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Abstract: The research on complex systems is different from that on general systems because the former must

consider self-organization, emergence, uncertainty, predetermination, and evolution. As an important method to

transform the world, a simulation is one of the most important skills to discover complex systems. In this study,

we  provide  a  survey  on  complex  systems  and  their  simulation  methods.  Initially,  the  development  history  of

complex system research is  summarized from two main lines.  Then,  the eight  common characteristics  of  the

most complex systems are presented. Furthermore, the simulation methods of complex systems are introduced

in detail  from four aspects,  namely,  meta-synthesis methods,  complex networks,  intelligent  technologies,  and

other  methods.  From  the  overall  point  of  view,  intelligent  technologies  are  the  driving  force,  and  complex

networks are the advanced structure. Meta-synthesis methods are the integration strategy, and other methods

are  the  supplements.  In  addition,  we  show  three  complex  system  simulation  examples:  digital  reactor

simulation,  simulation  of  a  logistics  system  in  the  industrial  site,  and  crowd  evacuation  simulation.  The

examples  show  that  a  simulation  is  a  useful  means  and  an  important  method  in  complex  system  research.

Finally, the future development prospects for complex systems and their simulation methods are suggested.
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1    Introduction

In  1999,  a  special  issue  on  complex  systems  (e.g.,
including  research  papers  on  complexity  and  the
nervous  system,  life  after  chaos,  complexity,  and
economics)  was  published  in Science[1].  This  article
made people suddenly realize that complex systems are
rising  as  a  new  hot  spot.  The  overall  system  can  be
divided  into  the  simple  system,  simple  giant  system,
and complex giant system. Among them, many types of
subsystems  with  hierarchical  structures  exist,  whose

relationship is very complex. Such a system is called an
Open  Complex  Giant  System  (OCGS)  or  simply  a
complex system[2–4].

Typical  complex  systems  incorporate  complex
networks,  macroscopic  and  microscopic  physical
systems,  complex  engineering  systems,  complex
control systems, biological systems, complex chemical
and chemical systems, astronomical systems, economic
systems,  and  military  countermeasure  systems[5–7].
Another  example  is  the  recent  outbreak  of  the
coronavirus  disease  2019  (COVID-19)  pandemic[8, 9],
which  in  essence  also  belongs  to  the  category  of
complex  systems.  The  research  on  complex  systems
has epoch-making significance.

At  present,  the  combination  of  modeling  and
simulation  technology  and  high-performance
computing technology is becoming the third important
method  to  understand  and  transform  the  objective
world  after  theoretical  research  and  experimental
research.  In  view  of  the  particularity  of  the  complex
system  itself,  modelings  and  simulations  are  effective
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research  methods,  which  are  also  necessary  for  the
development  of  complex  systems.  From  another  point
of  view,  the  complex  system is  also  necessary  for  the
current  stage  of  development  after  the  constant
updating  of  simulation  research.  Therefore,  the
integration  of  complex  systems  and  simulation[10] is  a
perfect match.

This study reviews the research progress on complex
system  simulations.  Section  2  discusses  the  history  of
complex  systems  and  summarizes  their  common
characteristics  from the  perspective  of  a  large  number
of  complex  systems.  Section  3  elaborates  on  complex
system  simulation  methods.  Section  4  describes  three
examples  of  complex  system  simulations.  Section  5
shows the future development of complex systems and
their  simulation  methods.  Section  6  summarizes  the
whole paper.

2    Complex System

2.1    Development history of complex systems

Here,  we  present  a  brief  review  of  the  historical
evolution  of  complex  system  research,  which  has  two
main lines: complexity science and systems science.

From the perspective of complexity science, Austrian
biologist L. V. Bertalanffy first established the concept
of  complexity[11],  which  was  regarded  as  the  starting
point  of  complexity  science.  Later,  the  dissipative
structure  theory  of  Prigogine  and  Nicolis[12] and  the
synergetics  of  Hagen[13] both  made  significant
breakthroughs in the characteristics of self-organization
for  complex  systems.  From  the  current  perspective,
their  discoveries  are  still  at  the  level  of  simple  giant
systems.

The  American  scholar  Simon  presented  the  idea  of
artificial  science  in  1969[14],  which  connected  many
disciplines,  including  economics,  cognitive
psychology,  learning  science,  design  science,
management  science,  and  complexity  research.  His
monograph, Artificial  Science (including  three
editions),  is  of  great  significance  to  complexity
science[14–16].

In  1985,  the Journal  of  Complexity was  founded.
This  specialized  journal  has  provided  an  important
platform  for  the  study  of  complexity,  which  plays  a
very direct role in promoting complexity[17].

In  1987,  the  Santa  Fe  Institute  (SFI)  in  the  United
States  proposed  the  idea  of  the  edge  of  chaos[18],
established  a  new  research  field  called  complexity
science, and used computers as a means of performing

complex scientific  research.  The researches[18] utilized
computers  to  simulate  interrelated  complex  networks,
which  also  played  a  very  important  role  in  promoting
complex  system  simulations.  Nowadays,  SFI  still
occupies  an  important  position  in  the  research  of
complex  systems  around  the  world.  Later,  Holland
proposed  the  concept  of  Complex  Adaptive  Systems
(CASs)[19].  CASs  emphasize  the  use  of  computer
simulations  as  the  main  means  of  research.  CASs  are
the key research objects of SFI and also a hot topics at
present.

In  1999,  a  special  issue  on  complex  systems
appeared  in Science,  in  which  the  research  topics
included complexity in the nervous system, complexity
in  biological  signaling  systems,  simple  lessons  from
complexity,  complexity  in  chemistry,  complexity  and
climate, and complexity and the economy[20]. Hence, to
some extent, the research on complex systems is highly
valued by the international academic circle.

In  2013,  the Journal  of  Complex  Networks was
founded[21].  Complex  networks  are  important  parts  of
complex  systems.  This  journal  also  has  a  certain
impetus to the study of complex systems.

In  2021,  a  high-level  international  journal  called
Complex  System  Modeling  and  Simulation was
founded[22].  This journal is  of great significance to the
research  on  complex  systems  and  their  simulation
theories and methods.

The  other  main  line  is  the  research  from  the
perspective  of  systems  science,  which  mainly  focuses
on  OCGSs  led  by  Chinese  scientist  Xuesen  Qian.  In
1954,  Qian  published  the  monograph Engineering
Cybernetics[23],  which  made  a  comprehensive
discussion  on  engineering  technology,  automatic
control,  and  automatic  regulation  theory  of  various
systems.

In  the  research  process  of  systems  science,  Xuesen
Qian  started  to  analyze  and  refine  the  concept  of
OCGSs.  Since  1979,  three  systems  have  been
developed:  giant  systems,  complex  giant  systems,  and
OCGS. By the fall of 1989, the concept of OCGSs had
been developed, in which OCGSs were regarded as an
important  topic  of  basic  science  research  at  the  macro
level.  In  Ref.  [24],  Qian  et  al.  made  a  comprehensive
and  systematic  discussion  of  this  concept  and  its
methodology.

Along  with  the  concept  of  OCGSs,  Qian  and
Tsien[25] and  Dai[26] also  presented  the  comprehensive
integration  of  qualitative  and  quantitative  methods.
Later,  Dai  and  Li[27] proposed  the  hall  for  seminar
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systems  of  man-machine  combination  and
comprehensive  integration  from  qualitative  to
quantitative, which is referred to as the hall for seminar
systems  in  short.  These  works  were  also  collectively
referred  to  as  the  theory  of  qualitative-to-quantitative
meta-synthesis.

Afterward,  in  2004,  Wang  et  al.[28] proposed  the
combination  of  an  artificial  system,  computational
experiment,  and  parallel  system  with  the
comprehensive  integration  method  from  qualitative  to
quantitative  and  parallel  distributed  high-performance
computing  technology.  Thus,  diversification  and
integration  of  complex  system  research  methods  were
further  advanced.  In  this  year,  the  journal Complex
Systems  and  Complexity  Science[27] was  founded,
which also provided a  platform for  communication on
complex system issues.

The  theory  of  qualitative-to-quantitative  meta-
synthesis  provided  a  breakthrough  and  effective
methodology  for  understanding  and  solving  the

problem  of  OCGSs.  Moreover,  in  2009,  Cao  et  al.[29]

proposed the concepts of M-Interaction, M-Space, and
M-Computing, which are the three key components for
studying  OCGSs  and  constructing  problem-solving
systems.

Based  on  deep  learning  and  big  data,  the  third
upsurge  of  artificial  intelligence  was  set  off  by
AlphaGo  and  other  typical  application  scenarios[30].
The traditional artificial intelligence based on statistical
linearization  and  dynamic  modeling  has  encountered
the  development  bottleneck  of  interpretability,
generalization,  and  reproducibility  when  dealing  with
complex systems. In 2021, Zheng et al.[31] established a
new  generation  of  artificial  intelligence  theory  based
on complexity and multiscale analysis, which is called
the  refined  intelligence  theory.  This  is  a  significant
achievement  as  a  new  meta-synthesis  for  complex
system  research  from  the  viewpoint  of  intelligent
science.

Figure 1 shows  the  two  main  lines  of  the
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Fig. 1    Development course of complex systems.
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development course of complex systems.

2.2    Characteristics of complex systems

The  main  characteristics  of  complex  systems  are  as
follows[32, 33]:

(1) Nonlinearity
A complex system is composed of many elements or

subsystems,  and  the  overall  behavior  and
characteristics of the system are not equal to the linear
superposition  of  the  behavior  or  characteristics  of  its
internal  elements  or  subsystems.  Such  a  system  is
called  a  nonlinear  system.  Because  of  the  nonlinearity
of  the  system,  when  a  new  system  is  formed  from
elements  or  subsystems,  it  will  exhibit  new
characteristics  different  from  those  of  elements  or
subsystems.

(2) Self-organization
A  system  is  made  up  of  overlapping  or  distributed

space-time  components.  These  components  have  self-
adaptation,  self-learning,  self-aggregation,  and  self-
organization abilities. Through continuous learning, the
components  can  adjust  their  own  structure  and
behavior to adapt to external and internal changes. The
autonomy  of  the  components  and  the  complexity  of
their  interactions  make  the  whole  system  appear
complex.  Nonlinearity  is  also  a  driving  force  for  the
evolution of complex systems.

(3) Uncertainty
Uncertainty is related to chaos, which can simply be

considered  deterministic  randomness.  The
deterministic  property means that  it  is  produced by an
internal  cause  rather  than  an  external  noise  or
disturbance; that is, the process is strictly deterministic.
Randomness  refers  to  irregular  and  unpredictable
behaviors.  Chaos  cleverly  integrates  the  disorder  of
expressions  with  the  internal  determinism mechanism.
Following  the  order  of  expression,  there  is  strange
chaos,  and  in  the  depth  of  chaos,  there  is  a  more
strange order.

