
 

Trajectory Predictions with Details in a Robotic Twin-Crane System

Ning Zhao, Gabriel Lodewijks*, Zhuorui Fu, Yu Sun, and Yue Sun

Abstract: Nowadays,  more  automated  or  robotic  twin-crane  systems  (RTCSs)  are  employed  in  ports  and

factories  to  improve material  handling  efficiency.  In  a  twin-crane system,  cranes must  travel  with  a  minimum

safety distance between them to prevent interference. The crane trajectory prediction is critical to interference

handling  and  crane  scheduling.  Current  trajectory  predictions  lack  accuracy  because  many  details  are

simplified. To enhance accuracy and lessen the trajectory prediction time, a trajectory prediction approach with

details  (crane  acceleration/deceleration,  different  crane  velocities  when  loading/unloading,  and  trolley

movement) is proposed in this paper. Simulations on different details and their combinations are conducted on

a container  terminal  case study.  According to  the simulation results,  the accuracy of  the trajectory  prediction

can be improved by 20%.  The proposed trajectory  prediction approach is  helpful  for  building a  digital  twin  of

RTCSs and enhancing crane scheduling.
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1    Introduction

Gantry  cranes  are  one  of  the  most  commonly  used
pieces  of  equipment  in  material  handling  systems  to
transport  heavy  and  bulky  containers  or  piece  goods.
Nowadays,  to  improve  the  efficiency  of  the  lifting
process,  more  container  terminals  and  factories  are
being  equipped  with  automated  or  robotic  twin-crane
systems  (RTCSs).  In  a  twin-crane  system,  two  cranes
run on a common runway. They cannot pass each other
and  must  keep  a  minimum  safety  distance  between
them. Crane interferences seriously impact the working
efficiency  of  a  twin-crane  system[1].  Therefore,  the
crane  trajectory  prediction  is  a  practical  and  valuable
problem  to  address.  Many  studies  about  crane
scheduling have focused on this problem, and excellent

results  have  been  achieved  using  a  simulation-
optimization framework[2]. In most of these simulation
studies,  cranes  are  assumed  to  travel  with  a  constant
velocity.  However,  some  details  on  crane  movements,
such as crane acceleration or deceleration (CA), trolley
movements  (TMs),  and  different  crane  velocities
corresponding  with  loading  and  unloading  (VC),  are
normally  neglected.  The  inclusion  of  these  detailed
movements makes the theoretical crane travel different
compared  to  the  crane  movement  prediction  assuming
a constant crane velocity. The difference may result in
inaccurate  trajectory  predictions  and  worsen  the
performance  of  RTCSs.  In  this  study,  we  investigate
how  much  these  detailed  movements  influence  the
crane  trajectory  prediction  and  rank  them  by  order  of
importance.  We developed a  new trajectory prediction
approach  with  consideration  of  detailed  movements.
Consequently,  cranes  may  be  scheduled  to  escape
interference with an accurate trajectory prediction. This
method will  be helpful for the design of a digital  twin
(DT)  of  an  RTCS  and  the  enhancement  of  crane
scheduling.

This paper is organized as follows: In Section 2, we
present a thorough review of the relevant literature.  In
Section  3,  we  describe  the  problem  and  define

 
 • Ning  Zhao,  Zhuorui  Fu,  Yu  Sun,  and  Yue  Sun  are  with  the

School  of  Mechanical  Engineering,  University  of  Science  and
Technology  Beijing,  Beijing  100083,  China.  E-mail:
nickzhao@me.ustb.edu.cn.

 • Gabriel  Lodewijks  is with  the  School  of  Aviation,  University
of  New  South  Wales,  Sydney  2052,  Australia.  E-mail:
g.lodewijks@unsw.edu.au.

 * To whom correspondence should be addressed.
    Manuscript  received:  2021-09-23;  revised:  2021-11-08;

accepted: 2021-11-22

COMPLEX  SYSTEM  MODELING  AND  SIMULATION
ISSN   2096-9929   01/06   pp 1−17
Volume 2, Number 1, March  2022
DOI:   10 .23919 /CSMS.2021 .0028

 

©  The author(s) 2022. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



notations.  In  Section  4,  we  analyze  the  detailed
movements  and  present  a  trajectory  prediction
approach.  In  Section  5,  we  present  a  case  study  of  a
container  terminal  and  investigate  the  impacts  of
different  detail  movements.  In  Section  6,  we  draw
conclusions based on the case study.

2    Literature Review

Crane  trajectory  prediction  is  the  precondition  of
efficient  crane  scheduling  in  an  RTCS.  Crane
scheduling is  well  studied in  terms of  task sequencing
and  task  assignments[2].  From  a  literature  review,  it
became  clear  that  most  papers  studied  this  problem
with  the  objective  to  minimize  the  overall  task
completion  time  or  makespan.  For  this  purpose,
operations research based approaches have been widely
used  to  solve  the  crane  scheduling  problem,  such  as
branch-and-bound[3, 4],  branch-and-cut[5, 6],  dynamic
programming[7−11], branch-and-price[12], and alternating
direction  method  of  multipliers[13].  To  match  with
operations  research  based  approaches,  the  crane
trajectory  prediction  is  simplified  in  the
aforementioned studies. Crane movements are assumed
as travels with a constant velocity, whereas CA and VC
are  ignored.  Peterson  et  al.[3] are  the  only  some  that
considered  TMs,  which  makes  trajectory  prediction
practical.

Most  scheduling  problems  are  NP-hard  problems,
including the crane scheduling problem. Thus,  besides
the  operation  research  based  approaches,  heuristic
algorithms  are  widely  used  to  study  the  scheduling
problem.  Many  research  works  have  considered  the
optimization  of  algorithms  to  improve  efficiency  and
effectiveness.  For  instance,  Cao  et  al.[14] proposed  a
comprehensive  learning  particle  swarm  optimizer
(CLPSO)  embedded  with  local  search  to  enhance  its
performance.  He  et  al.[15] proposed  a  discrete  multi-
objective  firework  algorithm  to  address  the  multi-
objective  flow-shop  scheduling  problem  with
sequence-dependent  setup  times.  Li  et  al.[16] proposed
two  many-objective  evolutionary  algorithms  to
examine  the  energy-efficient  job-shop  scheduling
problem with limited workers. Luo et al.[17] studied the
organization  of  production  based  on  suborders  in  real
time  under  the  constraints  of  smart  contracts.  A  real-
time  edge  scheduling  model  and  a  real-time  edge
adjustment  method  were  proposed  to  solve  this
problem.  He  et  al.[18] studied  an  energy-efficient  job-
shop  scheduling  problem  with  sequence-dependent
setup  times  and  proposed  a  multi-objective

optimization  framework  based  on  the  finite  element
method  and  an  adaptive  local  search  strategy  to  solve
the problem.

