

Optimal Design of Flexible Job Shop Scheduling Under Resource
Preemption Based on Deep Reinforcement Learning

Zhen Chen, Lin Zhang*, Xiaohan Wang, and Pengfei Gu

Abstract: With the popularization of multi-variety and small-batch production patterns, the flexible job shop

scheduling problem (FJSSP) has been widely studied. The sharing of processing resources by multiple

machines frequently occurs due to space constraints in a flexible shop, which results in resource preemption for

processing workpieces. Resource preemption complicates the constraints of scheduling problems that are

otherwise difficult to solve. In this paper, the flexible job shop scheduling problem under the process resource

preemption scenario is modeled, and a two-layer rule scheduling algorithm based on deep reinforcement

learning is proposed to achieve the goal of minimum scheduling time. The simulation experiments compare our

scheduling algorithm with two traditional metaheuristic optimization algorithms among different processing

resource distribution scenarios in static scheduling environment. The results suggest that the two-layer rule

scheduling algorithm based on deep reinforcement learning is more effective than the meta-heuristic algorithm

in the application of processing resource preemption scenarios. Ablation experiments, generalization, and

dynamic experiments are performed to demonstrate the excellent performance of our method for FJSSP under

resource preemption.

Key words: flexible job shop scheduling; resource preemption; deep reinforcement learning; two-level scheduling

1 Introduction

In recent years, with the development of industrial
production and market demand, flexible job shop
system has been widely studied as an important form of
intelligent workshop. Flexible job shop scheduling
problem turns out to be an NP-hard problem. As an
important processing tool in production lines, industrial
robots have been widely used in smart workshops in
recent years. In many scenarios, robots use resources to
process work. However, due to the short supply of
processing resources such as space and tools, multiple
processing robots often need to share a resource pool,

that is, processing under resource constraints.
Scheduling jobs in the above environment constitute
the flexible job shop scheduling problem under
resource preemption (FJSSP-RP). In this paper, we
abstract and model FJSSP-RP. In FJSSP-RP, different
processing tasks need to be completed by matching
robots, and the premise that robots can perform
processing a task is to obtain the resource required for
processing specific task. In addition, in the actual job
shop, the modeling process of the scheduling problem
is similar, only the types of processes or the
distribution of resources are different, so the
generalization of the solution algorithm is also one of
the factors to be considered.

The essence of FJSSP-RP still belongs to the
category of FJSSP. The improved heuristic algorithm is
a mainstream method to solve FJSSP. Zhang[1]

proposed a multi-objective optimization algorithm
fusion non-dominated sorting genetic algorithm
(FNSGA) based on the improved non-dominated
sorting genetic algorithm-II (NSGA-II) algorithm. The

 • Zhen Chen, Lin Zhang, Xiaohan Wang, and Pengfei Gu are

with the School of Automation Science and Eletrical
Engineering, Beihang University, Beijing 100191, China. E-
mail: czhen@buaa.edu.cn; johnlin9999@163.com; xiaohan
wang@buaa.edu.cn; by2003151@buaa.edu.cn.

 * To whom correspondence should be addressed.
 Manuscript received: 2022-03-04; revised: 2022-03-30;

accepted: 2022-05-06

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 05/06 pp 174−185
Volume 2, Number 2, June 2022
DOI: 10 .23919 /CSMS.2022 .0007

© The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

algorithm was used to solve the problems of slow
search speed and low efficiency of scheduling scheme in
the traditional multi-objective optimization algorithm.
In order to optimize the muti-goal of job shop
completion time, total machine load, and job shop
energy consumption, Zhu[2] proposed an improved
strong propagation NSGA-II algorithm in which the
chromosomes were divided into strong propagation
subgroups and ordinary subgroups according to the
different reproductive ability. The two subgroups used
different genetic operations according to their own
characteristics, so as to promote the efficiency of the
algorithm. For minimizing the shop completion time,
Ref. [3] introduced a new conversion mechanism based
on the differential evolution algorithm, which makes
the differential evolution algorithm suitable for solving
discrete problems. In Ref. [4], a new hybrid improved
genetic algorithm was proposed to solve and optimize
the FJSSP. The new genetic algorithm improved the
diversity of the population by strengthening the initial
population quality, and promoted the search ability by
improving the mutation mechanism. According to the
standard cuckoo algorithm, a double-layer coding
discrete cuckoo algorithm was proposed in Ref. [5].
Teekeng et al.[6] adopted the improved particle swarm
optimization algorithm to avoid premature convergence
to the local optimal solution by expanding the solution
space of FJSSP. And Teekeng et al.[6] used 20
benchmark examples to benchmark enhanced particle
swarm optimization (EPSO) to prove the effectiveness
of the algorithm. Boyer et al.[7] proposed a generalized
flexible job shop scheduling model based on a real
seamless rolling ring manufacturing environment and
considering various strong constraints such as time
delay and holding time. On this basis, a greedy random
adaptive search algorithm was proposed to minimize
the maximum completion time. Liu et al.[8] proposed a
mixed-variable differential evolution approach to solve
coordinated charging scheduling of electric vehicles.
Zhou et al.[9] proposed a self-adaptive differential
evolution algorithm for scheduling a single batch-
processing machine with arbitrary job sizes and release
times. Zhao et al.[10–12] proposed three new improved
algorithms for different flowshop scheduling scenarios.
However, in the FJSSP-RP problem, the difficulty and
complexity of encoding and decoding using traditional
heuristic algorithms are increased due to resource
preemption, and the convergence speed is also affected.
At the same time, the dynamic problem of job shop
cannot be solved by traditional heuristic algorithm. In

addition, heuristic algorithms can only be specifically
designed for specific problems, and have poor
generalization.

