
 

Hybrid Deep Learning Model for Short-Term Wind Speed Forecasting
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Abstract: Accurate wind speed prediction has been becoming an indispensable technology in system security,

wind energy utilization,  and power grid  dispatching in  recent  years.  However,  it  is  an arduous task to predict

wind  speed  due  to  its  variable  and  random characteristics.  For  the  objective  to  enhance  the  performance  of

forecasting  short-term  wind  speed,  this  work  puts  forward  a  hybrid  deep  learning  model  mixing  time  series

decomposition  algorithm and gated recurrent  unit  (GRU).  The time series  decomposition  algorithm combines

the  following  two  parts:  (1)  the  complete  ensemble  empirical  mode  decomposition  with  adaptive  noise

(CEEMDAN),  and  (2)  wavelet  packet  decomposition  (WPD).  Firstly,  the  normalized  wind  speed  time  series

(WSTS) are handled by CEEMDAN to gain pure fixed-frequency components and a residual signal. The WPD

algorithm  conducts  the  second-order  decomposition  to  the  first  component  that  contains  complex  and  high

frequency signal  of  raw WSTS. Finally,  GRU networks are established for  all  the relevant components of  the

signals,  and  the  predicted  wind  speeds  are  obtained  by  superimposing  the  prediction  of  each  component.

Results from two case studies, adopting wind data from laboratory and wind farm, respectively, suggest that the

related trend of the WSTS can be separated effectively by the proposed time series decomposition algorithm,

and  the  accuracy  of  short-time  wind  speed  prediction  can  be  heightened  significantly  mixing  the  time  series

decomposition algorithm and GRU networks.

Key words: deep learning;  complete  ensemble  empirical  mode decomposition  with  adaptive  noise  (CEEMDAN);  gated

recurrent unit (GRU); short term; wavelet packet decomposition; wind speed prediction

1    Introduction

Wind power has been vigorously developed because it
is clean and renewable. A great number of wind plants
have  been  constructed,  and  offshore  wind  power  has
also received plenty of attention. An arduous challenge

when using wind energy is to maintain the wind power
grid  stability  and  security  because  of  its  randomness,
volatility,  and  variability[1].  Therefore,  precisely
predicting short-term wind speed (e.g., from 0.5 hour to
3 hour ahead prediction) in a wind farm is essential for
efficient  power  grid  dispatching,  system  security,  and
optimal operation.

Due to its highly variable and random characteristics,
wind  speed  time  series  (WSTS)  are  usually  modeled
using  complex  nonlinear  quantitative  analysis
techniques.  The  existing  mainstream  wind  speed
prediction  techniques  generally  include  the  following
kinds:  (1)  physical  methods,  (2)  linear  regression
methods,  (3)  nonlinear  artificial  intelligence  methods,
and  (4)  hybrid  methods  that  combine  two  or  more
different  approaches.  Physical  methods,  such  as
numeric  weather  prediction  (NWP),  make  use  of
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meteorological  knowledge  (humidity  and  temperature,
etc.), and are usually more suitable for medium to long-
term prediction[2]. Linear regression methods, as a low-
cost technique, can generate model based on historical
data.  The  primary  linear  regression  models  include
autoregression (AR) model and autoregression moving
average  (ARMA)  model[3].  Karakuş  et  al.[4] employed
polynomial AR model to forecast wing speed 24 hours
in advance utilizing hourly WSTS. Linear methods are
usually  easy  to  implement  but  normally  they  cannot
sufficiently  capture  the  nonlinearities  in  wind  speed
signals.

Artificial  intelligence  methods,  developed  for
approximating nonlinear behavior involved in data, can
be  employed  to  handle  random  and  nonstationary
WSTS. As the typical example of artificial intelligence,
artificial  neural  network  (ANN)  has  extensively  been
applied  in  forecasting  wind  speed.  For  instance,  in
Ref.  [5],  the  parameters  of  wavelet  neural  networks
(WNNs)  were  optimized  adopting  evolutionary
algorithms  for  forecasting  short-term  WSTS.  ANN  is
deemed to be a satisfactory tool with a high prediction
performance. However, such a method may suffer from
some drawbacks such as slow learning, overfitting, and
difficulty in deciding hyper-parameters[6].  Moreover,  a
simple  ANN  structure  may  not  be  able  to  sufficiently
capture  complex patterns  from the random WSTS and
therefore  is  weak  in  generalization[7].  Except  ANN,
support  vector  machine  (SVM)  can  also  perform  time
series  prediction  effectively.  In  Ref.  [8],  a  method
combined  with  Markov  model  and  SVM  was
presented,  aiming  at  solving  the  dynamic  problems  of
wind  ramps  in  wing  power  prediction.  Based  on  the
measured data, this approach integrated Markov model
into an enhanced SVM and obtained a high prediction
accuracy.  It  is  useful  to  note  that  in  general  SVM  is
more  suitable  for  classification  than  regression
problems.  In  addition,  in  Ref.  [9],  a  Gaussian  process
(GP)  probabilistic  method  based  on  temporally  local
“moving  window” approach  was  proposed  for
dramatically  reducing  the  prediction  error.  Compared
with  traditional  artificial  intelligence  technology,  deep
learning  can  better  capture  the  intrinsic  nonlinear
relationship  of  the  process  of  interest  by  exploiting
information  from  big  data[10].  Deep  generative  neural
network[11] and  long  short-term  memory  (LSTM)
network,  as  reliable  deep  learning  approaches,  are
widely  employed  to  conquer  the  time  dependent
problem[12].  In  Ref.  [13],  an  LSTM  model  combined

with  fuzzy-rough  set  theory  was  designed,  and
achieved  good  wind  speed  prediction  results.  As  a
simplification  of  LSTM,  gated  recurrent  unit  (GRU)
has  similar  performance  to  LSTM.  With  fewer
parameters,  GRU  is  faster  to  train  and  less  prone  to
overfitting[14].  In  Ref.  [15],  combined  with  variational
mode  decomposition  (VMD),  GRU  networks  were
integrated to forecast wind speed interval and gained a
higher prediction interval coverage probability.

