
 

Optimal Design of Flexible Job Shop Scheduling Under Resource
Preemption Based on Deep Reinforcement Learning
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Abstract: With  the  popularization  of  multi-variety  and  small-batch  production  patterns,  the  flexible  job  shop

scheduling  problem  (FJSSP)  has  been  widely  studied.  The  sharing  of  processing  resources  by  multiple

machines frequently occurs due to space constraints in a flexible shop, which results in resource preemption for

processing  workpieces.  Resource  preemption  complicates  the  constraints  of  scheduling  problems  that  are

otherwise difficult to solve. In this paper, the flexible job shop scheduling problem under the process resource

preemption  scenario  is  modeled,  and  a  two-layer  rule  scheduling  algorithm  based  on  deep  reinforcement

learning is proposed to achieve the goal of minimum scheduling time. The simulation experiments compare our

scheduling  algorithm  with  two  traditional  metaheuristic  optimization  algorithms  among  different  processing

resource  distribution  scenarios  in  static  scheduling  environment.  The  results  suggest  that  the  two-layer  rule

scheduling algorithm based on deep reinforcement learning is more effective than the meta-heuristic algorithm

in  the  application  of  processing  resource  preemption  scenarios.  Ablation  experiments,  generalization,  and

dynamic experiments are performed to demonstrate the excellent performance of our method for FJSSP under

resource preemption.
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1    Introduction

In  recent  years,  with  the  development  of  industrial
production  and  market  demand,  flexible  job  shop
system has been widely studied as an important form of
intelligent  workshop.  Flexible  job  shop  scheduling
problem  turns  out  to  be  an  NP-hard  problem.  As  an
important processing tool in production lines, industrial
robots  have  been  widely  used  in  smart  workshops  in
recent years. In many scenarios, robots use resources to
process  work.  However,  due  to  the  short  supply  of
processing resources such as  space and tools,  multiple
processing  robots  often  need  to  share  a  resource  pool,

that  is,  processing  under  resource  constraints.
Scheduling  jobs  in  the  above  environment  constitute
the  flexible  job  shop  scheduling  problem  under
resource  preemption  (FJSSP-RP).  In  this  paper,  we
abstract  and  model  FJSSP-RP.  In  FJSSP-RP,  different
processing  tasks  need  to  be  completed  by  matching
robots,  and  the  premise  that  robots  can  perform
processing a task is to obtain the resource required for
processing  specific  task.  In  addition,  in  the  actual  job
shop,  the  modeling process  of  the  scheduling problem
is  similar,  only  the  types  of  processes  or  the
distribution  of  resources  are  different,  so  the
generalization  of  the  solution  algorithm is  also  one  of
the factors to be considered.

The  essence  of  FJSSP-RP  still  belongs  to  the
category of FJSSP. The improved heuristic algorithm is
a  mainstream  method  to  solve  FJSSP.  Zhang[1]

proposed  a  multi-objective  optimization  algorithm
fusion  non-dominated  sorting  genetic  algorithm
(FNSGA)  based  on  the  improved  non-dominated
sorting genetic algorithm-II (NSGA-II)  algorithm. The
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algorithm  was  used  to  solve  the  problems  of  slow
search speed and low efficiency of scheduling scheme in
the  traditional  multi-objective  optimization  algorithm.
In  order  to  optimize  the  muti-goal  of  job  shop
completion  time,  total  machine  load,  and  job  shop
energy  consumption,  Zhu[2] proposed  an  improved
strong  propagation  NSGA-II  algorithm  in  which  the
chromosomes  were  divided  into  strong  propagation
subgroups  and  ordinary  subgroups  according  to  the
different reproductive ability.  The two subgroups used
different  genetic  operations  according  to  their  own
characteristics,  so  as  to  promote  the  efficiency  of  the
algorithm.  For  minimizing  the  shop  completion  time,
Ref. [3] introduced a new conversion mechanism based
on  the  differential  evolution  algorithm,  which  makes
the differential evolution algorithm suitable for solving
discrete problems.  In Ref.  [4],  a  new hybrid improved
genetic  algorithm was  proposed  to  solve  and  optimize
the  FJSSP.  The  new  genetic  algorithm  improved  the
diversity  of  the  population  by  strengthening  the  initial
population quality,  and promoted the search ability  by
improving  the  mutation  mechanism.  According  to  the
standard  cuckoo  algorithm,  a  double-layer  coding
discrete  cuckoo  algorithm  was  proposed  in  Ref.  [5].
Teekeng et  al.[6] adopted  the  improved particle  swarm
optimization algorithm to avoid premature convergence
to the local optimal solution by expanding the solution
space  of  FJSSP.  And  Teekeng  et  al.[6] used  20
benchmark  examples  to  benchmark  enhanced  particle
swarm optimization (EPSO) to prove the effectiveness
of the algorithm. Boyer et al.[7] proposed a generalized
flexible  job  shop  scheduling  model  based  on  a  real
seamless  rolling  ring  manufacturing  environment  and
considering  various  strong  constraints  such  as  time
delay and holding time. On this basis, a greedy random
adaptive  search  algorithm  was  proposed  to  minimize
the maximum completion time. Liu et al.[8] proposed a
mixed-variable differential evolution approach to solve
coordinated  charging  scheduling  of  electric  vehicles.
Zhou  et  al.[9] proposed  a  self-adaptive  differential
evolution  algorithm  for  scheduling  a  single  batch-
processing machine with arbitrary job sizes and release
times.  Zhao  et  al.[10–12] proposed  three  new  improved
algorithms for different flowshop scheduling scenarios.
However, in the FJSSP-RP problem, the difficulty and
complexity of encoding and decoding using traditional
heuristic  algorithms  are  increased  due  to  resource
preemption, and the convergence speed is also affected.
At  the  same  time,  the  dynamic  problem  of  job  shop
cannot  be  solved  by  traditional  heuristic  algorithm.  In