In view of the shortcomings of the above solutions,
reinforcement learning algorithm has also been applied
to solve FJSSP[13] in recent years. In static scheduling
environments, Gabel and Riedmilier[14] transformed the
classical job shop scheduling into a sequential decision
problem, and introduced the neural network to
approximate the value function. Martínez et al.[15]

combined the heuristic algorithm with reinforcement
learning (RL) to find suitable operators and optimize
based on that. Chen et al.[16] proposed a self-learning
genetic algorithm based on reinforcement learning. The
algorithm uses genetic algorithm as the basic
optimization method, and its key parameters are
intelligently adjusted by reinforcement learning, in
order to obtain faster convergence speed and better
convergence results. In dynamic scheduling
environments, value-based algorithms are widely
adopted. Reference [17] modeled the dynamic
scheduling problem with new job insertion in FJSSP,
took minimizing the completion time as the
optimization objective, and solved the problem by
using the deep-Q-network (DQN) algorithm. Csáji
et al.[10] proposed a triple-level learning mechanism to
achieve adaptive behavior and search space reduction.
Wang et al.[18] applied multi-agent reinforcement
learning to deal with workshop resource constraints
scheduling problem.

Based on the above existing practice in FJSSP, we
can conclude that although the heuristic algorithm has
good search ability, the generalization of the algorithm
and the ability to deal with dynamic events in the
production process are insufficient. Therefore, we
focus our algorithm on RL-based algorithm. In view of
the shortage of resources in the FJSSP-RP problem, it
is very important to reasonably select the artifacts
participating in the current scheduling action. We apply
this idea to the design of the RL algorithm.

In this paper, the resource preemptive flexible job
shop scheduling problem is analyzed and optimized.
On this basis, a two-layer rule scheduling optimization
algorithm based on proximal policy optimization (PPO)
algorithm is proposed. The experiments compare our
scheduling algorithm with two traditional meta-
heuristic optimization algorithms among different
processing resource distribution scenarios. The results
suggest that the two-layer rule scheduling algorithm
based on deep reinforcement learning is more effective

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 175

than meta-heuristic algorithm in the application of
processing resource preemption scenarios. Furthermore,
we test the algorithm under dynamic conditions such as
random device failures, and use the control variable
method to test the components in the algorithm.
Finally, we show the generalization of the trained
algorithm to other resource distribution scenarios. The
results show that the proposed algorithm has good
generalization and dynamic coping ability for FJSSP-RP.

The content of this article is organized as follows:
Section 2 introduces the background of the problem
and the algorithm. Section 3 describes and formalizes
the problem, and gives the detailed design of the
algorithm. In Section 4, we compare the performance
of the algorithm in this paper with the two traditional
algorithms under different processing resource
distributions. The generalization, dynamic, and ablation
experiments are carried out for the performance of the
algorithm proposed in this paper. Section 5 presents the
conclusion of this paper.

2 Background

2.1 Resource preemption in flexible job shop
scheduling

{J1, J2, J3, ..., Jn}
{M1,M2,M3, ...,Mm}

{Oi1,Oi2,Oi3, ...,Oin} Oi j

Ji

As an NP-hard problem[19], flexible job shop
scheduling problem is one of the most key problems in
manufacturing and process planning[20]. In this
problem, a group of workpieces are recorded as

 and need to be processed in a group of
machines recorded as . The
processing of each workpiece includes multiple
processes , where represents the
j-th process of the i -th workpiece . The processes
meet certain sequence constraints. At a certain time, a
machine can only process one process of one
workpiece. The flexibility of flexible job shop
scheduling problem is reflected in two aspects. On one
hand, the same machine can process different processes
of different workpieces at different time. On the other
hand, for a workpiece, the processing machine is not
fixed, and a production line can be composed of
multiple different machines to minimize the processing
time of the workpiece.

Flexible job shop can be divided into fully flexible
job shop and partial flexible job shop according to
Ref. [2]. In a fully flexible job shop, each process can
be completed on any machine, that is, the list of
processes that can be processed by each machine
contains all processes. In partial flexible job shops,

n
M j

{O j1,O j2,O j3, ...,O jm} m ⩽ n

processes can only be completed in specific machines.
For example, for all processes, the set of processes
that can be processed by machine is

, where . In actual production
and life, partial flexible job shops are more
common[21].

Mi

M j

{Oi j1,Oi j2,Oi j3, ...,Oi jm} Oi jr

Mi M j

Oi jk Mi

M j

In the general flexible job shop scheduling problem,
the process resources in the resource list of each
machine are independent of each other, but in some
specific scheduling scenarios, there are some
restrictions on the resources between each machine.
For example, aircraft carrier deck supply scheduling,
automobile maintenance scheduling, etc. In other
words, the concept of “machine” in the above problem
can be understood as a spatial “occupant” , each
“occupant” can only process one workpiece at a certain
time, and some occupants may share resources for
processing operations. For example, machine and
machine share a set of resource lists

, where represents the r-th
shared process resource of and machine . When

 in the resource list is used by machine , machine
 can only use the remaining resources in the resource

list during the same time period. Scheduling the
processing of the workpiece in such a scenario
constitutes a flexible job shop scheduling problem
under resource preemption.

