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Abstract: To  address  complex  single  objective  global  optimization  problems,  a  new  Level-Based  Learning

Differential Evolution (LBLDE) is developed in this study. In this approach, the whole population is sorted from

the  best  to  the  worst  at  the  beginning  of  each  generation.  Then,  the  population  is  partitioned  into  multiple

levels,  and different  levels are used to exert  different  functions.  In each level,  a  control  parameter  is  used to

select excellent exemplars from upper levels for learning. In this case, the poorer individuals can choose more

learning  exemplars  to  improve  their  exploration  ability,  and  excellent  individuals  can  directly  learn  from  the

several best individuals to improve the quality of solutions. To accelerate the convergence speed, a difference

vector selection method based on the level is developed. Furthermore, specific crossover rates are assigned to

individuals  at  the  lowest  level  to  guarantee  that  the  population  can  continue  to  update  during  the  later

evolutionary  process.  A  comprehensive  experiment  is  organized and conducted to  obtain  a  deep insight  into

LBLDE and demonstrates the superiority of LBLDE in comparison with seven peer DE variants.
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1    Introduction

Differential  Evolution  (DE)[1],  similar  to  other
Evolutionary  Algorithms  (EAs)[2, 3] ,  is  a  population-
based  stochastic  optimization  method.  DE  has  been
used  in  a  variety  of  engineer  problems[4−6] and
scientific  researches[7−9] because  of  its  simple
operators,  easy  implementation,  the  use  of  a  few
control  parameters,  and  high  search  efficiency.  The
excellent  optimization  performance  of  DE depends  on
its  internal  structure,  which  is  an  implicit  self-
adaptation  system.  Given  a  scale  factor  value,  the

solutions  will  converge  to  one  specific  region  of  the
decision  space  during  evolution,  which  means  the
influence  of  the  perturbation  vector  formed  by  two
random  individuals  from  the  whole  population  on  the
population  decreases  gradually.  Thus,  DE  has  the
exploration  ability  in  the  early  stage  and  the
exploitation ability in the later stage[10].
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Although DE has exhibited outstanding optimization
performance,  it  is  still  influenced  by  its  mutation
strategy and three  control  parameters,  i.e.,  scale  factor
( ),  crossover  rate  ( ),  and  population  size  ( )[11].
When  the  population  cannot  generate  better  solutions
during  a  large  number  of  generations  due  to  some
reasons,  the  same  moves  constituted  by  fixed  and
mutation  strategy  will  not  be  effective  in  subsequent
generations[10].  The  population  may  fall  stagnant  and
maintains  a  low  diversity.  The  parameter 
determines  how  many  components  of  the  mutation
vector  the  trial  vector  can  inherit  to  further  affect  the
diversity  of  the  population.  A  small  can  lead  to  a
limited number of moves, which could cause premature
convergence. In fact, the mutation strategy and control
parameters  dominate  the  numbers  and  quality  of
moves. The number of moves determines the diversity
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of the population, which is desired for the population in
the  early  stage  to  explore  new  promising  areas.  The
quality  of  moves  affects  the  convergence  speed of  the
population  and  the  accuracy  of  the  solutions.  The
balance  between  diversity  and  convergence  is  still  the
main issue to be studied and solved.

To  guarantee  the  quality  of  moves,  some  methods
increase  the  exploitation  ability  of  DE[12].  Excellent
individuals  contain  promising  information;  thus,  the
exploitation  of  these  individuals  can  provide  better
search  directions  for  other  individuals.  For  example,
Gong and Cai[13] proposed a rank-based mutation rule,
where excellent individuals are provided more chances
for other bad individuals to learn. The results show that
the  proposed  rule  can  improve  the  performance  of
some basic mutation strategies with strong exploration
ability.  The  local  search  technique[14] also  contributes
to  the  exploitation  of  DE.  The  best  individual  in  the
population  searches  its  local  surroundings  to  find  a
more  promising  area,  which  can  significantly  improve
the quality of  the optimal  solution.  These methods are
essentially  an  elite  mechanism.  However,  if  too  much
emphasis  is  placed  on  the  utilization  of  elite
individuals, then the population may fall into the local
optima.  Thus,  a  certain  degree  of  randomization  is
essential.
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Modifying the structure of the original DE[15], such as
the  search  logic  and  parameter  selection,  is  also  a
popular method[10]. Some algorithms[16, 17] use multiple
mutation strategies to enrich the search behavior of DE.
These  strategies  are  dynamically  adjusted  during  the
evolution  to  balance  diversity  and  convergence.  The
mating selection is random, and the information of the
population  is  shared  globally;  thus,  premature
convergence  would  happen.  A  structured
population[18, 19]  is  used  to  reduce  the  speed  of
information  flow  to  maintain  diversity.  For  example,
multipopulation-based  DE  evolves  the  individuals
using  the  information  of  other  individuals  within  the
same population to improve diversity. The information
exchange  among  subpopulations  serves  to  accelerate
convergence. In neighbor-based DE[20], each individual
is  allowed  to  communicate  with  its  neighbors.
Choosing  neighbors  and  determining  the  number  of
neighbors are important[21]. The parameter settings also
need  to  be  considered.  The  most  successful
improvement on  is achieved by the population size
reduction technique[22−24], which gradually reduces 
to increase the exploitation ability.  Random  and 

can  enrich  the  moves.  However,  they  lose  the
convergence  rate[25, 26] .  The  self-adaptive  or  adaptive
method[27−29] is  a  more  promising  approach  to  adjust
the parameters because it reduces the sensitivity of the
algorithm to the problem.

Inspired  by  the  above,  a  new  DE  with  the  fitness-
based  population  structure  or  Level-Based  Learning
DE  (LBLDE)  is  developed  in  this  study.  The  whole
population  is  partitioned  into  multiple  levels  equally
based on the sorted fitness values. Different levels will
choose  different  numbers  of  individuals  as  learning
exemplars,  which  guarantees  the  exploitation  of
excellent  individuals  and  the  exploration  of  the
remaining  individuals  simultaneously.  Moreover,  an
individual can select only the individuals that form the
difference vector from the respective level or the higher
level,  which  guarantees  the  high  quality  of  the
difference vector. The main contributions of this study
are as follows:

(1)  A  novel  DE  variant  LBLDE  is  proposed.  The
level-based  learning  mechanism  assigns  different
numbers  of  learning  exemplars  for  each  level,  which
ensures  the  correct  search  directions  of  the  population
and considers both diversity and convergence speed.

(2)  According  to  level,  a  difference  vector  selection
method is proposed, which limits the number of moves
and guarantees that each individual has the potential to
become better to increase the convergence speed of the
population.
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(3)  To  exert  the  unique  effect  of  individuals  in
different  levels,  different  values  are  allocated  to
individuals  at  different  levels.  is  assigned  to  1  for
the  individuals  with  poor  fitness,  which  can  help  the
population  continue  to  update  in  the  late  phase  of  the
evolving process.

The  level-based  learning  mechanism[30] was
originally  used  in  particle  swarm  optimization  to
address  large-scale  optimization  problems.  It  helps
improve  the  population  diversity  without  adding  an
extra  computing  burden.  Large-scale  optimization
problems  require  high  diversity  to  avoid  premature
convergence[31].  Thus, the individuals of the first  level
in  particle  swarm  optimization[30] do  not  evolve  and
enter  into  the  next  generation  directly.  Inspired  by  it,
the  level-based  learning  mechanism is  introduced  into
DE to improve the performance of DE. In LBLDE, the
individuals  in  the  first  level  learn  from  several  most
excellent individuals to accelerate the convergence rate
to  solve  complex  global  optimization  problems.  With
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the  combination  of  the  level-based  learning
mechanism, the difference vector selection method, and
the  allocation scheme, LBLDE can achieve a good
performance.

The subsequent content of this paper is organized as
follows.  The literature  review is  introduced in  Section
2.  The  proposed  LBLDE  algorithm  is  described  in
Section  3.  Comprehensive  experiments  and  results  are
presented  in  Section  4.  Conclusions  and  future  work
are outlined in Section 5.

2    Literature Review

p

The  proposed  LBLDE  is  a  novel  DE  variant  that
employs  an  elitism  mechanism  and  a  fitness-based
population  structure.  The  elitism  includes  the  local
search  executed  by  the  several  best  individuals  in  the
first  level  and  the  level-based  learning  mechanism for
all  levels.  Each  level  can  be  regarded  as  a
subpopulation,  and all  subpopulations  communicate  in
a  fitness-based  top-down  way  to  maintain  diversity.
Moreover,  from  the  viewpoint  of  multistrategy,  the
strategy  adopted  by  the  last  level  is  similar  to
DE/current-to-rand/1, and that used by the other levels
is  similar  to  DE/current-to- best/1.  Both  the
multipopulation  model  and  the  multistrategy  method
modify the original  structure of  DE.  Therefore,  in  this
section,  some  DE  variants  are  reviewed  from  two
aspects: (1) the increase of exploitation in DE, and (2)
the modification of the structure in DE.

2.1    Increase of exploitation in DE
2.1.1    Elite learning mechanism
Introducing  the  elite  individuals  into  the  mutation
strategy  can  significantly  increase  the  exploitation  of
DE.  JADE[28] is  a  popular  DE  variant  that  proposes  a
successful  mutation  strategy  DE/current-to-pbest/1.  In
this strategy, each individual learned from one elite that
is  randomly  selected  from  the  top p  individuals.  The
elite  individuals  provide  promising  search  directions.
Thus,  JADE  obtains  better  results  on  unimodal  and
simple  multimodal  problems[32].  JADE  fully  utilizes
the  information  of  global  excellent  solutions  to
improve the convergence, which causes the diversity in
JADE  to  be  too  low  to  solve  complex  multimodal
problems. To better balance diversity and convergence,
some new mutation strategies are proposed, which can
be divided into two categories. In the first category, the
global elite and poor individuals are utilized to balance
convergence and diversity. For example, Wang et al.[33]

designed  an  improved  DE/rand/2  mutation  strategy.
The new strategy divides the whole population into two
parts:  the  elite  part  to  ensure  promising  search
directions and the non-elite part to increase population
diversity.  Yu et  al.[5] used  a  constrained DE (CDE) to
solve  unmanned  aerial  vehicle  problems.  In  CDE,  the
better  the  individual  is,  the  higher  the  chosen
probability  it  has,  in  which  objective  and  constraint
values  are  two  criteria.  A.  W.  Mohamed  and  A.  K.
Mohamed[34] introduced  a  new  mutation  rule,  which
divides  the  population  into  three  parts  based  on  their
fitness.  The three individuals for the mutation strategy
are  randomly  selected  from  three  parts,  respectively.
Unlike  in  the  above  DE  variants  that  utilize  the  poor
individuals  to  maintain  diversity,  the  local  elite  is
selected[35].  Thus,  for  each  individual,  two  elites  are
selected  from  its  neighbors  and  the  whole  population,
respectively,  to  balance  diversity  and  convergence.  In
the  second  category,  the  elite  individuals  are
dynamically  selected  to  gradually  adjust  the  search
behaviors  of  the  algorithm.  For  example,  Cai  et  al.[36]

devised an adaptive guiding mechanism to dynamically
adjust the selection range of learning exemplars, which
meets  the  requirements  of  the  algorithm  for  diversity
and  convergence  in  different  stages.  Yu  et  al.[37]

developed  a  new  DE  variant  that  adaptively  adjusted
the  greediness  degree  of  the  mutation  strategy.
Notably,  the  algorithms  in  the  first  category  fix  the
selection  ranges  of  elites  for  all  individuals.  Thus,  the
degree of exploitation is also fixed. Moreover, although
the  algorithms  in  the  second  category  dynamically
adjust  the  selection  ranges  of  elites,  the  selection
ranges  for  all  individuals  in  each  generation  are  the
same,  which  ignores  the  attributes  of  each  individual.
Unlike  these  methods,  the  proposed  method  assigns
different ranges of elites for each level, which not only
balances  diversity  and  convergence  but  also  considers
the attributes of each individual.

In  addition,  although  the  algorithms  above  have
obtained better results on different test  functions,  their
success  is  also  highly  dependent  on  their  adaptive
parameter  settings,  thus  enriching  the  number  of
moves.  Elite  learning  mechanisms  and  adaptation
parameters  work  together  to  balance  diversity  and
convergence.  The  adaptation  parameters  belong  to  the
category of  structural  modification.  Thus,  they will  be
introduced in the next subsection. In addition, in these
algorithms,  the  extra  parameters  that  control  the
number  or  selection  range  of  elites  are  difficult  to  set
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because different problems have different requirements
for the convergence rate of the algorithm.
2.1.2    Local search technique
The local search technique is another effective method.
Liang  et  al.[6] refined  the  optimal  solution  of  the
population at the end of each generation to improve its
quality. Wang et al.[14] divided the evolutionary process
into two stages. The standard DE is implemented in the
first stage to explore the search space. Then, the chaos
local  search  is  used  by  the  better  individuals  to
accelerate  the  convergence  rate.  Wang  and  Tang[38]

proposed a self-adaptive local search that considers the
diversity  and  quality  of  solutions  in  the  external
archive.  Memetic  computing[39] is  a  popular  pattern to
hybridize  the  local  search.  For  example,  Li  et  al.[40]

developed  a  Memetic  Adaptive  DE  (MADE)  to
identify  the  parameters  of  multiple  photovoltaic
models.  MADE  adopts  the  Nelder  Mead  simplex
method to  refine  the  solution.  Liu  et  al.[41] proposed a
new  memetic  DE.  The  designed  generalized  fitness
strategy  uses  three  simple  local  search  methods  to
enhance the convergence. Caponio et al.[42] proposed a
super-fit  memetic  differential  evolution,  which  first
uses  particle  swarm  optimization  to  evolve  partial
individuals to obtain a super-fit  leader that would lead
the population to evolve in the framework of DE. Then,
two  complementary  local  search  techniques  are
adopted  to  detect  promising  search  regions.  Local
search  is  also  used  to  update F  for  generating  better
offspring in later generations[43].