WSTS  is  complex  because  of  its  random  and
fluctuant  characteristics.  Any  single  method
aforementioned  may  suffer  some  inherent  shortages
when  directly  applied  to  WSTS.  Therefore,  the
development  of  hybrid  methods  to  achieve  better
prediction accuracy has attracted extensive attention[16].
Such a method combines two or more good algorithms
into  a  single  one  to  strengthen  the  analysis  ability[17].
For  achieving higher  prediction accuracy,  Shi  et  al.[18]

devised  a  available  mixed  artificial  intelligence
technique  by  discussing  wind  speed  distribution  and
optimizing  model  weights  to  predict  wind  power.
Khodayar  et  al.[19] used  the  stack  versions  of
autoencoder (AE) and denoising AE in the deep neural
network (DNN) to dispose of the uncertainty of WSTS.
However, deep learning approaches (e.g., DNN) cannot
easily  capture  the  hidden  complex  pattern  of  WSTS
because the noise exists in the input data which include
quite rich frequency components. Therefore, the idea of
signal  decomposition  and  reconstruction  is  often
utilized to facilitate handling complex WSTS; such an
approach  can  help  reduce  the  complexity  of  dealing
with  WSTS  using  whatever  data  modeling  methods,
and  thus  can  help  improve  prediction  performance.
Commonly  used  signal  decomposition  and
reconstruction  methods  include  empirical  mode
decomposition  (EMD)[20, 21],  wavelet  transform
(WT)[22],  and  wavelet  packet  decomposition
(WPD)[23, 24].  The  eventual  forecast  values  can  be
gained  by  superimposing  the  prediction  results  of  all
the  decomposed  components.  In  Ref.  [25],  a  deep
learning  architecture  considering  LSTM  networks  and
VMD  algorithm  was  designed  to  boost  the  ability  of
multistep  wind  power  prediction,  where  VMD  was
built  to  transform  raw  series  into  several  sub-modes.
Zheng et al.[26] employed WPD algorithm to reduce the
complexity  of  WSTS  and  then  designed  a  particle
swarm  optimization  training  algorithm  with
disturbance to calculate the weights of improved Elman
neural  network,  and  achieved  good  effect.  Based  on
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meteorological  information,  Haque  et  al.[27] built  a
mixed  algorithm  with  WT  and  fuzzy  adaptive
resonance  theory  mapping  (ARTMAP)  network  to
predict  wind  power,  where  WT  was  used  to  extract
potential  features  and improve  the  ability  of  the  fuzzy
ARTMAP  network.  In  Ref.  [28],  an  effective
nonstationary WSTS prediction technique was studied,
where  EMD  and  least  square  support  vector  machine
were mixed to predict one-month ahead wind speed. As
mentioned in Refs. [29, 30], EMD has a good adaptive
property  and  can  decompose  WSTS  into  several
intrinsic  mode  functions  (IMFs)  and  a  residue  with
different  frequencies.  Nonetheless,  incomplete
decomposition causes each IMF to mix more than two
frequencies  (called  mode  mixing  problem)[31].  For  the
purpose of overcoming the defect, many methods have
been proposed[32−34], e.g., the ensemble EMD (EEMD)
and  the  complete  EEMD  with  adaptive  noise
(CEEMDAN).

Although a large number of prediction methods have
been  presented  to  solve  the  problem  of  wind  speed
forecasting, there are still some shortcomings for these
existing  methods:  (1)  Because  the  change  of  wind
speed  is  temporal,  it  is  difficult  for  general  machine
learning  and  deep  learning  algorithms  to  capture  the
latent  information  of  WSTS.  (2)  Some  existing
prediction  methods  focus  on  the  improvement  of
machine  learning  and  deep  learning  algorithms
themselves,  and  do  not  adequately  process  WSTS,
which  is  not  easy  to  mine  the  features  hidden  in
complex  and  fluctuating  WSTS.  (3)  Some  signal
decomposition techniques are applied to process WSTS
in  other  methods,  but  these  techniques  cannot
adequately capture the potential trends of complex and
fluctuating  WSTS  due  to  their  own  defects,  such  as
mode  mixing  problem  in  EMD  technique.  Another
disadvantage  of  EMD  is  that  the  frequency  and
amplitude  of  the  first  IMF  may  fluctuate  greatly,  and
this can seriously influence the prediction accuracy.

For  the  objective  to  enhance  the  forecasting
performance  of  short-term  wind  speed,  a  hybrid  deep
learning  model  is  proposed.  This  model  integrates  a
time  series  decomposition  algorithm  and  GRU
networks,  and  has  the  following  characteristics:
(1)  Several  IMFs  and  a  residue  can  be  obtained  by
employing  CEEMDAN  to  decompose  the  normalized
WSTS;  (2)  WPD is  adopted  to  further  decompose  the
first IMF that contains the complex and high-frequency
signal  of  the  raw  data;  (3)  GRU  networks  are
established  for  all  the  resulting  component  signals,

including  training  samples  and  predicting  the  outputs;
(4)  the  eventual  predicted  values  are  calculated  by
superimposing the prediction results of all components.
The  proposed  method can  handle  complex  WSTS and
help  deal  with  the  randomness  and  fluctuation  in
WSTS, and therefore improves the prediction accuracy.
The major contributions of this work are as follows:

(1) An effective time series decomposition algorithm
is  proposed.  This  algorithm  can  capture  the  complex
patterns  of  WSTS  by  using  two  decomposition
algorithms,  CEEMDAN  and  WPD.  The  proposed
algorithm  is  useful  to  dispose  of  the  randomness  and
fluctuation in WSTS.