(4) Emergence
Emergence  is  a  local  interaction  between  neutron

systems or basic units that, over time, develops unique
and  new  properties  and  patterns  on  the  whole.  This
process  is  called  emergence.  The  interactions  between
subsystems  can  lead  to  macroscopic  wholeness
properties  that  significantly  differ  from  the  behaviors
of  individual  subsystems.  Emergence  is  also  a
qualitative  change.  After  the  interaction  between  the
subjects  begins,  the  system  can  acquire  self-

organization,  self-coordination,  and  self-strengthening
abilities and develop them accordingly. Finally, there is
a qualitative change, which is called emergence.

(5) Predetermination
The development trend of complex systems depends

on  their  predetermination,  which  is  the  unity  of  the
expectation of the future state and the limitation of the
actual  state.  Any  living  matter  has  the  ability  to
anticipate or predict and thus influence the direction of
the system’s movements.

(6) Evolution
A  complex  system  presents  the  processes  of

expectation,  adaptation,  and  self-organization  for  the
external  environment  and  state,  which  leads  to  the
continuous  evolution  of  the  system  from  function  to
structure[34]. This kind of evolutionary movement does
not  exist  in  physical  systems.  A  physical  system
typically  consists  of  several  existing  elements  with  no
change in function or structure. The complex system is
generally  a  simple  combination  of  elements  through
continuous  evolution  to  develop  into  a  more  complex
system in terms of function and structure. An essential
characteristic  of  a  complex  system  is  the  continuous
evolution from low level to high level and from simple
to complex.

(7) Openness
Openness  manifests  itself  as  the  most  complex  and

common  type  of  uncertain,  dynamic,  and  continuous
environment.  Complexity  is  reflected  not  only  in  the
system itself but also in the environment. The disorder
of  a  system  is  described  in  terms  of  entropy.  The
internal  entropy  of  an  isolated  system  will  increase
with  time  until  it  reaches  its  maximum value,  and  the
system  tends  to  be  out  of  order.  Different  from  an
isolated  system,  an  open  system  constantly  exchanges
energy,  material,  and  information  with  the  outside
environment. This exchange allows importing negative
entropy  from  the  external  environment,  so  the  total
entropy of the system is reduced or controlled at a slow
growth  rate.  As  a  result,  the  order  of  the  system  is
increased, which is the value of openness.

(8) Cascade failures
Due  to  the  strong  coupling  among  components  in  a

complex system, the failure of one or more components
may  lead  to  cascading  failures[35].  This  situation  can
have  disastrous  consequences  for  the  operation  of  the
system.  Local  attacks  can  cause  cascading  failures  or
sudden  collapses  of  space  networks.  This  condition  is
highly similar to the butterfly effect.
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3    Complex System Simulation Methods

3.1    Meta-synthesis methods

The  OCGS  problems  are  very  challenging  because  of
their  inherent  system  complexity.  An  empirical
conclusion is that,  in the 1990s, some famous Chinese
scientists  put  forward  a  new  scientific  field,  i.e.,  the
qualitative-to-quantitative meta-synthesis methodology.
It comprehensively reveals the complexity of a system,
the  cognitive  process  of  humans,  the  role  difference
between  humans  and  machines,  and  the  possible
research direction. The qualitative-to-quantitative meta-
synthesis  incorporates  the  comprehensive  integration
method of the qualitative and quantitative combination,
the  comprehensive  integration  method  from  the
qualitative to the quantitative, and the hall for seminar
systems.  Moreover,  the  simulation  method  combining
an  artificial  system,  computational  experiment,  and
parallel  system  proposed  by  Wang  et  al.[28] can  be
incorporated  into  such  a  meta-synthesis  methodology.
In  fact,  research  and  practice  have  shown  that
qualitative-to-quantitative  meta-synthesis  is  an
appropriate  method to  build  a  problem-solving system
when dealing with OCGSs.

Cao et  al.[29] illustrated their  understanding of  meta-
synthesis from the perspective of human, machine, and
human-machine social cognitive interactions. They put
forward  the  concepts  of  M-Interaction,  M-Space,  and
M-Computing.  M-Interaction  constitutes  the  main
problem-solving  mechanism  of  the  qualitative-to-
quantitative  meta-synthesis.  M-Space  is  the  OCGS
problem-solving  system  embedded  with  M-
Interactions.  M-Computing consists  of the engineering
methods of analyzing, designing, and implementing the
M-Space  and  M-Interaction  compositions.  In  support
of  this  theory,  they  demonstrated  the  theoretical
framework  of  M-Interaction-based  OCGS  problem
solving  through  M-Space,  problem-solving  process,
emergence  of  social  intelligence,  and  thought  traps.
Starting  from  the  problem  solving  of  OCGSs,  they
attempted  to  connect  and  develop  the  knowledge  of
multiple  disciplines  while  emphasizing  the  role  and
principles of the problem-solving process based on the
M-Interaction  and  M-Space  system.  These  results
contribute to the formation of the framework, working
mechanism,  cognitive-interaction  model,  cognitive
evolution,  and  intelligent  emergence  of  problem-
solving M-Spaces for OCGSs.

The  main  strategies  in  this  field  include  the
following:

●  The  comprehensive  integration  of  qualitative  and
quantitative methods;
●  The  comprehensive  integration  method  from
qualitative to quantitative;
● The hall for seminar systems;
●  The  simulation  method  combining  an  artificial
system,  computational  experiment,  and  parallel
system;
● M-Space, M-Interaction, and M-Computing.

3.2    Complex networks

The  study  on  complex  network  theory  can  be  traced
back to the problem of Seven Bridges proposed by the
Swiss  mathematician  Leonhard  Euler  in  the  18th
century[36]. This problem abstracted the land as a point,
and the bridge connecting the land as an edge, and the
points  and  edges  connecting  the  points  constitute  a
network[36].  With  the  rapid  development  of  complex
systems,  the  analysis  of  the  complex  network  method
has  been  widely  applied  in  social,  economic,  military,
and  other  fields,  such  as  online  social  networks,
international  trade,  and  modern  information  warfare
systems.

Generally,  a  network  in  part  or  in  whole  properties
(including  self-organization,  self-similarity,  attractor,
small  world,  and scale-free properties)  can be called a
complex  network.  When  studying  a  network,  people
tend  to  only  pay  attention  to  whether  there  is  an  edge
between  nodes  and  ignore  factors,  such  as  node
location  and  edge  properties.  A  complex  network  can
be  regarded  as  a  high  abstraction  of  the  complex
system.  The  nodes  in  the  network  are  abstracted  as
individuals in the complex system, and the edges in the
network  are  abstracted  as  the  relationships  among
individuals  in  the  complex  system.  In  this  way,  the
network  formed  by  a  large  number  of  nodes  and
mutually connected edges among nodes can be called a
complex network.

The  research  points  of  complex  networks  mainly
include the following aspects[36–39]:
• Research on community structure
Based on connectivity, a community can be regarded

as  a  faction,  that  is,  a  fully  connected  subgraph
composed  of  more  than  two  nodes,  with  connecting
edges  between  any  two  nodes.  How  to  detect  and
divide  the  community  structure  hidden  in  a  complex
network  is  an  important  content  in  complex  network
research.
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• Research on survivability
Network  survivability  can  be  understood  as  the

resilience  or  adaptability  of  a  network  when  it  is
attacked  or  fails  or  the  ability  to  continue  to  provide
services in the case of partial node or edge failure. The
specific research points include the index measure and
strategy optimization of survivability.
• Research on node influence
The small-world  effect  and  scale-free  characteristics

make  the  distribution  of  nodes  in  complex  networks
appear  uneven,  and  a  few  nodes  have  several
connections and play an important role.  Therefore, the
accurate  identification  of  the  important  nodes  in  the
complex network is of great significance for optimizing
the structure and function of the complex network. The
research  on  node  influence  includes  the  ranking  of
node importance and maximization of node influence.
• Research on information communication
Research on the dynamic mechanism of information

dissemination  on  social  networks  is  the  basis  of
effective  risk  management  and  control.  The
establishment  of  an  appropriate  information
transmission model can accurately reflect the change in
information  transmission  among  individuals  in  the
network  over  time.  The  key  is  the  exploration  of  the
typical information transmission model.
• Research on synchronous control
Synchronous control  in  a  complex network involves

controlling  the  network  by  applying  external  forces  to
make  the  internal  dynamic  systems  of  multiple  nodes
reach  the  same  state  and  maintain  stability.  How  to
control the synchronization of complex networks so as
to  maintain  the  beneficial  synchronization  and  avoid
harmful  synchronization  has  become  a  hot  issue.
Among  them,  the  containment  control  strategy  is  also
an important research point.
• Research on random walks
Random walking is one of the dynamic behaviors in

complex  network  research,  and  it  is  closely  related  to
other  behaviors,  such  as  information  transmission  and
synchronization.  Random  walking  on  a  complex
network refers  to  the  following process:  First,  random
walking particles take the complex network structure as
the carrier. Second, starting from the initial node, they
select  the  neighbor  node  of  the  current  node  with  a
certain  probability  for  transmission  at  each  time  step.
Finally, they arrive at the destination node. The key is
the model of random walking.