The local search technique is of great significance to
improve  the  accuracy  of  the  solutions  in  the  optimal
region.  However,  their  employment  mode  and  times
need to consider the characteristics of the problem and
the total computing resources.

2.2    Modification of structure in DE
2.2.1    Multipopulation
DE  has  been  improved  by  the  structured  population,
which  is  inspired  by  structured  EAs[44].  The  two most
famous  structured  EAs  are  the  cellular  model  and  the
distributed  model.  In  the  cellular  model,  each
individual has unique neighbors and can be allowed to
communicate  with  only  its  neighbors  to  improve
diversity.  The  distributed  model  divides  the  whole
population  into  multiple  subpopulations  connected  by
one topology. The success of structured DE is rooted in
the limitation of the pools of vectors contributing to the
mutation. The main issue of multipopulation-based DE
is  how  to  allow  the  islands  to  communicate  and  thus

return  a  degree  of  randomization.  In  the  past  two
decades,  various  DE  variants  with  a  structured
population have been proposed. Wu et al.[45] designed a
new multipopulation model (MPEDE) that assigns one
unique  mutation  strategy  for  each  subpopulation.  The
subpopulation  incorporates  some  individuals  that  are
selected  randomly  from  the  whole  population  in  each
generation, and the best individual is inserted into each
subpopulation.  The  subpopulation  sizes  are
dynamically  adjusted  to  exert  the  advantage  of  the
fittest strategy. Then, Li et al.[46] proposed an improved
MPEDE  algorithm  called  MPMSDE,  in  which  a  new
grouping  method,  an  information  sharing  mechanism,
and  a  new  mutation  strategy  are  proposed.  Weber
et  al.[47] proposed  a  distributed  DE  with  explorative-
exploitation  population  families.  The  subpopulations
form two parts: the subpopulations in the first  part are
connected  by  a  ring  topology  and  are  dedicated  to
exploring  the  search  space,  while  the  other
subpopulations  in  the  second  part  are  endowed  with
population size  reduction technology to  strengthen the
exploitation  ability.  De  Falco  et  al.[48] proposed  a
biological  invasion-inspired  migration  scheme  for
distributed  DE.  In  this  new  migration  scheme,  the
excellent individuals in one subpopulation are inserted
into  each  neighbor  subpopulation,  and  these  invasive
individuals  compete  with  the  individuals  of  the
neighbor  subpopulation  for  survival.  Then,  an
improved invasion-based model[49] endowed with three
different  parameter  updating  mechanisms  was
developed  to  further  enhance  its  performance.
Bouteldja and Batouche[50] presented a cellular DE that
connects  the  subpopulations  with  a  neighborhood
criterion.  Combined  with  the  proposed  multilevel
thresholding  method,  this  method  is  used  to  solve
multilevel color image segmentation.

Multipopulation DE includes some parameters,  such
as  the  number  of  subpopulations,  the  number  of
neighbors, and migration interval,  which are related to
the performance of algorithms.
2.2.2    Multistrategy
In  traditional  DE,  one  basic  mutation  strategy
characterized by exploration or exploitation is used for
the whole search process, which limits the diversity of
moves and cannot solve various kinds of problems. To
overcome  this  shortcoming,  multiple  strategies  have
been  used  for  DE.  Qin  et  al.[51] proposed  a  self-
adaptive DE, in which the proportion of  four different
basic  strategies  is  dynamically  adjusted  according  to
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the historical experience. Mallipeddi et al.[27] proposed
a  novel  DE  with  the  ensemble  of  parameters  and
mutation strategies, where each individual is assigned a
mutation  strategy  and  control  parameters  to  increase
the  diversity  of  the  population.  An  inheritance
mechanism  is  designed  for  the  offspring  to  utilize  the
strategies  and  parameters  of  the  successful  parent
individuals.  Similarly,  Fan  et  al.[52] developed  a  DE
with  strategy  adaptation  and  knowledge-based  control
parameters.  Differently,  a  novel  adaptation  method  is
used  to  select  the  more  promising  strategy  and
parameters from the respective pool for the individuals
who  fail  in  evolution.  Liang  et  al.[53] proposed  an
ensemble-based DE, where multiple different strategies
are performed at two stages to exert distinct functions.
Qiao  et  al.[54] developed  a  self-adaptive  resource
allocation-based  DE  to  solve  constrained  optimization
problems,  where  three  different  strategies  with
different  preferences  on  constraints  and  objectives  are
self-adaptively  employed.  Wang  et  al.[55] proposed  a
composite  DE,  which  employs  three  groups  of
parameter  combinations  and  three  distinct  mutation
strategies.  Each  parent  individual  generats  three
offspring  by  three  mutation  strategies,  and  the  parent
individual competes with three offspring to increase the
selective  pressure.  Liu  et  al.[56] proposed  a  Two-Stage
DE  (TSDE)  method  to  obtain  better  diversity  and
convergence  rate.  TSDE  employs  distinct  mutation
strategies  and  parameters  to  improve  the  exploration
ability  in  the  early  stage  and  focuses  on  the
convergence  in  the  late  stage.  A  MultiRole-based
Differential  Evolution  algorithm  (MRDE)[57] was
proposed  to  take  advantage  of  different  mutation
strategies. In MRDE, each group has three individuals,
each  individual  of  which  has  a  special  role  that  is
allocated  with  a  unique  strategy  for  generating  the
mutation  vector.  Wang  et  al.[58] devised  a  novel  DE
variant  with  two  different  mutation  strategies  to  solve
the  gait  optimization  of  humanoid  robots,  which  is  a
constrained optimization problem. These two strategies
have equal selective probability, and one is devoted to
improving  diversity,  while  another  could  drive  the
population to approach the global optimal solution. Tan
et  al.[59] proposed  a  DE  with  an  adaptive  mutation
operator based on fitness landscape, in which a random
forest  model  is  trained  to  study  the  relationships
between  fitness  landscape  features  and  three  mutation
strategies.  Then,  the  trained  model  would  recommend
the most suitable strategy for the new problem.

In  these  algorithms,  the  utilization  of  multiple
strategies is  successful  because different  problems can
be  addressed  by  different  strategies.  These  strategies
are  adjusted  by  the  self-adaptive  scheme  to  make  the
algorithm  suitable  for  different  evolutionary  stages.
However,  the  self-adaptive  scheme  not  only  needs
additional  parameters  but  also  increases  the
computational complexity of the algorithm.
2.2.3    Parameter adaptation
Adaptation or self-adaptation of control parameters has
been used to improve the performance of DE, and it is
often  accompanied  by  other  improvement  schemes.  In
JADE[28],  an  effective  adaptation  method  was
proposed,  which considers  both the experience of  past
generations and the last generation to update F and CR.
The  Cauchy  distribution  has  a  wider  boundary  for
generating  more  diverse F ,  and  normal  distribution  is
used  to  produce CR .  Later,  this  method  is  improved
from  different  aspects.  For  example,  Peng  et  al.[60]

added a weighting strategy for CR. Li et al.[61] believed
that CR  and  F  should  be  updated  in  pairs.  Thus,  the
authors  clustered  the  two  parameters  used  by
successful  individuals  and  then  updated  them.
Tanabe[62] developed a success history based parameter
adaptation  method  to  avoid  errors  in  a  certain
generation. Zhou et al.[63] devised a sorting CR scheme,
in  which  the  generated CR  values  are  sorted  in
ascending order, and the better individual is assigned a
smaller CR value to increase the exploitation ability of
excellent individuals. Yu et al.[64] proposed a two-level
parameter adaptation method. F is increased and CR is
decreased  in  the  exploration  state  to  assist  the
algorithm  to  reach  more  spaces.  Then,  in  the
exploitation  state,  two  parameters  are  changed
reversely.  Tirronen  and  Neri[65] proposed  a  DE  with
fitness  diversity  self-adaptation,  where  the  diversity
indicator  measured  by  the  fitness  values  of  the
population  is  used  to  adjust  the  values  of F,  CR ,  and
NP.  Zamuda  et  al.[66] introduced  a  structured
population  size  reduction  technique  into  a  structured
population  DE.  The  population  size  reduction
technique  could  gradually  increase  the  exploitation
ability  of  the  population  during  the  evolution.  Rakshit
et al.[67] introduced an adaptive memetic algorithm that
combines  DE  with  Q-learning.  The  action  is  to  select
an F value from 10 different F values between 0 and 1
for one individual.

Despite  the  success  of  the  self-adaptive  parameter
adjustment  method,  they  need  additional  parameters
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that should be adjusted carefully.
Apart  from  the  above  DE  variants,  some  latest

reviews[10, 68] have presented algorithmic design issues
of DE. In addition, the above DE variants are designed
from only one or two specific aspects, and they can still
be  improved  due  to  unsatisfactory  performance.
Considering  the  impact  of  the  parameters,  structure,
local search, and global search on the search ability of
DE, a new LBLDE is proposed in this paper to further
improve the performance of DE.

3    Proposed Algorithm

To  design  a  DE  with  better  performance,  this  paper
proposes  a  new  LBLDE  algorithm.  The  level-based
learning  mechanism  is  introduced  into  DE  to  obtain
higher  diversity  and  reduce  the  probability  of
premature  convergence.  In  addition,  a  new  difference
vector  selection method and specific  parameter  setting
are used in LBLDE to accelerate the convergence rate.

3.1    Level-based learning mechanism

NP NL

LS LS = NP/NL
L1

LNL

Xi, j (i = 1,2, . . . ,NL; j = 1,2, . . . ,LS ) j

p = (p1, p2, . . . , pNL)
pi

i
pi (i = 1,2, . . . ,NL)

Figure  1 shows  how  to  partition  the  population  into
multiple levels.  The population is first  sorted from the
best  to  the  worst  in  the  light  of  their  fitness.  The  best
individual’s rank is 1, and the worst individual’s rank is

. The population is partitioned into  (an integer)
levels,  and  each  level  has  the  same  number  of
individuals  ( , ).  The  level  that  has  the
best individual is regarded as the first level, denoted .
The level that includes the worst individual is regarded
as  the  last  level,  denoted  as .  Let

 be  the -th
individual  in  the i -th  level.  The  purpose  of  LBLDE is
to  arrange  suitable  learning  exemplars  for  each  level.

 controls  the  number  of  exemplars
for  different  levels,  and  the  top  individuals  are
defined  as  the  exemplars  of -th  level.

 is denoted as follows:

 

pi =
(i−1)×LS

NP
×100% (1)

X1, j

L1

p1 (p1 = 0.05)

X1, j p1

On the basis of Eq. (1), one individual can select any
individual  at  a  better  level  as  its  learning  exemplar.
Poor  individuals  can  choose  learning  exemplars  from
the majority of individuals in the population, which can
improve the population diversity. In addition, for , it
selects  only  the  several  best  individuals  at .  A  very
small  value is  assigned to  ,  which means
only the top 5% superior individuals can be selected for

 to conduct the local search. A small  guarantees
the  exploitation  ability  of  excellent  individuals.  The
selection  ranges  of  elites  for  the  whole  population  are
not  fixed as  in the previous algorithms[33−35];  thus,  the
population has more diverse search abilities. Therefore,
the  level-based  learning  mechanism  will  maintain  a
good balance between diversity and convergence.

3.2    Difference vector selection method

DE  evolves  each  individual  based  on  differential
information.  In  the  traditional  DE  algorithm,  the
individuals  that  make  up  the  difference  vectors  are
randomly  selected  from  the  whole  population  to
maintain  population  diversity.  In  this  paper,  LBLDE
modifies  the  difference  vector  selection  method  to
match the stratification.

pThe  strategy  DE/current-to- best/1  is  used  in
LBLDE. The mutation strategy formula is as follows:
 

Vi, j = Xi, j+Fi, j×
(
Xpi

best −Xi, j
)
+Fi, j×

(
Xr1, j−Xr2, j

)
(2)

Xpi
best

pi Fi, j

Xr1, j

Xr2, j

where  is  the  learning  exemplar  of  the  target
individual  and  randomly  selected  from  several  elite
individuals, i.e., the top  individuals. In addition, 
is  the  scaling  factor.  The  difference  vectors  and

 are different from each other.
Xi, j Xr1, j L1 Li−1

Xr2, j L1 Li

Xi, j

For ,  is randomly selected from  to  and
 is randomly selected from  to , which ensures

the  right  search  direction  for ,  and  can  speed  the
convergence rate  of  the population.  For  the first  level,
no  better  level  exists,  so  these  two  individuals  are
randomly selected from the first  level.  If  LBLDE uses
the general difference vector selection method, then the
population  diversity  of  LBLDE  will  improve  and  the
convergence speed will slow down.

