11,11, 6 2.4 215 222.0 224 244.7 189 202.1
SL80-3 16,13,15 1.2 389 307.7 253 260.8 251 257.0

SL80-3* 17,9,15 3.4 310 322.0 323 339.5 252 274.2
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number  of  machines  in  the  three  FMUs  is  not  much
different,  GA-OP  has  absolute  advantages  in MK  and
Av. than  HGA.  In  SL80-3,  GA-OP  is  worse  than
HCRO both  in MK  and  Av. .  GA-OP can get  the  same
MK as HCRO in SL30-3 and even get smaller MK than
HCRO in SL50-3. When the number of machines in the
three  FMUs  differs  greatly,  in  SL30-3*,  GA-OP  gets
the  better MK  than  HGA  and  gets  worse MK  than
HCRO.  HCRO  has  3.7% improvement  compared  to
GA-OP in MK  in  SL30-3*.  In SL50-3*,  HGA can get
better MK and Av. than GA-OP and HCRO has 15.6%
improvement compared to GA-OP in MK. In SL80-3*,
HGA can also get better MK and Av. than GA-OP and
HCRO has 22.0% improvement compared to GA-OP in
MK.  Therefore,  the  GA-OP  is  inferior  to  HCRO  and
HGA  when  the  number  of  machines  in  these  FMUs
differs greatly. And as the size of the job increases, the
disadvantage  becomes  more  obvious.  This  is  because
the  encoding  method  of  GA-OP  only  involves  the
arrangement  of  operations,  and  the  choices  of  FMU
and machine are both subject to rules. Therefore, when
the number of machines differs greatly between FMUs,
the  rule  of  FMU  allocation  makes  the  algorithm  fall
into  a  local  optimum.  The  operation-FMU  encoding-
decoding method proposed in this  paper can explicitly
express  two  of  the  three  sub-problems  of  DFJSP.  The
choice of the FMU is not affected by the rule, and the
solution  space  can  be  searched  to  a  greater  extent.
Therefore,  GA-OP  is  affected  by  the  number  of
machines  in  each  FMU  while  HCRO  and  HGA  are
slightly  affected  by  the  number  of  machines  in  each
FMU.

In  conclusion,  the  operation-FMU  encoding-
decoding  method  can  search  the  solution  space  to  a
large  degree  without  the  affection  of  the  number  of
machines  in  each  FMU,  while  the  machine  selection
rule  can  balance  the  workload  of  the  machines  at  the
same  time  to  get  a  better  solution  quickly.  This
encoding  and  decoding  method  makes  HCRO  have
strong  applicability  to  solve  DFJSP  in  homogeneous
and heterogeneous environments at the same time.

The  rule  is  used  for  initializing  partial  solutions,
which  enables  HCRO  to  search  in  a  better  area  while
maintaining  diversity  in  the  initial  stage  of  the
algorithm, which can improve the quality of the initial
solution  and  speed  up  the  convergence  rate.  The  new
solution acceptance method based on SA can improve
the  optimization  ability  and  stability  of  the  algorithm
on  the  basis  of  ensuring  the  constant  number  of
molecular  populations.  The  critical-FMU  refinement

methods focus on critical FMU, which can optimize the
target  to  a  certain  extent  and  enhance  the  local  search
ability  of  the  algorithm.  In  this  case,  the  HCRO
algorithm  can  search  for  better  solutions  compared
with  the  comparative  algorithms,  which  is  especially
outstanding  in  large-scale  calculation  examples.  In
addition,  HCRO  is  superior  to  the  comparison
algorithms  in  terms  of  time  due  to  the  superior
convergence  of  CRO  algorithm  and  its  encoding
method.

5    Concluding Remark

In this paper, an HCRO algorithm is proposed to solve
DFJSP  on  heterogeneous  FMUs.  Aiming  at  the
characteristics  of  the  problem,  an  operation-FMU
based  encoding-decoding  method  is  designed.  The
method  of  random  generation  and  rule  generation  is
used  for  generating  initial  population.  Four  collision
operations  of  CRO  algorithm  are  designed  and
simulated  annealing  algorithm is  combined  with  CRO
algorithm  to  accept  new  solutions  from  the  four
collision reactions to improve the search capability.  In
addition,  a  refinement  method  is  designed  for  critical-
FMU.  Finally,  three  groups  of  comparative
experiments which include 50 DFJSP instances in total
are carried out. Compared with the existing algorithms
with  better  performance,  HCRO  has  slightly  less
stability but can get the same optimal solution in small-
scale  examples  on  homogeneous  FMUs.  Compared
with two existing algorithms, the superiority of HCRO
in solving the large, medium, and small-scale examples
on  heterogeneous  FMUs  is  verified,  and  the
effectiveness  of  initialization  rules,  the  critical-FMU
refinement  methods,  and  new  solution  acceptance
method  based  on  simulated  annealing  algorithm  are
also  verified.  In  future  research,  we  try  to  apply
chemical reaction optimization algorithm to the energy-
efficient  DFJSP  because  the  energy-efficient  DFJSP
has attracted significant attention from the viewpoint of
sustainable  development  and  green  manufacturing,
which  includes  developing  a  new  chromosome
representation,  establishing  corresponding
mathematical  model,  and  designing  the  corresponding
scheduling rules.
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