To accurately describe the network topology of a real

system, there are roughly three stages: regular network,
random  network  (the  Erdös-Rényi  (ER)  model),  and
complex  network  (small-world  network  and  scale-free
network).  The  complex  network  has  become  a  new
research  hotspot  in  international  academic  circles.
Typical complex network models include the following
types:
• Random graphs and general random graphs
The  systematic  study  on  random  graphs  began  in

1959.  The  original  purpose  was  to  use  probability
theory to examine how the properties of graphs change
with the increase in the number of random connections.
A random graph refers to the disordered characteristics
of  connections  between  different  points,  of  which  the
ER random graph is a typical representative. To better
express a real network, especially its simple property of
having a non-Poisson distribution, the ER model can be
extended in different ways and consequently developed
into a general  random graph. The configuration model
introduced by Bender and Canfield[40] can build graphs
according  to  degree  sequences.  The  simplicity  of  the
configuration model makes it a good analytical method.
• Small-world network model
Generally, if the average path length of a network is

proportional  to  the  logarithm of  the  number  of  nodes,
then  the  network  is  said  to  have  a  small-world  effect.
Most  real  complex  networks  have  the  small-world
effect;  that  is,  they  have  a  small  average  path  length
and  large  agglomeration  coefficient.  Based  on  this
point,  Watts  and  Strogatz  proposed  the  small-world
network model (the Watts-Strogatz (WS) model)[41]. In
a  circular  regular  network,  each  node  is  accessed  in  a
clockwise  direction,  and  an  edge  connected  to  the
current  node  is  selected.  Each  edge  is  deleted  and
reconnected with  a  probability  of p,  and the other  end
of  the  edge  is  randomly  connected  to  other  nodes.  In
this  process,  long-range  edges  may  appear  to  reduce
the average path length of  the network,  preserving the
original  edges  with  the  probability  1−p.  Repeated
connections and self-loops are not allowed in the whole
process. The probability value can be changed to adjust
the randomness of the network and keep the balance of
the  number  of  edges  in  the  network.  The  small-world
network  constructed  by  this  method  has  a  small
average  path  length  and  large  agglomeration
coefficient.  Considering  that  the  construction  method
of  the  WS  model  may  destroy  the  connectivity  of  the
network, Newman and Watts improved it and proposed
the Newman-Watts (NW) model[42].  The improvement
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of  the  NW  model  is  that  the  random  reconnection  is
replaced  by  random  edge  addition.  In  other  words,
connecting edges are added between randomly selected
node  pairs  with  probability  without  changing  the
original  connecting  edges,  and  repeated  connections
and self-loops are not allowed. When the network size
is large enough and the probability is small enough, the
WS and NW models are essentially the same.
• Scale-free network model
In  random  and  small-world  networks,  the  degree

distribution  of  nodes  is  approximately  a  Poisson
distribution.  However,  researchers  found  that  the
degree  distribution  of  most  real  complex  networks
follows the power law distribution. In details, Barabási
et  al.[43] proposed  the  scale-free  network  model
(Barabas-Albert  (BA)  model).  This  model  can  be
described  from  two  aspects:  network  growth  and
priority  connection.  Network  growth  means  that  new
nodes  in  the  network  are  constantly  joining  and
connecting  the  existing  nodes.  Priority  connection
means  that  the  newly  added  node  will  give  priority  to
the  node  with  a  higher  connection  value.  The  results
show that  the  BA network not  only  has  a  small-world
effect  and  large  cluster  coefficient,  but  also  its  degree
distribution  satisfies  the  power  law  distribution.
Another  type  of  model  is  the  evolution  network
inspired by protein interactions.
• Space networks
A special type of network is one that is embedded in

a  physical  space,  in  which  points  occupy  a  definite
location  in  two  or  three  dimensions.  Their  edges  are
actual  physical  connections.  Typical  examples  are
neural  networks,  information  and  communication
networks, power networks, transportation systems, and
ant colonies.
• Local-area world network model
The  preferential  attachment  mechanism  in  the  BA

model exists in the global network. However, based on
the research on real complex networks, Li and Chen[44]

found  that  the  preferential  attachment  mechanism
exists only in local networks. Based on the BA model,
a  simple  local-area  world  network  model  (Li-Chen
(LC)  model)  was  proposed.  In  the  LC  model,  several
nodes  are  randomly  selected  as  the  local  world  of  the
new  node.  The  new  node  would  give  priority  to
connect to the node with a higher medium value in the
corresponding  local  world  rather  than  the  node  with  a
higher medium value in the global network. In the BA
model,  new nodes  have  global  information.  In  the  LC

model,  new  nodes  only  have  local  information.  In  a
real  complex  network,  there  are  always  a  few  nodes
with  global  information,  and  most  nodes  only  have
local  information.  Based  on  this  information,  Qin  and
Dai[45] improved  the  LC model  and  established  a  new
local-area  world  network  model.  In  this  model,  the
ratio  of  the  number  of  global  nodes  to  the  number  of
summary  points  is  introduced  as  the  probability  that
new nodes belong to global nodes. It takes the LC and
BA models as its special cases.
• Weighted network
The  above  network  models  all  networks  as

nonweighted  networks,  ignoring  the  degree  of
interaction between nodes or the physical quantities of
nodes and edges. However, the real network is usually
the  weighted  network  with  weighted  nodes  or  edges.
Compared  with  a  nonweighted  network,  a  weighted
network  can  better  reflect  the  real  situation.  Yook  et
al.[46] proposed  a  simple  weighted  network  model
based on the BA model, which describes the strength of
interaction  between  nodes  and  the  heterogeneity
between  connecting  edges  by  giving  edge  weights.
Barrat  et  al.[47] proposed  the  Barrat-Barthélemy-
Vespignani (BBV) model.  In this model,  the influence
of the topological structure and weight on the dynamic
evolution  of  the  network  is  considered
comprehensively.  With  the  increase  in  the  network
size,  the  degree  distribution,  edge  weight  distribution,
and  node  weight  distribution  all  have  scale-free
characteristics. Another mechanism similar to the BBV
model is the Dorogovtsev-Mendes (DM) model.

3.3    Intelligent technologies

Intelligent  technologies  play  an  important  role  in
complex system simulations, and several main methods
are described here.

(1) Refined intelligence
Focusing  on  the  nonlinear  random  correlation

between  system  elements,  refined  intelligence[31]

integrates  statistics,  analysis,  algebra,  geometry,
dynamic  system,  and  other  theories.  Focusing  on  the
basic  intelligence  architecture  of  the  data-model
algorithm (i.e.,  knowledge system learning),  it  focuses
on  the  interpretability  of  artificial  intelligence.  By
studying  the  multilevel  and  multiscale  correlation  and
coupling  mechanism  of  complex  systems  and  the
spatiotemporal dynamic structure, it aims to develop an
intelligent  theoretical  system  that  embeds  underlying
logic  and  mathematical  physics  and  integrates
nonlinear  analysis  and  complexity  science.  The
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accurate  cognition  and  intelligent  learning  methods  of
big  data  are  established  from  three  levels,  namely,
complex  data  scientific  perception,  accurate
construction  of  complex  systems,  and  intelligent
analysis of complex behaviors. These form the core of
refined intelligence.

To  be  specific,  refined  intelligence  examines  basic
scientific  problems,  including  the  paradigm  of
scientific  data  descriptions  based  on  spatiotemporal
characteristics  and  mathematical  laws,  reconstruction
methods  of  mathematical  systems  based  on  coupling
and  decoupling  methods  of  complex  data  systems,
complexity  classification  of  the  intrinsic  and  dynamic
features  of  complex  systems,  global  structure  analysis
based  on  local  morphological  features,  and  system
mutation based on the threshold analysis. It establishes
the  accurate  cognitive  theory  and  fast  mining  method
of big data from the perspective of systems science.

From the  perspective  of  complexity  science,  refined
intelligence  constructs  a  new  theoretical  framework
that  can  explain  artificial  intelligence  based  on  the
logic relations of complex systems. It aims to reveal the
nonlinear  relationship  of  multivariable  main  factors  in
complex  systems  from  the  perspectives  of  the
complexity  of  scientific  description,  data  system
structure,  and  system  behavior  evolution  of  big  data.
Through multilevel and multiscale coupling association
modeling,  the  intrinsic  law  is  explained.  This  law
focuses on the influence of multiscale mechanisms and
effects  on  the  system,  dynamically  identifies  the
complex characteristic behavior patterns of the system,
and  forms  a  method  system  that  can  explain  artificial
intelligence.  Its  research  directions  mainly  include
complex  data  science  perception  using  unit  data  to
build  overall  data[48–50],  accurate  construction  of
complex systems using data systems to build intelligent
learning  models[51–53],  and  intelligent  analysis  of
complex  behaviors  using  learning  models  to  analyze
the  evolution  of  system  features[54–56].  The  refined
intelligence  theory  is  applied  to  swarm  intelligence,
and  the  swarm  entropy  method  is  proposed,  in  which
the  complexity  of  group  excitation  and  convergence
behavior  is  measured  and  effectively  guided  and
regulated.

(2) Deep learning
Deep  learning  models  can  be  considered  neural

networks  with  deep  structures.  The  history  of  neural
networks  can  be  traced  back  to  the  1940s.  Its  original
purpose  was  to  mimic  the  human  brain  system  for

solving  general  learning  problems  in  a  principled
manner.  With  the  principle  of  the  backpropagation
algorithm  proposed  by  Rumelhart  et  al.[57],  neural
network algorithms became popular. However, because
of  the  lack  of  large  scale,  excessive  training  data
fitting,  limited  computing  power,  and  the  lack  of
performance  compared  with  other  machine  learning
tools,  such  as  faults,  by  2000,  the  study  on  neural
network  algorithms  tended  to  be  cooled,  in  which  the
number  of  studies  decreased.  In  2006,  Hinton  and
Salakhutdinov[58] and  Hinton  et  al.[59] formally
proposed  the  concept  of  deep  learning.  Later,
breakthroughs  in  speech  and  image  recognition
technology  have  ignited  enthusiasm  for  deep  learning
research.  It  has  become  an  extremely  hot  branch  of
machine  learning[60, 61].  Deep  learning  has  been  an
important  method  to  simulate  and  study  complex
systems. For example, Refs. [62–65] showed the use of
deep  learning  to  research  robot  navigation  systems,
complex  multiagent  systems,  complex  fault  diagnosis
systems, and complex traffic systems.

(3) Artificial life
Artificial  life[66, 67] is  a  simulation,  extension,  or

extension of natural life. It is a man-made system with
internal  properties  or  external  behaviors  similar  to
those of natural life. The research field covers the laws,
testing, simulations, and bionic applications of various
abstract  life  forms  (e.g.,  cellular  automata)  and
simulation  life  forms  (e.g.,  electronic  cell,  artificial
plant,  artificial  animal,  artificial  brain,  and  robot).
Artificial  life  was  first  proposed  to  use  computer
simulations to explore the law of life movements.  The
subject  of  artificial  life  is  concerned  with  complex
autonomous  systems  with  emergent  characteristics.
Because of the characteristics defined by separable and
unknowable hypotheses, it is impossible to use the top-
down analysis method to predict results. Therefore, we
must  observe  the  law  of  its  change  and  development
through  simulation  experiments[68, 69].  Because  this
kind of experiment is  concerned with the evolutionary
characteristics[70] of  experimental  subjects,  it  is  also
called  an  evolutionary  simulation.  However,  the
simulation of this kind of complex autonomous system
usually requires a large amount of computation. One of
the  solutions  to  the  large  amount  of  computing  is
distributed  computing.  Evolutionary  simulations  are
highly  effective  when  used  with  various  subjects.
Spatiotemporal coupling presents a unique challenge to
the design of its distribution strategy.
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Other methods are presented as follows[71–75]:
● Neural network;
● Genetic algorithm;
● Gene networks;
● Cellular automata;
● Constrained production process model;
● Particle swarm optimization algorithm;
● Agent-based modeling and simulation; and
● Group method of data handling.