3.3    Parameter adaptation method

The  parameter  combination  is  another  key  to
improving  the  performance  of  DE.  Selecting  suitable
parameters  is  important  because  they  can  enhance  the
robustness  of  the  algorithm[28, 29,  64] .  The  adaptive

 

Rank 1
Rank 2
Rank 3

Rank NP−2

Rank NP−1
Rank NP

L1 (LS individuals)
L2 (LS individuals)

LNL−1 (LS individuals)
LNL (LS individuals)

 
Fig. 1    Partitioning the whole population into NL levels.
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method is well known to be able to dynamically adjust
parameters  to  balance  exploration  and  exploitation
effectively.  Therefore,  LBLDE  employs  an  effective
parameter adaptive method proposed in JADE[28].

Xi, j CRi, j Fi, jFor , its  and  are independently generated
based on Eqs. (3) and (4),
 

CRi, j = randn (µCR,0.1) (3)
 

Fi, j = randc (µF ,0.1) (4)
µCR µF

CRi, j > 1 CRi, j < 0
CRi, j = 1 CRi, j = 0
Fi, j > 1 Fi, j = 1 Fi, j ⩽ 0

µCR µCR-ini µF

where  and   are  the  mean  values  and  0.1  is  the
standard  deviation.  and   are  set  as

 and , respectively. In the same way, if
, then . However, when , it will be

regenerated. The initial  ( ) and  are 0.5 and
then adjusted after every cycle of evolution using Eqs.
(5) and (6),
 

µCR = (1− c)×µCR+ c×meanA (SCR) (5)
 

µF = (1− c)×µF + c×meanL (SF) (6)
c SCR SF

CR

meanA(·) meanL(·)

where  is  a  number  ranging from 0  to  1;  and 
indicate  the  set  of  and  F  values  of  all  successful
individuals  in  the  previous  generation,  respectively;

 is  the arithmetic mean as usual;  and 
indicates the flowing Lehmer mean,
 

meanL (SF) =

∑
F∈SF

F2∑
F∈SF

F
(7)

3 µCR-ini µCR

CR

µCR-ini

µCR

µCR

µCR-ini

CR

For  Eq.  ( ),  if  =  0.5,  then  will  first
increase and maintain a high level until the end, which
is  harmful  to  LBLDE  because  DE  needs  small 
values  to  accelerate  convergence  in  the  later  stage.
Therefore,  is  set  as  a  smaller  value  in  LBLDE
that  is  different  from JADE.  In  this  way,  has  less
possibility of increasing in the late stage. Furthermore,
because the population diversity is high in LBLDE, 
should  be  adaptively  changed  at  the  lower  level.  In
Section 4.1, the experiment proves that  = 0.35 is
the optimal choice. Moreover, the  values are set to
1 in the lower levels. As a result of this setting, almost
all components of lower levels come from the mutation
vectors.  In  the  later  stage,  the  influence  of  difference
vectors  on  the  population  is  small  due  to  low
population  diversity;  thus,  the  generated  trial  vectors
will  be  close  to  excellent  individuals.  Hence,  this
setting  can  improve  the  exploitation  ability  of  the
population to continue to evolve in the late stage.  The
verification  of  these  modifications  is  shown  in
Section 4.3.

Based  on  the  above  process, Algorithm  1 gives  the
pseudo-code of LBLDE.

4    Experimental Study

The  CEC’2017  benchmark  set[69] is  adopted  in  this
paper  to  derive  deep  insights  into  the  performance  of
LBLDE.  This  test  suite  contains  30  test  functions:
unimodal  functions  (F1–F3),  simple  multimodal
functions  (F4–F10),  hybrid  functions  (F11–F20),  and
composition functions (F21–F30).

MaxFES 10 000D NP 10D
30D 50D NP 100D

Four  dimensions  (D),  namely  10D,  30D,  50D,  and
100D,  are  used,  which  represent  different  degrees  of
difficulties.  The  maximum  number  of  function
evaluations  ( )  is .  =  100  for ,

, and ,  = 160 for , and NL = 4 for all

 

(i−1)×LS×100%
NP

Set FES = 0, G = 0, μF = 0.5, μCR = 0.35, c = 0.l;
Create a random initial population P and evaluate each
individual X in P;
FES=FES+NP;
while FES≤MaxFES do
      G = G+1;
      Sort P by the fitness in ascending order and partition it
         into NL levels equally;
      for i = 1 : NL do
           for j = 1 : LS do
               Generate CRi, j =randn (μCR, 0.1) and
                  Fi, j =randc(μF, 0.1);
                if i == 1 then
                     pi = 0.05;
                     else
                            pi =
                     end
                end
                Randomly select an individual from top pi

                   individuals as exemplar X
best

  ;
                Randomly select two individuals, Xr1, j from
                   top pi−1 and Xr2, j, from top pi individuals;
                Generate the mutation vector Vi, j = Xi, j+
                   Fi, j×(X

best
 −Xi, j)+Fi, j×(Xr1, j−Xr2, j);

                Generate the trial vector Ui, j by implementing
                   crossover operation between Xi, j and Vi, j

                   and evaluate Ui, j;
                 FES=FES+l;
                  if f (Xi, j)≤f(Ui, j) then
                       Xi, j←Xi, j;
                       else
                              if i ≠NL then
                                   Xi, j←Ui, j, SCR←CRi, j, 
                                    SF←Fi, j;
                                   else
                                          Xi, j←Ui, j, SF←Fi, j;
                                   end
                              end
                       end
                  end
            end
      end
       μCR = (1−c)×μCR+c×meanA(SCR);
       μF = (1−c)×μF+c×meanL(SF);
end

pi

pi

Algorithm 1　Pseudo-code of LBLDE
Input: NP  (population size), NL  (the number of levels),
            LS  (number of individuals in each level), MaxFES
          (maximal number of the function evaluations)
Output: optimal solution X and its fitness f(X)

1
2

3
4
5
6

7
8
9

10
11
12
13
14
15
16

17

18

19

20
21
22
23
24
25

26
27
28
29
30
31
32
33
34
35
36 
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µCR-ini

CR

f (X)− f (X∗) < 10−8

X X∗

dimensions.  is  0.35,  and  the  number  of  levels
that  = 1 (NLB)  is  set  as 1.  The discussion of these
parameter  settings  is  presented  in  Section  4.1.  All
algorithms are executed 51 independent times for a fair
comparison. If , then the error is set
as 0.  and  are the found and true optimal solutions,
respectively.

α

The  experiments  are  performed  step  by  step  as
follows:  (1)  The  parameter  sensitivity  is  analyzed  to
obtain  the  optimal  parameter  configuration;  (2)  the
superiority  of  LBLDE  is  demonstrated  based  on  the
comparison  experiments  between  LBLDE  and  other
peer DE variants. At the same time, the statistical test is
performed using the Wilcoxon rank-sum test  with  =
0.05. “+”,  “–” ,  and “=”  indicate  that  the  results
obtained by LBLDE are significantly better than, worse
than,  and  similar  to  those  found  by  compared
algorithms,  respectively;  and  (3)  the  effectiveness  of
the proposed schemes in LBLDE is verified.

4.1    Parameter analysis

NL
NLB µCR-ini

The  parameters  to  be  tuned  in  LBLDE  include ,
,  and ,  which  influence  the  evolutionary

trend  of  the  population.  Therefore,  the  parameter
sensitivity  analysis  is  first  explored  to  obtain  the  best
parameter  configuration.  All  experiments  in  this
subsection and Section 4.3 are implemented on the 30D
case.

NL NL

NL
NL

NL

NL

First,  the  influence  of  is  discussed.  A  large 
will  reduce  the  probability  of  excellent  individuals
being  selected,  leading  to  high  population  diversity.
Four different  values (i.e., 1, 4, 5, and 10) are used
for  compared  experiments,  where  =  4  means  that
the  population  of  LBLDE  is  divided  into  four  levels.
The  boxplot  figures  of  LBLDE  with  different 
values on nine different functions are provided in Fig. 2.
These  nine  functions  represent  different  kinds  of
functions.  In Fig.  2b,  with  the  increase  of ,  the
stability of the algorithm begins to decline, because F3
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Fig. 2    Boxplot figures of LBLDE with different NL values on nine test functions.
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NL

NL

NL NL

is a unimodal function that needs excellent individuals
to  guide  the  evolution  of  the  population,  and  a  small

 leads  more  individuals  to  learn  from  the  several
best  exemplars.  For  most  of  the  other  problems,
LBLDE  with  =  4  performs  best.  The  ranking  of
each  LBLDE  variant  on  30  functions  based  on  the
Friedman  test  is  presented  in Table  1,  where  LBLDE
with  = 4 has the best ranking. Thus,  = 4 will be
the optimal choice.

NLB
NLB CR NLB

CR
CR

NLB

NLB
NLB

Second,  the  influence  of  is  discussed,  where
 =  0  represents  no  level’s  is  1,  and  =  2

indicates  = 1 in the last two levels. The number of
levels  whose  =  1  is  discussed.  From  the
experimental  results  presented  in Fig.  3 and  Table  2,
when  =  0,  the  algorithm  obtains  the  worst
performance on most of the functions. For F3, F14, and
F18,  =  1,  2,  and  3  can  obtain  similar  results.
However,  in  the  case  of  =  1,  LBLDE  achieves
better  performances  on  other  functions.  Moreover,  on

NLB NLB
the  basis  of  the  ranking  in Table  2,  LBLDE  with

 =  1  obtains  the  best  ranking.  Therefore,  is
set to 1.

µCR-ini

µCR-ini

µCR-ini

µCR-ini

µCR

µCR-ini

CR

Lastly, the influence of the  is discussed, where
 is  set  to  0.05,  0.15,  0.25,  0.35,  0.45,  and  0.50,

respectively. We aim to find a trade-off  on most
of  the  test  functions.  If  is  too  small,  then
increasing  during  the  evolution  is  difficult.
However,  if  is  0.5,  then  it  may  increase  with  a
50% probability and may not decrease in the late stage.
LBLDE  does  not  need  a  large  value  to  maintain

 

Table  1    Rankings  of  LBLDE  with  different NL  values  on
the CEC’2017 test suite.

NL Ranking
1 3
4 1
5 2
10 4
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Fig. 3    Boxplot figures of LBLDE with different NLB values on nine test functions.
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µCR-ini µCR-ini

µCR-ini

µCR-ini

NL NLB
µCR-ini

population  diversity  because  of  multilevels. Figure  4
presents  the  boxplot  figures  of  LBLDE  with  different

 on nine test functions. For F8 and F21, as 
increases,  the  performance  of  the  algorithm  increases.
However, a large  causes LBLDE perform poorly
on  other  functions.  On  the  basis  of  the  ranking
provided  in Table  3,  =  0.35  leads  to  better
results.  Therefore,  the combination of  = 4,  =
1,  and  =  0.35  can  lead  to  satisfactory
performance by considering diversity and convergence
and is chosen for the following experiments.

4.2    Comparisons with state-of-the-art DE variants

Seven  peer  DE  algorithms  including  EAGDE[70],
EFADE[71],  AMECoDEs[35],  TSDE[56],  RNDE[21],
MPEDE[45],  and  TVDE[72],  are  used  for  comparison.
EAGDE adopts  the  fitness-based  population  structure;
EFADE  designs  the  triangular  mutation  operator  to
balance  diversity  and  convergence;  AMECoDEs  and
RNDE  adopt  the  neighbor-based  population  structure,
and  elite  information  is  used;  TSDE  is  a  two-stage
algorithm that adopts multiple strategies to enhance the
search  abilities  of  the  population;  MPEDE  is  a
multipopulation  algorithm,  and  it  self-adaptively
adjusts the utilization of multiple strategies; and TVDE
designs  a  time-varying  strategy  to  gradually  increase
the  utilization  of  excellent  individuals.  These
algorithms  adopt  different  mechanisms.  Thus,  the
comparison between LBLDE and these algorithms can
verify the superiority of LBLDE. The parameters of the

 

Table 2    Rankings of LBLDE with different NLB values on
the CEC’2017 test suite.

NLB Ranking
0 3
1 1
2 2
3 3

 

 

Er
ro

r

(a) F1
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50

Er
ro

r

(b) F3

Er
ro

r

(c) F8

Er
ro

r

(d) F11

Er
ro

r

(e) F14

Er
ro

r

(f) F18

Er
ro

r

(g) F21

Er
ro

r

(h) F25

Er
ro

r

(i) F30

μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50

μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50

μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50
μCR-ini

0.05 0.15 0.25 0.35 0.45 0.50

 
Fig. 4    Boxplot figures of LBLDE with different μCR-ini values on nine test functions.
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compared  algorithms  are  provided  in Table  4.
Tables  5–8 provide  the  average  error  values  (average)
and  related  standard  deviation  (std)  of  all  eight
algorithms  on  four  different  dimensions. Table  9

10D 30D 50D 100D

FES

provides  the  statistical  results  regarding  average  and
std  on  the , , ,  and  cases.  Figure  5
shows the  average error  curves  over  all  51 runs  under
the function evaluations ( ) for nine test functions.

 

Table 3    Rankings of LBLDE with different μCR-ini values on
the CEC’2017 test suite.

µCR-ini Ranking
0.05 2
0.15 6
0.25 4
0.35 1
0.45 3
0.50 5

 

 

Table 4    Parameter settings of compared algorithms.

Algorithm Parameter
EAGDE[70] p Nmin = 0.1,  = 12
EFADE[71] ε p1 = 0.0001,  = 0.5

AMECoDEs[35] p ε = 0.1,  = 0.001
RNDE[21] F = 0.5

TSDE[56]
F CR F CR

F CR
[  = 1,  = 0.1], [  = 1,  = 0.9],

[  = 0.8,  = 0.2]
MPEDE[45] λ ng = 0.2,  = 20
TVDE[72] Freq G = 0.05,  = 10 000

 

 

Table 5    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (10D).