addition,  heuristic  algorithms  can  only  be  specifically
designed  for  specific  problems,  and  have  poor
generalization.

In  view of  the  shortcomings  of  the  above  solutions,
reinforcement learning algorithm has also been applied
to  solve FJSSP[13] in  recent  years.  In  static  scheduling
environments, Gabel and Riedmilier[14] transformed the
classical job shop scheduling into a sequential decision
problem,  and  introduced  the  neural  network  to
approximate  the  value  function.  Martínez  et  al.[15]

combined  the  heuristic  algorithm  with  reinforcement
learning  (RL)  to  find  suitable  operators  and  optimize
based  on  that.  Chen  et  al.[16] proposed  a  self-learning
genetic algorithm based on reinforcement learning. The
algorithm  uses  genetic  algorithm  as  the  basic
optimization  method,  and  its  key  parameters  are
intelligently  adjusted  by  reinforcement  learning,  in
order  to  obtain  faster  convergence  speed  and  better
convergence  results.  In  dynamic  scheduling
environments,  value-based  algorithms  are  widely
adopted.  Reference  [17]  modeled  the  dynamic
scheduling  problem  with  new  job  insertion  in  FJSSP,
took  minimizing  the  completion  time  as  the
optimization  objective,  and  solved  the  problem  by
using  the  deep-Q-network  (DQN)  algorithm.  Csáji
et  al.[10] proposed a triple-level learning mechanism to
achieve  adaptive  behavior  and  search  space  reduction.
Wang  et  al.[18] applied  multi-agent  reinforcement
learning  to  deal  with  workshop  resource  constraints
scheduling problem.

Based  on  the  above  existing  practice  in  FJSSP,  we
can conclude that  although the  heuristic  algorithm has
good search ability, the generalization of the algorithm
and  the  ability  to  deal  with  dynamic  events  in  the
production  process  are  insufficient.  Therefore,  we
focus our algorithm on RL-based algorithm. In view of
the shortage of  resources  in  the  FJSSP-RP problem,  it
is  very  important  to  reasonably  select  the  artifacts
participating in the current scheduling action. We apply
this idea to the design of the RL algorithm.

In  this  paper,  the  resource  preemptive  flexible  job
shop  scheduling  problem  is  analyzed  and  optimized.
On this basis, a two-layer rule scheduling optimization
algorithm based on proximal policy optimization (PPO)
algorithm  is  proposed.  The  experiments  compare  our
scheduling  algorithm  with  two  traditional  meta-
heuristic  optimization  algorithms  among  different
processing  resource  distribution  scenarios.  The  results
suggest  that  the  two-layer  rule  scheduling  algorithm
based on deep reinforcement learning is more effective
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than  meta-heuristic  algorithm  in  the  application  of
processing resource preemption scenarios. Furthermore,
we test the algorithm under dynamic conditions such as
random  device  failures,  and  use  the  control  variable
method  to  test  the  components  in  the  algorithm.
Finally,  we  show  the  generalization  of  the  trained
algorithm to other  resource distribution scenarios.  The
results  show  that  the  proposed  algorithm  has  good
generalization and dynamic coping ability for FJSSP-RP.

The  content  of  this  article  is  organized  as  follows:
Section  2  introduces  the  background  of  the  problem
and  the  algorithm.  Section  3  describes  and  formalizes
the  problem,  and  gives  the  detailed  design  of  the
algorithm.  In  Section  4,  we  compare  the  performance
of  the  algorithm in  this  paper  with  the  two  traditional
algorithms  under  different  processing  resource
distributions. The generalization, dynamic, and ablation
experiments are carried out for the performance of the
algorithm proposed in this paper. Section 5 presents the
conclusion of this paper.