2.2 Markov decision process and reinforcement
learning

⟨S ,A,T,R⟩

s ∈ S a ∈ A
s′ ∈ S

Ra(s, s′)
T (s′,a, s) ∈ [0,1]

π : s→ a

Markov decision process (MDP) is a mathematical
modeling of sequential decision events[22]. MDP
models decision-making in solving the problem whose
results are partly random and partly controlled by
decision-makers. And MDP is of great significance to
the study of the optimization of dynamic programming.
A Markov decision process is represented by a quad

 formed by state set S , action set A , state
transition function T, and reward function R. Given any
state , selecting an action will cause the
environment to enter a new state , and return the
reward . The new state is determined by the
transition probability matrix . Random
strategy refers to the probability distribution
of action in a given state[23].

Reinforcement learning, as a field of machine
learning, emphasizes how to interact with the
environment and take appropriate actions to maximize
the goal. Markov decision process is the most common
form of defining reinforcement learning problems.

 176 Complex System Modeling and Simulation, June 2022, 2(2): 174−185

Reinforcement learning algorithm mainly uses
temporal-difference learning method, Monte Carlo
method, and dynamic programming method to update
its value function or strategy function[24].

Deep reinforcement learning is the product of the
combination of deep learning technology and
reinforcement learning. The powerful function
approximation ability of deep learning enables the
agent to learn the value function or strategy function
more efficiently, and provides the possibility for end-
to-end learning with better performance[25].
Specifically, two mainstream algorithms based on
value and strategy are formed. Value-based algorithms
generally only work in discrete action spaces,
deterministic strategy based strategies generally work
in continuous action spaces, and random strategy based
strategies support discrete and continuous action
spaces[26].

2.3 Proximal policy optimization algorithm

Proximal policy optimization (PPO) algorithm is a
model free deep reinforcement learning (DRL) method
and a classical algorithm in actor-critic architecture. It
can be applied to discrete control tasks and continuous
control tasks. In aspects of exploration methods and
sample management, PPO adopts an off-policy
architecture, which means the sampling strategy is
different from the strategy to be optimized, so as to
improve the sampling efficiency. In order to improve
sample usage efficiency, PPO divides a batch of
samples into multiple mini-batches and reuses them for
many times. In gradient calculation, PPO inherits the
idea of confidence region of trust region policy
optimization (TRPO) algorithm and increases the
stability of training by limiting the range of parameter
update.

pθ(τ)
pθ′ (τ)

PPO applies the importance sampling method to
change the training algorithm of on-policy into off-
policy, which not only improves the low sample
utilization of on policy algorithm, but also has the

characteristics of high stability of on policy.
represents the importance weight in displayed equation.

∇R̄θ = Eτ∼pθ′ (θ)

[
pθ(τ)
pθ′ (τ)

R(τ)∇ log pθ(τ)
]

(1)

where E is the expectation of the reward.

πθ′ (a | s)
πθ(a | s)

In addition to using KL divergence to punish the
probability distribution of constrained actions, another

implementation of PPO algorithm is to use . In

this approach, the degree constraint of deviation from 1
replaces the Kullback–Leibler (KL) divergence
constraint, and the excess part shall be cut directly[27].
Only the data in the confidence interval can return the
gradient to the policy network. For the excess part, the
gradient will not be generated due to the truncation
operation.

The algorithm flow of PPO is shown in
Algorithm 1[28].

3 Problem Description and Algorithm
Design

3.1 Problem description

N
{J1, J2, J3, ..., Jn} m

O = {O1,O2,O3, ...,Om}
Jk{
o j1(k) → o j2(k) → ·· · → o jh(k) | o ji ∈ O

}
OMp = {om1,om2, . . . ,omr | omi ∈ O} ⊂ O

Mi1 Mi2

Min n ⩾ 1

Op tspan

Mi j W(Mi j)
Mi j M′i j ttrans = (W(Mi j)−

FJSSP is an NP-hard problem. The occurrence of
resource preemption in FJSSP-RP makes some
resources dynamically available at some moments,
which further increases the state space of FJSSP-RP.
The flexible job shop scheduling problem under
resource preemption is described as follows: There are

 workpieces in the job shop which need to be
processed, denoted as . There are types
of all processes for all workpieces, and the complete
set is . For a certain workpiece

, the list of processes to be completed is denoted as
. For the process

resource list ,
it is shared by the machine or the occupant , , ...,

, where . For each process of the workpiece, a
corresponding machine is required for processing, and
the machine must contain the resources corresponding
to the current processing procedure of the workpiece.
Each process has a fixed processing time, the
processing time of the process is donated as . It
takes time for the workpiece to transfer between
different machines. The transfer time is related to the
speed and the distance between the machines. The
position of the occupant is donated as , then
the transfer time from to is

Algorithm 1　PPO algorithm
1 For itration=1, 2, ..., do
2 　For actor=1, 2, ..., N do
3 πθold　　Run policy in environment for T timestep

4 Â1, Â2, . . . , ÂT　　Compute advantage etimates
5 　End for
6

M ⩽ NT
Optimize surrogate L wrt θ with L epochs and
minibatch size

7 θ→ θold　

8 End for

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 177

W(M′i j))/speed .

tdelay Jk

(d(k))-th o jd(k) OJk

td(k)

trans

td(k)

delay

td(k)
span

Because of the scheduling arrangement, the
workpiece may need to wait in the original place before
proceeding to the next processing, which is recorded as

. Assuming that the workpiece completes the
 process of its process list , the transfer

time required before processing is , the waiting
time required for scheduling is , and the processing
time to complete is . Under the constraints of
production relations, the scheduling objective is to find
a scheme with the shortest time to complete all tasks,
which is expressed below:

minimize

max
1⩽k⩽n

d
(k)=h(k)∑
d(k)=1

(
td(k)

trans + td(k)

delay + td(k)

span

)
 .