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F1
0.00×100 ±
0.00×100(=)

6.47×101 ±
3.74×101(+)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

7.20×10−10 ±
2.92×10−9(=)

9.94×101 ±
7.10×102(=)

0.00×100 ±
0.00×100

F2 0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

1.03×102 ±
7.06×102(+)

0.00×100 ±
0.00×100

F3 0.00×100 ±
0.00×100(=)

1.86×100 ±
1.11×100(+)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100

F4 0.00×100 ±
0.00×100(−)

2.26×10−1 ±
1.27×10−1(+)

0.00×100 ±
0.00×100(−)

0.00×100 ±
0.00×100(−)

0.00×100 ±
0.00×100(−)

4.45×10−8 ±
3.07×10−7(−)

4.68×100 ±
1.42×100(+)

3.17×10−3 ±
1.14×10−2

F5 4.65×100 ±
2.10×100(+)

1.13×101 ±
1.81×100(+)

6.77×100 ±
2.76×100(+)

3.65×100 ±
1.65×100(+)

9.46×100 ±
1.78×100(+)

6.07×100 ±
1.67×100(+)

3.54×100 ±
1.91×100(+)

2.62×100 ±
1.05×100

F6 4.88×10−8 ±
2.13×10−7(+)

6.10×10−3 ±
2.16×10−3(+)

9.36×10−6 ±
2.29×10−6(+)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

2.30×10−5 ±
5.68×10−6(+)

3.39×10−5 ±
1.36×10−4(+)

0.00×100 ±
0.00×100

F7 1.76×101 ±
3.77×100(+)

2.47×101 ±
2.52×100(+)

1.71×101 ±
3.41×100(+)

1.43×101 ±
1.58×100(+)

2.10×101 ±
2.35×100(+)

1.76×101 ±
1.58×100(+)

1.38×101 ±
1.98×100(=)

1.34×101 ±
8.98×10−1

F8 4.37×100 ±
1.59×100(+)

1.20×101 ±
2.38×100(+)

7.35×100 ±
2.72×100(+)

4.45×100 ±
2.22×100(+)

1.01×101 ±
2.27×100(+)

6.33×100 ±
1.58×100(+)

3.73×100 ±
1.78×100(+)

2.88×100 ±
1.08×100

F9 0.00×100 ±
0.00×100(=)

4.89×10−4 ±
5.38×10−4(+)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

0.00×100 ±
0.00×100(=)

1.78×10−2 ±
8.91×10−2(=)

0.00×100 ±
0.00×100

F10 1.40×102 ±
1.37×102(=)

4.48×102 ±
9.15×101(+)

1.87×102 ±
1.48×102(+)

1.25×102 ±
9.56×101(=)

5.00×102 ±
1.22×102(+)

2.81×102 ±
1.17×102(+)

1.31×102 ±
1.14×102(=)

7.58×101 ±
5.83×101

F11 2.93×10−1 ±
4.58×10−1(+)

4.78×100 ±
8.57×10−1(+)

7.02×10−1 ±
8.03×10−1(+)

3.71×10−1 ±
5.61×10−1(+)

3.90×10−2 ±
1.95×10−1(=)

2.32×100 ±
5.86×10−1(+)

2.72×100 ±
3.98×100(+)

1.01×10−7 ±
7.00×10−7

F12 3.70×101 ±
6.92×101(+)

3.54×102 ±
1.12×102(+)

1.44×101 ±
3.66×101(+)

8.85×100 ±
2.91×101(+)

7.08×10−1 ±
2.17×100(−)

1.08×101 ±
1.27×101(+)

2.61×103 ±
3.96×103(+)

7.86×100 ±
1.82×101

F13 3.32×100 ±
2.43×100(=)

1.19×101 ±
2.01×100(+)

4.39×100 ±
2.17×100(+)

2.65×100 ±
2.35×100(=)

2.31×100 ±
2.50×100(=)

5.88×100 ±
2.11×100(+)

8.60×100 ±
1.16×101(+)

2.40×100 ±
1.87×100

F14 6.53×10−1 ±
6.78×10−1(+)

5.22×100 ±
1.56×100(+)

1.90×100 ±
1.30×100(+)

2.15×10−1 ±
4.13×10−1(+)

2.46×10−9 ±
1.76×10−8(=)

4.48×100 ±
1.67×100(+)

1.35×101 ±
1.13×101(+)

0.00×100 ±
0.00×100

F15 2.38×10−1 ±
3.22×10−1(+)

2.29×100 ±
5.61×10−1(+)

1.44×10−1 ±
3.39×10−1(+)

6.09×10−2 ±
2.05×10−1(+)

6.30×10−2 ±
1.46×10−1(+)

7.20×10−1 ±
2.65×10−1(+)

2.74×100 ±
6.65×100(+)

2.84×10−2 ±
7.83×10−2

F16 4.31×10−1 ±
2.65×10−1(+)

3.24×100 ±
1.13×100(+)

4.13×10−1 ±
2.09×10−1(+)

2.32×10−1 ±
1.92×10−1(=)

4.59×10−1 ±
2.56×10−1(+)

2.58×100 ±
9.10×10−1(+)

6.18×101 ±
9.18×101(+)

2.87×10−1 ±
1.34×10−1

F17 1.72×100 ±
1.36×100(+)

1.06×101 ±
2.04×100(+)

1.67×100 ±
3.03×100(+)

3.07×10−1 ±
3.38×10−1(+)

4.51×10−1 ±
4.00×10−1(+)

6.93×100 ±
2.23×100(+)

2.05×101 ±
2.82×101(+)

2.45×10−2 ±
6.10×10−2

F18 5.99×10−1 ±
2.79×100(+)

5.96×100 ±
1.58×100(+)

1.98×10−1 ±
3.49×10−1(+)

5.46×10−2 ±
1.10×10−1(+)

1.07×10−1 ±
1.62×10−1(=)

2.98×100 ±
1.43×100(+)

2.21×101 ±
1.17×101(+)

3.01×10−2 ±
7.26×10−2

F19 2.00×10−2 ±
1.86×10−2(+)

9.50×10−1 ±
2.79×10−1(+)

5.17×10−2 ±
4.78×10−2(+)

1.11×10−2 ±
1.10×10−2(=)

3.85×10−4 ±
2.72×10−3(−)

5.39×10−1 ±
1.60×10−1(+)

1.57×100 ±
1.65×100(+)

7.03×10−3 ±
8.32×10−3

(to be continued)
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Table 5    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (10D). (continued)

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F20 1.59×10−1 ±
1.58×10−1(+)

1.58×100 ±
8.80×10−1(+)

1.60×10−1 ±
2.24×10−1(+)

6.12×10−3 ±
4.37×10−2(=)

8.57×10−2 ±
1.54×10−1(+)

8.41×10−1 ±
5.07×10−1(+)

2.61×101 ±
4.14×101(+)

1.22×10−2 ±
6.12×10−2

F21 1.75×102 ±
4.91×101(+)

1.56×102 ±
5.76×101(−)

1.30×102 ±
4.90×101(=)

1.59×102 ±
5.41×101(=)

1.53×102 ±
5.65×101(=)

1.15×102 ±
3.75×101(=)

1.96×102 ±
3.20×101(+)

1.62×102 ±
5.20×101

F22 1.00×102 ±
2.52×10−1(+)

8.80×101 ±
3.46×101(−)

9.11×101 ±
2.59×101(−)

8.60×101 ±
3.41×101(−)

9.61×101 ±
1.96×101(=)

8.85×101 ±
3.18×101(−)

1.03×102 ±
4.09×101(+)

1.00×102 ±
1.05×10−11

F23 3.05×102 ±
1.71×100(+)

3.12×102 ±
2.20×100(+)

3.07×102 ±
3.37×100(+)

3.06×102 ±
2.03×100(+)

3.09×102 ±
3.21×100(+)

3.06×102 ±
1.69×100(+)

3.06×102 ±
2.85×100(+)

3.03×102 ±
1.91×100

F24 3.24×102 ±
4.59×101(+)

2.76×102 ±
1.09×102(−)

2.62×102 ±
1.11×102(−)

2.85×102 ±
9.79×101(+)

2.76×102 ±
1.04×102(−)

2.74×102 ±
1.03×102(−)

3.17×102 ±
6.41×101(+)

2.83×102 ±
9.14×101

F25 4.07×102 ±
1.86×101(=)

4.00×102 ±
9.13×100(=)

4.07×102 ±
1.83×101(=)

4.03×102 ±
1.49×101(=)

4.09×102 ±
1.95×101(=)

4.04×102 ±
1.58×101(=)

4.30×102 ±
2.18×101(+)

4.13×102 ±
2.16×101

F26 3.00×102 ±
0.00×100(=)

3.00×102 ±
4.46×10−4(+)

3.00×102 ±
1.48×10−13(+)

3.00×102 ±
0.00×100(=)

3.00×102 ±
0.00×100(=)

3.00×102 ±
0.00×100(+)

4.61×102 ±
3.55×102(+)

3.00×102 ±
0.00×100

F27 3.89×102 ±
2.44×10−1(=)

3.89×102 ±
7.76×10−1(−)

3.89×102 ±
5.01×10−1(=)

3.89×102 ±
1.38×100(−)

3.92×102 ±
2.35×100(+)

3.89×102 ±
2.50×10−1(=)

3.96×102 ±
4.69×100(+)

3.90×102 ±
2.16×100

F28 5.06×102 ±
1.38×102(+)

3.17×102 ±
6.74×101(−)

3.08×102 ±
4.28×101(−)

3.06×102 ±
3.97×101(−)

3.11×102 ±
5.56×101(=)

3.12×102 ±
5.84×101(−)

5.13×102 ±
1.29×102(+)

3.34×102 ±
9.55×101

F29 2.34×102 ±
4.71×100(−)

2.52×102 ±
4.97×100(+)

2.36×102 ±
4.97×100(−)

2.32×102 ±
2.77×100(−)

2.39×102 ±
4.58×100(=)

2.50×102 ±
5.72×100(+)

2.56×102 ±
3.13×101(+)

2.40×102 ±
3.11×100

F30 8.05×104 ±
2.45×105(=)

7.09×102 ±
1.22×102(+)

1.64×104 ±
1.14×105(+)

4.06×102 ±
3.59×101(−)

4.00×102 ±
1.23×101(−)

3.95×102 ±
4.38×10−1(−)

1.47×105 ±
3.47×105(+)

4.17×102 ±
6.74×101

+/=/− 18/10/2 23/2/5 18/7/5 11/13/6 10/15/5 18/7/5 25/5/0 −
 

 

Table 6    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (30D).

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F1
0.00×100 ±

0.00×100 (=)
1.64×102 ±

7.00×101 (+)
0.00×100 ±

0.00×100 (=)
0.00×100 ±

0.00×100 (=)
0.00×100 ±

0.00×100 (=)
0.00×100 ±

0.00×100 (=)
0.00×100 ±

0.00×100 (=)
0.00×100 ±
0.00×100

F2
7.33×100 ±

1.49×101 (=)
1.29×1015 ±

3.72×1015 (+)
1.22×100 ±

6.08×100 (=)
0.00×100 ±

0.00×100 (−)
0.00×100 ±

0.00×100 (−)
0.00×100 ±

0.00×100 (−)
6.57×105 ±

3.04×106 (−)
4.25×106 ±
3.03×107

F3
0.00×100 ±

0.00×100 (−)
1.22×103 ±

6.32×102 (+)
0.00×100 ±

0.00×100 (−)
0.00×100 ±

0.00×100 (−)
0.00×100 ±

0.00×100 (−)
4.17×10−10 ±
2.98×10−9 (−)

5.42×10−6 ±
3.68×10−5 (−)