In  the  crane  scheduling  problem,  genetic  algorithms
(GAs)[1, 19−32] and heuristic methods[33−38] are the most
commonly used approaches. Zhang and Rose[1] and Al-
Dhaheri et al.[19] used a GA together with a simulation
approach to solve the crane scheduling problem and to
obtain an optimal integrated crane schedule. A GA was
also  used  to  study  the  quay  crane  scheduling
problem[20−22, 28] and  its  extended  problems,  such  as
berth allocation and quay crane assignment problem[23],
quay  crane  assignment  and  scheduling  problem[25],
quay  crane  scheduling  problem  with  draft  and  trim
constraints[29], and integrated quay crane and yard truck
scheduling  problem[31].  Other  problems  using  GAs
include  the  scheduling  problems  of  multiple
vehicles/cranes  along  a  common  lane[24, 26, 27, 30] and
the  yard  crane  scheduling  problem  with  a  non-
interference  constraint  in  a  container  terminal[32].  The
results  of  the  previously  mentioned  studies  show  that
GAs  manage  to  provide  practical  solutions  and
significant  time  savings  for  scheduling  problems.  For
the  heuristic  methods,  Carlo  and  Vis[34] examined
sequencing dynamic storage systems with multiple lifts
and  shuttles,  which  bear  resemblances  to  the  study  of
twin-crane  scheduling  on  a  common  lane.  They
proposed an integrated heuristic look-ahead strategy to
assign  requests  and  priority  rules  to  handle
interferences.  Furthermore,  Carlo  and  Martínez-
Acevedo[35] studied  the  priority  rules  for  scheduling  a
twin-crane  system  in  container  ports.  They  assumed
that  the crane movement determines the crane conflict
and that there is an exchange point where one crane can
start  a  request  and  leave  it  to  the  other  crane  to
complete it. Clearly, this exchange point simplifies the
interference  situation  and  lags  the  working  efficiency
with the repetition of loading and unloading. Following
Carlo’s  work,  Gharehgozli  et  al.[36] studied  port
logistics.  The  conflict  location  was  determined
according to the horizontal movement of the crane and
the  loading/unloading  time.  A  heuristic  algorithm was
used to  study the difference between the presence and
absence of a handshake area and the size, location, and
number of handshake areas by avoiding collisions and
pursuing the shortest completion time. Other heuristics
are also used to study the scheduling problem[33, 37, 38].
For  example,  Chen  et  al.[37] built  a  heuristic
decomposition  framework  enhanced  by  tabu  search  to
study the quay crane scheduling problem at an indented
berth.  Li  et  al.[38] considered  non-conflict  constraints
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between  cranes,  station-capacity  constraints,  and  jobs
with  inaccurate  release  times  and  different  temporal
scheduling objectives.  A heuristic  method for  a  multi-
crane-scheduling  problem  was  presented  to  minimize
the total cost. Among the above studies, Moccia et al.[6]

considered  the  safety  distance  to  be  zero,  whereas
others assumed a certain safety distance. Hakam et al.[26]

considered  the  velocity  as  infinite,  whereas  other
studies  assumed  cranes  to  travel  with  constant
velocities.  Although  TMs  are  considered  in  some
studies, CA and VC are still neglected during trajectory
prediction.

The aforementioned papers made great achievements
on crane scheduling both in theory and practice.  From
these papers, we have made an overview in Table 1. As
shown  in Table  1,  the  scheduling  method  attracted
most  of  the  research  interests,  whereas  detailed
movements  were  neglected.  Among  them,  TMs  were
considered  by  several  studies,  whereas  CA  and  VC
were totally neglected. Besides RTCSs, similar studies
on  shuttle-based  storage  and  retrieval  systems[39] and
robotic  cells  with  multiple  dual  gripper  robots[40, 41]

arose.  Due  to  different  structures,  CA  was  considered
in these studies, whereas VC and TMs were neglected.

From  the  viewpoint  of  complexity,  TMs  could  be
calculated  with  a  constant  velocity  similar  to  crane
movements.  By  contrast,  CA  and  VC  must  be
calculated in  a  dynamic way.  For  this  reason,  CA and
VC  calculations  are  highly  suitable  for  the  DT
technique.  The  concept  of  a  DT  was  first  introduced
and  later  elaborated  by  Grieves[42] in  his  product
lifecycle  management  classes.  Since  then,  DTs  have
become  a  noticeable  issue.  Recently,  the  industry  has
been  one  of  the  most  popular  areas  for  DT
applications[43] and  some  industry  systems  are  studied
with a  DT technique.  In  2019,  Tao et  al.[44] integrated
DT  research  in  the  industry  and  analyzed  current
challenges  and  future  developments.  In  2019,  Fang
et  al.[45] proposed  the  combination  of  DT  techniques
with dynamic job-shop scheduling to achieve real-time
and  precise  scheduling.  A  DT-enhanced  shop-floor
scheduling  was  presented  by  Zhang  et  al.[46].  All  the
research  results  showed  that  applying  DT  technology
requires  an  accurate  mapping to  physical  systems in  a
virtual space. For a physical system, the research on the
control  problem  of  mechanical  systems  is  precise  and
practicable  and  has  been  verified  in  physical  crane
systems[47].  Thus,  for  the  virtual  crane  system,  precise
conditions  are  needed  to  be  considered  to  accurately
reflect  the  real-time  state  of  a  physical  crane  system.
For  this  reason,  TMs,  CA,  and  VC  are  strongly

dynamic and will be helpful for building DTs of twin-
crane  systems.  However,  as  shown  in Table  1,  only  a
few  studies  are  concerned  with  TMs,  CA,  and  VC.
Thus, in this study, the trajectory prediction approach is
examined  with  consideration  of  the  above-mentioned
details.  The  objective  of  this  paper  is  to  present  an

 

Table 1    Overview of studies considering crane movements.