3.4    Other methods

Many other methods have also been proposed:
(1) Visualization
A simulation is  inseparable  from visualization[76, 77],

and the visualization of simulation results has become a
convention  of  a  simulation.  However,  because  the
modeling  of  complex  systems  is  also  extremely
difficult,  the  introduction  of  visualization  in  the  early
stage[78, 79] not  only  makes  the  modeling  of  complex
systems  more  clear  and  visible  but  also  contributes  to
the  early  participation  of  human  thinking.  It  can
promote  the  correctness  of  modeling  and  the
understanding  of  the  nature  of  complex  systems  to  a
certain extent.

Our  research  group  at  the  Hefei  University  of
Technology  has  performed  considerable  work  on
visualization[80–82].  For more than 20 years,  relying on
visual  environments,  our  research  group  has
systematically  and  deeply  studied  template  theory,
intelligent design, motion simulation, and visualization
methods,  which  are  guided  by  the  modeling
methodology,  based  on  collaborative  computing,  and
rely  on  visual  environments[83–85].  The  research  work
on  visualization  combined  with  the  simulation  of
verification,  validation,  and  accreditation  has
conducted a comprehensive study on the simulation of
complex systems,  which can be  further  detailed  in  the
following examples.

(2) Petri net
A Petri  net[86, 87] is  a mathematical  representation of

discrete  parallel  systems.  Petri  nets  were  invented  by
Carl  A.  Petri  in  the  1960s  to  describe  asynchronous,
concurrent  models  of  computer  systems.  A  Petri  net
has  not  only  strict  mathematical  expression  but  also
intuitive  graphic  expression,  rich  system  description
means, and system behavior analysis technology.

This method is a graphical research tool composed of
databases, transitions, and directed arcs connecting the
former  two[88, 89].  It  is  a  theory  used  to  study  the
organizational structure and dynamic characteristics of

a  system  and  is  especially  suitable  for  modeling  and
analyzing  asynchronous  concurrent  systems.  It  can
fully  describe  the  system  characteristics  of
concurrency,  asynchrony,  nondeterminism,  and
parallelism.  In  complex  systems,  object-oriented
technology  and  Petri  net  technology  are  commonly
combined,  which  is  called  an  object-oriented  Petri  net
(OOPN).  An  OOPN  can  simplify  the  technical  model
of Petri nets but also make the expression intuitive. At
present,  Petri  nets  can be applied to  complex systems,
such  as  diagnosability  analysis,  complex  control
systems, and complex manufacturing systems[90–92].

(3) Fuzzy system based method
Based  on  fuzzy  mathematics,  the  uncertainty  of

observed  data  is  dealt  with  by  the  fuzzy  mathematics
method  on  the  basis  of  establishing  a  model
framework.  Fuzzy  systems[93, 94],  based  on  the
macroscopic point of view, grasp the characteristics of
the  fuzziness  of  the  human  brain  and  have  their  own
advantages in describing high-level knowledge.

Fuzzy systems are  composed of  the fuzzy reasoning
method[95–97] and  fuzzier,  defuzzier,  and  fuzzy  rule
bases. They can deal with fuzzy information processing
problems,  which  are  difficult  to  be  solved  using
conventional  mathematical  methods  that  imitate
human’s  comprehensive  inference[98–102].  They  enable
computer  applications  to  be  extended  to  the  fields  of
humanities, social sciences, and complex systems.

Some other methods are listed as follows[103–107]:
● Parameter optimization method;
● Macro simulation method;
● Task/resource map;
● Knowledge-driven method;
● Formal method of system theory;
● Qualitative causal method;
● System dynamics;
● Inductive reasoning;
● Metamodel;
● Fractal; and
● Systems engineering analysis.

3.5    Summary of methods

In  summary,  complex  system  simulation  methods  can
be  divided  into  four  categories.  The  overall  research
layout is shown in Fig. 2.

For  the  simulation  methods  of  complex  systems,
eight  characteristics  that  may  be  reflected  are
considered, as shown in Table 1 (in which Y represents
the  simulation  method  that  can  embody  such
characteristics).
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4    Examples of Complex System Simulation

4.1    Digital reactor simulation

After more than 60 years of rigorous development, the
development  strategies  of  magnetic  confinement
fusions in the world have gone through several stages,
such  as  plasma  experimental  equipment,  experimental
reactors,  demonstration  reactors,  and  large-scale
commercial reactors. The design of a fusion reactor has
always  been  an  important  aspect  of  fusion  research
because  it  typically  takes  a  long  time  (approximately
10 years) and costs a lot (approximately $10 billion) to
build a large complex device, such as a fusion reactor.
Its design is different from that of general installations.

It  undergoes  a  comprehensive  process  integrating  the
physical  design,  conceptual  design,  technical  design,
environmental  assessment,  and  economic  assessment.
The design of  a  reactor  has become a key issue in the
field  of  nuclear  energy.  Because  the  engineering  plan
of  advanced  nuclear  power  systems  has  not  been
finalized,  the  research  on  new  reactors  is  currently  in
the conceptual design stage of comparing several plans.
In  the  later  stage,  people  should  undergo  from
conceptual  design  to  geometric  design  and  then  to
simulation  and  scheme  evaluation,  which  is  a  time-
consuming and labor-consuming cycle.

To  sum  up,  fusion  reactors  are  a  complex
engineering system with the following characteristics:
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Fig. 2    Research layout of complex system simulation methods.
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(1) Intersecting in multiple fields;
(2) Structural complexity;
(3)  Numerous  and  complex  objective  optimization

parameters; and
(4) Massive data and a huge amount of computation.
We  use  the  simulation  method  to  examine  such

reactors and put forward the concept of digital reactors.
The so-called digital reactors refer to a comprehensive

application  platform  for  storing,  processing,  and
expressing  various  reactor  data  based  on  an  existing
physical  model,  which  relies  on  computer  hardware
and  uses  various  software  technologies.  A  digital
reactor  provides  an  efficient  and  convenient  research
platform  for  domain  experts  and  can  show  the  design
intention of domain experts in real time. It will greatly
improve  the  working  efficiency  of  field  experts  and

 

Table 1    Eight characteristics reflected by complex system simulation methods.
Major category of

methods Specific method (1) (2) (3) (4) (5) (6) (7) (8)

Meta-synthesis
method

Comprehensive integration method of qualitative and
quantitative combination Y Y Y Y Y Y Y Y

Comprehensive integration method from the qualitative to the
quantitative Y Y Y Y Y Y Y Y

Hall for seminar system Y Y Y Y Y Y Y Y
Simulation method combining artificial system, computational

experiment, and parallel system Y Y Y Y Y Y Y Y

M-Space, M-Interaction, and M-Computing Y Y Y Y Y Y Y Y

Complex network

Random graphs Y − Y Y Y Y Y Y
General random graphs Y − Y Y Y Y Y Y
Small world network Y Y Y Y Y Y Y Y
Scale-free network Y Y Y Y Y Y Y Y

Space networks Y Y Y Y Y Y Y Y
Local area world network Y Y Y Y Y Y Y Y

Weighted network Y Y Y Y Y Y Y Y

Intelligent
technology

Refined intelligence Y Y Y Y Y Y Y Y
Deep learning Y Y Y Y Y Y Y Y
Artificial life Y Y Y Y Y Y Y Y

Genetic algorithm Y Y Y Y Y Y Y −
Neural network Y Y Y Y Y Y Y Y

Cellular automata Y Y Y Y Y Y Y Y
CGP Y Y Y Y Y Y Y Y

Particle swarm optimization Y Y Y Y Y Y Y Y
Agent-based simulation Y Y Y Y Y Y Y −

GMDH Y Y Y Y Y Y Y Y

Other methods

Visualization Y Y Y Y Y Y Y Y
Petri net Y − − Y Y Y Y Y

Fuzzy system based method Y Y Y Y Y Y Y Y
Parameter optimizationv Y Y Y Y Y Y Y −

Macro simulation Y Y Y Y Y Y Y Y
Task/resource map Y − − Y Y Y Y Y

Knowledge-drived method Y − − Y Y Y Y Y
Formal method of system theory Y − − Y Y Y Y Y

Qualitative causal method Y − − Y Y Y Y Y
System dynamics Y − − Y Y Y Y Y

Inductive reasoning Y − Y − Y Y Y Y
Metamodel Y − Y Y Y Y Y Y

Fractal Y − − Y − Y Y Y
Systems engineering analysis Y − Y Y Y Y Y Y
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liberate  them  from  heavy  repetitive  works.
Accordingly,  field  experts  can  focus  on  the  most
important  link  in  reactor  research  and  can  further
discover  and  explore  laws.  Such  development  allows
costly  experiments  to  be  repeated  and  makes
impossible things possible.

The  digital  reactor  system  has  a  large  scale  and
involves  several  fields,  hardware,  and  software.  The
main  model  of  the  digital  reactor  is  shown  in Fig. 3.
The  core  technologies  of  the  digital  reactor  are  as
follows:

(1)  Distributed  simulation  and  computing
technology

It  uses  the  local-area  network  to  connect  and  is
composed of a highly complex topology structure.

(2) Cluster computing technology
Because  of  the  large  amount  of  simulation

computations  and  data,  the  data  to  be  processed  are
calculated using six node clusters.

(3) Multidimensional integrated visualization
First,  the  multiviewport  visualization  technology  is

used  for  multivariable  data,  and  the  visualization
method  of  displaying  multiple  windows  can  be
adopted,  as  shown  in Fig. 4.  Each  window  displays
different  data  of  different  variables  to  facilitate  the
understanding  of  the  relationship  between
multidimensional  data.  Second,  stereoscopic  display
technology  adopts  active  and  passive  stereoscopic
display methods to realistically reproduce complex data
fields,  as  shown in Fig. 4.  Finally,  the  simulation  data
dimensional-increasing  visualization  technology
artificially  elevates  low-dimensional  data  to  a  higher
dimension by adding necessary physical information. It
uses  the  high-dimensional  visualization  method  to
clearly  display  data  and  deepen  the  understanding  of

the data.
(4) Virtual reality technology
Using  virtual  reality  technology  through  three-

dimensional (3D) display mode, the observer can roam
in a 3D data field in real time. Thus, data field rules can
be  seen  clearly  and  directly,  and  the  reactor  design
process and efficiency can be accelerated.

(5) Multiple intelligent modeling techniques
The genetic algorithm and parallel genetic algorithm

are applied to reactor  core parameter  optimization and
plasma  equilibrium  optimization  modeling  and
optimization processes.