(2)  For  predicting  short-term  wind  speed,  a  mixed
model  is  designed by fusing GRU networks with time
series  decomposition.  As  a  deep  learning  algorithm,
GRU  can  effectively  capture  the  nonlinear  fluctuation
of  WSTS,  therefore  can  significantly  enhance  the
forecasting  performance  aiming  at  short-term  wind
speed. A comparison is presented for the illustration of
the  effectiveness  of  the  proposed  method  and  other
seven methods.

The  rest  sections  are  arranged  as  follows.  The
proposed  hybrid  deep  learning  approach  is  introduced
in Section 2. The results compared with other methods
through two cases are described in Section 3. This main
work is summarized in Section 4.

2    Proposed  Hybrid  Deep  Learning  Model
Based on Time Series Decomposition and
GRU  for  Short-Term  Wind  Speed
Forecasting

2.1    Architecture  of  the  proposed  deep  learning
method

For  the  objective  of  heightening  the  forecasting
accuracy,  the  design  of  the  proposed  hybrid  deep
learning  method  comprises  the  following  main  steps:
(1)  the  design  of  the  time  series  decomposition
algorithm,  and  (2)  the  design  of  GRU networks  based
prediction  model.  The  design  of  the  time  series
decomposition  algorithm  aims  to  capture  the  complex
patterns of WSTS. The GRU networks based prediction
model  is  designed  to  handle  the  time  dependent
problem  of  WSTS  based  on  the  its  gate  mechanism.
The  eventual  predicted  values  can  be  calculated  by
superimposing the  prediction results  for  the  individual
components  resulted  from  the  decomposition.  For
explaining the model, Fig. 1 gives the structure, and the
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design is described in detail in the following sections.

2.2    Time  series  decomposition  algorithm  for
WSTS

The  original  WSTS  may  be  highly  random  and
nonstationary in nature,  so reducing the complexity of
WSTS  is  often  a  useful  and  important  initial  step
towards  achieving  good  wind  speed  forecasting.
Consequently,  the  paper  designs  a  novel  time  series
decomposition  algorithm.  It  integrates  two algorithms,
i.e.,  the  CEEMDAN  and  WPD  algorithms,  which
enable  capturing  the  complex  patterns  from  WSTS.
Figure 2 shows  the  framework  of  the  time  series
decomposition algorithm.

The CEEMDAN algorithm is developed from EEMD
to  adaptively  decompose  the  nonstationary  and
nonlinear  signals.  EEMD  can  average  the  modes
obtained  by  EMD  by  adding  Gaussian  white  noise  to
obtain  IMFs,  but  these  IMFs  may  not  meet  the
constrains  and  cannot  reconstruct  original  signal
accurately  due  to  the  existence  of  noise.  Additionally,
the  computational  cost  is  larger.  Compared  with
EEMD,  CEEMDAN  adds  adaptive  Gaussian  white
noise  in  each  stage  of  decomposition  to  eliminate  the
false  IMFs.  It  can  precisely  reconstruct  the  original
signal  and  obtain  purer  IMFs.  Furthermore,  its
computational  cost  is  reduced  due  to  the  less  use  of
sifting iterations than EEMD[35]. Here, the CEEMDAN
algorithm  is  adopted  in  the  first-order  decomposition
process  to  handle  the  normalized  WSTS,  and  the

detailed steps are given in the following procedure:
xi(t)

S i(t) = s(t)+ω0xi(t) i = 1,2,…, I ω0

(1)  Random  Gaussian  white  noise  is  blended
into  normalized  WSTS s(t)  and  obtain  noise-added
WSTS: , where , and 
denotes the noise coefficient;

IMF1,i

S i(t)
(2) The first component  can be calculated by

decomposing  using  EMD,  and  then  take  an
average
 

IMF1 =
1
I

I∑
i=1

IMF1,i (1)

r1(t) = s(t)− IMF1(3) The first residue is defined as ;
r1(t)+ω1E1(xi(t))(4)  Decompose  to  obtain  the

second IMF
 

IMF2 =
1
I

I∑
i=1

E1(r1(t)+ω1E1(xi(t))) (2)

ω1 E j(·)where  is the noise coefficient and  denotes that
achieving the j-th IMF using EMD;

(5) Iteratively run steps (3) and (4) until there are no
more than two extrema in the residue;

(6)  The  function  expression  of  normalized  WSTS
decomposed by CEEMDAN is written as
 

s(t) =
I∑

i=1

IMFi+RES (3)

IMFiwhere  is  the i-th  IMF  decomposed  by
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Fig. 1    Structure of the designed deep learning model.
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Fig. 2    Framework  of  the  time  series  decomposition
algorithm.
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CEEMDAN,  and RES is  the  residue  of  the
decomposition process.

IMF1

IMF1

The  WPD  algorithm  can  perform  multiresolution
analysis  of  a  signal  with  WT.  As  investigated  in
Ref.  [36],  WT  is  the  inheritance  and  development  of
the  Fourier  transform.  It  has  a  window  whose  area  is
fixed and its  shape changes  with  frequency.  WPD has
been applied to WSTS forecasting[37]. WPD is different
from  WT  in  that  WPD  decomposes  both  the
appropriate  and  detailed  components,  while  WT  only
decomposes the appropriate components. Note that the

 obtained by CEEDMAN consists of the complex
and  high-frequency  component  signals  of  the
normalized  WSTS.  So  WPD  algorithm  is  used  to
further dispose of the .

h0m h1m

α(τ) β(τ)

Let  and  be  filter  coefficients  in
multiresolution analysis. The orthogonal scale function

 and wavelet function  are as below:
 

α(τ) =
√

2
∑

m

homϕ(2τ−m) (4)

 

β(τ) =
√

2
∑

m

h1mϕ(2τ−m) (5)

For  convenience,  the  following  recurrence  relations
are often considered:
 

δ2υ(τ) =
√

2
∑
m∈Z

h0mwυ(2τ−m) (6)

 

δ2υ+1(τ) =
√

2
∑
m∈Z

h1mwυ(2τ−m) (7)