Publication Method TM CA VC
Zhang and Rose (2013)[1] GA × × ×

Legato and Trunfio (2014)[4] BB × × ×
Peterson et al. (2014)[3] BB, BP √ × ×
Moccia et al. (2006)[6] BC × × ×
Cheng et al. (2015)[5] BC × × ×

Kasm and Diabat (2019)[12] BP × × ×
Chen et al. (2020)[13] ADMM × × ×

Briskorn and Angeloudis (2016)[8] DP × × ×

Boysen et al. (2015)[7] DP,
DEC × × ×

Park et al. (2010)[11] DP, H × × ×
Kung et al. (2014)[10] DP × × ×
Aron et al. (2010)[9] DP × × ×

Al-Dhaheri et al. (2016)[19] GA × × ×
Chung and Choy (2012)[22] GA × × ×
Chung and Chan (2013)[21] GA, H × × ×
Kayeshgar et al. (2012)[28] GA × × ×

Chang et al. (2017)[20] GA × × ×
Wu and Ma (2017)[29] GA × × ×

Fu et al. (2014)[25] H, GA × × ×
Correcher and Alvarez-Valdes

(2017)[23] GA × × ×

Emde and Boysen (2014)[24] GA × × ×
Hakam et al. (2012)[26] GA × × ×

Hu et al. (2016)[27] GA × × ×
Choe et al. (2012)[30] GA × × ×
Skaf et al. (2021)[31] GA × × ×

Carlo and Martínez-Acevedo
(2015)[35] PR √ × ×

Carlo and Vis (2012)[34] PR, H √ × ×
Gharehgozli et al. (2017)[36] PR √ × ×

Ge et al. (2012)[33] H × × ×
Chen et al. (2011)[37] H × × ×

Li et al. (2020)[38] H × × ×
Zhao et al. (2018)[39] H × √ ×

Dawande et al. (2002)[40] H × √ ×
Geismar et al. (2008)[41] H × √ ×

Note:  GA — Genetic  Algorithm,  BB — Branch-and-Bound,
BP  —  Branch-and-Price,  BC  —  Branch-and-Cut,  DP  —
Dynamic  Programming,  ADMM  —  Alternating  Direction
Method of Multipliers, DEC — Decomposition, H — Heuristic,
PR — Priority Rules, √ — The factor is considered in the study,
× — The factor is not considered in the study.
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accurate  trajectory  prediction approach.  This  approach
is dynamic and will be helpful for building the DTs of
RTCSs and enhancing crane scheduling.

3    Problem Descriptions and Notations

Typically,  a  crane  moves  horizontally  over  a  bridge
along parallel overhead runways (X axis), and a trolley
moves  along  the  bridge  (Y axis)  (see Fig.  1a).  The
materials  are  lifted  up  and  down by  a  hoist  integrated
into  the  trolley  (Z axis)  and  can  be  transported  to  any
position covered by the parallel runways.

The  studied  twin-crane  scheduling  problem  can  be
illustrated  in  the  top  view  of  a  multi-crane  system
shown in Fig. 1a. Assume there are a series of transport
tasks  waiting  for  the  cranes,  where  each  task  has  a
definite origin and destination. The crane selects a task
and conducts movements with the trolley in the X axis
and Y axis, respectively. An evasion movement will be
conducted  by the  crane  when interference  occurs.  The
crane  scheduling  objective  is  to  minimize  the  overall
completion  time  of  all  tasks,  which  is  also  called  the
makespan.  To  illustrate  the  connection  between
trajectory  prediction  and  crane  scheduling,  the
notations used in this study are as follows:

n:  number of tasks;
i i:  -th task;
j j j = 1:  -th crane, in this paper, (  (crane on the left),

2 (crane on the right));
n j j:  number of tasks allocated to crane ;
xi, j xi, j i j

xi, j

:   =  1  if  the -th  task  is  allocated  to  crane ;
 = 0 otherwise;

s:  safety distance;
tA j,i j i:  avoidance time of crane  with task ;
tL j,i j:  travel  time  of  crane  from  origin  to  loading

ilocation with task ;
tU j,i j

i
:  travel time of crane  from loading location to

unloading location with task ;
ta:    time point  to  predict  a  crane’s  trajectory during

simulation;
S X

X
:    crane’s  travel  distance  from  the  origin  to

destination in the  axis;
S Y

Y
:    trolley’s  travel  distance  from  origin  to

destination in the  axis;
tX

X
:   crane’s travel time from the origin to destination

in  axis;
tY

Y
:  trolley’s travel time from origin to destination in

 axis;
O j,i,X i X j:  origin of the -th task in the  axis of the -th

crane;
O j,i,Y i Y j:  oirigin of the -th task in the  axis of the -th

crane;
T i,X

j,s,O

i Oi,x j

:  arrival  time  of  the  corresponding  crane  with
the -th task at  of the -th crane;

T i,X
j, f ,O

i Oi,x j

:  loading  complete  time  of  the  corresponding
crane with the -th task at  of the -th crane;

Di, j,X i X
j
:  destination  of  the -th  task  in  the  axis  of

crane ;
Di, j,Y i Y

j
:  destination  of  the -th  task  in  the  axis  of

crane ;
T i,X

j,s,D j i

Di,x

:  arrival time of the -th crane with the -th task
at ;

T i,X
j, f ,D j

i Di,x

:  unloading  completion  time  of  the -th  crane
with the -th task at ;

Tcollide, j j:  collision time of the -th crane to the other
one;

T j,s,a j:   start  time  of  the -th  crane  to  conduct
avoidance;

 

Track
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X ax
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(a) Top view of twin-crane system (b) Sketch map of twin-crane system

Crane 1

Crane 2

 
Fig. 1    Overview of a twin-crane system.
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T j, f ,a j:   completion time of  the -th  crane to conduct
avoidance;