4.2    Simulation of the logistics system in industrial
sites

Industry  4.0  is  embodied  in  the  development  of  fully
automated  production  lines  in  modern  factories.
Materials  are  processed,  transported,  or  stored  under
the automated program of various facilities. The entire
workshop  may  be  composed  of  different  automated
lines,  each  of  which  contains  multiple  types  of
production, processing facilities and logistics facilities.
The  industrial  field  system  fully  embodies  the
complexity  brought  about  by  multifacility  cooperative
work.  It  can  be  summarized  with  the  following
characteristics:

(1) Nonlinearity
There are many types of  facilities  in industrial  sites.

Standardized  and  nonstandardized  facilities,  domestic
and foreign facilities, and new and traditional facilities
exist in the same system, but the quality is not unified.

(2) Self-organization
Various  facilities  on  industrial  sites  need  to  work

together to process, transport, or store products. At the
same  time,  the  spatial  layout  of  various  facilities  will
have  an  important  impact  on  the  efficiency  of  the
workshop, so the layout design is very important.

 

 
Fig. 3    Main model of the digital reactor.

 

 

 
Fig. 4    Multiviewport visualization technology.
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(3) Uncertainty
The facility failure is incidental, and it is impossible

to estimate the timing and extent of the impact.
(4) Cascade failures
In  the  actual  production  process,  the  failure  of  any

facility  will  have  an  impact  on  the  driving  process  of
front  and  rear  facilities,  which  may  destroy  the  entire
automated process.

The traditional workshop layout design is  guided by
the  experience  of  designers  to  estimate  the  operating
efficiency  and  produce  the  computer-aided  design
drawings  of  facility  layouts.  However,  it  has  the
following  shortcomings:  It  heavily  relies  on  the
experience of designers and lacks 3D space expression.
Thus,  the  workshop  efficiency  calculation  is  not
accurate,  and  it  is  impossible  to  predict  the  possible
failure  problems  during  the  actual  operation.  The  3D
simulation  software  that  assists  industrial  process
designers  in  designing  the  layout  conveniently  and
effectively is an effective means to improve workshop
operation efficiency and study fault treatment.

Our research group has developed a set of warehouse
logistics  systems.  This  system  contains  the  digital
model of the main facilities of warehouse logistics and
integrates  a  facility  driver  script.  It  supports  designers
to  quickly  visualize  3D  workshop  scenes.  It  can  help
identify design errors through simulation processes and
perform  an  efficiency  analysis  and  comparison  or
simulate  fault  phenomena.  Then,  it  can  adjust  the
layout  of  the  facilities.  System  screenshots  are  shown
in Figs. 5 and 6 and Table 2.  The  technologies  and
characteristics of the system are as follows:

(1)  We  design  a  workshop  facility  process
information  model  that  supports  animated  simulation
scenes. All users need to enter the main parameters and

facility associations to build the full scene model.
(2)  It  uses  the  logistics  simulation  animation

generation  method  based  on  a  state  diagram  query,
which  reflects  the  various  facilities  of  the  material
transport process.

(3) It  can support  the quick replacement of facilities
and analyze simulation efficiency.

(4) It  can display system operating errors or failures
in a visual way and prompt users of the possible results
of material accumulation.

4.3    Crowd evacuation simulation

With  the  development  of  society,  the  safety  of  large
public places has attracted increasing attention. In these
places, many people come and go. In emergency cases,
how  to  evacuate  a  large  number  of  people  safely  and
quickly is a problem that must be seriously considered
in site  design.  Crowd evacuation can be regarded as  a
complex  system.  People’s  psychological  behavior
characteristics  in  emergency  evacuation  processes  and

 

 
Fig. 5    Warehouse  logistics  scenario  generated  from
parameterized information.
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Fig. 6    Simulation comparison results of using two different
facilities.
 

 

Table  2    Time  comparison  of  using  two  different  facilities
for the sorting area.

Cargo Time for the
left side (s)

Time for the
right side (s)

No.1: Red cargo 92.99 61.15
No.2: Green cargo 109.23 73.65
No.3: Blue cargo 89.12 73.67

No.4: Yellow cargo 78.34 83.08
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the impact of these behaviors on emergency evacuation
have  a  great  uncertainty  and  randomness,  so  the
evacuation process is a complex and emergent process.
The  real  evacuation  experiment  is  faced  with  huge
manpower  and  material  resource  consumption.  The
traditional  approach  used  by  fire,  police,  and
administrative  departments  is  to  conduct  costly  and
real-world  exercises.  However,  it  has  certain
destructiveness  and  hidden  dangers.  Using  computer
simulations  instead  of  physical  models  and  real
exercises can be successful to a large extent. Therefore,
it  is  of  great  practical  significance  to  study  the
establishment  and  simulation  of  evacuation  models.
Evacuation  simulations  are  an  important  reference  for
the  architectural  design  and  decision-making  of
emergency evacuation plans.

Crowd evacuation has the following characteristics:
• Self-organization
The  crowd  can  adjust  the  escape  route  in  real  time

according to the actual situation.
• Uncertainty
People’s  psychology,  physiology,  personality,  and

other  factors  bring  uncertainty  to  the  impact  of
survival.  Moreover,  the  environment  and  disaster
development direction have uncertainties.
• Emergence
Because  of  the  conformity  of  the  crowd,  certain

individuals  or  environmental  changes  may  cause  the
overall emergent behavior.
• Predetermination
Crowds  have  the  ability  to  anticipate  or  predict  and

thus influence the direction of system movements.
Our  research  group  has  developed  the  Campus

Evacuation Simulation System (CESS). The purpose is
to  study  the  complex  evacuation  problem  through  the
simulation  method.  The  screenshots  of  system
operation  are  shown  in Figs. 7−9.  The  techniques  and
features of CESS are as follows:

(1)  Based  on  the  modeling  technology  of  an  agent,
individual  autonomy  and  self-adaptability  are
expressed.  Thereafter,  we  comprehensively  consider  a
variety of factors, such as physical condition, degree of
rationality, degree of familiarity with the environment,
degree of education, and speed of escape.

(2)  We  use  the  behavior  modeling  method  to
represent  the  interaction  of  the  crowd,  such  as
collective panic and conformity.

(3) Parallel computing technology is used to improve
simulation  speed.  It  can  help  solve  computational

problems  of  large  scale,  complex  environments,  and
large numbers of people.

(4)  Visualization  technology  is  utilized,  so  the
simulation results can be observed in real time and the
evacuation effect can be viewed.

 

 
Fig. 7    Overall model and interface of the CESS.

 

 

 
Fig. 8    Close-up of the stadium in the CESS.

 

 

 
Fig. 9    Close-up of a detail in the CESS.
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5    Future Prospect

In  the  future,  complex  systems  and  their  simulation
methods show the following development tendencies:

(1) New complex systems will emerge.
For  example,  the  COVID-19  pandemic[108–110] is  a

novel  complex  system,  which  has  most  of  the
characteristics of complex systems. Its  outbreak began
in 2019 and has  killed millions of  people.  On January
30, 2020, the World Health Organization declared it as
a  public  health  emergency  of  international  concern.
People  all  over  the  world  are  still  fighting  fiercely
against  the  COVID-19  pandemic.  Notably,  scientific
research  workers  are  working  hard  to  research
treatment methods and vaccines.

(2)  The  idea  of  complex  systems  will  bring  new
applications.

Some  experts  have  applied  it  to  economics.  For
example,  SFI  established  the  artificial  stock  market
model  with  the  viewpoint  of  complex  systems  for  the
stock  market.  Some  scholars  have  applied  complex
systems  to  education.  Focusing  on  the  problem  of
continuous  learning  of  students,  Forsman  et  al.[111]

discussed the feasibility of using complexity science as
a  framework  to  expand  the  application  of  the  physics
education research method. They found that building a
social  network  analysis  from  the  perspective  of
complexity  science  provides  new  and  powerful
applicability  to  a  wide  range  of  physical  education
research.

(3) The fusion of multidisciplinary knowledge will
be an important means to discover complex systems.

Complex  systems  themselves  often  involve  multiple
disciplines. Consequently, we can make full use of the
knowledge  accumulation  derived  from  multiple
disciplines and integrate them to form a new processing
mode. This improvement is of great significance to the
discovery of complex systems.

(4)  Novel  intelligent  technologies  will  be
constantly emerging.

Novel intelligent technologies provide new strategies
for  the  research  of  complex  systems.  For  instance,
refined  intelligence  is  a  newly  proposed  intelligent
technology  by  Zheng  et  al.[31],  which  forms  a  new
generation  of  artificial  intelligence  theory  on  the
strength of complexity and multiscale analysis.

(5)  Other  meta-synthesis  methods  have  been
proposed.

Due  to  the  characteristics  of  complex  systems,  they
cannot  be  dealt  with  in  just  one  way.  Therefore,  the

integration  of  multiple  approaches  is  often  required.
For  example,  the  hall  for  seminar  systems;  the
simulation  method  combining  an  artificial  system,
computational  experiment,  and  parallel  system;  M-
Space  and  M-Interaction;  and  M-Computing  are  all
examples of method integration. Hence, meta-synthesis
methods  are  effective  methods  to  discover  complex
systems.

(6)  The  development  of  complex  networks will
improve the study of complex systems.

From  their  inception,  complex  networks  have
received  surprisingly  great  attention.  Complex
networks[112] will  remain  a  mainstream  of  complex
system  models  for  a  long  time.  Complex  networks
always  represent  a  high  academic  ground  of  complex
system models.

Figure 10 presents  an illustration of  future prospects
in this field.

6    Conclusion

In  this  study,  the  development  history  of  complex
system  research  is  summarized,  and  the  common
characteristics of most complex systems are presented.
Then,  the  simulation  methods  of  complex  systems  are
introduced  in  detail  from  four  aspects,  namely,  meta-
synthesis  methods,  complex  networks,  intelligent
technologies,  and  other  methods.  From  the  overall
point  of  view,  intelligent  technologies  are  the  driving
force,  and  complex  networks  are  the  advanced
structure.  Meta-synthesis  methods  are  the  integration
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Fig. 10    Illustration of future prospects.
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strategies,  and  other  methods  are  the  supplements.
Taking  digital  reactor  simulation,  simulation  of
logistics  system  in  industrial  sites,  and  crowd
evacuation simulation as three examples, we explain in
detail  how  to  apply  simulations  to  study  complex
systems.  The  examples  show  that  simulations  are  a
useful means and important method in complex system
research.  Finally,  future  development  prospects  for
complex  systems  and  their  simulation  methods  are
discussed.

In  the  future,  we  will  further  explore  the
characteristics of complex systems. Based on the study
on  typical  complex  systems,  we  will  propose  new
simulation methods to deal with complex systems.