δ0(τ) = α(τ) δ1(τ) = β(τ)where , and .
f (τ)

pi
j(τ)

Now assume that  is a signal (e.g., WSTS) to be
processed, and  is the i-th wavelet packet on the j-th
layer, which is called the wavelet packet coefficient. R
and Q correspond  the  low  and  high  pass  wavelet
decomposition  filters,  respectively.  The  fast  algorithm
of the dyadic wavelet decomposition is as follows:
 

p1
0(τ) = f (τ),

p2i−1
j (τ) =

∑
m

R(m−2τ)pi
j−1(τ),

p2i
j (τ) =

∑
m

Q(m−2τ)pi
j−1(τ)

(8)

Its reconstruction algorithm is
 

pi
j(τ) =2

∑
m

r(τ−2m)p2i−1
j+1 (τ)+

2
∑

m

q(τ−2m)p2i
j+1(τ)

(9)

j = F −1,F −2, . . . ,0where , F denotes the decomposition

i = 2 j,2 j−1, . . . ,1level,  and . r and q are  wavelet
decomposition filters.

IMF1

IMF1

The  part  of  WPD  algorithm  shown  in Fig. 2 is  a
three-level  decomposition  process  that  decomposes

 into  eight  groups  of  wavelet  packet  coefficients
providing more information than  alone, where A
and D represent  the  appropriate  and  detailed
components, respectively. Figure 2 also shows a series
of  IMFs  decomposed  by  CEEMDAN  algorithm.
Therefore,  through  the  time  series  decomposition
algorithm,  the  inherent  features  of  WSTS  are
decomposed to a batch of components, which are easier
to manage and more useful  for the prediction.  Finally,
all  the  components  are  reorganized  into  training  and
test sets, respectively.

2.3    GRU-based prediction model

(xt−(n−1), xt−(n−2), . . . , xt)
(x̂t+1, x̂t+2, . . . , x̂t+l)

õt

Wu Wv Wo

Assuming  that  the  input  data  are
,  and  prediction  outputs  are

, the prediction task is to predict next
l points using previous n points at the moment t. When
l = 1,  it  is  called one-step prediction; when l > 1,  it  is
called  multistep  prediction. Figure 3 gives  the  GRU
structure  and  the  designed  GRU-based  prediction
model.  GRU,  in  structure  is  similar  to  LSTM[38] but
involves fewer parameters. In GRU, there are only two
gates, namely, only update gate u(t) and reset gate v(t).
Therefore,  it  possesses  a  more  user-friendly  form  and
speedier operating rate than LSTM. The main function
of update gate is to determine how many previous time
point  states  are  sent  to  the  current  moment,  while  the
reset  gate  is  to  determine  how  many  previous  time
point states are sent to the candidate set  at the current
moment. Let , ,  and  be the weights of update
gate, reset gate, and candidate output, respectively. The
feedforward propagation process is described following
the mathematics below:
 

ut = σ(Wu · [ot−1, xt]) (10)
 

×

××

+

ot

ot

utvt

xt

ot−1

1−

tanhσσ

ot

GRU1 GRU2 GRUn

Input data

Predicted output



GRU structure GRU-based
prediction model
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xt−(n−1),xt−(n−2),...,xt−1,xt

 
Fig. 3    GRU  structure  (left)  and  the  proposed  GRU-based
prediction model (right).
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vt = σ(Wv · [ot−1, xt]) (11)
 

õt = tanh(Wõ · [vt ⊙ot−1, xt]) (12)
 

h(t) = (1−ut)⊙ot−1+ut ⊙ õt (13)

ot−1 xt

σ

where  is  the  output  at  the  moment t−1.  is  the
input  at  the  moment t.  and  tanh  are  the  activation
functions.

2.4    Reconstruction  and  renormalization  of
prediction results

The  prediction  results  of  all  the  components  obtained
by  the  two-stage  decomposition  algorithm  need  to  be
reconstructed  to  obtain  the  final  results.  This  is
achieved through the following summation:
 

S ′ =
n∑

i=2

IMF′i+RES ′+
2J−1∑
j=0

WPD′ j (14)

S ′

IMF′i RES ′

WPD′j

S ′

where  is the predicted results of normalized WSTS,
 is  the  predicted  values  of  the i-th  IMF,  is

the  predicted  results  of  the  residue,  and 
represents  the  predicted  results  of  the j-th  group  of
wavelet packet coefficient. Finally, the final prediction
results are obtained by renormalization of .

2.5    Evaluation metrics

With  a  view  to  assessing  the  good  capability  of  the
model,  two  commonly  used  metrics  are  adopted,  that
is,  normalized  root  mean  square  error  (NRMSE)  and
normalized  mean  absolute  percentage  error
(NMAPE)[39]:
 

NRMS E =

√√√
1
T

T∑
ζ=1

(
ηζ − η̂ζ
ηmax−ηmin

)
2

×100% (15)

 

NMAPE =
1
T

T∑
ζ=1

|ηζ − η̂ζ |
ηmax−ηmin

×100% (16)

ηζ η̂ζ

ηmin ηmax

where  and  are the measured and predictive value
of WSTS, respectively.  and  are the minimum
and maximum of  the  measured  values,  respectively. T
is the length of WSTS.

2.6    Flow of the prediction model

Aiming  at  forecasting  short-time  wind  speed,  the
following procedure is presented based on the proposed
model:

Step  1: Collect  WSTS  from  wind  farm  and
normalize them into [0, 1];

Step  2: Apply  the  proposed  time  series
decomposition  algorithm  to  decompose  normalized

WSTS,  and  a  batch  of  components  will  be  acquired.
Each component is split into training and test sets;

Step 3: Build GRU-based prediction model for each
component,  and  use  the  training  sets  to  train  each
model based on the root mean square prop (RMSProp)
optimizer. The mean square error (MSE) is selected as
the  loss  function.  Then,  the  prediction  accuracy  is
verified in test sets.