1.19×10−1 ±
3.52×10−1

F4
5.94×101 ±

2.04×100 (+)
8.36×101 ±

2.86×100 (+)
5.78×101 ±

8.40×100 (+)
4.29×101 ±

2.71×101 (=)
3.16×101 ±

2.99×101 (=)
5.32×101 ±

1.75×101 (=)
7.11×101 ±

1.38×101 (+)
3.02×101 ±
3.19×101

F5
3.40×101 ±

2.11×101 (+)
1.06×102 ±

8.98×100 (+)
2.75×101 ±

1.00×101 (=)
3.63×101 ±

1.08×101 (+)
9.09×101 ±

7.40×100 (+)
2.92×101 ±

8.07×100 (+)
2.42×101 ±

8.09×100 (=)
2.38×101 ±
3.98×100

F6
5.57×10−6 ±

8.26×10−6 (+)
1.18×10−2 ±

2.56×10−3 (+)
1.14×10−8 ±

3.73×10−8 (+)
0.00×100 ±

0.00×100 (=)
0.00×100 ±

0.00×100 (=)
2.68×10−9 ±

1.92×10−8 (=)
3.01×10−8 ±

1.55×10−7 (+)
0.00×100 ±
0.00×100

F7
1.09×102 ±

2.77×101 (+)
1.58×102 ±

8.40×100 (+)
5.73×101 ±

9.33×100 (=)
6.75×101 ±

9.56×100 (+)
1.28×102 ±

8.36×100 (+)
5.44×101 ±

7.42×100 (=)
5.53×101 ±

8.74×100 (=)
5.39×101 ±
4.98×100

F8
4.25×101 ±

2.47×101 (+)
1.10×102 ±

7.56×100 (+)
2.46×101 ±

1.06×101 (=)
3.60×101 ±

1.08×101 (+)
9.38×101 ±

7.10×100 (+)
3.05×101 ±

7.63×100 (+)
2.59×101 ±

8.36×100 (=)
2.55×101 ±
5.13×100

F9
2.85×10−2 ±

1.08×10−1 (=)
6.96×101 ±

2.74×101 (+)
0.00×100 ±

0.00×100 (=)
3.74×10−2 ±

1.23×10−1 (=)
0.00×100 ±

0.00×100 (=)
1.96×10−2 ±

8.96×10−2 (=)
0.00×100 ±

0.00×100 (=)
8.91×10−3 ±
6.36×10−2

F10
4.58×103 ±

3.69×102 (+)
4.15×103 ±

3.15×102 (+)
1.67×103 ±

6.00×102 (−)
2.00×103 ±

4.58×102 (=)
4.37×103 ±

2.86×102 (+)
2.65×103 ±

4.19×102 (+)
2.38×103 ±

6.63×102 (+)
1.89×103 ±
2.25×102

F11
1.44×101 ±

1.77×101 (=)
6.49×101 ±

2.02×101 (+)
2.07×101 ±

2.47×101 (=)
2.32×101 ±

2.22×101 (+)
3.05×101 ±

2.60×101 (+)
1.98×101 ±

1.02×101 (+)
2.45×101 ±

2.47×101 (+)
8.55×100 ±
3.20×100

F12
1.03×104 ±

1.16×104 (+)
2.68×104 ±

1.45×104 (+)
1.10×103 ±

3.83×102 (−)
9.51×103 ±

1.13×104 (+)
1.07×104 ±

6.44×103 (+)
9.33×102 ±

4.19×102 (−)
1.05×104 ±

1.77×104 (+)
2.97×103 ±
3.45×103

F13
2.14×101 ±

7.15×100 (+)
1.13×102 ±

1.08×101 (+)
2.00×101 ±

7.30×100 (=)
2.89×101 ±

1.05×101 (+)
5.99×101 ±

1.87×101 (+)
2.08×101 ±

7.94×100 (=)
5.35×103 ±

6.05×103 (+)
1.82×101 ±
7.13×100

F14
2.41×101 ±

7.43×100 (+)
5.09×101 ±

4.62×100 (+)
2.56×101 ±

6.90×100 (+)
1.31×101 ±

8.59×100 (+)
4.03×101 ±

6.12×100 (+)
1.31×101 ±

1.00×101 (+)
3.31×101 ±

7.01×100 (+)
8.90×100 ±
6.54×100

(to be continued)
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Table 6    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (30D). (continued)

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F15
5.47×100 ±

2.12×100 (=)
3.88×101 ±

5.72×100 (+)
6.57×100 ±

3.61×100 (=)
9.00×100 ±

3.67×100 (+)
1.59×101 ±

7.11×100 (+)
8.43×100 ±

3.94×100 (+)
3.20×101 ±

3.79×101 (+)
5.42×100 ±
2.00×100

F16
5.40×101 ±

7.32×101 (−)
5.53×102 ±

1.64×102 (+)
4.66×102 ±

2.32×102 (+)
4.09×102 ±

1.83×102 (+)
5.59×102 ±

1.50×102 (+)
3.46×102 ±

1.82×102 (=)
2.41×102 ±

2.06×102 (−)
3.09×102 ±
1.57×102

F17
3.22×101 ±

6.70×100 (=)
1.13×102 ±

3.65×101 (+)
4.53×101 ±

2.36×101 (+)
7.15×101 ±

6.46×101 (+)
5.82×101 ±

1.93×101 (+)
5.50×101 ±

2.39×101 (+)
5.89×101 ±

4.09×101 (+)
3.19×101 ±
1.23×101

F18
2.58×101 ±

1.97×100 (+)
4.88×101 ±

6.74×100 (+)
2.40×101 ±

5.03×100 (+)
6.91×101 ±

4.24×101 (+)
5.30×101 ±

4.33×101 (+)
2.38×101 ±

7.67×100 (+)
3.30×103 ±

4.56×103 (+)
1.91×101 ±
6.57×100

F19
5.00×100 ±

1.57×100 (−)
2.49×101 ±

2.80×100 (+)
5.21×100 ±

1.59×100 (−)
5.62×100 ±

2.37×100 (−)
1.59×101 ±

3.01×100 (+)
6.66×100 ±

1.94×100 (−)
1.38×101 ±

8.34×100 (+)
7.58×100 ±
2.14×100

F20
2.14×101 ±

7.46×100 (−)
9.26×101 ±

4.52×101 (+)
8.19×101 ±

4.90×101 (+)
9.83×101 ±

8.32×101 (+)
4.19×101 ±

3.83×101 (+)
6.99×101 ±

5.13×101 (+)
1.11×102 ±

6.51×101 (+)
2.23×101 ±
4.00×101

F21
2.31×102 ±

1.48×101 (=)
3.07×102 ±

7.31×100 (+)
2.28×102 ±

8.30×100 (=)
2.39×102 ±

1.13×101 (+)
2.91×102 ±

8.87×100 (+)
2.28×102 ±

7.28×100 (=)
2.28×102 ±

8.34×100 (=)
2.25×102 ±
5.21×100

F22
1.00×102 ±

1.58×10−13 (+)
1.00×102 ±

4.04×10−4 (+)
1.00×102 ±

1.11×10−13 (−)
1.00×102 ±

1.00×10−13 (=)
1.00×102 ±

1.00×10−13 (=)
1.00×102 ±

1.00×10−13 (=)
2.61×102 ±

6.61×102 (=)
1.00×102 ±
1.22×10−13

F23
3.73×102 ±

9.13×100 (+)
4.46×102 ±

7.71×100 (+)
3.71×102 ±

9.86×100 (=)
3.88×102 ±

1.15×101 (+)
4.35×102 ±

8.39×100 (+)
3.79×102 ±

1.22×101 (+)
3.73×102 ±

6.59×100 (+)
3.69×102 ±
5.63×100

F24
4.46×102 ±

7.36×100 (+)
5.29×102 ±

1.05×101 (+)
4.53×102 ±

1.12×101 (+)
4.59×102 ±

1.32×101 (+)
5.08×102 ±

1.03×101 (+)
4.44×102 ±

7.44×100 (+)
4.46×102 ±

8.28×100 (+)
4.41×102 ±
5.84×100

F25
3.87×102 ±

3.03×10−2 (−)
3.87×102 ±

2.91×10−2 (=)
3.87×102 ±

6.15×10−2 (−)
3.87×102 ±

1.23×10−1 (−)
3.87×102 ±

9.07×10−2 (−)
3.87×102 ±

6.40×10−2 (−)
3.87×102 ±

1.46×10−1 (=)
3.87×102 ±
8.00×10−1

F26
1.21×103 ±

1.11×102 (=)
1.93×103 ±

4.15×102 (+)
1.13×103 ±

1.27×102 (−)
1.28×103 ±

3.18×102 (+)
1.72×103 ±

9.78×101 (+)
1.20×103 ±

1.06×102 (=)
1.04×103 ±

3.11×102 (−)
1.16×103 ±
1.99×102

F27
4.93×102 ±

9.97×100 (−)
5.01×102 ±

9.76×100 (+)
5.01×102 ±

6.09×100 (+)
4.99×102 ±

9.46×100 (+)
4.93×102 ±

1.48×101 (=)
5.01×102 ±

6.16×100 (+)
5.06×102 ±

4.97×100 (+)
4.96×102 ±
9.72×100

F28
3.25×102 ±

4.68×101 (+)
3.87×102 ±

3.19×101 (+)
3.16×102 ±

4.10×101 (−)
3.41×102 ±

5.36×101 (=)
3.20×102 ±

4.34×101 (−)
3.27×102 ±

5.04×101 (+)
3.44×102 ±

5.43×101 (=)
3.25×102 ±
4.51×101

F29
4.29×102 ±

2.64×101 (=)
5.64×102 ±

5.38×101 (+)
4.36×102 ±

2.35×101 (=)
4.58×102 ±

7.10×101 (=)
5.58×102 ±

3.10×101 (+)
4.56×102 ±

2.30×101 (+)
4.80×102 ±

4.88×101 (+)
4.27×102 ±
2.94×101

F30
2.02×103 ±

5.12×101 (+)
2.18×103 ±

1.31×102 (+)
2.03×103 ±

1.26×102 (=)
2.08×103 ±

8.16×101 (+)
2.14×103 ±

9.25×101 (+)
2.00×103 ±

5.41e+01 (=)
3.28×103 ±

1.00×103 (+)
2.00×103 ±
5.63×101

+/=/− 15/9/6 29/1/0 9/13/8 18/8/4 20/6/4 14/11/5 17/9/4 −
 

 

Table 7    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (50D).

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F1
1.63 × 102 ±
4.37 × 102(−)

2.25 × 105 ±
1.08 × 105(+)

0.00 × 100 ±
0.00 × 100(−)

3.65 × 102 ±
1.04 × 103(−)

1.70 × 10−7 ±
3.52 × 10−7(−)

0.00 × 100 ±
0.00 × 100(−)

3.78 × 103 ±
4.78 × 103(=)

1.69 × 103 ±
2.02 × 103

F2
1.45 × 109 ±
9.63 × 109(−)

4.65 × 1040 ±
2.77 × 1041(+)

1.91 × 102 ±
1.34 × 103(−)

7.94 × 101 ±
5.72 × 101(−)

1.04 × 105 ±
7.34 × 105(−)

5.23 × 108 ±
3.13 × 109(−)

4.53 × 1016 ±
3.22 × 1017(+)

2.28 × 109 ±
1.63 × 1010

F3
1.81 × 10−3 ±
4.31 × 10−3(−)

4.60 × 104 ±
2.16 × 104(+)

0.00 × 100 ±
0.00 × 100(−)

0.00 × 100 ±
0.00 × 100(−)

3.42 × 10−3 ±
4.28 × 10−3(−)

9.49 × 10−5 ±
5.39 × 10−4(−)

7.17 × 100 ±
7.32 × 100(−)

1.01 × 102 ±
9.58 × 101

F4
8.79 × 101 ±
4.86 × 101(=)

1.23 × 102 ±
2.99 × 101(+)

4.85 × 101 ±
4.34 × 101(−)

4.51 × 101 ±
4.17 × 101(−)

5.16 × 101 ±
3.63 × 101(−)

4.57 × 101 ±
4.72 × 101(−)

6.79 × 101 ±
4.58 × 101(−)

9.50 × 101 ±
4.31 × 101

F5
8.34 × 101 ±
5.71 × 101(=)

2.65 × 102 ±
1.58 × 101(+)

3.63 × 101 ±
6.01 × 100(−)

8.18 × 101 ±
2.06 × 101(+)

2.15 × 102 ±
1.38 × 101(+)

5.77 × 101 ±
1.17 × 101(−)

4.50 × 101 ±
1.21 × 101(−)

6.14 × 101 ±
8.00 × 100

F6
1.56 × 10−4 ±
3.84 × 10−4(+)

5.88 × 10−2 ±
9.26 × 10−3(+)

1.08 × 10−5 ±
1.48 × 10−5(+)

1.20 × 10−7 ±
3.85 × 10−7(+)

0.00 × 100 ±
0.00 × 100(=)

1.48 × 10−3 ±
3.79 × 10−3(+)

1.01 × 10−7 ±
2.91 × 10−7(+)

0.00 × 100 ±
0.00 × 100

F7
2.58 × 102 ±
5.85 × 101(+)

3.66 × 102 ±
1.57 × 101(+)

8.11 × 101 ±
6.68 × 100(−)

1.31 × 102 ±
1.81 × 101(+)

2.69 × 102 ±
1.54 × 101(+)

1.08 × 102 ±
1.30 × 101(+)

9.58 × 101 ±
1.17 × 101(−)

1.03 × 102 ±
9.44 × 100

F8
7.73 × 101 ±
5.41 × 101(=)

2.61 × 102 ±
1.32 × 101(+)

3.33 × 101 ±
6.27 × 100(−)

8.14 × 101 ±
1.77 × 101(+)

2.12 × 102 ±
1.29 × 101(+)

5.42 × 101 ±
1.17 × 101(−)

4.40 × 101 ±
1.10 × 101(−)

6.15 × 101 ±
8.66 × 100

F9
6.96 × 10−1 ±
1.15 × 100(+)

9.28 × 102 ±
2.21 × 102(+)

6.39 × 10−2 ±
1.68 × 10−1(=)

4.70 × 100 ±
5.81 × 100(+)

3.37 × 10−2 ±
1.10 × 10−1(−)

9.81 × 10−1 ±
8.69 × 10−1(+)

0.00 × 100 ±
0.00 × 100(−)

3.61 × 10−1 ±
9.33 × 10−1

(to be continued)
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Table 7    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (50D). (continued)

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F10
9.66 × 103 ±
3.93 × 102(+)

8.93 × 103 ±
3.46 × 102(+)

3.23 × 103 ±
5.51 × 102(=)

4.44 × 103 ±
7.84 × 102(+)

8.69 × 103 ±
3.86 × 102(+)

4.85 × 103 ±
7.71 × 102(+)

4.71 × 103 ±
1.24 × 103(+)

3.12 × 103 ±
5.40 × 102

F11
4.29 × 101 ±
8.94 × 100(−)

1.40 × 102 ±
1.34 × 101(+)

6.69 × 101 ±
1.67 × 101(+)

5.66 × 101 ±
1.45 × 101(=)

6.22 × 101 ±
9.13 × 100(+)