Acknowledgment

This  work  was  supported  in  part  by  the  National  Key
Research  and  Development  Program  of  China  (No.
2020YFC1523100)  and  the  National  Natural  Science
Foundation  of  China  (Nos.  62176083,  61673156,  and
61877016).

References

 C.  Koch  and  G.  Laurent,  Complexity  and  the  nervous
system, Science, vol. 284, no. 5411, pp. 96–98, 1999.

[1]

 R.  Riser,  V.  A.  Osipov,  and  E.  Kanzieper,
Nonperturbative  theory  of  power  spectrum  in  complex
systems, Ann. Phys., vol. 413, p. 168065, 2020.

[2]

 M.  Ghanbari,  A  discussion  on “solving  fuzzy  complex
system  of  linear  equations”, Informat. Sci.,  vol. 402,
pp. 165–169, 2017.

[3]

 H.  W.  Ren,  P.  Shi,  F.  Q.  Deng,  and  Y.  J.  Peng,  Fixed-
time  synchronization  of  delayed  complex  dynamical
systems  with  stochastic  perturbation  via  impulsive
pinning  control, J. Franklin Inst.,  vol. 357,  no. 17,
pp. 12308–12325, 2020.

[4]

 R. Albert, H. Jeong, and A. L. Barabási, Error and attack
tolerance  of  complex  networks, Nature,  vol. 406,
no. 6794, pp. 378–382, 2000.

[5]

 Y.  Yang,  T.  Nishikawa,  and  A.  E.  Motter,  Small
vulnerable  sets  determine  large  network  cascades  in
power  grids, Science,  vol. 358,  no. 6365,  p. eaan3184,
2017.

[6]

 R.  Q.  Lu,  W.  W.  Yu,  J.  H.  Lü,  and  A.  K.  Xue,
Synchronization on complex networks of networks, IEEE
Trans. Neural Netw. Learn. Syst.,  vol. 25,  no. 11,  pp. 
2110–2118, 2014.

[7]

 A.  Kuzdeuov,  D.  Baimukashev,  A.  Karabay,  B.
Ibragimov, A. Mirzakhmetov, M. Nurpeiissov, M. Lewis,
and  H.  A.  Varol,  A  network-based  stochastic  epidemic
simulator:  controlling  COVID-19  with  region-specific
policies, IEEE J Biomed. Health Inform.,  vol. 24,  no. 10,
pp. 2743–2754, 2020.

[8]

 X. G. Wang, X. B. Deng, Q. Fu, Q. Zhou, J. P. Feng, H.
Ma,  W.  Y.  Liu,  and  C.  S.  Zheng,  A  weakly-supervised
framework  for  COVID-19  classification  and  lesion
localization  from  chest  CT, IEEE Trans. Med. Imaging,
vol. 39, no. 8, pp. 2615–2625, 2020.

[9]

 S. Spolaor, M. S. Nobile, G. Mauri, P. Cazzaniga, and D.
Besozzi,  Coupling  mechanistic  approaches  and  fuzzy
logic  to  model  and  simulate  complex  systems, IEEE
Trans. Fuzzy Syst., vol. 28, no. 8, pp. 1748–1759, 2020.

[10]

 L. V. Bertalanffy, Modern theories of development. New
York, NY, USA: Harper Torchbooks, 1928.

[11]

 I.  Prigogine  and  G.  Nicolis,  On  symmetry-breaking
instabilities  in  dissipative  systems, The  Journal  of
Chemical Physics, vo. 46, pp. 3542–3550, 1967.

[12]

 H. Haken, Synergetics: An Introduction. Springer, 1969.[13]
 H.  A.  Simon, The  Sciences  of  the  Artificial.  Cambridge,
MA, USA: MIT Press, 1969.

[14]

 H.  A.  Simon, The  Sciences  of  the  Artificial,  2nd  ed.
Cambridge, MA, USA: MIT Press, 1981.

[15]

 H.  A.  Simon, The  Sciences  of  the  Artificial,  3rd  ed.
Cambridge, MA, USA: MIT Press, 1998.

[16]

 J.  F.  Traub,  Complexity  of  approximately  solved
problems, Journal of Complexity,  vol. 1,  no. 1,  pp. 3–10,
1985.

[17]

 J.  Gleick, Chaos:  Making  a  New  Science.  London,  UK:
Penguin Books, 1987.

[18]

 J. Holland, Adaptation in Natural and Artificial Systems.
Cambridge, MA, USA: MIT Press, 1992.

[19]

 G.  M.  Whitesides  and  R.  F.  Ismagilov,  Complexity  in
chemistry, Science, vol. 284, no. 5411, pp. 89–92, 1999.

[20]

 F.  Vega-Redondo,  Network  organizations, J. Complex
Netw., vol. 1, no. 1, pp. 72–82, 2013.

[21]

 B.  Xin,  J.  X.  Zhang,  J.  Chen,  Q.  Wang,  and  Y.  Qu,
Overview  of  research  on  transformation  of  multi-AUV
formations, Complex  Syst.  Model.  Simul.,  vol. 1,  no. 1,
pp. 1–14, 2021.

[22]

 X.  S.  Qian, Engineering  Cybernetics,  New  York,  NY,
USA: McGraw Hill, 1954.

[23]

 X. S. Qian, J. Y. Yu, and R. W. Dai, A new discipline of
science: The study of open complex giant system and its
methodology,  (in  Chinese), Nat.  Mag.,  vol. 13,  no. 1,
pp. 3–10&64, 1990.

[24]

 X.  S.  Qian  and  H.  S.  Tsien,  Revisiting  issues  on  open
complex  giant  systems,  (in  Chinese), Pattern  Recognit.
Artif. Intell., vol. 4, no. 1, pp. 5–8, 1991.

[25]

 R.  W.  Dai,  Comprehensive  integration  technology  from
qualitative to quantitative, (in Chinese), Pattern Recognit.
Artif. Intell., vol. 4, no. 1, pp. 5–10, 1991.

[26]

 R. W. Dai and Y. D. Li, Researches on hall for workshop
of metasynthetic engineering and system complexity, (in
Chinese), Complex  Syst.  Complex.  Sci.,  vol. 1,  no. 4,
pp. 1–24, 2004.

[27]

 F. Y. Wang, R. W. Dai, S. Y. Zhang, G. L. Chen, S. M.
Tang,  D.  Y.  Yang,  X.  G.  Yang,  and  P.  Li,  A  complex
system  approach  for  studying  sustainable  and  integrated
development of metropolitan transportation, logistics and
ecosystems,  (in  Chinese), Complex  Syst.  Complex.  Sci.,
vol. 1, no. 2, pp. 60–69, 2004.

[28]

    286 Complex System Modeling and Simulation, December  2021, 1(4): 271−290

 



 L.  B.  Cao,  R.  W.  Dai,  and  M.  C.  Zhou,  Metasynthesis:
M-Space,  M-Interaction,  and  M-computing  for  open
complex  giant  systems, IEEE  Trans.  Syst.  Man  Cybern.
Part  A:Syst.  Humans,  vol. 39,  no. 5,  pp. 1007–1021,
2009.

[29]

 C. L. P. Chen and Z. L. Liu, Broad learning system: An
effective  and  efficient  incremental  learning  system
without  the  need  for  deep  architecture, IEEE Trans.
Neural Netw. Learn. Syst.,  vol. 29,  no. 1,  pp. 10–24,
2018.

[30]

 Z. M. Zheng, J. H. Lv, W. Wei, and S. T. Tang, Refined
intelligence  theory:  Artificial  intelligence  regarding
complex  dynamic  objects,  (in  Chinese), Sci. Sin.
Informat., vol. 51, no. 4, p. 678, 2021.

[31]

 X.  P.  Liu,  Y.  M.  Tang,  and  L.  P.  Zheng,  Survey  of
complex  system  and  complex  system  simulation,  (in
Chinese), J. Syst.  Simul.,  vol. 20, no. 23, pp. 6303–6315,
2008.

[32]

 A. Randall, Risk and Precaution. Cambridge, MA, USA:
Cambridge University Press, 2011.

[33]

 A.  Majdandzic,  B.  Podobnik,  S.  V.  Buldyrev,  D.  Y.
Kenett,  S.  Havlin,  and  H.  E.  Stanley,  Spontaneous
recovery  in  dynamical  networks, Nat. Phys.,  vol. 10,
no. 1, pp. 34–38, 2014.

[34]

 S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and
S.  Havlin,  Catastrophic  cascade  of  failures  in
interdependent  networks, Nature,  vol. 464,  no. 7291,
pp. 1025–1028, 2010.

[35]

 S. Boccaletti,  V. Latora,  Y. Moreno, M. Chavez,  and D.
U.  Hwang,  Complex  networks:  Structure  and  dynamics,
Phys. Rep., vol. 424, nos. 4&5, pp. 175–308, 2006.

[36]

 R.  Albert  and  A.  L.  Barabási,  Statistical  mechanics  of
complex  networks, Rev. Mod. Phys.,  vol. 74,  no. 1,
pp. 47–94, 2002.

[37]

 S.  H.  An  and  R.  H.  Yu,  Review  on  complex  network
theory  research,  (in  Chinese), Computer  Syst.  Appl.,
vol. 29, no. 9, pp. 26–31, 2020.

[38]

 M.  Newman, Networks:  An  Introduction.  Oxford,  UK:
Oxford University Press, 2010.

[39]

 E. A. Bender and E. R. Canfield, The asymptotic number
of  labelled graphs with  given degree sequences, Journal
of Combinatorial Theory, Series A, vol. 24, pp. 296–307,
1978.

[40]

 D.  J.  Watts  and  S.  H.  Strogatz,  Collective  dynamics  of
‘small-world’ networks, Nature,  vol. 393,  no. 6684,
pp. 440–442, 1998.

[41]

 M. E. J. Newman and D. J. Watts, Renormalization group
analysis of the small-world network model, Phys. Lett. A,
vol. 263, nos. 4–6, pp. 341–346, 1999.

[42]

 A.  L.  Barabási,  R.  Albert,  and  H.  Jeong,  Mean-field
theory  for  scale-free  random  networks, Phys.  A:Stat.
Mech. Appl., vol. 272, nos. 1&2, pp. 173–187, 1999.

[43]

 X.  Li  and  G.  R.  Chen,  A  local-world  evolving  network
model, Phys.  A:Stat.  Mech.  Appl.,  vol. 328,  nos. 1&2,
pp. 274–286, 2003.

[44]

 S.  Qin  and  G.  Z.  Dai,  A  new  local-world  evolving
network  model, Chin. Phys. B,  vol. 18,  no. 2,  pp. 383–
390, 2009.