3.2 Design of a PPO-based two-layer rule
scheduling algorithm

The block diagram of the PPO-based two-layer rule
scheduling optimization algorithm is shown in Fig. 1.
In each iteration, according to the actions output by the
PPO, the algorithm selects the workpieces that
participate in current update, and selects the allocation
rules for workpieces. And then the job shop
environment is changed according to the above two
rules. Finally, the environment state and rewards are
provided to the agent, and the next iteration will
continue.

One of the main features of this algorithm is that in
order to ensure that the output action is as simple as
possible to apply to the agent, and to maximize the role

of human experience, the upper and lower levels of
scheduling action mechanisms are used here to solve
the scheduling problem under resource constraints. The
specific method is: the upper-level action is that the
PPO selects the workpieces to participate in the current
round of update according to the current environment
information, and the action used in the current round of
the update is selected in the lower-level simple action
set; the lower-level action is some set of matching rules
that have been restricted. The details are shown in
Table 1.

The detailed design process of the algorithm is given
below. Prior to this, the parameter information used is
given in Table 2.
3.2.1 State
As the input of the PPO algorithm, the state
information needs to reflect the information of the
current environment as comprehensively as possible, so
that the agent can make better decisions. The state
information should include all machine’s status
information, workpiece information, and process
information. The status sequence information is
defined as follows:

State = [MJ ,MS ,ML, Jnext , Jnow , Jleft , Jdone] (2)
3.2.2 Action

N

N N

(N +1)-th

When the number of processed workpieces is , the
output action of the PPO network is N +1 dimension.
The first dimensions specify the situation where
workpieces participate in this round of iteration, and
the output set of each dimension is {0, 1}. “1” means
participating, and “0” means not. The

Step 3: According to the action
instructions, the workpieces participating
in this round of iteration are selected, and
the remaining workpieces continue to be
processed or wait to be processed. And
according to the action instructions, the
mapping rule between the current round
of workpieces and resources is selected.

Step 1: The situation of each occupied
part in the current scheduling scene,
the situation of each common resource,
the current position of the workpiece,
and the remaining time of processing
are obtained.

Step 2: The DRL algorithm PPO in
the form of actor-critic is used to
output high-dimensional discrete
actions. During this period, the
actor's output needs to be shielded
from illegal actions.

Resource preemption workshop scenario model PPO

Step 4: The global state of the
scene is updated according to
the information in the previous
step, and the reward of this step
can be calculated.

Workpiece 3

Workpiece 2

Workpiece 1 Rule 1

Selector

Machine 1 Machine 2

State

Reward
Memory

Actor

Importance
sample

Update

Critic

Mask
Action

Machine 3
Resource list

Resource list

0
1
7

8

...

2
3
4

6

...

5
3
7

6

...

Machine n Machine m

Rule 2

Rule j

...
...

...

Fig. 1 PPO-based two-layer rule scheduling algorithm flowchart.

 178 Complex System Modeling and Simulation, June 2022, 2(2): 174−185

N-
dimension specifies the lower-level action taken in this
iteration. For the first dimensional output, because of
the environment’s restrictions on workpieces, it is
necessary to shield the illegal action of the N-
dimensional action before the PPO output and the
actual output results are fed back to the network
training through the loss function.
3.2.3 Reward
The design part of the reward is very important and is
related to the convergence speed and convergence
effect of the model. The reward design mainly
considers two aspects. On one hand, the invalid
scheduling action is punished. The invalid scheduling
action here is defined as: one workpiece is selected to
participate in this iteration, but in fact the environment
cannot provide the resources needed for its next step,
namely:

∃Ji ∈ Jchoosed ,OJnext
i < S offer (3)

Msum

On the other hand, the effective use of resources
needs to be rewarded. The effective use of resources is
measured by the following method: the size of the
number of machines in processing . Based on the
above considerations, the reward is expressed below:

reward =


−10, if Eq. (4) is true;
2, else if 3 ⩽ Msum;
−1, else

(4)

3.2.4 Environment iteration steps
The environment iteration steps are given below:

Jchoosed

Rchoosed

Jchoosed

Mchoosed Rchoosed

Step 1: Determine the workpieces set
participating in this iteration and the rule
adopted in this iteration according to the PPO output.
Calculate the matching relationship between
and according to .

Step 2: Update the remaining processing time of the
machine. For machine in complete set of machines M,
the increased time in this round of iteration is:

∆ti =


0, if Mi < Mchoosed;
ttrans+ tspan, if Mi ∈ Mchoosed

for i ∈ [0, len(M)]
(5)

Update the remaining processing time to

Ti← Ti+∆ti (6)

min(Ti)Determine the time step of this iteration as .
Subtract the duration of this round to get the processing
duration after this iteration:

Ti← Ti−min(Ti) , if Ti < 0 then let Ti = 0 (7)

Ti = 0Step 3: If , then update the status of the

Table 1 Lower level action set.