2    Background

2.1    Resource  preemption  in  flexible  job  shop
scheduling

{J1, J2, J3, ..., Jn}
{M1,M2,M3, ...,Mm}

{Oi1,Oi2,Oi3, ...,Oin} Oi j

Ji

As  an  NP-hard  problem[19],  flexible  job  shop
scheduling problem is one of the most key problems in
manufacturing  and  process  planning[20].  In  this
problem,  a  group  of  workpieces  are  recorded  as

 and need to be processed in a group of
machines  recorded  as .  The
processing  of  each  workpiece  includes  multiple
processes , where  represents the
j-th  process  of  the i -th  workpiece .  The  processes
meet  certain  sequence constraints.  At  a  certain  time,  a
machine  can  only  process  one  process  of  one
workpiece.  The  flexibility  of  flexible  job  shop
scheduling problem is reflected in two aspects. On one
hand, the same machine can process different processes
of  different  workpieces  at  different  time.  On the  other
hand,  for  a  workpiece,  the  processing  machine  is  not
fixed,  and  a  production  line  can  be  composed  of
multiple different machines to minimize the processing
time of the workpiece.

Flexible  job  shop  can  be  divided  into  fully  flexible
job  shop  and  partial  flexible  job  shop  according  to
Ref.  [2].  In a fully flexible job shop, each process can
be  completed  on  any  machine,  that  is,  the  list  of
processes  that  can  be  processed  by  each  machine
contains  all  processes.  In  partial  flexible  job  shops,

n
M j

{O j1,O j2,O j3, ...,O jm} m ⩽ n

processes can only be completed in specific machines.
For  example,  for  all  processes,  the  set  of  processes
that  can  be  processed  by  machine  is

, where . In actual production
and  life,  partial  flexible  job  shops  are  more
common[21].

Mi

M j

{Oi j1,Oi j2,Oi j3, ...,Oi jm} Oi jr

Mi M j

Oi jk Mi

M j

In the general flexible job shop scheduling problem,
the  process  resources  in  the  resource  list  of  each
machine  are  independent  of  each  other,  but  in  some
specific  scheduling  scenarios,  there  are  some
restrictions  on  the  resources  between  each  machine.
For  example,  aircraft  carrier  deck  supply  scheduling,
automobile  maintenance  scheduling,  etc.  In  other
words, the concept of “machine” in the above problem
can  be  understood  as  a  spatial “occupant” ,  each
“occupant” can only process one workpiece at a certain
time,  and  some  occupants  may  share  resources  for
processing  operations.  For  example,  machine  and
machine  share  a  set  of  resource  lists

,  where  represents  the r-th
shared  process  resource  of  and machine .  When

 in the resource list is used by machine , machine
 can only use the remaining resources in the resource

list  during  the  same  time  period.  Scheduling  the
processing  of  the  workpiece  in  such  a  scenario
constitutes  a  flexible  job  shop  scheduling  problem
under resource preemption.

2.2    Markov  decision  process  and  reinforcement
learning

⟨S ,A,T,R⟩

s ∈ S a ∈ A
s′ ∈ S

Ra(s, s′)
T (s′,a, s) ∈ [0,1]

π : s→ a

Markov  decision  process  (MDP)  is  a  mathematical
modeling  of  sequential  decision  events[22].  MDP
models decision-making in solving the problem whose
results  are  partly  random  and  partly  controlled  by
decision-makers.  And  MDP is  of  great  significance  to
the study of the optimization of dynamic programming.
A  Markov  decision  process  is  represented  by  a  quad

 formed  by  state  set S ,  action  set A ,  state
transition function T, and reward function R. Given any
state ,  selecting  an  action  will  cause  the
environment to enter a new state ,  and return the
reward .  The  new  state  is  determined  by  the
transition  probability  matrix .  Random
strategy  refers  to  the  probability  distribution
of action in a given state[23].

Reinforcement  learning,  as  a  field  of  machine
learning,  emphasizes  how  to  interact  with  the
environment and take appropriate  actions to maximize
the goal. Markov decision process is the most common
form  of  defining  reinforcement  learning  problems.
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Reinforcement  learning  algorithm  mainly  uses
temporal-difference  learning  method,  Monte  Carlo
method,  and  dynamic  programming  method  to  update
its value function or strategy function[24].

Deep  reinforcement  learning  is  the  product  of  the
combination  of  deep  learning  technology  and
reinforcement  learning.  The  powerful  function
approximation  ability  of  deep  learning  enables  the
agent  to  learn  the  value  function  or  strategy  function
more  efficiently,  and  provides  the  possibility  for  end-
to-end  learning  with  better  performance[25].
Specifically,  two  mainstream  algorithms  based  on
value and strategy are formed. Value-based algorithms
generally  only  work  in  discrete  action  spaces,
deterministic  strategy  based  strategies  generally  work
in continuous action spaces, and random strategy based
strategies  support  discrete  and  continuous  action
spaces[26].