1.05 × 102 ±
2.33 × 101(+)

4.11 × 101 ±
7.12 × 100(−)

5.03 × 101 ±
1.22 × 101

F12
5.63 × 104 ±
3.26 × 104(+)

8.86 × 105 ±
6.34 × 105(+)

5.32 × 103 ±
3.71 × 103(−)

2.92 × 104 ±
2.18 × 104(=)

5.04 × 104 ±
2.97 × 104(+)

8.62 × 103 ±
8.38 × 103(−)

6.36 × 104 ±
1.15 × 105(=)

3.90 × 104 ±
3.09 × 104

F13
8.16 × 101 ±
4.78 × 101(−)

5.66 × 102 ±
1.88 × 102(+)

8.87 × 101 ±
3.72 × 101(−)

3.27 × 103 ±
3.96 × 103(+)

2.02 × 103 ±
2.77 × 103(+)

9.50 × 101 ±
5.89 × 101(−)

2.92 × 103 ±
4.08 × 103(+)

1.84 × 102 ±
2.03 × 102

F14
3.75 × 101 ±
5.77 × 100(=)

1.06 × 102 ±
9.57 × 100(+)

5.60 × 101 ±
1.33 × 101(+)

6.84 × 101 ±
4.18 × 101(+)

8.33 × 101 ±
1.04 × 101(+)

6.10 × 101 ±
1.36 × 101(+)

9.10 × 102 ±
3.68 × 103(+)

3.78 × 101 ±
9.64 × 100

F15
3.55 × 101 ±
8.71 × 100(=)

1.26 × 102 ±
1.21 × 101(+)

9.40 × 101 ±
4.10 × 101(+)

1.99 × 102 ±
3.77 × 102(+)

7.24 × 101 ±
2.93 × 101(+)

7.51 × 101 ±
5.19 × 101(+)

1.79 × 103 ±
1.62 × 103(+)

3.47 × 101 ±
6.20 × 100

F16
4.85 × 102 ±
1.91 × 102(−)

1.24 × 103 ±
2.44 × 102(+)

6.17 × 102 ±
1.89 × 102(−)

1.07 × 103 ±
3.50 × 102(+)

1.30 × 103 ±
1.82 × 102(+)

9.17 × 102 ±
3.28 × 102(+)

6.79 × 102 ±
2.64 × 102(=)

7.38 × 102 ±
1.87 × 102

F17
2.30 × 102 ±
1.60 × 102(−)

9.29 × 102 ±
1.52 × 102(+)

4.47 × 102 ±
2.09 × 102(=)

6.70 × 102 ±
1.92 × 102(+)

7.81 × 102 ±
1.89 × 102(+)

5.69 × 102 ±
2.01 × 102(+)

4.66 × 102 ±
2.25 × 102(=)

4.30 × 102 ±
1.39 × 102

F18
1.41 × 102 ±
1.11 × 102(+)

3.10 × 103 ±
3.57 × 103(+)

1.60 × 102 ±
7.96 × 101(+)

3.33 × 103 ±
3.27 × 103(+)

2.00 × 103 ±
1.67 × 103(+)

1.29 × 102 ±
1.08 × 102(=)

3.14 × 104 ±
8.94 × 104(+)

1.06 × 102 ±
1.07 × 102

F19
1.51 × 101 ±
3.37 × 100(+)

6.18 × 101 ±
6.63 × 100(+)

5.83 × 101 ±
1.99 × 101(+)

2.53 × 101 ±
1.41 × 101(+)

3.45 × 101 ±
9.29 × 100(+)

3.86 × 101 ±
1.65 × 101(+)

1.06 × 104 ±
6.33 × 103(+)

1.31 × 101 ±
3.45 × 100

F20
1.49 × 102 ±
1.37 × 102(−)

6.06 × 102 ±
1.61 × 102(+)

4.85 × 102 ±
1.51 × 102(+)

5.17 × 102 ±
2.02 × 102(+)

5.90 × 102 ±
1.97 × 102(+)

4.10 × 102 ±
1.80 × 102(+)

2.89 × 102 ±
1.81 × 102(=)

3.24 × 102 ±
1.47 × 102

F21
2.67 × 102 ±
3.75 × 101(=)

4.71 × 102 ±
1.19 × 101(+)

2.36 × 102 ±
7.04 × 100(−)

2.80 × 102 ±
1.46 × 101(+)

4.19 × 102 ±
1.42 × 101(+)

2.54 × 102 ±
1.20 × 101(−)

2.48 × 102 ±
1.07 × 101(−)

2.59 × 102 ±
7.71 × 100

F22
8.39 × 103 ±
3.63 × 103(+)

8.60 × 103 ±
2.85 × 103(+)

3.07 × 103 ±
1.74 × 103(=)

4.68 × 103 ±
1.42 × 103(+)

6.59 × 103 ±
4.24 × 103(+)

3.08 × 103 ±
2.68 × 103(+)

4.56 × 103 ±
1.79 × 103(+)

2.63 × 103 ±
1.93 × 103

F23
4.72 × 102 ±
1.44 × 101(−)

6.85 × 102 ±
1.58 × 101(+)

4.53 × 102 ±
6.95 × 100(−)

5.13 × 102 ±
2.53 × 101(+)

6.42 × 102 ±
1.53 × 101(+)

4.82 × 102 ±
1.78 × 101(=)

4.74 × 102 ±
1.38 × 101(−)

4.84 × 102 ±
1.16 × 101

F24
5.50 × 102 ±
1.12 × 101(=)

7.67 × 102 ±
1.88 × 101(+)

5.29 × 102 ±
1.20 × 101(−)

5.80 × 102 ±
1.69 × 101(+)

7.01 × 102 ±
1.80 × 101(+)

5.41 × 102 ±
1.31 × 101(−)

5.51 × 102 ±
1.23 × 101(=)

5.51 × 102 ±
1.08 × 101

F25
4.95 × 102 ±
2.92 × 101(−)

4.85 × 102 ±
4.87 × 100(−)

5.15 × 102 ±
3.10 × 101(−)

5.25 × 102 ±
3.62 × 101(−)

5.23 × 102 ±
3.14 × 101(−)

5.19 × 102 ±
3.44 × 101(−)

4.88 × 102 ±
2.48 × 101(−)

5.58 × 102 ±
3.48 × 101

F26
1.56 × 103 ±
1.28 × 102(−)

3.74 × 103 ±
1.61 × 102(+)

1.36 × 103 ±
7.97 × 101(−)

1.95 × 103 ±
2.09 × 102(+)

3.08 × 103 ±
1.40 × 102(+)

1.60 × 103 ±
1.33 × 102(−)

1.50 × 103 ±
1.75 × 102(−)

1.75 × 103 ±
1.35 × 102

F27
5.15 × 102 ±
1.31 × 101(=)

5.20 × 102 ±
1.57 × 101(+)

5.31 × 102 ±
1.58 × 101(+)

5.40 × 102 ±
2.78 × 101(+)

5.15 × 102 ±
1.05 × 101(=)

5.49 × 102 ±
2.40 × 101(+)

5.21 × 102 ±
7.93 × 100(+)

5.10 × 102 ±
1.38 × 101

F28
4.67 × 102 ±
1.79 × 101(−)

4.59 × 102 ±
4.36 × 10−1(−)

4.86 × 102 ±
2.41 × 101(=)

4.82 × 102 ±
2.33 × 101(−)

4.74 × 102 ±
2.20 × 101(−)

4.89 × 102 ±
2.59 × 101(=)

4.66 × 102 ±
1.70 × 101(−)

4.95 × 102 ±
1.52 × 101

F29
3.49 × 102 ±
3.24 × 101(=)

8.27 × 102 ±
1.23 × 102(+)

4.14 × 102 ±
3.92 × 101(+)

5.60 × 102 ±
1.65 × 102(+)

7.10 × 102 ±
8.71 × 101(+)

4.52 × 102 ±
1.36 × 102(+)

4.09 × 102 ±
6.14 × 101(+)

3.76 × 102 ±
7.24 × 101

F30
5.98 × 105 ±
2.50 × 104(+)

5.86 × 105 ±
1.60 × 104(−)

6.67 × 105 ±
9.17 × 104(+)

6.01 × 105 ±
2.73 × 104(+)

6.08 × 105 ±
3.77 × 104(+)

6.88 × 105 ±
1.36 × 105(+)

6.20 × 105 ±
3.04 × 10−4(+)

5.93 × 105 ±
2.20 × 104

+/=/− 9/9/12 27/0/3 10/5/15 22/2/6 21/2/7 15/3/12 12/6/12 −
 

 

Table 8    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (100D).

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F1
6.07×103 ±
6.70×103(=)

5.10×106 ±
1.97×106(+)

0.00×100 ±
0.00×100(−)

5.09×103 ±
5.66×103(=)

1.56×101 ±
3.27×101(−)

0.00×100 ±
0.00×100(−)

3.05×10−3 ±
6.19×10−3(−)

4.80×103 ±
4.58×103

F2
1.17×1045 ±
8.33×1045(+)

1.19×10104 ±
3.49×10104(+)

1.69×1034 ±
1.21e×1035(+)

1.90×1035 ±
1.36×1035(+)

8.59×1025 ±
6.13×1026(−)

1.60×1046 ±
1.14×1047(+)

6.84×1048 ±
2.83×1049(+)

5.94×1033 ±
4.24×1034

F3
1.38×103 ±
7.99×102(−)

3.14×105 ±
4.83×104(+)

1.07×104 ±
5.33×104(−)

2.07×10−1 ±
8.18×10−1(−)

2.28×102 ±
3.55×102(−)

1.75×101 ±
4.14×101(−)

9.07×104 ±
3.08×104(+)

1.83×104 ±
8.24×103

F4
2.14×102 ±
2.01×101(=)

2.83×102 ±
2.59×101(+)

6.66×101 ±
6.20×101(−)

1.52×102 ±
4.78×101(−)

1.77×102 ±
4.86×101(−)

6.69×101 ±
6.46×101(−)

2.09×102 ±
9.28×100(=)

2.03×102 ±
4.78×101

(to be continued)
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(1)  Unimodal  functions  (F1–F3): Except  for

EFADE,  MPEDE,  and  EAGDE,  LBLDE  and  the 10D

remaining  four  algorithms  obtain  the  best  results  on

 functions.  When D  =  30,  50,  and  100,  LBLDE

Table 8    Results (average±std) of LBLDE with peer DE algorithms on the CEC’2017 test suite (100D). (continued)

Problem EAGDE EFADE AMECoDEs TSDE RNDE MPEDE TVDE LBLDE

F5
1.18×102 ±
2.15×101(−)

8.17×102 ±
2.92×101(+)

1.40×102 ±
1.41×101(−)

2.19×102 ±
2.94×101(+)

6.19×102 ±
2.51×101(+)

1.47×102 ±
2.50×101(−)

9.58×101 ±
2.20×101(−)

1.85×102 ±
2.23×101

F6
1.10×10−3 ±
1.01×10−3(+)

5.76×10−1 ±
5.55×10−2(+)

1.52×10−2 ±
1.54×10−2(+)

3.01×10−3 ±
7.65×10−3(+)

1.11×10−5 ±
7.94×10−5(+)

1.26×10−1 ±
1.05×10−1(+)

4.56×10−6 ±
3.79×10−6(+)

0.00×100 ±
0.00×100

F7
5.11×102 ±
2.44×102(=)

1.10×103 ±
3.10×101(+)

2.40×102 ±
1.95×101(−)

3.61×102 ±
3.97×101(+)

7.21×102 ±
2.21×101(+)

3.01×102 ±
3.51×101(=)

1.97×102 ±
2.42×101(−)

3.10×102 ±
2.96×101

F8
1.44×102 ±
1.16×102(−)

8.10×102 ±
2.34×101(+)

1.38×102 ±
1.33×101(−)

2.10×102 ±
3.52×101(+)

6.07×102 ±
2.50×101(+)

1.51×102 ±
2.48×101(−)

9.95×101 ±
2.42×101(−)

1.86×102 ±
1.83×101

F9
4.46×100 ±
4.48×100(=)

8.33×103 ±
1.96×103(+)

1.18×101 ±
5.47×100(−)

7.24×102 ±
5.02×102(+)

5.17×100 ±
7.61×100(=)

3.28×101 ±
1.88×101(−)

1.77×10−2 ±
6.79×10−2(−)

8.04×101 ±
1.65×102

F10
2.55×104 ±
6.13×102(+)

2.44×104 ±
4.17×102(+)

9.90×103 ±
1.19×103(−)

1.20×104 ±
1.39×103(=)

2.24×104 ±
4.90×102(+)

1.10×104 ±
1.21×103(−)

1.42×104 ±
3.08×103(+)

1.16×104 ±
7.39×102

F11
1.29×102 ±
4.69×101(−)

8.48×102 ±
7.46×101(+)

9.29×102 ±
1.98×102(+)

2.02×102 ±
5.90×101(=)

5.04×102 ±
1.24×102(+)

7.75×102 ±
2.48×102(+)

5.14×102 ±
1.15×102(+)

2.00×102 ±
5.37×101

F12
2.59×105 ±
9.76×104(=)

9.20×106 ±
7.85×106(+)

2.30×104 ±
8.74×103(−)

2.26×105 ±
7.85×104(−)

1.88×105 ±
6.38×104(−)

3.86×104 ±
2.32×104(−)

2.48×105 ±
1.16×105(−)

3.03×105 ±
1.32×105

F13
3.09×103 ±
2.84×103(=)

5.23×103 ±
4.92×103(+)