No. Rule name
1 The shortest processing time in sequence in the next iteration
2 The longest processing time in sequence in the next iteration
3 The shortest processing and transfer time in sequence in the next iteration
4 The longest processing and transfer time in sequence in the next iteration
5 The shortest transfer time in sequence in the next iteration
6 The longest transfer time in sequence in the next iteration

Table 2 State parameter list.

Symbol Explanation
MJ Set of workpieces currently being processed

Msum Number of machines in processing
MS List of current resources of all machines
ML Remaining time to complete the current process for all machines

OJnext
i JiWorkpiece next process label

Jnow Processing state collection of each workpiece
Jleft Number of remaining processes for each workpiece

Jdone Number of completed processes for each workpiece
Jchoosed Set of workpieces selected to participate in the current iteration
Soffer Available processing resources and machine information

Rchoosed The lower rule selected in the current iteration
M Complete set of machines
Ti i-thRemaining time of the current processing procedure of the machine

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 179

relevant workpiece to be idle and machine to be
available.
3.2.5 Algorithm iteration steps
Finally, the process of each iteration of the algorithm is
given as follows:

Step 1: The situation of each occupied part in the
current scheduling scene, the situation of each common
resource, the current position of the workpiece, and the
remaining time of processing are obtained.

Step 2: The DRL algorithm PPO in the form of
actor-critic is used to output high-dimensional discrete
actions. During this period, the actor’s output needs to
be shielded from illegal actions.

Step 3: According to the action instructions, the
workpieces participating in this round of iteration are
selected, and the remaining workpieces continue to be
processed or wait to be processed. And according to the
action instructions, the mapping rule between the
current round of workpieces and resources is selected.

Step 4: The global state of the scene is updated
according to the information in the previous step, and
the reward of this step can be calculated.

4 Case Study

In order to verify the effectiveness of the proposed
model and algorithm, this paper takes the aircraft
carrier deck replenishment scheduling scenario as a
research case, and compares the PPO-based two-layer
rule scheduling optimization algorithm proposed in this
paper with several traditional meta-heuristic algorithms
in solving the minimum completion time. The
experimental results prove the effectiveness and better
generalization of the algorithm proposed in this paper.

4.1 Experiment scenario

The issue of aircraft replenishment scheduling on the
aircraft carrier deck is an important consideration in the
design of the aircraft carrier deck. Due to the limitation
of the aircraft carrier deck space, the aircraft’s supply
resources will be shared by the replenishment sites or
machines. Therefore, this scenario constitutes a flexible
job scheduling problem under resource preemption.

Under given resource occupancy and limited
conditions, the PPO-based two-layer rule scheduling
optimization algorithm proposed in this paper is
compared with two traditional algorithms under three
different machine distributions and different number of
workpieces.

We make the following assumptions about the
problem.

speed
(1) All resources and machines are not damaged

during the processing, and the transfer of all
workpieces is 20.

(0,0)
(2) Each workpiece starts from the initial position

.
The specific information of the machine and

workpiece is as follows.

(0,1,7,2,8)

The machine label and the resources it contains are
shown in Table 3, and the resource sharing situation is
also given. For example, from Table 3 we can see that
machine 6 and machine 8 share resources .
Table 4 shows the position information of the three
distributions. Table 5 shows the process information of
a variety of workpieces.

The genetic algorithm, ant colony algorithm, and the
algorithm proposed in this paper are used to solve and
compare the scheduling of the three machine
distribution scenarios. In the genetic algorithm, the
results obtained due to mutation or crossover
operations may not necessarily meet the constraints of
resource conflicts. Here we perform decoding and
correction operations on each offspring after it is
generated to ensure that the correct results are obtained.
In the ant colony algorithm, the resource preemption
limit can be updated in the taboo table.

4.2 Result and analysis
4.2.1 Total makespan
In view of the above-mentioned flexible job shop

Table 3 Machine and resource information.

Machine label Resource label Shared machine label
(shared resource label)

0 (0−8) 1(0−8)
1 (0−8) 0(0−8)
2 (0−8) 3(0−8)
3 (0−8) 2(0−8)
4 (0−8) −
5 (0−8) −
6 (0,1,7,2,8) 8(0,1,7,2,8)
7 (3,4,5,6) 9(3,4,5,6)
8 (0,1,7,2,8) 6(0,1,7,2,8)
9 (3,4,5,6) 7(3,4,5,6)
10 (0,1,7,2,8) 12(0,1,7,2,8)
11 (3,4,5,6) 13(3,4,5,6)
12 (0,1,7,2,8) 10(0,1,7,2,8)
13 (3,4,5,6) 11(3,4,5,6)
14 (0,1,7,2,8) 16(0,1,7,2,8)
15 (3,4,5,6) 17(3,4,5,6)
16 (0,1,7,2,8) 14(0,1,7,2,8)
17 (3,4,5,6) 15(3,4,5,6)

 180 Complex System Modeling and Simulation, June 2022, 2(2): 174−185

scheduling problem under resource preemption, it can
be seen that the algorithm proposed in this paper is
more effective in terms of completion time, and has
better generalization of the scene for different machine
distribution scenarios.

It can be seen from Figs. 2−4 that the genetic

algorithm and the PPO-based two-layer rule scheduling
optimization algorithm perform better than the ant
colony algorithm. When the number of workpieces is
small, the algorithm proposed in this paper and the
genetic algorithm basically have the same results.
When the number of workpieces is large, the PPO-
based two-layer rule scheduling optimization algorithm
can find a better solution. The effect of particle swarm
optimization is much worse. An important reason for

7

450 PPO-based
AG
GA400

350

300

250

200

150

100
8 9 10 11 12 13 14 15 16 17 18 19 20

Number of workpieces

M
in

im
um

 ti
m

e
(m

in
)

Fig. 2 Distribution 1 scheduling result.