Step 4: The predicted wind speeds are computed by
superimposing the prediction results of all components,
and  then  the  evaluation  metrics  are  computed
according to Eqs. (15) and (16).

More  details  about  the  implementation  are  given  in
Algorithm 1.

3    Simulation Results and Discussions

With  a  view  to  assessing  the  good  capability  of  the
designed  forecasting  method,  the  cases  with  the
prediction horizon of 10 min, 30 min, 1 h, and 2 h are
conducted on two wind speed datasets. The simulation
is  performed  on  the  Anaconda3  (64-bit)  environment,
where the basic features of the computer are as follows:
an Inter (R) Core (TM) i5-9400 F, 2.90 GHz CPU and
8.00 GB RAM.

3.1    Case  I:  Simulation  verification  in  an  offshore
wind farm

3.1.1    Data description
In Case I, the wind speed dataset was collected from an
offshore  wind  farm[40].  In  this  wind  farm,  the  wind
speed  data  at  site 10  002 were  chosen  for  this  case
simulation,  and  the  site  was  located  at  the  latitude
38.393  31 and  longitude  −74.936  54.  The  sample
interval  of  this  dataset  is  10  min.  For  verifying  the
proposed  model  adequately,  the  data  for  four  seasons
were considered in  this  case.  Specifically,  the  data  for
the  first  week  of  each  season  in  2004  were  selected,
forming  four  datasets  to  test  the  performance  of  the
proposed  method  in  spring,  summer,  autumn,  and
winter,  respectively.  For  each  dataset,  the  data  for  the
first  six  days  containing  864  sample  points  were  used
as  the  training  set,  and  the  data  for  the  last  day  were
regarded  as  the  test  set.  Considering  the  four  forecast
horizons,  a  total  of  16  sets  of  simulations  were
conducted.
3.1.2    Implementation details and parameter settings
In  this  case  simulation,  the  model  parameters  of  the
proposed  method  need  to  be  set.  For  the  above
corresponding forecast  horizons,  the number of  output
nodes  for  GRU-based prediction  model  is  1,  3,  6,  and
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12,  respectively.  Considering  the  computational  cost
and prediction efficiency, the hidden layer number was
preset as one, and the number of hidden layer neurons
is chosen from 2 to 40 to obtain the optimal results for
each  component.  In  addition,  as  the  decomposition
level  for  WPD  algorithm  increases,  the  number  of
wavelet packet coefficients will become larger and the
time cost  will  increase.  Therefore,  the  two-level  WPD
algorithm was adopted in this study, and four groups of
wavelet packet coefficients (AA, AD, DA, and DD) are

obtained.
Additionally,  the  prediction  performance  was

compared  with  other  seven  methods,  namely,  back
propagation  neural  network  (BP),  LSTM,  GRU,
convolutional  neural  networks  based  LSTM  (CNN-
LSTM),  EMD-based  GRU  (EMD-GRU),  WPD-based
GRU  (WPD-GRU),  and  CEEMDAN-based  GRU
(CEEMDAN-GRU).

For  realizing  the  equitable  comparison,  the  optimal
parameters are selected for all the comparison methods
in  each  group  of  simulation.  In  these  methods,  the
number of hidden layers is set to 1, and the number of
hidden layer neurons is chosen from 2 to 40 following
different  datasets.  In  addition,  the  optimizer  of  these
methods  based  on  LSTM  and  GRU  models  is  set  to
RMSProp  whose  learning  rate  is  0.001.  For  BP
method, the number of hidden layer neurons is set to 6,
and the optimizer is stochastic gradient descent (SGD)
algorithm whose learning rate  is  0.1.  For  CNN-LSTM
method,  the  one-dimensional  CNN  is  chosen,  and  the
output  data  of  the  CNN  are  used  as  the  input  data  of
LSTM.  Correspondingly,  the  number  of  the  filters,
kernels,  and  strides  in  CNN  is  set  to  8,  2,  and  1,
respectively.  For  the  EMD-GRU  and  CEEMDAN-
GRU  methods,  the  WSTS  are  adaptively  decomposed
following the same method as the proposed model. For
WPD-GRU method,  the  number  of  the  decomposition
levels  of  WPD  algorithm  is  set  to  2.  For  these
decomposition-based  methods,  the  optimal  model
parameters of GRU are determined for each component
obtained from the decomposition techniques.
3.1.3    Result analysis in Case I
Aiming at wind speed forecasting, Tables 1 and 2 show
the NRMSE and NMAPE values of all the experimental
methods  in  four  seasons  (the  forecast  horizon  is  from
10 min to 2 h).  Bold font  is  used to highlight  the best
prediction performance. The histograms of two metrics
are displayed in Fig. 4.

In  terms  of NRMSE and NMAPE,  the  proposed
model  has  better-performing  capability  than  other
seven  techniques  in  all  the  seasons.  Taking Fig. 4a
(spring)  as  an  example,  in  comparison  with  the  BP
method,  the NRMSE values  decrease  48.71% and
55.31% for 10 min forecast horizon (from 4.8671% to
2.4963%) and 2 h forecast horizon (from 22.5947% to
10.0978%),  respectively,  and  the NMAPE value
decreases  53.77% and  54.64% for  10  min  forecast
horizon  (from 3.7551% to 1.7361%)  and  2  h  forecast
horizon (from 16.7187% to 7.5842%), respectively. As

 

Algorithm 1　Flow of the prediction model
Input: Original WSTS s(t).

s′(t)Output: Prediction results .
1: Function Data_Preprocessing(s(t));

Ns(t)← s(t)−s(t)min
s(t)max−s(t)min

;1-1: 
1-2: return Ns(t).
2: Function Decomposition(Ns(t));
2-1: for i=1 to I do

IMFi←CEEMDAN(Ns(t));　　　　