1.16×103 ±
1.14×103(−)

2.34×103 ±
3.19×103(=)

2.47×103 ±
2.26×103(=)

7.14×102 ±
8.94×102(−)

1.94×103 ±
1.75×103(=)

2.30×103 ±
1.98×103

F14
9.24×101 ±
1.87×101(−)

2.43×104 ±
1.91×104(+)

5.60×102 ±
1.21×102(+)

6.75×103 ±
3.96×103(+)

1.37×104 ±
9.88×103(+)

4.77×102 ±
1.06×102(+)

6.65×104 ±
1.07×105(+)

1.39×102 ±
2.58×101

F15
1.97×102 ±
9.98×101(=)

1.53×103 ±
1.19×103(+)

3.39×102 ±
9.23×101(+)

2.28×103 ±
3.28×103(+)

8.18×102 ±
9.68×102(+)

3.47×102 ±
1.66×102(+)

1.19×103 ±
1.26×103(+)

2.69×102 ±
2.14×102

F16
1.84×103 ±
5.99×102(−)

4.69×103 ±
3.26×102(+)

2.53×103 ±
3.54×102(+)

2.99×103 ±
6.67×102(+)

4.43×103 ±
2.42×102(+)

2.80×103 ±
6.34×102(+)

2.86×103 ±
7.88×102(+)

2.19×103 ±
4.33×102

F17
1.62×103 ±
6.67×102(=)

3.08×103 ±
2.46×102(+)

1.59×103 ±
2.84×102(=)

2.05×103 ±
4.24×102(+)

2.74×103 ±
3.61×102(+)

1.99×103 ±
4.73×102(+)

2.02×103 ±
5.44×102(+)

1.50×103 ±
3.33×102

F18
4.99×103 ±
3.12×103(=)

2.30×105 ±
1.58×105(+)

4.55×102 ±
4.05×102(−)

3.52×104 ±
1.71×104(+)

5.87×104 ±
3.84×104(+)

9.62×102 ±
8.80×102(−)

1.78×105 ±
8.62×104(+)

3.86×103 ±
2.39×103

F19
2.48×102 ±
1.09×103(−)

2.69×103 ±
5.09×103(+)

2.36×102 ±
5.56×101(−)

2.85×103 ±
4.01×103(+)

1.34×103 ±
1.48×103(+)

2.36×102 ±
5.85×101(−)

1.51×103 ±
1.61×103(+)

3.29×102 ±
5.54×102

F20
2.11×103 ±
6.34×102(+)

2.62×103 ±
2.39×102(+)

2.14×103 ±
2.65×102(+)

1.97×103 ±
4.79×102(+)

2.73×103 ±
2.40×102(+)

1.99×103 ±
3.73×102(+)

2.14×103 ±
4.94×102(+)

1.41×103 ±
3.09×102

F21
3.62×102 ±
6.67×101(−)

1.05×103 ±
2.08×101(+)

3.57×102 ±
1.42×101(−)

4.32×102 ±
2.93×101(+)

8.34×102 ±
2.47×101(+)

3.62×102 ±
1.71×101(−)

3.33×102 ±
2.37×101(−)

3.88×102 ±
2.05×101

F22
2.61×104 ±
6.49×102(+)

2.53×104 ±
5.78×102(+)

1.10×104 ±
1.24×103(−)

1.30×104 ±
1.41×103(=)

2.32×104 ±
3.34×103(+)

1.21×104 ±
1.20×103(−)

1.50×104 ±
2.27×103(+)

1.28×104 ±
9.00×102

F23
8.19×102 ±
1.82×102(+)

1.10×103 ±
1.82×101(+)

6.52×102 ±
1.12×101(+)

7.04×102 ±
2.95×101(+)

9.95×102 ±
1.77×101(+)

6.93×102 ±
3.24×101(+)

6.18×102 ±
1.53×101(−)

6.28×102 ±
1.57×101

F24
9.82×102 ±
2.40×101(−)

1.60×103 ±
2.27×101(+)

9.88×102 ±
1.28×101(−)

1.08×103 ±
3.59×101(+)

1.43×103 ±
2.60×101(+)

1.03×103 ±
2.73×101(=)

9.58×102 ±
2.02×101(−)

1.03×103 ±
2.29×101

F25
7.20×102 ±
4.61×101(−)

9.49×102 ±
1.05×102(+)

7.39×102 ±
4.62×101(−)

7.64×102 ±
5.95×101(−)

7.58×102 ±
4.86×101(−)

7.42×102 ±
4.68×101(−)

7.44×102 ±
4.70×101(−)

8.19×102 ±
4.06×101

F26
4.15×103 ±
2.34×102(−)

1.09×104 ±
2.44×102(+)

4.11×103 ±
1.63×102(−)

5.37×103 ±
3.99×102(+)

8.72×103 ±
2.99×102(+)

4.48×103 ±
2.97×102(−)

3.82×103 ±
2.10×102(−)

4.93×103 ±
2.66×102

F27
5.95×102 ±
1.75×101(+)

6.45×102 ±
2.80×101(+)

6.63×102 ±
2.72×101(+)

6.97×102 ±
3.23×101(+)

6.45×102 ±
2.25×101(+)

7.03×102 ±
2.49×101(+)

6.23×102 ±
1.57×101(+)

5.84×102 ±
2.08×101

F28
5.41×102 ±
3.10×101(−)

6.42×102 ±
4.55×101(+)

5.28×102 ±
4.14×101(−)

5.55×102 ±
2.95×101(−)

5.66×102 ±
2.47×101(=)

5.33×102 ±
3.60×101(−)

5.35×102 ±
2.30×101(−)

5.68×102 ±
2.43×101

F29
1.50×103 ±
3.38×102(−)

3.43×103 ±
2.68×102(+)

2.00×103 ±
3.07×102(+)

2.51×103 ±
4.90×102(+)

3.14×103 ±
2.41×102(+)

2.48×103 ±
5.35×102(+)

1.78×103 ±
4.85×102(=)

1.74×103 ±
2.71×102

F30
2.86×103 ±
7.50×102(+)

5.12×103 ±
1.22×103(+)

3.13×103 ±
1.30×103(+)

2.87×103 ±
3.36×102(+)

4.05×103 ±
1.39×103(+)

2.65×103 ±
2.59102(−)

3.67×103 ±
1.30×103(+)

2.71×103 ±
9.72×102

+/=/− 8/9/13 30/0/0 11/1/18 20/5/5 21/3/6 11/2/17 15/3/12 −
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NL

NL

outperforms  EFADE  and  TVDE  and  is  worse  than
other  algorithms  because  is  a  fixed  value,  and  the
number of individuals in the first  level  is  too small.  If

 is  set  to  2  as  in Table  1,  then  LBLDE  can  also
obtain better results.

10D 30D

(2)  Simple  multimodal  functions  (F4–F10):
LBLDE  is  significantly  better  than  the  other  seven
algorithms  on  the  and   functions.  When D  =
50,  LBLDE  achieves  better  results  than  EAGDE,
EFADE,  TSDE,  RNDE,  and  TVDE  and  has  a
competitive  performance  with  MPEDE.  LBLDE  is
worse than AMECoDEs on four functions.  In the case
of D  =  100,  LBLDE  also  outperforms  EAGDE,
EFADE,  TSDE,  and  RNDE  and  is  outperformed  by
AMECoDEs,  MPEDE,  and  TVDE.  Considering  all
cases,  LBLDE  achieves  better  performance  than
EFADE,  TSDE,  and  RNDE  on  these  functions,  thus
proving the superiority of LBLDE.

(3) Hybrid functions (F11–F20): When D = 10 and
30,  LBLDE  obtains  the  best  results  on  most  of  the
functions,  and  LBLDE  is  significantly  superior  to  all
the other compared algorithms. When D = 50, EAGDE
and LBLDE perform best  on  five  and  three  functions,
respectively.  LBLDE  outperforms  EFADE,
AMECoDEs,  TSDE,  RNDE,  MPEDE,  and  TVDE  on

10, 6, 8, 10, 7, and 5 test functions, respectively. When
D =  100,  EAGDE,  AMECoDES,  and  LBLDE  obtain
the  minimum  average  error  values  on  4,  3,  and  2  test
functions,  respectively.  LBLDE  performs  better  than,
similar to,  and worse than EAGDE on 1,  5,  and 4 test
functions,  respectively.  Compared  with  EFADE,
TSDE,  RNDE,  TVDE,  and  MPEDE,  LBLDE  has
superior performance.

50D

(4)  Composition  functions  (F21–F30): This  group
of  functions  is  rather  complex,  and  no  algorithm  is
better than others on all dimensions. When D = 10 and
30,  LBLDE  is  better  than  or  similar  to  other
algorithms.  In  the  case  of ,  only  EAGDE
outperforms  LBLDE,  and  AMECoDEs,  MPEDE,  and
TVDE  have  similar  performance  as  LBLDE.
Moreover,  when D  =  100,  LBLDE  is  inferior  to
AMECoDEs  and  MPEDE  on  six  test  functions,
respectively. However, LBLDE is better than or at least
equal to the other five algorithms.

50D

According to Table 9, the statistical compared results
show  that  LBLDE  significantly  outperforms  EAGDE,
EFADE,  AMECoDEs,  TSDE,  RNDE,  MPEDE,  and
TVDE on 18, 23, 18, 11, 10, 18, and 25 functions when
D = 10, and on 15, 29, 9, 18, 20, 14, and 28 functions
when D  =  30,  respectively.  LBLDE  is  inferior  to
EAGDE,  EFADE,  AMECoDEs,  TSDE,  RNDE,
MPEDE, and TVDE on 2, 5, 5, 6, 5, 5, and 0 functions
when D  =  10,  and  on  6,  0,  8,  4,  6,  5,  and  1  functions
when D  =  30,  respectively.  LBLDE  yields  the  best
results  on  most  of  the  simple  multimodal  functions,
hybrid  functions,  and  composition  functions.  When
D = 50 and 100, the superiority of LBLDE is affected.
This  result  occurred  because  the  problems  require
higher  diversity  as  the  dimension  increases.  However,
the  difference  vector  selection  strategy  and  parameter
setting in LBLDE are more biased toward convergence.
To  be  specific,  in  the  case  of ,  EAGDE,
AMECoDEs, and LBLDE obtain the best results on 6,
10, and 9 test functions, respectively. LBLDE is similar
to  TVDE  and  better  than  the  other  four  algorithms.
When D  =  100,  LBLDE is  outperformed  by  EAGDE,
AMECoDEs,  and  MPEDE.  LBLDE  still  has  superior
performance  than  other  algorithms.  Considering  all
cases,  LBLDE  outperforms  EFADE,  TSDE,  RNDE,
MPEDE,  and  TVDE  and  shows  comparable
performance  to  EAGDE  and  AMECoDEs. Table  10
provides  the  rankings  of  all  algorithms  on  each  test
dimension  and  the  average  rankings  of  all  algorithms
on  four  test  dimensions.  LBLDE  ranks  the  second,

 

Table  9    Statistical  compared  results  of  all  compared
algorithms.

Compared algorithms Indicator 10D 30D 50D 100D

LBLDE vs. EAGDE
+ 18 15 4 8
= 10 9 0 9
− 2 6 26 13

LBLDE vs. EFADE
+ 23 29 27 30
= 2 1 0 0
− 5 0 3 0

LBLDE vs. AMECoDEs
+ 18 9 10 11
= 7 13 5 1
− 5 8 15 18

LBLDE vs. TSDE
+ 11 18 22 20
= 13 8 2 5
− 6 4 6 5

LBLDE vs. RNDE
+ 10 20 21 21
= 15 6 2 3
− 5 4 7 6

LBLDE vs. MPEDE
+ 18 14 15 11
= 7 11 3 2
− 5 5 12 17

LBLDE vs. TVDE
+ 25 28 12 15
= 5 1 6 3
− 0 1 12 12
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10D 30D 50D 100D

30D

first,  third,  and  third  on , , ,  and 
functions,  respectively.  When  the  performance  of  all
algorithms  in  four  dimensions  is  considered,  LBLDE
achieves  the  second  average  ranking,  while
AMECoDEs  obtains  the  first  average  ranking.  The
error  iteration  curves  of  LBLDE  on  some  test
functions  are  plotted  in Fig.  5.  LBLDE  has  similar

convergence  trends  with  other  algorithms.  For  F8
(Fig.  5c)  and  F14  (Fig.  5e)  in  particular,  LBLDE  can
continue  to  evolve  when  other  algorithms  fall  into
stagnation.

4.3    Effectiveness of the proposed schemes

The  effectiveness  of  proposed  schemes,  which  are  (1)
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Fig. 5    Error curves of eight DE variants during the evolution on nine test functions.

 

 

Table  10    Rankings  of  all  algorithms  on  each  test  dimension  case  and  the  average  rankings  of  all  algorithms  on  four  test
dimensions.

Algorithm
Ranking

Average ranking
D=10 D=30 D=50 D=100

EAGDE 5 4 2 4 3
EFADE 7 7 8 8 8

AMECoDES 4 2 1 1 1
TSDE 1 5 6 6 5
RNDE 3 6 7 7 6

MPEDE 6 3 5 2 4
TVDE 8 6 4 5 7

LBLDE 2 1 3 3 2
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CR

the level-based learning mechanism, (2) the difference
vector selection method based on the level, and (3) the

 allocation  mechanism  for  different  levels,  are
verified. LBLDE-1 indicates that LBLDE does not use
the  level-based  learning  mechanism,  LBLDE-2  refers
to  LBLDE  that  does  not  use  the  difference  vector
selection  method  based  on  the  level,  and  LBLDE-3
represents LBLDE that  does not use the  allocation
scheme. The compared results of LBLDE and its three
variants  are provided in Table 11.  LBLDE obtains the
best results on most of the functions. In the last row of
Table  11,  the “+/  = /−” of  25/5/0,  15/13/2,  and 25/5/0
demonstrate  the  superiority  of  LBLDE  and  the
effectiveness  of  the  three  schemes.  Next,  a  detailed
analysis is provided.