PPO-based
AG
GA

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of workpieces

450

500

400

350

300

250

200

150

100

M
in

im
um

 ti
m

e
(m

in
)

Fig. 3 Distribution 2 scheduling result.

PPO-based
AG
GA

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of workpieces

450

400

350

300

250

200

150

100

M
in

im
um

 ti
m

e
(m

in
)

Fig. 4 Distribution 3 scheduling result.

Table 4 Three machine distributions’ information.

Machine label Distribution 1 Distribution 2 Distribution 3
0 (40,13.5) (22, 4.1) (7.3,17.2)
1 (38,14.5) (36,14.5) (38,14.5)
2 (36,15) (34,15) (36,15)
3 (34,15.8) (32,15.8) (34,15.8)
4 (32,16.4) (5.1, 8.9) (32,16.4)
5 (30,17.1) (30,17.1) (30,17.1)
6 (6,16.2) (6,16.2) (6,16.2)
7 (4.2,14) (4.2,14) (4.2,14)
8 (3.6,11.5) (3.6,11.5) (3.6,11.5)
9 (3.1,9.3) (3.1, 9.3) (3.1,9.3)
10 (7,8.4) (7, 8.4) (7, 8.4)
11 (11,7.6) (11, 7.6) (11,7.6)
12 (15, 6.6) (15, 6.6) (15, 6.6)
13 (19, 5.4) (19, 5.4) (19, 5.4)
14 (28.7,17.9) (7.1,17.35) (9.25,8.2)
15 (27.7,19.2) (27.7,19.2) (17.1,5.9)
16 (26.7, 20.6) (9.17, 17.65) (5.07, 8.7)
17 (24.7, 20.8) (24.7, 20.8) (13.3,7.08)

Table 5 Process information of different parts.

Workpiece type Process list
1 [0,4,5,3,8,6,7,1,2]
2 [2,8,4,0,3,7,1,5,6]
3 [8,6,1,5,7,2,4,0,3]
4 [3,8,1,0,7,4,6,5,2]
5 [0,3,8,6,7,2,4,5,1]
6 [0,2,3,1,6,4,8,5,7]
7 [2,1,0,4,8,6,5,7,3]
8 [2,8,0,3,1,6,4,7,5]
9 [5,4,3,6,2,1,8,0,7]
10 [3,0,5,7,1,6,8,4,2]
11 [2,3,0,5,7,1,6,4,8]
12 [0,2,8,3,7,4,5,6,1]
13 [6,1,2,8,5,3,4,7,0]
14 [6,3,1,8,7,0,2,4,5]
16 [1,8,4,2,3,6,5,0,7]
17 [5,4,1,8,6,2,7,3,0]
18 [1,4,2,0,6,8,3,5,7]
19 [7,5,1,4,3,2,0,6,8]
20 [7,3,2,0,1,6,5,4,8]

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 181

the above results is that the situation where the
machine is unavailable at different time due to the
limitation of resource preemption is more complicated,
and it is more difficult for the traditional heuristic
algorithm to search for the correct solution space. The
algorithm proposed in this paper uses the mask to
correct this problem, and returns the result of this mask
to the network for training, so that such problems are
avoided to a certain extent.

In the aspect of time-consuming, the genetic
algorithm achieves a result similar to that of DRL and
the number of iterations has reached 60 000 steps,
which is time-consuming. Although the DRL-based
algorithm takes much time to train, it is very fast when
predicting specific scenarios. At the same time, due to
the generalization of the deep reinforcement learning
network, it is not sensitive to changes in the process.
After a little further training on a trained model, a
better solution can be obtained. But for traditional
algorithms, it needs to be recalculated as long as the
problem changes.

Figure 5 shows the optimal scheduling result gantt
chart of the PPO-based two-layer rule scheduling
optimization algorithm when the number of workpieces
is 8.
4.2.2 Ablation experiment
To determine the role of the components of the
algorithm proposed in this paper, we conducted
ablation experiments in distribution 1. Firstly, all the
workpieces selected for participation in each iteration
in Step 3 in Fig. 1 are selected as all acquisitions, that
is, the agent does not select the workpieces to
participate in this round of iterations. As long as the
workpieces can be acquired, the scheduling will be
arranged. The curve obtained by repeating the
experiment several times is shown in the label of
Ablation Test 1 (RT1) in Fig. 6. Secondly, we keep the
agent to select the participating artifacts in each
iteration and reduce the rule to a fixed one: rule 3 in

Table 1, and repeat the experiment many times, the
obtained curve is as shown in the label of Ablation Test
2 (RT2) in Fig. 6. It can be found from Fig. 6 that the
minimum solution time of the two ablation test groups
is not as good as the original one. And in the
experiments we found that the algorithm converges
very easily to the optimal rule in test 1, and in test 2 the
algorithm easily converges to the case of involving all
the workpiece in each iteration. It can be found that the
combination of workpiece scheduling and rule
selection in the algorithm proposed in this paper
ensures that the algorithm can achieve a better solution.
4.2.3 Model generalization
We apply the trained model base-model with 8 artifacts
under distribution 1 to the new 4 distributions for brief
training. This approach is similar to pre-training in
natural language processing. Base-model is pre-training
model, which can get relatively good results with only
short training in new scenarios. The results obtained by
multiple predictions on the new scene are shown in
Fig. 7a. It can be seen that the algorithm proposed in
this paper has good generalization.
4.2.4 Dynamic test
In order to explore the impact of machine downtime on
the scheduling results, in the scenario where the
number of workpieces in Scenario 1 is 8, some
resources are unavailable at the 30-th step of each
simulation step, and the failure rates are set to 1%, 5%,
and 10%. The results of multiple experiments are
shown in Fig. 7b. It can be found that the proposed
algorithm can still complete the scheduling task for
dynamic situations, and basically does not affect the
scheduling results when the failure rate is low.