Ns(t)← Ns(t)− IMFi;　　　　

　　end (for loop)
　　RES ← Ns(t);

im f 1
0 ← IMF1;2-2: 

　　for j=1 to 2 do
　　　　for i=1 to j do

im f 2i−1
j ←∑

k
H(k−2t)im f i

j−1;　　　　　　

im f 2i
j (t)←∑

k
G(k−2t)im f i

j−1;　　　　　　

　　　　end (for loop)
　　end (for loop)
　　for j=0 to 2F−1 do
　　　　Reconstruct each wavelet packet coefficient by using
Eq. (9) while other coefficients are set as zero;
　　end (for loop)
2-3: return all the components obtained by CEEMDAN and
WPD (except IMF1);
3: Function Prediction(all the components);
3-1: for all the components do

GRU_input← (xt−(n−1), xt−(n−2), . . . , xt);　　　　

GRU_output← (xt+1, xt+2, . . . , xl);　　　　

training_set, test_set← each component;　　　　

　　　　for epoch=1 to epochs do
　　　　　　GRU() ← train the GRU model with training_set;
　　　　end (for loop)
　　　　predicted ← GRU (test_set);

S ′← S ′ + predicted;　　　　

　　end (for loop)
s′(t)← S ′3-2:  renormalize .

s′(t)3-3: return prediction results .
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another  example,  in Fig. 4c  (autumn),  compared  with
the  simple  GRU  method,  the NRMSE values  decrease

56.43% and 62.44% for 10 min forecast horizon (from
2.3895% to 1.0411%)  and  2  h  forecast  horizon  (from

 

Table 1    NRMSE values of forecasting methods in four seasons in Case I

Method
NRMSE value (%)

10 min 30 min 1 h 2 h

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

BP 4.8671 3.8133 2.6768 3.8876 10.3562 6.9453 5.4511 8.6173 16.6296 11.4874 8.3336 14.1404 22.5947 14.6451 12.3007 18.6259

LSTM 4.3898 3.1618 2.4825 3.7688 9.3786 6.6365 5.1206 8.0946 16.1849 11.0527 7.7266 13.8370 23.2575 14.5829 11.5804 17.4295

GRU 4.2172 2.9557 2.3895 3.5603 9.1842 6.5100 4.4829 7.9418 15.6005 11.0326 7.4736 12.9447 21.8145 14.1907 11.4867 17.7750

CNN-LSTM 3.8495 3.4293 2.4481 3.7216 9.1986 6.5121 4.7164 7.8398 14.7261 10.6396 7.2302 11.8735 18.2457 14.1106 11.3983 17.3029

EMD-GRU 3.7293 1.8322 1.9855 6.8295 5.4917 3.2266 2.5465 11.6864 9.0159 5.5553 2.7386 11.7137 11.0420 7.4532 5.7003 11.5743

WPD-GRU 3.8130 2.5739 1.4271 3.1020 8.8071 6.4667 3.1443 7.0214 15.0796 10.0255 7.4531 11.8591 22.8781 14.8975 11.4535 18.6366

CEEMDAN-GRU 3.5004 1.9214 1.3699 2.5331 4.8149 3.4212 2.2759 4.5437 7.9570 5.4629 2.6185 8.1481 10.3293 7.3702 4.3625 10.9419

Proposed method 2.4963 1.4237 1.0411 2.0777 4.2327 2.9805 2.0406 4.0528 7.5206 5.2478 2.6139 7.8310 10.0978 7.3506 4.3141 10.8894
 

 

Table 2    NMAPE values of forecasting methods in four seasons in Case I

Method
NMAPE value (%)

10 min 30 min 1 h 2 h

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

BP 3.7551 2.8333 1.9803 2.8575 7.8047 4.9655 4.0536 6.2964 12.4003 8.2214 6.0004 10.7759 16.7187 10.5549 9.2463 13.8531

LSTM 3.3181 2.1445 1.9217 2.8348 6.9866 4.5856 3.8192 5.5780 12.4255 7.4624 5.6688 10.2204 18.3192 10.1924 8.7832 11.7672

GRU 3.2366 2.1053 1.8553 2.6160 6.7523 4.5816 3.4091 5.4161 12.0487 7.5253 5.5689 9.4660 17.5430 10.0521 9.0767 11.8846

CNN-LSTM 2.9451 2.6594 1.9316 2.8951 6.6824 4.4054 3.5949 5.5131 11.3152 6.8293 5.3240 8.1935 13.6383 10.0034 8.9370 12.0310

EMD-GRU 2.9525 1.34558 1.7073 4.2095 4.2064 2.3132 2.0308 7.0771 7.4096 3.4517 2.1590 8.5166 8.8310 4.7407 4.3320 8.9515

WPD-GRU 2.8214 1.9972 1.1310 2.6239 6.1009 4.7249 2.2471 5.0333 10.9180 6.7854 5.2560 8.2447 17.2483 10.6898 8.5163 13.9486

CEEMDAN-GRU 2.6769 1.2304 0.9666 2.0680 3.5799 2.3505 1.7615 3.3091 5.9996 3.8680 2.0023 5.9850 7.6374 5.2512 3.3687 8.6647