DPG

S RG G

(1)  A  new  selection  method  of  difference  vectors
corresponding  to  levels  is  proposed  in  Section  3.2.
Unlike  the  traditional  random  selection  method,  the
new  method  prevents  good  individuals  from  being
influenced  by  poor  individuals.  To  clarify  the
difference  between  them,  the  diversity  ( )  and
success  rate  ( )  in  the  generation  are
calculated[35],
 

DPG =
1

NP
×

√√√√√ NP∑
i=1

∥∥∥∥∥∥∥∥XG
i −

1
NP
×

NP∑
j=1

XG
j

∥∥∥∥∥∥∥∥
2

(8)

 

S RG =
NG

S

NP
(9)

NG
Swhere  is the number of successful individuals.

 

Table 11    Results (average±std) of LBLDE with its variants on the CEC’2017 test suite (30D).

Problem LBLDE-1 LBLDE-2 LBLDE-3 LBLDE
F1 1.38×102 ± 2.58×102(+) 1.31× 101 ± 9.33× 101(=) 6.78× 101 ± 1.56× 102(+) 0.00× 100 ± 0.00× 100

F2 7.44×1011 ± 2.12×1012(+) 7.25× 108 ± 5.05× 109(+) 5.53× 1010 ± 1.34× 1011(+) 4.25× 106 ± 3.03× 107

F3 4.49× 104 ± 9.49× 103(+) 1.45× 100 ± 3.61× 100(+) 4.47× 104 ± 1.30× 104(+) 1.19× 10−1 ± 3.52× 10−1

F4 4.90× 101 ± 3.35× 101(=) 4.28× 101 ± 3.11× 101(=) 5.31× 101 ± 3.16× 101(+) 3.02× 101 ± 3.19× 101

F5 3.56× 101 ± 4.05× 100(+) 2.82× 101 ± 5.49× 100(+) 3.44× 101 ± 5.10× 100(+) 2.38× 101 ± 3.98× 100

F6 0.00× 100 ± 0.00× 100(=) 0.00× 100 ± 0.00× 100(=) 0.00× 100 ± 0.00× 100(=) 0.00× 100 ± 0.00× 100

F7 6.35× 101 ± 4.65× 100(+) 5.60× 101 ± 3.77× 100(+) 6.14× 101 ± 4.53× 100(+) 5.39× 101 ± 4.98× 100

F8 3.45× 101 ± 5.16× 100(+) 2.94× 101 ± 4.13× 100(+) 3.20× 101 ± 4.41× 100(+) 2.55× 101 ± 5.13× 100

F9 1.06× 101 ± 7.88× 100(+) 0.00× 100 ± 0.00× 100(=) 7.51× 10−1 ± 1.30× 100(+) 8.91× 10−3 ± 6.36× 10−2

F10 1.99× 103 ± 1.86× 102(=) 1.96× 103 ± 2.22× 102(=) 1.96× 103 ± 2.33× 102(=) 1.89× 103 ± 2.25× 102

F11 8.33× 101 ± 2.47× 101(+) 1.13× 101 ± 1.42× 101(=) 4.18× 101 ± 1.34× 101(+) 8.55× 100 ± 3.20× 100

F12 2.70× 105 ± 1.91× 105(+) 2.06× 103 ± 1.68× 103(=) 1.55× 105 ± 1.45× 105(+) 2.97× 103 ± 3.45× 103

F13 2.95× 104 ± 1.64× 104(+) 2.22× 101 ± 7.47× 100(+) 1.41× 104 ± 1.04× 104(+) 1.82× 101 ± 7.13× 100

F14 3.36× 104 ± 1.54× 104(+) 2.04× 101 ± 6.99× 100(+) 2.59× 104 ± 1.55× 104(+) 8.90× 100 ± 6.54× 100

F15 1.04× 104 ± 6.10× 103(+) 7.51× 100 ± 2.13× 100(+) 4.70× 103 ± 3.23× 103(+) 5.42× 100 ± 2.00× 100

F16 4.64× 102 ± 1.32× 102(+) 2.56× 102 ± 1.42× 102(=) 5.20× 102 ± 1.13× 102(+) 3.09× 102 ± 1.57× 102

F17 7.47× 101 ± 1.81× 101(+) 3.99× 101 ± 7.38× 100(+) 7.90× 101 ± 2.68× 101(+) 3.19× 101 ± 1.23× 101

F18 1.90× 105 ± 8.39× 104(+) 2.25× 101 ± 3.13× 100(+) 1.63× 105 ± 6.03× 104(+) 1.91× 101 ± 6.57× 100

F19 9.93× 103 ± 5.78× 103(+) 9.66× 100 ± 1.38× 100(+) 5.17× 103 ± 4.58× 103(+) 7.58× 100 ± 2.14× 100

F20 1.30× 102 ± 6.02× 101(+) 3.74× 101 ± 3.23× 101(+) 1.29× 102 ± 6.16× 101(+) 2.23× 101 ± 4.00× 101

F21 2.35× 102 ± 5.34× 100(+) 2.29× 102 ± 3.86× 100(+) 2.34× 102 ± 5.24× 100(+) 2.25× 102 ± 5.21× 100

F22 1.00× 102 ± 2.71× 100(+) 1.00× 102 ± 1.00× 10−13(=) 1.00× 102 ± 1.58× 100(=) 1.00× 102 ± 1.22× 10−13

F23 3.82× 102 ± 4.90× 100(+) 3.74× 102 ± 5.92× 100(+) 3.79× 102 ± 5.95× 100(+) 3.69× 102 ± 5.63× 100

F24 4.52× 102 ± 5.04× 100(+) 4.42× 102 ± 5.42× 100(=) 4.49× 102 ± 5.94× 100(+) 4.41× 102 ± 5.84× 100

F25 3.87× 102 ± 2.23× 10−1(=) 3.87× 102 ± 2.09× 10−1(−) 3.87× 102 ± 2.65× 10−1(=) 3.87× 102 ± 8.00× 10−1

F26 1.31 × 103 ± 9.98× 101(+) 1.13× 103 ± 2.64× 102(=) 1.25× 103 ± 2.07× 102(+) 1.16× 103 ± 1.99× 102

F27 5.08× 102 ± 5.11× 100(+) 4.93× 102 ± 7.70× 100(−) 5.07× 102 ± 3.92× 100(+) 4.96× 102 ± 9.72× 100

F28 3.16× 102 ± 3.97× 101(=) 3.24× 102 ± 4.91× 101(=) 3.21× 102 ± 4.23× 101(=) 3.25× 102 ± 4.51× 101

F29 4.90× 102 ± 3.20× 101(+) 4.38× 102 ± 3.64× 101(+) 4.92× 102 ± 3.34× 101(+) 4.27× 102 ± 2.94× 101

F30 1.05× 104 ± 3.24× 103(+) 1.98× 103 ± 3.61× 101(=) 7.56× 103 ± 2.11× 103(+) 2.00× 103 ± 5.63× 101

+/=/− 25/5/0 15/13/2 25/5/0 −
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FES

Figure  6 shows  the  iterative  curves  of  population
diversity and error of LBLDE obtained on F5, F14, and
F24 by two differential vector selection methods. Note
that “ ” is  used  as  the  abscissa  in Fig.  5 because
different  algorithms have  different  generations.  In  this
subsection,  LBLDE  and  its  variants  have  the  same
generations.  Thus,  the “Generation”  is  used  as  the
abscissa.  F5  is  a  simple  multimodal  function,  F14
indicates  the  hybrid  function,  and  F24  represents  the
composition function. LBLDE_r indicates the selection
of  difference  vectors  in  a  random way,  and  LBLDE_l
refers  to  the  difference  vector  selection  method  based
on  level. Figure  6 shows  that  LBLDE_r  has  higher

diversity than LBLDE_l from the beginning to the end
of the evolutionary procedure. As a result of the slower
convergence  speed  of  LBLDE_r  in  the  late  stage,  the
eventually  evolved  results  obtained  by  LBLDE_r  are
worse than those obtained by LBLDE_l.

µCR-ini

µCR

µCR

µCR-ini

(2) In Section 3.3, some changes are made on several
parameters. The first one is that  is reduced, and
the best trade-off value is 0.35 obtained in Section 4.1.
A  validation  experiment  is  performed  on  F1,  F6,  and
F16, which represent three different trends on . The
curves  of  with  different  initial  values  on  three
distinct  functions  during  the  process  of  evolution  are
drawn in Fig. 7. As analyzed in Section 3.3, if  =
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Fig. 6    Population diversity  ((a)−(c))  and log (Error)  ((d)−(f))  curves  obtained on F5,  F14,  and F24 by two difference vector
selection methods (LBLDE_l: LBLDE with difference vector selection method based on level; LBLDE_r: LBLDE with random
selection method of difference vectors).
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Fig. 7    Curves of μCR  with different initial values (a) μCR-ini  = 0.35 and (b) μCR-ini  = 0.5 during the evolution on three distinct
functions.
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µCR

CR

µCR-ini

µCR-ini

0.5,  then  may  fluctuate  at  a  higher  level  for  F1.
This  situation  is  detrimental  to  the  population  in  the
late  stage  of  evolution  because  the  population  needs
small  values  to  increase  its  convergence  rate.
Moreover,  from Fig.  4,  the  performance  of  the
algorithm with  =  0.35  on  F1  is  better  than  that
with  = 0.5.

CR

CR CR
CR

CR

(3) The second modification is that  in the lowest
level  is  set  as  1  to  guarantee  that  the  population  can
continue to evolve in the late stage. To verify this idea,
for  a  total  of  3000  generations,  the  previous  half  is
regarded as the early stage, while the remaining half is
the  late  stage.  The  compared  experiments  are
implemented  on  four  LBLDE  variants,  which  are
LBLDE_e (  = 1 in the early stage), LBLDE_l (  =
1  in  the  late  stage),  LBLDE_el  (  =  1  in  both  early
and  late  stages),  and  LBLDE_w  (  =  1  in  neither
early nore late stage), respectively.

The results on F5, F14, and F24 are shown in Fig. 8,
where  diversity  curves  show  that  the  population
diversity  of  LBLDE_e  is  slightly  lower  than  that  of
LBLDE_l.  For  LBLDE_e  and  LBLDE_el,  the
population  of  the  former  may fall  into  stagnation,  and
the  population  of  the  latter  can  continue  to  evolve
given  the  decline  in  diversity.  However,  LBLDE_l
obtains  high  diversity  in  the  early  stage,  while  its
convergence speed is slower than that of LBLDE_el in
the  late  stage.  The  success  rate  curves  also  show  that
the success rate of LBLDE_el increases suddenly in the
late  stage.  This  increase  occurs  because  poor
individuals  converge  to  the  vicinity  of  the  optimal
solution  quickly,  which  increases  the  exploitation
ability of excellent individuals. From the fitness curves,
LBLDE_el  can  continue  to  converge  in  the  late  stage
and  find  a  better  solution.  Therefore,  LBLDE_el  is
proved to be the best one.
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Fig. 8    Population diversity ((a)−(c)), success rate ((d)−(f)), and log (Error) ((g)−(i)) curves obtained by four LBLDE variants
on F5, F14, and F24. LBLDE_el: CR  = 1 of the last level in both early and late stages; LBLDE_e: CR  = 1 of the last level in
early stage; LBLDE_l: CR  = 1 of the last level in late stage; and LBLDE_w: CR  value of the last level is not set as 1 in both
early and late stages.
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5    Conclusion and Future Works

p

CR

To  solve  complex  global  optimization  problems,  we
propose  a  novel  DE  variant,  called  LBLDE,  which
chooses  DE/current-to- best/1  to  determine  the
population’s  evolutionary  direction,  which  has  a  great
advantage  in  solving  unimodal  problems[32].
Nevertheless, such a strategy could lead the population
to  a  local  area  on  complex  problems  due  to  low
diversity.  Consequently,  the  level-based  learning
mechanism  is  used  in  LBLDE  for  improving  the
population diversity effectively. In accordance with the
requirement of each level, the method used to select the
difference  vectors  is  changed  to  guarantee  the
population convergence speed. Moreover, different 
values are allocated to different levels for exerting their
unique functions.

Thirty functions in the CEC’2017 test suite provide a
fair  platform  to  evaluate  the  performance  of  LBLDE.
Seven  DE variants  are  used  to  compare  with  LBLDE.
The results show that LBLDE has a superior or similar
performance  in  comparison  with  the  other  seven
algorithms,  thus  demonstrating  the  superiority  of  the
proposed LBLDE.

In  the  future,  we  will  study  the  design  of  adaptive
methods to adjust the number of levels. Other methods
to improve population diversity will be studied to assist
the algorithm in solving high-dimensional problems. In
addition,  we  will  extend  LBLDE  to  solve  complex
multiobjective  optimization  problems,  such  as
multimodal  multiobjective  optimization  problems[73],
constrained  multiobjective  optimization  problems[74],
and  large-scale  multiobjective  optimization
problems[75].
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