5 Conclusion

The flexible job shop scheduling problem in a resource
preemption environment makes it more difficult to
solve this type of problem due to its stronger constraint.
This article proposes a new method based on the DRL.

16:15 16:30 16:45 17:00 17:15 17:30 17:45 18:00

Machine-17
Machine-16
Machine-15
Machine-11
Machine-10

Machine-9
Machine-8
Machine-7
Machine-6
Machine-5
Machine-4
Machine-2

Workpiece-8
Workpiece-5
Workpiece-2
Workpiece-7
Workpiece-3
Workpiece-1
Workpiece-6
Workpiece-4

Fig. 5 Distribution-1, 8 workpieces scheduling gantt chart (Dec 19, 2021).

 182 Complex System Modeling and Simulation, June 2022, 2(2): 174−185

First, a scheduling model for resource preemption with
minimum completion time is established. Then, based
on the built model, a PPO-based two-layer rule
scheduling algorithm is put forward. In our method, the
algorithm satisfies the constraint relationship through a
special solution sequence, and the artificial experience
in the lower-level rules makes the model have a faster
convergence speed and better optimization results. The
results show that the algorithm proposed in this paper

performes better and has better scenario generalization
in the case of resource preemption, and it can solve the
scheduling problem under dynamic conditions such as
equipment damage.

References

 L. Zhang, Research on flexible job shop scheduling based
on multi-objective optimization algorithm, MA
dissertation, College of Information Science and
Engineering, Shandong Agricultural University, Taian,
Shangdong, 2019.

[1]

 X. Zhu, Flexible job shop scheduling multi-object
optimization based on strong reproduction NSGA-Ⅱ
algorithm, Modular Machine Tool and Automatic
Manufacturing Technology, no. 9, pp. 180–184, 2021.

[2]

 Y. Yuan and H. Xu, Flexible job shop scheduling using
hybrid differential evolution algorithms, Computers &
Industrial Engineering, vol. 65, no. 2, pp. 246–260, 2013.

[3]

 Q. Yu, L. Zhao, and S. Pan, A scheduling optimization of
flexible job-shop using genetic algorithm, Modular
Machine Tool and Automatic Manufacturing Technology,
no. 4, pp. 32–34, 2004.

[4]

 H. Luo and D. Pan, Two-layer coding discrete cuckoo
algorithm for solving flexible workshop scheduling
problem, Computer and Digital Engineering, vol. 49,
no. 7, pp. 1281–1285, 2021.

[5]

 W. Teekeng, A. Thammano, P. Unkaw, and J.
Kiatwuthiamorn, A new algorithm for flexible job shop
scheduling problem based on particle swarm optimization,

[6]

7 9 11 13 15 17 19

PPO-based
RT1
RT2

Number of workpieces

300

250

200

150

100

50

0

M
ak

es
pa

n
(m

in
)

Fig. 6 Ablation experiment.

(a) Generalization experiment (b) Dynamic experiment
Distribution Breakdown rate (%)

M
ak

es
pa

n
(m

in
)

M
ak

es
pa

n
(m

in
)

No.4

180
182.5

180.0

177.5

175.0

172.5

170.0

167.5

165.0

162.5

170

160

150

140

No.5 No.6 No.7 0 1 5 10

Algorithm

PPO-based

Algorithm

PPO-based
GA

Fig. 7 Generalization and dynamic experiments.

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 183

Artificial Life and Robotics, vol. 21, pp. 18–23, 2016.
 V. Boyer, J. Vallikavungal, X. C. Rodríguez, and M. A.
Salazar-Aguilar, The generalized flexible job shop
scheduling problem, Computers & Industrial Engineering,
vol. 160, p. 107542, 2021.

[7]

 W. Liu, Y. Gong, W. Chen, Z. Liu, H. Wang, and J.
Zhang, Coordinated charging scheduling of electric
vehicles: A mixed-variable differential evolution
approach, IEEE Transactions on Intelligent
Transportation Systems, vol. 21, no. 12, pp. 5094–5109,
2019.

[8]

 S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q.
Zhang, A self-adaptive differential evolution algorithm for
scheduling a single batch-processing machine with
arbitrary job sizes and release times, IEEE Transactions
on Cybernetics, vol. 51, no. 3, pp. 1430–1442, 2019.

[9]

 B. C. Csáji, M. László, and B. Kádár, Reinforcement
learning in a distributed market-based production control
system, Advanced Engineering Informatics, vol. 20, no. 3,
pp. 279–288, 2006.

[10]

 F. Zhao, X. He, and L. Wang, A two-stage cooperative
evolutionary algorithm with problem-specific knowledge
for energy-efficient scheduling of no-wait flow-shop
problem, IEEE Transactions on Cybernetics, vol. 51,
no. 11, pp. 5291–5303, 2020.