T j,i j i:   completion time of the -th crane with the -th
task;
∆T :   time  interval  between  two  consecutive  time

points to predict the trajectory;
P j,X,t j X

t
:  current location of the -th crane in the  axis

at time ;
P j,Y,t j

Y t
:  current location of the trolley on the -th crane

in the  axis at time ;
P j,X,a j X:  location of the -th crane in the  axis when it

starts to conduct avoidance;
VXmax:  maximum velocity of the loaded crane;
VYmax:   maximum velocity of the loaded trolley;
V′Xmax:  maximum velocity of the unloaded crane;
V′Ymax:  maximum velocity of the unloaded trolley;
V j,a,b j

a b
:   average  velocity  of  the -th  crane  moving

from position  to ;
aX:  acceleration/deceleration of the crane;
aY :  acceleration/deceleration of the trolley;
lt:  loading/unloading time;
C j j:  completion time of all tasks allocated to crane .
Typically, Eq. (1) denotes the allocation of tasks.

 

xi, j =

{
1, task i allocated to crane j;
0, task i not allocated to crane j (1)

Equation  (2)  denotes  that  every  task  has  to  be
allocated to one crane.
 

n∑
i=1

2∑
j=1

xi, j =

2∑
j=1

n∑
i=1

xi, j = n (2)

With  the  constraint  of  Eq.  (2),  the  objective  of  the
crane  scheduling  is  always  to  minimize  the  makespan
of all tasks allocated to all cranes, which is denoted by
Formula  (3).  The  scheduling  includes  task  allocation
and sequencing. Clearly, a different scheme results in a
different makespan.
 

min {max(C1,C2)} (3)

C j T j,n j

T j,n j

In Formula (3),  can be calculated as max , and
 can be calculated with Eq. (4):

 

T j,n j = T j,n j−1 + tA j,n j−1 + tL j,n j + tU j,n j +2lt (4)

tA j,n j−1where is equal to
 

tA j,n j = T j, f ,a−T j,s,a (5)

Equation  (4)  shows  that  the  completion  time  of  the
last  task  is  equal  to  the  summation  of  the  completion
time of the former task and the total processing time of
the  last  task.  Equation  (4)  denotes  a  recursive
procedure,  and  every  task  is  constrained  by  the

tL j,n j tU j,n j

tA j,n j

tA j,n j

tA j,n j

corresponding  former  task.  This  condition  indicates
that  a  small  deviation  in  the  prediction  of  the
processing  time  may  accumulate  in  a  large  deviation
with  the  increase  of  the  task  number.  For  this  reason,
the use of DTs is helpful to correct deviations with the
monitoring  of  physical  RTCSs.  Furthermore,  the  CA,
VC,  and  TMs  make  contributions  to  and  .
However,  is  dynamically  constrained  by  the
position of other cranes. Equation (5) denotes that 
depends on the trajectory prediction whereas trajectory
prediction depends on . Consequently, Eq. (4) is a
strong dynamic procedure,  and it  is  difficult  to predict
the  trajectory  and  makespan  with  a  static  formulation.
For  this  reason,  a  simulation-based  trajectory
prediction approach is presented.

4    Simulation-Based Trajectory Prediction

As  discussed  in  Section  3,  twin-crane  scheduling  can
be regarded as an optimization problem with objective
functions.  However,  based  on  the  strong  dynamic
characteristics  denoted  in  Eq.  (4),  crane  trajectories
cannot  be  easily  evaluated  and  predicted  using
equations  or  continuous  simulations.  Hence,  to  make
an  accurate  prediction  by  taking  dynamic  details  into
consideration, a discrete event simulation is employed.
To  simplify  this  problem,  a  single-crane  trajectory
prediction  without  dynamic  characteristics  is  studied
first.  Then,  a  twin-crane  trajectory  prediction  with
dynamic characteristics is examined.

4.1    Single-crane  trajectory  prediction  with  CA
and VC

Vmax

Vmax

Typically,  a  crane  or  trolley  starts  the  travel  with
acceleration and stops with deceleration. As mentioned
in  the  literature  review,  cranes  and  TMs  are  always
simplified  by  assuming  that  a  travel  with  a  constant
velocity  is  equal  to  the  maximum  velocity .  The
effect  of  this  simplification  is  shown  in Fig.  2a:  The
trajectory is a curve when acceleration and deceleration
are  considered,  whereas  it  is  a  straight  line  when
acceleration and deceleration are neglected. Moreover,
the  crane’s  travel  time,  including  acceleration  and
deceleration, is slightly longer than the travel time with
constant  velocity  over  the  same  travel  distance.
Therefore,  there  are  tiny  deviations  in  the  processing
time  if  the  travel  time  is  predicted  with  a  constant
velocity .

Loaded  crane  travels  with  a  low  velocity,  whereas
unloaded crane travels with a high velocity. As shown
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in Fig.  2b,  there  are  tiny  deviations  in  the  processing
time  between  the  loaded  travel  and  unloaded  travel.
The  travel  trajectory  will  have  different  slopes  to
denote  the  different  travel  velocities.  For  this  reason,
tiny  deviations  will  accumulate  to  a  large  deviation  if
the  CA  and  VC  are  not  considered  in  the  trajectory
prediction.  Unpredicted  interference  may  happen  and
lag the total completion time.

VXmax

VYmax S X

S Y aX aY

tX tY

The  accelerating  and  decelerating  procedures  of  a
single  crane  and  trolley  can  be  regarded  as  the  same.
Previous  research  studied  the  influence  and  necessity
of  considering  acceleration  and  deceleration  in
different  travel  distances[39].  Consequently,  the  travel
time  of  a  single  crane  can  be  predicted  with  the
maximum  crane  velocity ,  maximum  trolley
velocity ,  travel  distance  of  crane  and trolley

,  and  accelerations  of  crane  and  trolley .  The
crane’s travel time  and trolley’s travel time  can be
calculated as follows:
 

tX =


S X

VXmax
+

VXmax

a
, S X ⩾

V2
Xmax

aX
;

2

√
S X

aX
, S X <

V2
Xmax

aX

(6)

 

tY =


S Y

VYmax
+

VYmax

a
, S Y ⩾

V2
Ymax

aY
;

2

√
S Y

aY
, S Y <

V2
Ymax

aY

(7)

VXmax VYmax

V
′
Xmax V

′
Ymax

VXmax VYmax S X S Y

With  consideration  of  VC,  the  loaded  crane  travels
with  a  small  and  ,  while  unloaded  crane
travels with a great  and . Thus, considering
the CA and VC,  the  travel  time of  a  loaded crane can
be  predicted  with , , ,  and .