Proposed method 1.7361 0.9350 0.8708 1.7154 3.1787 2.0417 1.6585 2.8558 5.4167 3.7156 1.9808 5.6074 7.5842 5.2455 3.2882 8.5102
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Fig. 4    Histogram of all the metrics in four seasons in Case I.
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11.4867% to 4.3141%),  respectively,  and  the NMAPE
values  decrease  53.06% and  63.77% for  10  min
forecast  horizon  (from 1.8553% to 0.8708%)  and  2  h
forecast  horizon  (from 9.0767% to 3.2882%),
respectively.  The  major  reasons  of  this  proposed
method having higher accuracy may be as follows: (1)
GRU  network  has  good  time  memory  ability  and  is
more  appropriate  to  dispose  of  WSTS  than  BP.  It  is
obvious  from Fig. 4 that  the  performance  of  GRU
network  is  better  than  that  of  BP  method  in  all  the
simulation. Moreover, the results suggest that GRU, as
a  variant  of  LSTM,  can  carry  out  more  pinpoint  wind
speed  prognosis  than  LSTM.  (2)  The  WSTS  itself  is
stochastic,  nonlinear,  and  nonstationary,  which  is
difficult  to  predict.  However,  the  proposed time series
decomposition algorithm can transform the WSTS into
some  subsequences,  which  are  easier  to  utilize  for
forecasting task.  In addition,  the forecasting capability
of  all  the  methods  decreases  as  the  forecast  horizon
increases  from  10  min  to  2  h,  which  means  that  it  is
much  difficult  to  perform  multistep  wind  speed
prediction. It is also seen from Fig. 4 that the prediction
results of the proposed method are more accurate than
those  of  other  methods  in  all  the  seasons.  This  means
that  the  proposed  method  has  better  robustness  in
processing complex WSTS of different seasons.

In addition,  it  can also be found that  the metrics  for
the CEEMDAN-GRU method and the proposed model
are  very  close  for  2  h  ahead  wind  speed  prediction  in
each  season.  For  example,  the NRMSE values  of  the
CEEMDNA-GRU  and  the  proposed  methods  are
7.3702% and 7.3506% in  summer,  respectively,  and
are 10.9419% and 10.8894% in  winter,  respectively.
That  means  that  the  superiority  of  WPD  algorithm
applied in the proposed method may be reduced in pace
with  the  increase  of  the  forecast  horizon.  More
obviously,  achieving  accurate  forecasting  is  much
arduous for 2 h ahead prediction compared with 10 min
ahead  prediction.  From Tables 1 and 2 as  well  as
Fig. 4,  it  is  also  obvious  that  compared  with  other
techniques,  the  metric  values  of  the  EMD-GRU,
CEEMDAN-GRU,  and  the  proposed  method  were
relatively  low  in  most  cases,  and  CEEMDAN
algorithm outperforms EMD algorithm. For instance, in
the  case  of  winter,  the  performance  of  EMD-GRU
method  is  very  poor  than  CEEMDAN-GRU  method.
That  is  because  the  serious  mode  mixing  problem
occurred  in  the  process  of  EMD  decomposing  the
WSTS, which greatly reduced the prediction accuracy.

For WPD-GRU method, its performance is similar with
other  methods  without  considering  decomposition
algorithm, which may be because that WPD algorithm
cannot fully extract the trends of WSTS.

Figure 5 exhibits  the  prediction  curve  of  the
proposed method at 10 min forecast horizon in spring.
In Fig. 5 the  two  lines  almost  overlap,  which  means
that the proposed model has ability to well forecast the
variations of wind speed.

3.2    Case II:  Simulation verification in an onshore
wind farm

3.2.1    Data description
For  much  specifically  validating  its  performance,  this
case considered an onshore wind farm application. The
dataset  was  gathered  from  site 7856 of  a  real-world
wind  farm,  which  was  located  latitude 40.244  30 and
longitude  −85.292  68.  In  this  dataset,  four  groups  of
data from four seasons in 2006 were selected, with the
sampling interval of 10 min. In each group of data, the
data for the first six days were used as the training set,
and the data for the last day were considered as the test
set. The parameter settings of the proposed method and
comparison methods were same with Case I.
3.2.2    Result analysis in Case II
The  evaluation  metrics  of  all  the  methods  for  four
seasons  in  this  case  are  presented  in Tables 3 and 4,
and  the  corresponding  histograms  are  displayed  in
Fig. 6,  from  which  the  proposed  model  has  lowest
NRMSE and NMAPE values.  For  example,  in Fig. 6a
(spring),  in  comparison  with  the  BP  method,  the
NRMSE values  decrease  71.15% and  65.74% for  10
min  forecast  horizon  (from 4.5200% to 1.3041%)  and
2  h  forecast  horizon  (from 12.7084% to 4.3533%),
respectively,  and  the NMAPE values  decrease  69.76%
and 66.48% for 10 min forecast horizon (from 3.4970%
to 1.0576%) and 2 h forecast horizon (from 9.9571% to
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Fig. 5    Prediction  curve  of  the  proposed  method  at  10  min
forecast horizon in spring in Case I.
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3.3377%), respectively. Similarly, in Fig. 6b (summer),
compared  with  the  simple  GRU  method,  the NRMSE

values  decrease  66.36% and  43.78% for  10  min
forecast horizon (from 10.6793% to 3.5929%) and 2 h

 

Table 3    NRMSE values of forecasting methods in four seasons in Case II

Method

NRMSE value (%)

10 min 30 min 1 h 2 h

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

BP 4.5200 11.3828 4.4399 5.4553 5.6881 13.6854 9.5708 8.8119 7.6229 18.2284 10.9793 11.7830 12.7084 20.8866 15.8800 19.7442

LSTM 4.4026 11.0483 4.2696 5.2706 5.6559 13.5332 6.7628 6.7668 7.4295 18.1066 10.2267 10.6434 11.0232 20.6507 15.5445 17.4355

GRU 4.3800 10.6793 4.0142 5.2468 5.5925 13.5332 5.9798 6.7075 7.3062 17.4388 9.2692 10.2745 10.0115 20.3639 14.0319 17.0238

CNN-LSTM 4.3745 10.3403 4.1279 5.1183 5.6096 13.5243 6.4372 6.5674 7.2912 18.2253 10.5793 10.5332 11.0117 20.2319 15.3219 17.4677

EMD-GRU 2.6150 5.9872 2.0438 2.5266 2.9722 7.5682 2.6702 3.7429 3.8510 9.8680 3.6771 5.5239 4.9298 11.6475 5.7202 9.2583

WPD-GRU 2.6343 4.6732 2.1107 2.0857 4.7544 9.2999 4.5272 5.3098 7.3967 15.6650 8.3896 9.1341 11.5502 21.4218 14.2254 19.1285