[45]

 S.  H.  Yook,  H.  Jeong,  A.  L.  Barabási,  and  Y.  Tu,
Weighted  evolving  networks, Phys. Rev. Lett.,  vol. 86,
no. 25, pp. 5835–5838, 2001.

[46]

 A. Barrat, M. Barthélemy, and A. Vespignani, Weighted
evolving  networks:  Coupling  topology  and  weight
dynamics, Phys. Rev. Lett.,  vol. 92,  no. 22,  p. 228701,
2004.

[47]

 W.  H.  Li,  T.  Aste,  F.  Caccioli,  and  G.  Livan,  Early
coauthorship  with  top  scientists  predicts  success  in
academic careers, Nat. Commun.,  vol. 10,  no. 1,  p. 5170,
2019.

[48]

 W. Chen, J. Nagler, X. Q, Cheng, X. L. Jin, H. W. Shen,
Z.  M.  Zheng,  and  R.  M.  D’Souza,  Phase  transitions  in
supercritical explosive percolation, Phys. Rev. E, vol. 87,
no. 5, p. 052130, 2013.

[49]

 W. Chen and R. M. D’Souza, Explosive percolation with
multiple  giant  components, Phys. Rev. Lett.,  vol. 106,
no. 11, p. 115701, 2011.

[50]

 Q. T. Guo, Y. J. Lei, X. Jiang, Y. F. Ma, G. Y. Huo, and
Z.  M.  Zheng,  Epidemic  spreading  with  activity-driven
awareness  diffusion  on  multiplex  network, Chaos,
vol. 26, no. 4, p. 043110, 2016.

[51]

 S. Yan, S. T. Tang, S. Pei, S. J. Jiang, and Z. M. Zheng,
Dynamical  immunization  strategy  for  seasonal
epidemics, Phys. Rev. E, vol. 90, no. 2, p. 022808, 2014.

[52]

 W. H. Li, S. T. Tang, W. Y. Fang, Q. T. Guo, X. Zhang,
and  Z.  M.  Zheng,  How  multiple  social  networks  affect
user  awareness:  The  information  diffusion  process  in
multiplex  networks, Phys. Rev. E,  vol. 92,  no. 4,
p. 042810, 2015.

[53]

 X. Wang, W. H. Li, L. Z. Liu, S. Pei, S. T. Tang, and Z.
M.  Zheng,  Promoting  information  diffusion  through
interlayer  recovery  processes  in  multiplex  networks,
Phys. Rev. E, vol. 96, no. 3, p. 032304, 2017.

[54]

 S. Pei,  S.  Kandula,  Y. Wan, and J.  Shaman, Forecasting
the spatial transmission of influenza in the United States,
Proc. Natl. Acad. Sci. USA,  vol. 115,  no. 11,  pp. 2752–
2757, 2018.

[55]

 R.  Y.  Li,  S.  Pei,  B.  Chen,  Y.  M.  Song,  T.  Zhang,  W.
Yang,  and  J.  Shaman,  Substantial  undocumented
infection  facilitates  the  rapid  dissemination  of  novel
coronavirus  (SARS-CoV-2), Science,  vol. 368,  no. 6490,
pp. 489–493, 2020.

[56]

 D.  E.  Rumelhart,  G.  E.  Hinton,  and  R.  J.  Williams,
Learning  representations  by  back-propagating  errors,
Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[57]

 G.  E.  Hinton  and  R.  R.  Salakhutdinov,  Reducing  the
dimensionality  of  data  with  neural  networks, Science,
vol. 313, no. 5786, pp. 504–507, 2006.

[58]

 G. E. Hinton, S. Osindero, and Y. W. Teh, A fast learning
algorithm  for  deep  belief  nets, Neural Comput.,  vol. 18,
no. 7, pp. 1527–1554, 2006.

[59]

 M.  S.  Long,  Y.  Cao,  Z.  J.  Cao,  J.  M.  Wang,  and  M.  I.
Jordan,  Transferable  representation  learning  with  deep
adaptation  networks, IEEE Trans. Pattern Anal. Mach.
Intell., vol. 41, no. 12, pp. 3071–3085, 2019.

[60]

 L. Zhang, J. Liu, B. Zhang, D. Zhang, and C. Zhu, Deep
cascade  model-based  face  recognition:  When  deep-

[61]

  Yiming Tang et al.:   State-of-the-Art Development of Complex Systems and Their Simulation Methods 287

 



layered  learning  meets  small  data, IEEE  Trans.  Image
Proc., vol. 29, pp. 1016–1029, 2019.
 H.  R.  Li,  Q.  C.  Zhang,  and  D.  B.  Zhao,  Deep
reinforcement  learning-based  automatic  exploration  for
navigation in unknown environment, IEEE Trans. Neural
Netw. Learn. Syst., vol. 31, no. 6, pp. 2064–2076, 2020.

[62]

 T.  T.  Nguyen,  N.  D.  Nguyen,  and  S.  Nahavandi,  Deep
reinforcement learning for multiagent systems: A review
of  challenges,  solutions,  and  applications, IEEE Trans.
Cybern., vol. 50, no. 9, pp. 3826–3839, 2020.

[63]

 L. R. Chen, Z. R. Zhang, J.  F.  Cao, and X. Q. Wang, A
novel  method  of  combining  nonlinear  frequency
spectrum  and  deep  learning  for  complex  system  fault
diagnosis, Measurement, vol. 151, p. 107190, 2020.

[64]

 Y. S.  Lv,  Y.  J.  Duan,  W.  W.  Kang,  Z.  X.  Li,  and  F.  Y.
Wang,  Traffic  flow  prediction  with  big  data:  A  deep
learning  approach, IEEE  Trans.  Intell.  Transp.  Syst.,
vol. 16, no. 2, pp. 865–873, 2015.

[65]

 M. M. Hanczyc,  Engineering life:  A review of  synthetic
biology, Artif. Life, vol. 26, no. 2, pp. 260–273, 2020.

[66]

 Y.  S.  Ong  and  A.  Gupta,  AIR5:  Five  pillars  of  artificial
intelligence  research, IEEE Trans. Emerg. Top. Comput.
Intell., vol. 3, no. 5, pp. 411–415, 2019.

[67]

 J. Q. Liu and K. Shimohara, Molecular computation and
evolutionary  wetware:  A  cutting-edge  technology  for
artificial  life  and nanobiotechnologies, IEEE Trans. Syst.
Man Cybern. Part C, vol. 37, no. 3, pp. 325–336, 2007.

[68]

 K.  Dale  and  P.  Husbands,  The  evolution  of  reaction-
diffusion  controllers  for  minimally  cognitive  agents,
Artif. Life, vol. 16, no. 1, pp. 1–19, 2010.

[69]

 C. Holden, Darwin’s place on campus is secure—but not
supreme, Science, vol. 311, no. 5762, pp. 769–771, 2006.

[70]

 S.  Q.  Zhang,  H.  Y.  Zhao,  and  M.  K.  Ng,  Functional
module  analysis  for  gene  coexpression  networks  with
network  integration, IEEE/ACM Trans. Comput. Biol.
Bioinformat., vol. 12, no. 5, pp. 1146–1160, 2015.

[71]

 L. L. Chang, Z. J. Zhou, Y. W. Chen, T. J. Liao, Y. Hu,
and L. H. Yang, Belief rule base structure and parameter
joint  optimization  under  disjunctive  assumption  for
nonlinear  complex  system  modeling, IEEE Trans. Syst.
Man Cybern. Syst., vol. 48, no. 9, pp. 1542–1554, 2018.

[72]

 D. A. Burbano-L, G. Russo, and M. Di Bernardo, Pinning
controllability  of  complex  network  systems  with  noise,
IEEE Trans. Control Netw. Syst.,  vol. 6,  no. 2,  pp. 874–
883, 2019.

[73]

 M.  Mamei,  A.  Roli,  and  F.  Zambonelli,  Emergence  and
control  of  macro-spatial  structures  in  perturbed  cellular
automata,  and  implications  for  pervasive  computing
systems, IEEE  Trans.  Syst.  Man  Cybern.  Part  A: Syst.
Humans, vol. 35, no. 3, pp. 337–348, 2005.

[74]

 P.  Wang.  X.  Z.  Xu,  S.  Feng,  and  A.  H.  Xu,  A  novel
evolutionary-fuzzy  control  algorithm  for  complex
systems, J. Syst. Eng. Electron., vol. 13, no. 3, pp. 52–60,
2002.

[75]

 X.  P.  Liu,  E.  Z.  Wang,  L.  P.  Zheng,  and  X.  W.  Wei,
Study  on  template  for  parallel  computing  in  visual
parallel  programming  platform,  in Proc.  of  the  1st Int.
Symp.  Pervasive  Computing  and  Applications, Urumqi,

[76]

China, 2006, pp. 476–481.
 X.  P.  Liu,  J.  Qin,  and  Y.  M.  Tang,  An  innovative
function-tree building method based on similarity theory
and  extension  theory,  in Proc.  of  the  7th Int.  Conf.
Computer-Aided  Industrial  Design  and  Conceptual
Design (CAID & CD),  Hangzhou,  China,  2006,  pp.
199–204.

[77]

 X.  P.  Liu,  H.  Shi,  Z.  Q.  Mao,  and  L.  P.  Zheng,
Cooperative template mechanism for cooperative design,
in Proc.  of  9th  Int.  Conf.  on  Computer  Supported
Cooperative Work in Design II, W. M. Shen, K. M. Chao,
Z.  K.  Lin,  J.  P.  A.  Barthès,  A.  James,  eds.  Berlin,
Germany: Springer, vol. 3865, pp. 102–111, 2006.

[78]

 S. J. Li, H. S. Zhu, L. P. Zheng, and L. Li, A perceptual-
based noise-agnostic 3D skeleton motion data refinement
network, IEEE Access, vol. 8, pp. 52927–52940, 2020.

[79]

 Y. Chen, Y. Zhao, S. J. Li, W. M. Zuo, W. Jia, and X. P.
Liu,  Blind  quality  assessment  for  cartoon  images, IEEE
Trans. Circuits and Syst. Video Technol.,  vol. 30,  no. 9,
pp. 3282–3288, 2020.

[80]

 S. J. Li, Y. Zhou, H. S. Zhu, W. J. Xie, Y. Zhao, and X.
P.  Liu,  Bidirectional  recurrent  autoencoder  for  3D
skeleton  motion  data  refinement, Comput. Graph.,
vol. 81, pp. 92–103, 2019.

[81]

 M.  W.  Cao,  L.  Li,  W.  J.  Xie,  W.  Jia,  Z.  H.  Lv,  L.  P.
Zheng,  and  X.  P.  Liu,  Parallel  K  nearest  neighbor
matching  for  3D  reconstruction, IEEE Access,  vol. 7,
pp. 55248–55260, 2019.