V
′
Xmax V

′
Ymax S X S Y

Meanwhile, the travel time of an unloaded crane can be
predicted with ,  , , and .

4.2    Single-crane trajectory prediction with TMs

tX tY

First,  the  dynamics  of  a  set  of  cranes  and  trolleys  is
studied.  Typically,  the  transportation  of  cranes  and
trolleys  can  be  considered  in  four  parts  without
interference consideration: travel to the origin, loading
at the origin, travel to the destination, and unloading at
the  destination.  The  necessary  condition  of
loading/unloading  is  the  arrival  at  the  location  of  the
crane and trolley. For this reason, the travel time is the
maximum  of  and  .  Consequently,  the  travel  time
can be defined as
 

t = max(tX , tY ) (8)

P1 P2

VXmax

Figure  3 shows  an  example  of  a  single-crane
trajectory. In Fig. 3, P,  and  are a dwell point, the
origin,  and  the  destination  in  the X  direction,
respectively. As shown in Fig. 3, the crane’s trajectory
from A  to  B  is  relatively  sharp  as  compared  to  the
trajectory from C to D. This condition can be attributed
to two reasons:  First,  can be reached during the
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VXmax

tX tY

travel  from A  to  B ,  but  it  is  not  reached  during  the
travel from C to D. Therefore, the crane shows a lower
average  velocity  from C  to  D  than  that  from A  to  B.
Second, the crane is unloaded during the travel from A
to B, whereas it is loaded during the travel from C to D,
and a loaded travel results in a lower  than that on
an unloaded travel. Based on Eq. (8), a crane idle time
arises when  is less than . For this reason, the crane’s
idle  time  is  indicated  by  segment D  to  E  in  Fig.  3,
which is caused by the waiting time for the trolley.

With the aforementioned analysis,  the trajectories of
one crane can be predicted with the procedure shown in

T1 T3 T2

T4

T2−T1 T4−T3

Fig. 4. During the prediction, each task is divided into
two  travel  parts  and  two  loading/unloading  parts.  In
Fig. 4,  and  can be calculated with Eq. (6), and 
and  can  be  calculated  with  Eq.  (7).  The  crane  idle
time is predicted with ( ) and ( ).

4.3    Twin-crane  trajectory  prediction  with
interference handling

With the single-crane trajectory prediction procedure, a
twin-crane trajectory can be predicted, and interference
can  be  determined  by  the  intersection  of  two
trajectories. Different from former studies, a crane idle
time creates a long stay somewhere in the pathway and
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Fig. 4    Procedure of a single-crane trajectory prediction.
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may create new intersections in twin-crane trajectories.
Figure 5a shows an example of a twin-crane trajectory
without  idle  time  and  interference. Figure  5b
shows  a  new  interference  created  by  the  crane  idle
time. Figure  5 illustrates  the  dynamics  with  the
consideration of the movement of the crane and trolley.
Meanwhile,  it  indicates  the  necessity  of  movement
integration.

Due  to  the  dynamic  behavior  of  interference,  it  is
critical  to  perform  an  interference  detection  with  a
twin-crane  trajectory  prediction.  However,  two
questions  need to  be  answered before  interference can
be detected:

(1)  When  should  the  interference  detection  be
conducted?

(2)  How  long  should  the  interference  detection
cover?

ta

∆T

In this study, the moment when one crane will start a
new travel task is selected as the interference detection
time  and  denoted  as .  The  reason  is  that  one  travel
task  is  divided  into  two  travel  parts  and  two
loading/unloading  parts.  The  trajectories  of  the  four
parts  can  be  accurately  predicted,  and  interference
detection  can  be  conducted.  For  this  reason,  the
detection  interval  is  the  duration  of  a  travel  task.
However,  it  is  important  to  emphasize  that  each crane
should  conduct  its  own  interference  detection  and
complete  travel,  respectively.  Therefore,  the  detection
interval  is  the  minimum  detection  interval  of  the  two
cranes, which is denoted as  in Section 3.

ta ∆T

∆T

With  and  ,  interference  handling  can  be
conducted  based  on  interference  detection.  The
procedure of interference handling is illustrated in Fig. 6.
As  shown  in Fig.  6,  the  simulation  forwards  a
theoretical  and  detects  interference  in  that  period.

∆T

The interference avoidance algorithm will be activated
if  interference  is  detected.  Meanwhile  the  simulation
will forward a factual  if no interference is detected.
Twin  cranes  will  acquire  their  next  allocated  tasks
separately  and  repeat  the  interference  detection
procedure again. The crane will move to the boundary
of  its  working  area  to  escape  interference  when  it
completes all its allocated tasks.

∆T1

∆T1 ∆T2

∆T2

∆T3

∆T3

Figure 7 shows an example of interference handling.
As shown in Fig. 7a, interference is detected in interval

.  To  avoid  a  collision,  crane  1  conducts  the
avoidance  and  lags  its  task  travel.  The  simulation
forwards  and  detects  interference  in .  The
simulation  directly  forwards  because  no
interference  is  detected.  However,  interference  is
detected in  because the new task of  the left  crane
still  interferes  with  crane  2.  Crane  2  conducts
avoidance  this  time,  and  is  obtained  due  to  the
complete  time  of  crane  2.  The  simulation  keeps  the
detection interference and conducts avoidance until  all
tasks  are  completed.  The  final  twin-crane  trajectories
are shown in Fig. 7b.