[11]

 F. Zhao, L. Zhao, L. Wang, and H. Song, An ensemble
discrete differential evolution for the distributed blocking
flowshop scheduling with minimizing makespan criterion,
Expert Systems with Applications, vol. 160, p. 113678,
2020.

[12]

 L. Wang, Z. Pan, and J. Wang, A review of reinforcement
learning based intelligent optimization for manufacturing
scheduling, Complex System Modeling and Simulation,
vol. 1, no. 4, pp. 257–270, 2021.

[13]

 T. Gabel and M. Riedmiller, Scaling adaptive agent-based
reactive job-shop scheduling to large-scale problems, in
Proc. 2007 IEEE Symposium on Computational
Intelligence in Scheduling, Honolulu, HI, USA, 2007, pp.
259–266.

[14]

 Y. Martínez, A. Nowé, J. Suárez, and R. Bello, A
reinforcement learning approach for the flexible job shop
scheduling problem, in Proc. 5th International Conference
on Learning and Intelligent Optimization, Rome, Italy,
2011, pp. 253–262.

[15]

 R. Chen, B. Yang, S. Li, and S. Wang, A self-learning[16]

genetic algorithm based on reinforcement learning for
flexible job shop scheduling problem, Computers and
Industrial Engineering, vol. 149, p. 106778, 2020.
 S. Luo, Dynamic scheduling for flexible job shop with
new job insertions by deep reinforcement learning,
Applied Soft Computing, vol. 91, p. 106208, 2020.

[17]

 X. Wang, L. Zhang, T. Lin, C. Zhao, K. Wang, and Z.
Chen, Solving job scheduling problems in a resource
preemption environment with multi-agent reinforcement
learning, Robotics and Computer-Integrated
Manufacturing, vol. 77, p. 102324, 2022.

[18]

 C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and C.
Xu, Learning to dispatch for job shop scheduling via deep
reinforcement learning, arXiv preprint arXiv: 2010.12367,
2020.

[19]

 I. A. Chaudhry and A. A. Khan, A research survey:
Review of flexible job shop scheduling techniques,
International Transactions in Operational Research,
vol. 23, no. 3, pp. 551–591, 2016.

[20]

 J. Peng, M. Liu, M. Zhang, and X. Zhang, Review on
Scheduling Algorithms for MOFJSP, China Mechanical
Engineering, vol. 23, pp. 3244–3254, 2014.

[21]

 M. V. Otterlo and M. Wiering, Reinforcement learning
and markov decision processes, in Reinforcement
Learning, M. Wiering and M. V. Otterlo, eds. Berlin,
Germany: Springer-Verlarg, 2012, pp. 3–42.

[22]

 L. Graesser and W. L. Keng, Foundations of Deep
Reinforcement Learning: Theory and Practice in Python.
Boston, MA, USA: Addison-Wesley Professional, 2019.

[23]

 M. Cui, J. Wang, and M. Yue, Machine learning-based
anomaly detection for load forecasting under cyberattacks,
IEEE Transactions on Smart Grid, vol. 10, no. 5,
pp. 5724–5734, 2019.

[24]

 T. Zhao and M. Eskenazi, Towards end-to-end learning for
dialog state tracking and management using deep
reinforcement learning, arXiv preprint arXiv: 1606.02560,
2016.

[25]

 N. Wei, A Guide to the Implementation of Deep
Reinforcement Learning (in Chinese). Beijing, China:
Publishing House of Electronics Industry, 2021.

[26]

 Y. Wang, H. He, and X. Tan, Truly proximal policy
optimization, in Proc. 35th Uncertainty in Artificial
Intelligence, Tel Aviv, Israel, 2019, pp. 113–122.

[27]

 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv
preprint arXiv: 1707.06347, 2017.

[28]

Zhen Chen is currently pursuing the PhD
degree at the School of Automation
Science and Eletrical Engineering,
Beihang University, Beijing, China. His
research interests include deep
reinforcement learning, jop shop
scheduling problem, scheduling, and
service recommendations in cloud

manufacturing.

Xiaohan Wang is currently pursuing the
PhD degree at the School of Automation
Science and Eletrical Engineering,
Beihang University, Beijing, China. His
research direction is discrete simulation,
multi-intelligence body systems, and
reinforcement learning.

 184 Complex System Modeling and Simulation, June 2022, 2(2): 174−185

Lin Zhang received the BS degree from
Nankai University, Tianjin, China, in
1986, and the MS and PhD degrees from
Tsinghua University, Beijing, China, in
1989 and 1992, respectively. He is a
professor with Beihang Unversity, Beijing.
He authored and coauthored 200 papers,
18 books, and chapters. His research

interests include service-oriented modeling and simulation,
model engineering, cloud manufacturing and simulation and
their applications in health, etc. He is a member of IEEE. He
served as the president of the Society for Modeling and
Simulation International (SCS) (2015−2016). He is a fellow of
the SCS and Federation of Asian Simulation Societies
(ASIASIM), and the executive vice president of the China
Simulation Federation.

Pengfei Gu is currently pursuing the PhD
degree at the School of Automation
Science and Electrical Engineering in
Beihang University. He received the
master degree from University of Science
and Technology Beijing in 2019. His
research interests include modeling and
simulation, system engineering, and

evolutionary game theory.

 Zhen Chen et al.: Optimal Design of Flexible Job Shop Scheduling Under Resource Preemption Based on Deep … 185