[82]

 M. W. Cao, W. Jia, Z. H. Lv, W. J. Xie, L. P. Zheng, and
X. P. Liu, Two-pass K nearest neighbor search for feature
tracking, IEEE Access, vol. 6, pp. 72939–72951, 2018.

[83]

 Y. Zhao,  G. P.  Li,  W. J.  Xie,  W. Jia,  H. Min,  and X. P.
Liu, GUN: Gradual upsampling network for single image
super-resolution, IEEE Access,  vol. 6,  pp. 39363–39374,
2018.

[84]

 Y. Zhao, R. G. Wang, W. Jia, W. M. Zuo, X. P. Liu, and
W. Gao,  Deep reconstruction of  least  significant  bits  for
bit-depth  expansion, IEEE Trans. Image Proc.,  vol. 28,
no. 6, pp. 2847–2859, 2019.

[85]

 J.  Q.  Hu and Y.  Q.  Cao,  Fuzzy Petri  net  based dynamic
risk  analysis  of  complex  system  considering  protection
layers,  in Proc.  of  the 12th Int.  Conf.  Fuzzy Systems and
Knowledge Discovery (FSKD), Zhangjiajie, China, 2015,
pp. 308–312.

[86]

 L.  Y.  Liu,  X.  P.  Wu,  and  Q.  Ye,  Safety  analysis  for
complex  systems  based  on  petri  nets  and  reachability
trees,  in Proc.  of  Second  Int.  Symp.  Intelligent
Information  Technology  Application,  Shanghai,  China,
2008, pp. 578–582.

[87]

 H.  S.  Hu  and  M.  C.  Zhou,  A  petri  net-based  discrete-
event  control  of  automated  manufacturing  systems  with
assembly operations, IEEE Trans. Control Syst. Technol.,
vol. 23, no. 2, pp. 513–524, 2015.

[88]

 F.  M.  Lu,  Q.  T.  Zeng,  M.  C.  Zhou,  Y.  X.  Bao,  and  H.
Duan, Complex reachability trees and their application to
deadlock detection for unbounded petri nets, IEEE Trans.
Syst. Man Cybern. Syst.,  vol. 49,  no. 6,  pp. 1164–1174,
2019.

[89]

    288 Complex System Modeling and Simulation, December  2021, 1(4): 271−290

 



 Y. Yang and H. S. Hu, A distributed control approach to
automated  manufacturing  systems  with  complex  routes
and  operations  using  petri  nets, IEEE Trans. Syst. Man
Cybern. Syst, vol. 50, no. 10, pp. 3670–3684, 2020.

[90]

 H. S.  Hu,  R.  Su,  M.  C.  Zhou,  and Y.  Liu,  Polynomially
complex  synthesis  of  distributed  supervisors  for  large-
scale  AMSs  using  petri  nets, IEEE Trans. Control Syst.
Technol., vol. 24, no. 5, pp. 1610–1622, 2016.

[91]

 B.  Li,  M.  Khlif-Bouassida,  and  A.  Toguyéni.  Reduction
rules  for  diagnosability  analysis  of  complex  systems
modeled by labeled petri nets, IEEE Trans. Automat. Sci.
Eng., vol. 17, no. 2, pp. 1061–1069, 2020.

[92]

 Y.  M.  Tang  and  F.  J.  Ren,  Fuzzy  systems  based  on
universal  triple  I  method  and  their  response  functions,
Int. J. Informat. Technol. Decis. Making,  vol. 16,  no. 2,
pp. 443–471, 2017.

[93]

 Y. M. Tang and F.  J.  Ren,  Universal  triple I  method for
fuzzy  reasoning  and  fuzzy  controller, Iranian  J.  Fuzzy
Syst., vol. 10, no. 5, pp. 1–24, 2013.

[94]

 Y.  M.  Tang  and  X.  P.  Liu,  Differently  implicational
universal triple I method of (1, 2, 2) type, Comput. Math.
Appl., vol. 59, no. 6, pp. 1965–1984, 2010.

[95]

 Y.  M.  Tang  and  X.  Z.  Yang,  Symmetric  implicational
method  of  fuzzy  reasoning, Int. J. Approx. Reason.,
vol. 54, no. 8, pp. 1034–1048, 2013.

[96]

 Y. M. Tang, X. Z. Yang, X. P. Liu, and J. Yang, Double
fuzzy  implications-based  restriction  inference  algorithm,
Iranian J. Fuzzy Syst., vol. 12, no. 6, pp. 17–40, 2015.

[97]

 Y.  M.  Tang  and  F.  J.  Ren,  Variable  differently
implicational  algorithm  of  fuzzy  inference, J. Intell.
Fuzzy Syst., vol. 28, no. 4, pp. 1885–1897, 2015.

[98]

 Y.  M.  Tang  and  W.  Pedrycz,  On  the a(u,  v)-symmetric
implicational method for R- and (S, N)-implications, Int.
J. Approx. Reason., vol. 92, pp. 212–231, 2018.

[99]

 Y.  M.  Tang  and  W.  Pedrycz,  On  continuity  of  the
entropy-based  differently  implicational  algorithm,
Kybernetika, vol. 55, no. 2, pp. 307–336, 2019.

[100]

 Y.  M.  Tang,  X.  H.  Hu,  W.  Pedrycz,  and  X.  C.  Song,
Possibilistic  fuzzy  clustering  with  high-density
viewpoint, Neurocomputing,  vol. 329,  pp. 407–423,
2019.

[101]

 Y. M. Tang, F. J.  Ren, and W. Pedrycz, Fuzzy C-means
clustering  through  SSIM  and  patch  for  image

[102]

segmentation, Appl. Soft Comput,  vol. 87,  p. 105928,
2020.
 D. S. Yang, Y. H. Sun, B. W. Zhou, X. T. Gao, and H. G.
Zhang,  Critical  nodes  identification  of  complex  power
systems based on electric  cactus  structure, IEEE Syst. J.,
vol. 14, no. 3, pp. 4477–4488, 2020.

[103]

 Y.  M.  Tang  and  W.  Pedrycz,  Oscillation-bound
estimation  of  perturbations  under  Bandler-Kohout
subproduct, IEEE  Trans.  Cybern.,  doi:  10.1109/TCYB.
2020.3025793.

[104]

 T.  Pakula,  Dielectric  relaxation  modeling  in  complex
polymer  systems, IEEE Trans. Dielect. Elect. Insulat.,
vol. 8, no. 6, pp. 936–941, 2001.

[105]

 Y.  M.  Tang,  W.  Pedrycz,  and  F.  J.  Ren,  Granular
symmetric  implicational  method, IEEE  Trans.  Emerg.
Top. Comput. Intell., doi: 10.1109/TETCI.2021.3100597.

[106]

 W.  L.  Noorduin,  A.  Grinthal,  L.  Mahadevan,  and  J.
Aizenberg,  Rationally  designed  complex,  hierarchical
microarchitectures, Science,  vol. 340,  no. 6134,  pp. 832–
837, 2013.

[107]

 Y.  Zhang,  Y.  B.  Li,  B.  Yang,  X.  Zheng,  and  M.  Chen,
Risk assessment of COVID-19 based on multisource data
from  a  geographical  viewpoint, IEEE Access,  vol. 8,
pp. 125702–125713, 2020.

[108]

 L. F. Li, Q. P. Zhang, X. Wang, J. Zhang, T. Wang, T. L.
Gao,  W.  Duan,  K.  K.  F.  Tsoi,  and  F.  Y.  Wang,
Characterizing the propagation of situational information
in  social  media  during  COVID-19  epidemic:  A  case
study  on  Weibo, IEEE Trans. Comput. Soc. Syst.,  vol. 7,
no. 2, pp. 556–562, 2020.

[109]

 N. N. Zheng, S. Y. Du, J. J. Wang, H. Zhang, W. T. Cui,
Z. J.  Kang, T. Yang, B. Lou, Y. T. Chi,  H. Long, et al.,
Predicting  COVID-19  in  China  using  hybrid  AI  model,
IEEE Trans. Cybern.,  vol. 50,  no. 7,  pp. 2891–2904,
2020.

[110]

 J.  Forsman,  R.  Moll,  and  C.  Linder,  Extending  the
theoretical  framing  for  physics  education  research:  An
illustrative  application of  complexity  science, Phys. Rev.
ST Phys. Educ. Res., vol. 10, no. 2, p. 020122, 2014.

[111]

 J.  Ruths  and  D.  Ruths,  Control  profiles  of  complex
networks, Science,  vol. 343,  no. 6177,  pp. 1373–1376,
2014.

[112]

Yiming  Tang received  the  PhD  degree
from  Hefei  University  of  Technology  in
2011.  He  is  currently  an  associate
professor  at  Hefei  University  of
Technology  and  a  visiting  professor  at
University  of  Alberta,  Canada.  His
research  interests  include  fuzzy  system,
fuzzy  reasoning,  clustering,  complex

system,  image  processing,  and  affective  computing.  He  has
published more than 70 papers.  He is  a  senior  member of  CCF
(China  Computer  Federation),  and  also  a  senior  member  of
CAAI  (Chinese  Association  for  Artificial  Intelligence).  He
serves as a professional committee of cooperative computing of
CCF.

Lin  Li received  the  MEng  and  PhD
degrees  in  computer  application
technology  from  Hefei  University  of
Technology,  China  in  2002  and  2016,
respectively.  She  is  currently  an  associate
professor  at  the  School  of  Computer  and
Information,  Hefei  University  of
Technology. Her research interests include

visualization  and  system  simulation,  computer  graphics,
complex  system,  computer  animation,  and  cooperative
computing. She has published more than 30 papers in important
journals and conferences at home and abroad. She won the third
prize of Science and Technology Progress in Anhui province.

  Yiming Tang et al.:   State-of-the-Art Development of Complex Systems and Their Simulation Methods 289

 



Xiaoping  Liu received  the  MS  and  PhD
degrees  from  Hefei  University  of
Technology,  China  in  1987  and  1999,
respectively. He is currently a professor at
the  School  of  Computer  and  Information,
Hefei University of Technology. He serves
as  the  chairperson  of  the  Association  for
Science  and  Technology  of  Hefei

University of Technology. He is an editor of Journal of System
Simulation, Journal  of  CAD&CG,  and Journal  of  Hefei
University  of  Technology.  His  research  interests  include
visualization  and  system  simulation,  complex  system,  image
processing,  computer-aided  technology,  and  cooperative
computing.

    290 Complex System Modeling and Simulation, December  2021, 1(4): 271−290

 