As shown in Fig. 7, how to conduct avoidance affects
the subsequent trajectory and interference. As shown in
Boysen and colleagues’ work (2017)[2], two main steps
are performed to conduct avoidance:

(1) Selecting which crane should conduct avoidance;
(2)  Deciding  how  the  selected  crane  can  conduct

avoidance.
Because  the  objective  of  this  paper  is  not  crane

scheduling, we only employ heuristics in the two steps.
As  mentioned  before,  the  cranes’ loading  and
unloading statuses are considered in the travel profiles
of a single crane. It is more difficult for a loaded crane
to conduct avoidance than for an unloaded crane. This
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Fig. 5    Example of a twin-crane interference with idle time.
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is  caused  by  the  higher  inertia  of  the  loaded  crane.
Therefore, conducting avoidance with the loaded crane
may lead to an unnecessary waste of time and energy.
For  this  reason,  we  select  the  unloaded  crane  to

conduct  avoidance.  Another  situation  is  that  the  two
cranes  are  either  loaded  or  unloaded.  In  this  situation,
we select the crane with less travel distance to conduct
avoidance.

When  deciding  how  the  selected  crane  can  conduct
avoidance,  two  situations  that  result  in  different
trajectories  are  considered.  First,  the  avoiding  crane
must  conduct  avoidance  travel  (see Fig.  8).  In  this
situation,  the  avoiding  crane  needs  to  move  from  the
origin  to  an  avoiding  location  apart  from  the  priority
crane  by  a  safety  distances.  In Fig.  8,  the  avoiding
location  and  avoiding  time  are  calculated  with  the
following three steps.

T i,x
2, f ,o

Oi,x Tcollide,1

Step 1.  The interference detection during the  period
of  involves the arrival time of crane j with the i-th
task at . The interference is detected at .

Di,2,x > Oi,2,x

P1,X,a = Di,2,x+s

Step 2. Because the destination of the i-th task in the
X axis  of  crane  2  is  greater  than  the  origin  of  the i-th
task in the X axis, i.e., , for the first crane,
the avoiding location .

T i,x
2, f ,D

Di,x

Step  3.  According  to  the  avoiding  location,  the
avoiding  time  is ,  which  is  the  unloading
completion time of crane 2 with the i-th task at .

The other situation is where the avoiding crane does
not need to travel but just waits at the origin (see Fig. 9).
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Fig. 6    Interference handling procedure.
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T i,X
2, f ,O

T i,X
2, f ,D

In  this  situation,  the  avoiding  time  is  the  only
parameter  that  affects  the  performance.  There  are  two
interference  detections  in  this  situation.  The  first
detection  is  illustrated  in Fig.  9a and  the  second
detection  is  illustrated  in Fig.  9b.  The  motivation  for
the second detection is to shorten the avoiding time. As
shown  in Fig.  9b,  crane  1  can  travel  in  parallel  with
crane  2  at .  Once  the  interference  is  detected,
crane  1  keeps  waiting  until  it  is  collision-free  with
crane  2  at .  In Fig.  9,  the  avoiding  time  can  be
calculated with the following steps:

T i,X
2, f ,O

Tcollide,1

Step  1.  The  first  interference  detection  is  called
during  the  period  of ,  and  the  interference  is
detected at .

T i,X
2, f ,O

T i,X
2, f ,O T i,X

2, f ,D

Step 2. The avoiding time is presumed as , and
the  second  interference  detection  is  called  between

 and  ,  where  the  interference  is  detected
again.

T i,X
2, f ,DStep 3. The avoiding time is presumed as , and

the avoiding crane is switched as the priority crane.
With  the  aforementioned  situations,  the  interference

is  handled,  and  interference-free  trajectories  are
obtained.  Consequently,  twin-crane  trajectories  can  be
predicted with interference handling.

In  addition,  when  a  crane  stops  for  avoidance,  its
trolley could have simultaneously moved to the desired

t = max(tX ,max(tY−
T2, f ,Di,X ,0))

position  of  the  next  task  to  improve  efficiency.  Thus,
in  this  situation,  when  the  avoidance  crane
begins  traveling,  the  travel  time 

.

5    Experiment

In a real twin-crane system, it  is  impossible to neglect
the  effect  of  acceleration/deceleration,  TMs,  and
different  velocities  of  a  loaded/unloaded  crane.
Therefore,  to  examine  the  performance  of
aforementioned  studies,  a  trajectory  prediction
simulation  model  was  developed  using  the  simulation
software  Tecnomatix  Plant  Simulation.  A  real  crane
system in a  container  yard is  shown in Fig.  10,  which
consists  of  a  crane,  track,  stack,  and  cargo.  The
simulation  model  was  built  using  the  layout  of  this
container  terminal.  Three  experiments  with  a  twin-
crane system in a real container terminal are presented.
The  interface  of  the  simulation  model  in  this  case  is
shown in Fig. 11. All the experiments were conducted
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Fig. 9    Avoiding crane without avoidance travel.
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on a laptop with CPU Intel i5-4210H(2.9 GHz).
To  investigate  which  crane  movement  details  (CA,

VC,  and  TMs)  dominate  the  performance  of  a  twin-
crane  system,  we  further  developed  eight
parameterized models:

(1)  Neglecting  all  detailed  movements  (NDM
model);

(2) Considering trolley movements (CTM model);
(3)  Considering  crane  acceleration/deceleration

(CCA model);
(4)  Considering  different  crane  velocities  when

loading/unloading (CVC model);
(5)  Considering  trolley  movements  and  crane

acceleration/deceleration (CTM&CCA model);
(6)  Considering  trolley  movements  and  different

crane  velocities  when  loading/unloading  (CTM&CVC
model);

(7)  Considering  crane  acceleration/deceleration  and
different  velocities  when  loading/unloading  (CCA&

CVC model);
(8) Considering all details (CDM model).
The parameters of the simulation models are given in

Table  2,  which  are  the  same  as  thouse  used  in  a  real
container  terminal.  The  level  of  detail  increases  from
models 1 to 8 evidently. In the eight models, the NDM
model  neglects  all  details,  while  the  CDM  model
considers all details studied in this paper. As such, the
CDM  model  is  more  realistic  compared  to  the  other
models. For this reason, we take the CDM model as the
benchmark  and  use  the  following  formula  to  calculate
the deviation of the others:
 

dev = [(makespan o f the other model−makespan o f
CDM model)/(makespan o f CDM model)]×100%

(9)

5.1    Experiment 1: Performance in different detail
levels

To  compare  the  performance  of  the  eight  models,  we
assumed a scheduling scenario with 20 tasks, as shown