2.3    Proximal policy optimization algorithm

Proximal  policy  optimization  (PPO)  algorithm  is  a
model free deep reinforcement learning (DRL) method
and a  classical  algorithm in actor-critic  architecture.  It
can be applied to discrete control tasks and continuous
control  tasks.  In  aspects  of  exploration  methods  and
sample  management,  PPO  adopts  an  off-policy
architecture,  which  means  the  sampling  strategy  is
different  from  the  strategy  to  be  optimized,  so  as  to
improve  the  sampling  efficiency.  In  order  to  improve
sample  usage  efficiency,  PPO  divides  a  batch  of
samples into multiple mini-batches and reuses them for
many  times.  In  gradient  calculation,  PPO  inherits  the
idea  of  confidence  region  of  trust  region  policy
optimization  (TRPO)  algorithm  and  increases  the
stability of training by limiting the range of parameter
update.

pθ(τ)
pθ′ (τ)

PPO  applies  the  importance  sampling  method  to
change  the  training  algorithm  of  on-policy  into  off-
policy,  which  not  only  improves  the  low  sample
utilization  of  on  policy  algorithm,  but  also  has  the

characteristics  of  high  stability  of  on  policy. 
represents the importance weight in displayed equation.
 

∇R̄θ = Eτ∼pθ′ (θ)

[
pθ(τ)
pθ′ (τ)

R(τ)∇ log pθ(τ)
]

(1)

where E is the expectation of the reward.

πθ′ (a | s)
πθ(a | s)

In  addition  to  using  KL  divergence  to  punish  the
probability  distribution  of  constrained  actions,  another

implementation of PPO algorithm is to use . In

this approach, the degree constraint of deviation from 1
replaces  the  Kullback–Leibler  (KL)  divergence
constraint,  and the excess  part  shall  be cut  directly[27].
Only the data in the confidence interval can return the
gradient to the policy network. For the excess part, the
gradient  will  not  be  generated  due  to  the  truncation
operation.

The  algorithm  flow  of  PPO  is  shown  in
Algorithm 1[28].

3    Problem  Description  and  Algorithm
Design

3.1    Problem description

N
{J1, J2, J3, ..., Jn} m

O = {O1,O2,O3, ...,Om}
Jk{
o j1(k) → o j2(k) → ·· · → o jh(k) | o ji ∈ O

}
OMp = {om1,om2, . . . ,omr | omi ∈ O} ⊂ O

Mi1 Mi2

Min n ⩾ 1

Op tspan

Mi j W(Mi j)
Mi j M′i j ttrans = (W(Mi j)−

FJSSP  is  an  NP-hard  problem.  The  occurrence  of
resource  preemption  in  FJSSP-RP  makes  some
resources  dynamically  available  at  some  moments,
which  further  increases  the  state  space  of  FJSSP-RP.
The  flexible  job  shop  scheduling  problem  under
resource preemption is described as follows: There are

 workpieces  in  the  job  shop  which  need  to  be
processed, denoted as . There are  types
of  all  processes  for  all  workpieces,  and  the  complete
set  is .  For  a  certain  workpiece

,  the  list  of  processes  to  be  completed  is  denoted  as
.  For  the  process

resource  list ,
it is shared by the machine or the occupant , , ...,

, where . For each process of the workpiece, a
corresponding machine is  required for  processing,  and
the  machine  must  contain  the  resources  corresponding
to  the  current  processing  procedure  of  the  workpiece.
Each  process  has  a  fixed  processing  time,  the
processing time of the process  is donated as . It
takes  time  for  the  workpiece  to  transfer  between
different  machines.  The  transfer  time  is  related  to  the
speed  and  the  distance  between  the  machines.  The
position of the occupant  is donated as , then
the  transfer  time  from  to   is  
 

Algorithm 1　PPO algorithm
1 For itration=1, 2, ..., do
2 　For actor=1, 2, ..., N do
3 πθold　　Run policy  in environment for T timestep

4 Â1, Â2, . . . , ÂT　　Compute advantage etimates 
5 　End for
6

M ⩽ NT
Optimize surrogate L wrt θ with L epochs and
minibatch size 

7 θ→ θold　

8 End for
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W(M′i j))/speed .

tdelay Jk

(d(k))-th o jd(k) OJk

td(k)

trans

td(k)

delay

td(k)
span

Because  of  the  scheduling  arrangement,  the
workpiece may need to wait in the original place before
proceeding to the next processing, which is recorded as

.  Assuming  that  the  workpiece  completes  the
 process  of its process list , the transfer

time  required  before  processing  is ,  the  waiting
time required for scheduling is , and the processing
time  to  complete  is .  Under  the  constraints  of
production relations, the scheduling objective is to find
a  scheme  with  the  shortest  time  to  complete  all  tasks,
which is expressed below:
 

minimize

max
1⩽k⩽n

d
(k)=h(k)∑
d(k)=1

(
td(k)

trans + td(k)

delay + td(k)

span

)
 .