CEEMDAN-GRU 2.5894 5.8054 1.8043 2.4525 2.9445 7.5359 2.7131 4.1710 3.5871 9.4581 3.5030 5.3204 4.6209 11.4922 4.4362 9.1622

Proposed method 1.3041 3.5929 1.0039 1.6011 2.3612 6.4616 2.3648 3.6567 3.3737 8.7188 3.4322 5.0376 4.3533 11.4485 4.3397 9.0660
 

 

Table 4    NMAPE values of forecasting methods in four seasons in Case II

Method
NMAPE value (%)

10 min 30 min 1 h 2 h

Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter Spring Summer Autumn Winter

BP 3.4970 6.1587 3.2613 3.9735 4.3397 8.1291 7.4257 6.6132 5.9075 11.1271 8.1387 8.8703 9.9571 14.4128 12.4534 14.3730

LSTM 3.3403 6.4625 3.1629 3.8590 4.2738 7.6965 5.0921 5.0788 5.6157 11.1741 7.8965 8.0592 8.7830 14.5711 12.5723 12.8644

GRU 3.3492 5.9248 2.8535 3.8131 4.2516 7.7515 4.3819 5.0364 5.3553 11.1382 6.6876 7.4407 8.2593 14.2967 10.6271 11.9524

CNN-LSTM 3.3257 5.6243 3.1400 3.7543 4.2267 7.6370 4.6949 4.9520 5.4060 11.2064 8.3491 7.8989 8.7759 14.6369 11.9229 12.3634

EMD-GRU 2.0250 3.7307 1.5774 1.8841 2.2077 4.1881 2.0653 2.7372 3.0181 5.4555 2.9065 4.2004 3.9046 6.8915 4.4718 7.0097

WPD-GRU 2.2143 2.8217 1.6138 1.5849 3.7075 5.5671 3.3148 3.8462 5.5453 9.7906 6.2595 5.7264 9.1667 14.2830 10.8970 13.6730

CEEMDAN-GRU 1.9892 3.5432 1.4269 1.8137 2.3599 4.3260 2.1587 2.8888 2.7915 5.5011 2.7062 3.9539 3.6256 6.6108 3.5997 6.7228

Proposed method 1.0576 2.1075 0.8077 1.1310 1.6262 3.5582 1.7612 2.3936 2.5549 5.0467 2.5413 3.6737 3.3377 6.5611 3.3890 6.7197
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Fig. 6    Histogram of all the metrics in four seasons in Case II.
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forecast  horizon  (from 20.3639% to 11.4485%),
respectively,  and  the NMAPE values  decrease  64.43%
and 54.11% for 10 min forecast horizon (from 5.9248%
to 2.1075%) and 2 h forecast horizon (from 14.2967%
to 6.5611%),  respectively.  These  results  indicate  that
the  proposed  method  can  well  adapt  to  complex
environmental  changes  in  different  seasons  and  mine
more realistic features from highly random WSTS.

To intuitively show the performance of the proposed
method,  the  corresponding  prediction  curve  at  10  min
forecast horizon in spring is plotted in Fig. 7, revealing
the proposed method learned the variations of real wind
speed.

3.3    Model structure and parameter analysis

In  order  to  know  the  reason  why  a  high  accuracy  for
wind  speed  forecasting  can  be  achieved  through  the
proposed  method,  analyzing  their  GRU  networks
structure  for  each  component  signal  obtained  by  the
time  series  decomposition  algorithm  is  essential.  It  is
necessary  to  properly  select  the  hidden  layer  neurons
number  and  the  iteration  number  for  prediction  tasks.
But  there  is  no  theoretical  method  for  solving  the
problem  at  present.  Consequently,  a  trial-and-error
means  was  put  to  use,  and  thus  determining  these
structural  parameters.  Taking  the AA component  for
10  min  forecast  horizon  in  spring  in  Case  I  as  an
example,  the hidden layer  neurons number was trialed
from  2  to  40  in  steps  of  2.  The  iteration  number  was
trialed  from  {10,  20,  30,  40,  50}.  In  addition,  the
NRMSE value  is  chosen  to  evaluate  the  accuracy  of
predicted  values  for AA component.  The  change  of
these  two  parameters  on NRMSE value  is  shown  in
Fig. 8, from which it can be found that when the hidden
layer neurons number and iteration number are 34 and
10,  respectively,  the  metric NRMSE reaches  its  lowest

value  (marked  by  a  red  circle).  Similarly,  all  the
structural parameters for Cases I and II can be obtained
following this method.

4    Conclusion

With the objective of predicting short-time wind speed,
a  hybrid  deep  learning  model  was  put  forward  in
consideration  of  the  stochastic  and  volatile  nature  of
the  processes.  The  model  comprises  two  parts:  time
series  decomposition  algorithm  and  GRU  networks.
The  time  series  decomposition  algorithm  realizes
meritorious  service  in  dealing  with  the  volatility  of
WSTS,  i.e.,  the  complex  WSTS  was  converted  into
refined sub-series via CEEMDAN and WPD. Then, for
each  of  the  resulting  component  signals,  the  GRU-
based prediction model is  built  and trained. This stage
takes  the  advantage  of  GRU  network  for  achieving
high  prediction  performance.  Two  case  simulations
considering  four  different  seasons  and  forecast
horizons were implemented, which involved two types
of  datasets:  offshore  and  onshore  wind  farms.
Comparisons with seven existing methods, namely, BP,
LSTM,  GRU,  CNN-LSTM,  EMD-GRU,  WPD-GRU,
and  CEEMDAN-GRU,  were  conducted,  which
revealed the proposed method carried out best, pointing
at  the  two  commonly  used  metrics:  NRMSE  and
NMAPE.  In  future  work,  potential  influencing  factors
affecting  its  predictive  ability  will  be  investigated.  It
would  be  interesting  to  take  advantage  of  different
methods to enhance the predictive faculty for  multiple
season wind speed of the year.
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