 

 
Fig. 10    Crane system in a container yard.
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Fig. 11    Interface of the developed simulation model.
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in Table  3. “ Original  position” means  the  storage
position where crane loads the container, “Destination”
means  the  storage  position  where  crane  unloads  the
container,  and “ Allocated  crane” means  the  task  is
allocated to a specified crane. Three types of tasks are
randomly  distributed  in  this  scenario.  Type “in”
denotes  the  crane  travel  to  the  input  position  and  the
carrying  of  the  container  to  the  corresponding
destination.  Type “out” denotes the crane travel  to  the
container  location  and the  carrying  of  the  container  to
the  output  position.  Type “move”  denotes  the  crane
travel  to  the  old  location  of  a  container  and  carry  the
container  to  the  new  location.  Each  task  has  been
allocated to one crane and is assumed to be the result of
crane  scheduling.  The  layout  of  the  yard  of  this  twin-
crane system is shown in Fig. 12.

The model runs 50 000 times faster than the real-time
performance of the real terminal.  After the simulation,
the  crane  trajectories  corresponding  with  each  model
are shown in Fig. 13 and the makespan and calculation
time are listed in Table 4.

Figure  13 shows  the  actual  crane  movements.  As
shown in Fig. 13, the shape of the trajectories is almost
the same, whereas the makespans are different. CDM is
taken as the benchmark because it considers all details.
As  shown  in Table  4,  there  is  a  25.03% difference  in
makespans between the NDM and CDM models.  This
finding indicates  that  crane scheduling using an NDM
scenario  would  perform  25.03% less  than  the  crane
scheduling using a CDM scenario. Moreover, the CTM
model results in a makespan closest to the makespan of

CDM, whereas NDM, CCA, and CVC show significant
deviations.  This  finding  shows  that  TMs  are  the  most
important  crane  movement  detail.  Meanwhile,
CTM&CCA and CTM&CVC result  in makespans that
are also close to the makespan of CDM.

In  addition, Table  4 shows  the  computation
efficiency  of  each  model.  NDM  and  CCA  reduce  the
computation  time  by  approximately  30% compared  to
CDM.  This  indicates  the  advantage  of  NDM  on
computation  efficiency.  However,  CTM  only  reduces
the  computation  time  by  1.95% compared  to  CDM.
CTM&CCA and  CTM&CVC have  computation  times
very  close  to  those  of  CDM.  Thus,  although  TMs  are
the  most  important  crane  movement  detail,  they
contribute less in terms of computation efficiency.

5.2    Experiment  2:  Performance  in  different  task
ratios

To check the generality of the results from experiment 1,
six  groups  of  scenarios  with  different  task  ratios  were

 

Table 2    Parameter table of different models.

Model
ax

(m/s2)
V′Xmax

(m/s)
VXmax

(m/s)

ay

(m/s2)
V′Ymax

(m/s)
VYmax

(m/s)
NDM ∞ 1 1 ∞ ∞ ∞
CTM ∞ 1 1 ∞ 0.4 0.4
CCA 1 1 1 ∞ ∞ ∞

CVC ∞ 1.2 0.6 ∞ ∞ ∞

CTM&CCA 1 1 1 0.5 0.4 0.4
CTM&CVC ∞ 1.2 0.6 ∞ 0.5 0.3
CCA&CVC 1 1.2 0.6 ∞ ∞ ∞

CDM 1 1.2 0.6 0.5 0.5 0.3
 

 

Table 3    Task list with 20 tasks.

Task number Original position Destination Type Allocated crane
1 123 Exit Out 2
2 Entrance 234 In 1
3 Entrance 302 In 1
4 205 120 Move 1
5 Entrance 167 In 1
6 150 155 Move 1
7 130 Exit Out 2
8 188 87 Move 2
9 160 135 Move 1
10 168 Exit Out 2
11 208 155 Move 2
12 180 85 Move 1
13 162 165 Move 1
14 Entrance 80 In 1
15 167 Exit Out 2
16 195 106 Move 2
17 144 120 Move 1
18 Entrance 168 In 1
19 115 160 Move 1
20 210 120 Move 1
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Fig. 12    Layout of the yard of the case study.
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studied.  Each  group  contains  ten  scenarios  with
randomly  generated  task  locations.  Simulations  were
conducted  with  these  groups  of  scenarios,  and  the

simulation results are shown in Table 5.
As shown in Table 5, the average deviation between

the NDM and CDM models are more than 20%. Hence,
a  large  deviation  exists  in  the  results  of  the  NDM
model,  which proves the necessity of crane movement
detail  consideration.  Among these details,  CTM offers
more  than  90% accuracy,  and  TMs  are  the  most
important  crane  movement  detail.  The  combination  of
crane  movement  details  always  shows  more  accuracy
than  using  a  single-crane  movement  detail.
CTM&CVC  offers  more  than  99% accuracy,  whereas
CTM&CCA  offers  more  than  90% accuracy.  Hence,
CA  is  the  less  important  crane  movement  detail.  By
contrast,  CTM&CVC  only  reduces  the  computation
time by 0.78%, and CTM makes an 11.62% difference
as compared to CDM. Hence,  TMs are the most time-
consuming  crane  movement  detail,  whereas  CA is  the
least  one.  The  conclusions  on  the  model  performance
differ when considering accuracy or efficiency.

5.3    Experiment  3:  Performance  in  different
layouts

To  check  the  efficiency  of  the  proposed  model,
experiments  with  different  container  terminal  layouts
were performed. Ten groups of scenarios with different
layouts  were  designed.  Five  groups  have  a  different
number  of  columns  compared  to  the  original  layout,
and five others have a different number of rows. Each
group contains five scenarios with randomly generated
task locations.

The average deviation of makespans in a layout with
different  column  numbers  is  shown  in Table  6.  The
max  deviation,  min  deviation,  and  average  deviation
are shown in Fig. 14.

The  average  deviation  of  the  makespans  in  a  layout
with  different  row  numbers  is  shown  in Table  7.  The
max  deviation,  min  deviation,  and  average  deviation
are shown in Fig. 15.