3.2    Design  of  a  PPO-based  two-layer  rule
scheduling algorithm

The  block  diagram  of  the  PPO-based  two-layer  rule
scheduling  optimization  algorithm  is  shown  in Fig.  1.
In each iteration, according to the actions output by the
PPO,  the  algorithm  selects  the  workpieces  that
participate in current update, and selects the allocation
rules  for  workpieces.  And  then  the  job  shop
environment  is  changed  according  to  the  above  two
rules.  Finally,  the  environment  state  and  rewards  are
provided  to  the  agent,  and  the  next  iteration  will
continue.

One of  the main features  of  this  algorithm is  that  in
order  to  ensure  that  the  output  action  is  as  simple  as
possible to apply to the agent, and to maximize the role

of  human  experience,  the  upper  and  lower  levels  of
scheduling  action  mechanisms  are  used  here  to  solve
the scheduling problem under resource constraints. The
specific  method  is:  the  upper-level  action  is  that  the
PPO selects the workpieces to participate in the current
round  of  update  according  to  the  current  environment
information, and the action used in the current round of
the  update  is  selected  in  the  lower-level  simple  action
set; the lower-level action is some set of matching rules
that  have  been  restricted.  The  details  are  shown  in
Table 1.

The detailed design process of the algorithm is given
below. Prior to this,  the parameter information used is
given in Table 2.
3.2.1    State
As  the  input  of  the  PPO  algorithm,  the  state
information  needs  to  reflect  the  information  of  the
current environment as comprehensively as possible, so
that  the  agent  can  make  better  decisions.  The  state
information  should  include  all  machine’s  status
information,  workpiece  information,  and  process
information.  The  status  sequence  information  is
defined as follows:
 

State = [MJ ,MS ,ML, Jnext , Jnow , Jleft , Jdone ] (2)
3.2.2    Action

N

N N

(N +1)-th

When  the  number  of  processed  workpieces  is ,  the
output  action  of  the  PPO  network  is N +1  dimension.
The  first  dimensions  specify  the  situation  where 
workpieces  participate  in  this  round  of  iteration,  and
the  output  set  of  each dimension is  {0,  1}. “1”  means
participating,  and “0”  means  not.  The 

 

Step 3:  According to the action
instructions, the workpieces participating
in this round of iteration are selected, and
the remaining workpieces continue to be
processed or wait to be processed. And
according to the action instructions, the
mapping rule between the current round
of workpieces and resources is selected.

Step 1: The situation of each occupied
part in the current scheduling scene,
the situation of each common resource,
the current position of the workpiece,
and the remaining time of processing
are obtained.

Step 2: The DRL algorithm PPO in
the form of actor-critic is used to
output high-dimensional discrete
actions. During this period, the
actor's output needs to be shielded
from illegal actions.

Resource preemption workshop scenario model PPO

Step 4: The global state of the
scene is updated according to
the information in the previous
step, and the reward of this step
can be calculated.

Workpiece 3

Workpiece 2

Workpiece 1 Rule 1

Selector

Machine 1 Machine 2

State

Reward
Memory

Actor

Importance
sample

Update

Critic

Mask
Action

Machine 3
Resource list

Resource list

0
1
7

8

...

2
3
4

6

...

5
3
7

6

...

Machine n Machine m

Rule 2

Rule j

...
...

...

 
Fig. 1    PPO-based two-layer rule scheduling algorithm flowchart.
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N-
dimension specifies the lower-level action taken in this
iteration. For the first dimensional output, because of
the  environment’s  restrictions  on  workpieces,  it  is
necessary  to  shield  the  illegal  action  of  the N-
dimensional  action  before  the  PPO  output  and  the
actual  output  results  are  fed  back  to  the  network
training through the loss function.
3.2.3    Reward
The design part of the reward is very important and is
related  to  the  convergence  speed  and  convergence
effect  of  the  model.  The  reward  design  mainly
considers  two  aspects.  On  one  hand,  the  invalid
scheduling  action  is  punished.  The  invalid  scheduling
action here is  defined as:  one workpiece is  selected to
participate in this iteration, but in fact the environment
cannot  provide  the  resources  needed  for  its  next  step,
namely:
 

∃Ji ∈ Jchoosed ,OJnext
i < S offer (3)

Msum

On  the  other  hand,  the  effective  use  of  resources
needs to be rewarded. The effective use of resources is
measured  by  the  following  method:  the  size  of  the
number of machines in processing . Based on the
above considerations, the reward is expressed below:
 

reward =


−10, if Eq. (4) is true;
2, else if 3 ⩽ Msum;
−1, else

(4)

3.2.4    Environment iteration steps
The environment iteration steps are given below:

Jchoosed

Rchoosed

Jchoosed

Mchoosed Rchoosed

Step  1:  Determine  the  workpieces  set 
participating  in  this  iteration  and  the  rule 
adopted  in  this  iteration  according  to  the  PPO  output.
Calculate  the  matching  relationship  between 
and  according to .