The  results  of  the  experiments  show  that  the  CDM
model  proposed  in  this  paper  still  has  the  best
efficiency  in  different  layouts.  The  completion  time
considerably varies with different layouts, whereas the
deviation  is  similar.  For  the  NDM  model,  there  is
approximately a 25% deviation compared to the CDM
model.  The  CTM  and  CVC  models  show  a  similar
accuracy,  but  the  CVC  model  has  a  larger  bias.  The
CCA model shows the least accuracy regardless of the
layout.  The  CTM&CVC  model  can  provide  high
accuracy.  Therefore,  to  obtain  high  accuracy,  it  is
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necessary to  consider  the  trolley’s  movements  and the
speed  difference  of  the  crane  in  the  loaded/unloaded
state when conducting research related to the prediction
and conflict resolution of the crane trajectory.

6    Conclusion

In this  study,  we propose a novel  trajectory prediction
approach with crane movement details. The objective is
to  offer  accurate  trajectory  predictions  of  the
movements  of  twin-crane systems.  The details  include

 

Table 4    Completion of the makespans of eight models.

Model Makespan Deviation (%) Calculation time (×10−7 s) Deviation (%)
NDM 47 min 45 s −25.03 6.632 −33.39
CTM 1 h 2 min 29 s −1.91 8.678 −1.95
CCA 48 min 8 s −24.42 6.686 −32.31
CVC 55 min 12 s −13.34 7.667 −15.39

CTM&CCA 1 h 3 min 3 s −1.02 8.756 −1.03
CTM&CVC 1 h 3 min 16 s −0.69 8.786 −0.69
CCA&CVC 58 min 28 s −8.22 8.12 −8.96

CDM 1 h 3 min 42 s 0.00 8.847 0.00
 

 

Table 5    Statistical table of the makespans.

Task group NDM CTM CCA CVC CTM&CCA CTM&CVC CCA&CVC CDM
1 47 min 45 s 1 h 2 min 29 s 48 min 8 s 55 min 12 s 1 h 3 min 3 s 1 h 3 min 16 s 58 min 28 1 h 3 min 42 s
2 1 h 26 s 1 h 19 min 33 s 1 h 51 s 1 h 12 min 48 s 1 h 20 min 17 s 1 h 24 min 31 s 1 h 16 min 54 s 1 h 25 min 17 s
3 1 h 7 min 17 s 1 h 18 min 8 s 1 h 7 min 45 s 1 h 18 min 14 s 1 h 18 min 52 s 1 h 28 min 33 s 1 h 21 min 28 s 1 h 29 min 9 s
4 53 min 24 s 1 h 4 min 40 s 53 min 49 s 1 h 2 min 5 s 1 h 5 min 22 s 1 h 8 min 59 s 1 h 4 min 20 s 1 h 9 min 32 s
5 1 h 4 min 50 s 1 h 25 min 51 s 1 h 5 min 23 s 1 h 15 min 37 s 1 h 26 min 57 s 1 h 37 min 44 s 1 h 22 min 41 s 1 h 38 min 51 s
6 50 min 26 s 53 min 44 s 50 min 48 s 53 min 7 s 54 min 11 s 57 min 40 s 55 min 46 s 58 min 7 s
7 1 h 21 s 1 h 7 min 6 s 1 h 53 s 1 h 11 min 14 s 1 h 7 min 47 s 1 h 25 min 22 s 1 h 16 min 9 s 1 h 26 min 15 s
8 57 min 50 s 1 h 7 min 36 s 58 min 14 s 1 h 4 min 5 s 1 h 8 min 10 s 1 h 11 min 26 s 1 h 6 min 30 s 1 h 11 min 10 s
9 1 h 6 min 7 s 1 h 32 min 59 s 1 h 6 min 37 s 1 h 15 min 2 s 1 h 33 min 54 s 1 h 42 min 30 s 1 h 217 s 1 h 43 min 23 s

10 1 h 16 min 28 s 1 h 35 min 39 s 1 h 17 min 1 s 1 h 29 min 16 s 1 h 36 min 40 s 1 h 48 min 14 s 1 h 35 min 36 s 1 h 49 min 14 s
Avg dev of
makespan −24.03% −8.94% −23.53% −14.19% −8.14% −0.67% −9.79% 0.00%

Avg dev of
calculation

time
−37.98% −11.62% −36.90% −19.81% −10.52% −0.78% −13.08% 0.00%

 

 

Table 6    Statistics table of deviation in different column numbers (row = 10).

Column
Deviation(%)

NDM CTM CCA CVC CTM&CCA CTM&CVC CCA&CVC CDM
20 −25.31 −9.57 −22.84 −16.32 −8.29 −1.56 −11.04 0.00
30 −25.56 −12.19 −24.93 −13.44 −11.08 −1.74 −10.47 0.00
40 −25.78 −10.67 −25.26 −14.19 −9.69 −0.97 −8.38 0.00
50 −27.28 −11.93 −26.61 −13.76 −11.37 −1.16 −8.72 0.00
60 −25.64 −15.66 −25.22 −10.50 −15.08 −0.71 −6.84 0.00

Min −25.31 −9.57 −22.84 −10.50 −8.29 −0.71 −6.84 0.00
Max −27.28 −15.66 −26.61 −16.32 −15.08 −1.74 −11.04 0.00

Average −25.92 −12.00 −24.97 −13.64 −11.10 −1.23 −9.09 0.00
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Fig. 14    Makespan  deviation  in  different  column  numbers
of different models.
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TMs, CA, and different crane velocities corresponding
with  loading  and  unloading  (VC).  A  single-crane
trajectory prediction approach with CA, VC, and TMs
was  studied.  Consequently,  a  twin-crane  trajectory
prediction  approach  with  interference  handling  was
studied. Based on the theoretical studies, we developed
a  simulation  model  and  presented  a  case  study  on  the
container terminal. According to the simulation results,
the proposed trajectory prediction performs 20% better
in  terms  of  accuracy  compared  to  the  traditional
approach without crane movement details.

In  the  future,  we  would  like  to  further  our  study  by
evaluating the dynamic energy consumption of a twin-
crane system, which is another interesting problem and
may  help  to  develop  an  energy-efficient  crane
scheduling approach.
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