Step 2: Update the remaining processing time of the
machine. For machine in complete set of machines M,
the increased time in this round of iteration is:
 

∆ti =


0, if Mi < Mchoosed;
ttrans+ tspan, if Mi ∈ Mchoosed

for i ∈ [0, len(M)]
(5)

Update the remaining processing time to
 

Ti← Ti+∆ti (6)

min(Ti)Determine  the  time  step  of  this  iteration  as .
Subtract the duration of this round to get the processing
duration after this iteration:
 

Ti← Ti−min(Ti) , if Ti < 0 then let Ti = 0 (7)

Ti = 0Step  3:  If ,  then  update  the  status  of  the

 

Table 1    Lower level action set.

No. Rule name
1 The shortest processing time in sequence in the next iteration
2 The longest processing time in sequence in the next iteration
3 The shortest processing and transfer time in sequence in the next iteration
4 The longest processing and transfer time in sequence in the next iteration
5 The shortest transfer time in sequence in the next iteration
6 The longest transfer time in sequence in the next iteration

 

 

Table 2    State parameter list.

Symbol Explanation
MJ Set of workpieces currently being processed

Msum Number of machines in processing
MS List of current resources of all machines
ML Remaining time to complete the current process for all machines

OJnext
i JiWorkpiece  next process label

Jnow Processing state collection of each workpiece
Jleft Number of remaining processes for each workpiece

Jdone Number of completed processes for each workpiece
Jchoosed Set of workpieces selected to participate in the current iteration
Soffer Available processing resources and machine information

Rchoosed The lower rule selected in the current iteration
M Complete set of machines
Ti i-thRemaining time of the current processing procedure of the  machine
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relevant  workpiece  to  be  idle  and  machine  to  be
available.
3.2.5    Algorithm iteration steps
Finally, the process of each iteration of the algorithm is
given as follows:

Step  1:  The  situation  of  each  occupied  part  in  the
current scheduling scene, the situation of each common
resource, the current position of the workpiece, and the
remaining time of processing are obtained.

Step  2:  The  DRL  algorithm  PPO  in  the  form  of
actor-critic is used to output high-dimensional discrete
actions. During this period, the actor’s output needs to
be shielded from illegal actions.

Step  3:  According  to  the  action  instructions,  the
workpieces  participating  in  this  round  of  iteration  are
selected,  and the remaining workpieces continue to be
processed or wait to be processed. And according to the
action  instructions,  the  mapping  rule  between  the
current round of workpieces and resources is selected.

Step  4:  The  global  state  of  the  scene  is  updated
according  to  the  information  in  the  previous  step,  and
the reward of this step can be calculated.

4    Case Study

In  order  to  verify  the  effectiveness  of  the  proposed
model  and  algorithm,  this  paper  takes  the  aircraft
carrier  deck  replenishment  scheduling  scenario  as  a
research  case,  and  compares  the  PPO-based  two-layer
rule scheduling optimization algorithm proposed in this
paper with several traditional meta-heuristic algorithms
in  solving  the  minimum  completion  time.  The
experimental  results  prove the effectiveness and better
generalization of the algorithm proposed in this paper.

4.1    Experiment scenario

The  issue  of  aircraft  replenishment  scheduling  on  the
aircraft carrier deck is an important consideration in the
design of the aircraft carrier deck. Due to the limitation
of  the  aircraft  carrier  deck  space,  the  aircraft’s  supply
resources  will  be  shared  by  the  replenishment  sites  or
machines. Therefore, this scenario constitutes a flexible
job scheduling problem under resource preemption.

Under  given  resource  occupancy  and  limited
conditions,  the  PPO-based  two-layer  rule  scheduling
optimization  algorithm  proposed  in  this  paper  is
compared  with  two  traditional  algorithms  under  three
different machine distributions and different number of
workpieces.

We  make  the  following  assumptions  about  the
problem.

speed
(1)  All  resources  and  machines  are  not  damaged

during  the  processing,  and  the  transfer  of  all
workpieces is 20.

(0,0)
(2)  Each  workpiece  starts  from  the  initial  position

.
The  specific  information  of  the  machine  and

workpiece is as follows.

(0,1,7,2,8)

The  machine  label  and  the  resources  it  contains  are
shown in Table 3, and the resource sharing situation is
also given. For example, from Table 3 we can see that
machine  6  and  machine  8  share  resources .
Table  4 shows  the  position  information  of  the  three
distributions. Table 5 shows the process information of
a variety of workpieces.

The genetic algorithm, ant colony algorithm, and the
algorithm proposed in this paper are used to solve and
compare  the  scheduling  of  the  three  machine
distribution  scenarios.  In  the  genetic  algorithm,  the
results  obtained  due  to  mutation  or  crossover
operations may not  necessarily meet  the constraints  of
resource  conflicts.  Here  we  perform  decoding  and
correction  operations  on  each  offspring  after  it  is
generated to ensure that the correct results are obtained.
In  the  ant  colony  algorithm,  the  resource  preemption
limit can be updated in the taboo table.

4.2    Result and analysis
4.2.1    Total makespan
In  view  of  the  above-mentioned  flexible  job  shop
 

Table 3    Machine and resource information.

Machine label Resource label Shared machine label
(shared resource label)

0 (0−8) 1(0−8)
1 (0−8) 0(0−8)
2 (0−8) 3(0−8)
3 (0−8) 2(0−8)
4 (0−8) −
5 (0−8) −
6 (0,1,7,2,8) 8(0,1,7,2,8)
7 (3,4,5,6) 9(3,4,5,6)
8 (0,1,7,2,8) 6(0,1,7,2,8)
9 (3,4,5,6) 7(3,4,5,6)
10 (0,1,7,2,8) 12(0,1,7,2,8)
11 (3,4,5,6) 13(3,4,5,6)
12 (0,1,7,2,8) 10(0,1,7,2,8)
13 (3,4,5,6) 11(3,4,5,6)
14 (0,1,7,2,8) 16(0,1,7,2,8)
15 (3,4,5,6) 17(3,4,5,6)
16 (0,1,7,2,8) 14(0,1,7,2,8)
17 (3,4,5,6) 15(3,4,5,6)
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scheduling  problem  under  resource  preemption,  it  can
be  seen  that  the  algorithm  proposed  in  this  paper  is
more  effective  in  terms  of  completion  time,  and  has
better generalization of the scene for different machine
distribution scenarios.

It  can  be  seen  from Figs.  2−4 that  the  genetic

algorithm and the PPO-based two-layer rule scheduling
optimization  algorithm  perform  better  than  the  ant
colony  algorithm.  When  the  number  of  workpieces  is
small,  the  algorithm  proposed  in  this  paper  and  the
genetic  algorithm  basically  have  the  same  results.
When  the  number  of  workpieces  is  large,  the  PPO-
based two-layer rule scheduling optimization algorithm
can find a better solution. The effect of particle swarm
optimization  is  much  worse.  An  important  reason  for
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Fig. 2    Distribution 1 scheduling result.
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Fig. 3    Distribution 2 scheduling result.
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Fig. 4    Distribution 3 scheduling result.

 

 

Table 4    Three machine distributions’ information.

Machine label Distribution 1 Distribution 2 Distribution 3
0 (40,13.5) (22, 4.1) (7.3,17.2)
1 (38,14.5) (36,14.5) (38,14.5)
2 (36,15) (34,15) (36,15)
3 (34,15.8) (32,15.8) (34,15.8)
4 (32,16.4) (5.1, 8.9) (32,16.4)
5 (30,17.1) (30,17.1) (30,17.1)
6 (6,16.2) (6,16.2) (6,16.2)
7 (4.2,14) (4.2,14) (4.2,14)
8 (3.6,11.5) (3.6,11.5) (3.6,11.5)
9 (3.1,9.3) (3.1, 9.3) (3.1,9.3)
10 (7,8.4) (7, 8.4) (7, 8.4)
11 (11,7.6) (11, 7.6) (11,7.6)
12 (15, 6.6) (15, 6.6) (15, 6.6)
13 (19, 5.4) (19, 5.4) (19, 5.4)
14 (28.7,17.9) (7.1,17.35) (9.25,8.2)
15 (27.7,19.2) (27.7,19.2) (17.1,5.9)
16 (26.7, 20.6) (9.17, 17.65) (5.07, 8.7)
17 (24.7, 20.8) (24.7, 20.8) (13.3,7.08)

 

 

Table 5    Process information of different parts.

Workpiece type Process list
1 [0,4,5,3,8,6,7,1,2]
2 [2,8,4,0,3,7,1,5,6]
3 [8,6,1,5,7,2,4,0,3]
4 [3,8,1,0,7,4,6,5,2]
5 [0,3,8,6,7,2,4,5,1]
6 [0,2,3,1,6,4,8,5,7]
7 [2,1,0,4,8,6,5,7,3]
8 [2,8,0,3,1,6,4,7,5]
9 [5,4,3,6,2,1,8,0,7]
10 [3,0,5,7,1,6,8,4,2]
11 [2,3,0,5,7,1,6,4,8]
12 [0,2,8,3,7,4,5,6,1]
13 [6,1,2,8,5,3,4,7,0]
14 [6,3,1,8,7,0,2,4,5]
16 [1,8,4,2,3,6,5,0,7]
17 [5,4,1,8,6,2,7,3,0]
18 [1,4,2,0,6,8,3,5,7]
19 [7,5,1,4,3,2,0,6,8]
20 [7,3,2,0,1,6,5,4,8]
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the  above  results  is  that  the  situation  where  the
machine  is  unavailable  at  different  time  due  to  the
limitation of resource preemption is more complicated,
and  it  is  more  difficult  for  the  traditional  heuristic
algorithm to search for the correct solution space. The
algorithm  proposed  in  this  paper  uses  the  mask  to
correct this problem, and returns the result of this mask
to  the  network  for  training,  so  that  such  problems  are
avoided to a certain extent.

In  the  aspect  of  time-consuming,  the  genetic
algorithm achieves a result  similar to that of DRL and
the  number  of  iterations  has  reached 60  000 steps,
which  is  time-consuming.  Although  the  DRL-based
algorithm takes much time to train, it is very fast when
predicting specific scenarios. At the same time, due to
the  generalization  of  the  deep  reinforcement  learning
network,  it  is  not  sensitive  to  changes  in  the  process.
After  a  little  further  training  on  a  trained  model,  a
better  solution  can  be  obtained.  But  for  traditional
algorithms,  it  needs  to  be  recalculated  as  long  as  the
problem changes.

Figure  5 shows  the  optimal  scheduling  result  gantt
chart  of  the  PPO-based  two-layer  rule  scheduling
optimization algorithm when the number of workpieces
is 8.
4.2.2    Ablation experiment
To  determine  the  role  of  the  components  of  the
algorithm  proposed  in  this  paper,  we  conducted
ablation  experiments  in  distribution  1.  Firstly,  all  the
workpieces  selected  for  participation  in  each  iteration
in Step 3 in Fig. 1 are selected as all acquisitions, that
is,  the  agent  does  not  select  the  workpieces  to
participate  in  this  round  of  iterations.  As  long  as  the
workpieces  can  be  acquired,  the  scheduling  will  be
arranged.  The  curve  obtained  by  repeating  the
experiment  several  times  is  shown  in  the  label  of
Ablation Test 1 (RT1) in Fig. 6. Secondly, we keep the
agent  to  select  the  participating  artifacts  in  each
iteration  and  reduce  the  rule  to  a  fixed  one:  rule  3  in

Table  1,  and  repeat  the  experiment  many  times,  the
obtained curve is as shown in the label of Ablation Test
2 (RT2) in Fig. 6. It can be found from Fig. 6 that the
minimum solution time of the two ablation test groups
is  not  as  good  as  the  original  one.  And  in  the
experiments  we  found  that  the  algorithm  converges
very easily to the optimal rule in test 1, and in test 2 the
algorithm easily converges to the case of involving all
the workpiece in each iteration. It can be found that the
combination  of  workpiece  scheduling  and  rule
selection  in  the  algorithm  proposed  in  this  paper
ensures that the algorithm can achieve a better solution.
4.2.3    Model generalization
We apply the trained model base-model with 8 artifacts
under distribution 1 to the new 4 distributions for brief
training.  This  approach  is  similar  to  pre-training  in
natural language processing. Base-model is pre-training
model, which can get relatively good results with only
short training in new scenarios. The results obtained by
multiple  predictions  on  the  new  scene  are  shown  in
Fig.  7a.  It  can  be  seen  that  the  algorithm  proposed  in
this paper has good generalization.
4.2.4    Dynamic test
In order to explore the impact of machine downtime on
the  scheduling  results,  in  the  scenario  where  the
number  of  workpieces  in  Scenario  1  is  8,  some
resources  are  unavailable  at  the  30-th  step  of  each
simulation step, and the failure rates are set to 1%, 5%,
and  10%.  The  results  of  multiple  experiments  are
shown  in Fig.  7b.  It  can  be  found  that  the  proposed
algorithm  can  still  complete  the  scheduling  task  for
dynamic  situations,  and  basically  does  not  affect  the
scheduling results when the failure rate is low.

5    Conclusion

The flexible job shop scheduling problem in a resource
preemption  environment  makes  it  more  difficult  to
solve this type of problem due to its stronger constraint.
This article proposes a new method based on the DRL.
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Fig. 5    Distribution-1, 8 workpieces scheduling gantt chart (Dec 19, 2021).
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First, a scheduling model for resource preemption with
minimum completion  time  is  established.  Then,  based
on  the  built  model,  a  PPO-based  two-layer  rule
scheduling algorithm is put forward. In our method, the
algorithm satisfies the constraint relationship through a
special  solution sequence,  and the artificial  experience
in the lower-level rules makes the model have a faster
convergence speed and better optimization results. The
results  show that  the  algorithm proposed  in  this  paper

performes better and has better scenario generalization
in the case of resource preemption, and it can solve the
scheduling problem under  dynamic conditions  such as
equipment damage.
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