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Abstract: As  the  critical  component  of  manufacturing  systems,  production  scheduling  aims  to  optimize

objectives  in  terms  of  profit,  efficiency,  and  energy  consumption  by  reasonably  determining  the  main  factors

including processing path, machine assignment, execute time and so on. Due to the large scale and strongly

coupled  constraints  nature,  as  well  as  the  real-time  solving  requirement  in  certain  scenarios,  it  faces  great

challenges  in  solving  the  manufacturing  scheduling  problems.  With  the  development  of  machine  learning,

Reinforcement  Learning  (RL)  has  made  breakthroughs  in  a  variety  of  decision-making  problems.  For

manufacturing scheduling problems, in this paper we summarize the designs of state and action, tease out RL-

based algorithm for  scheduling,  review the applications of  RL for  different  types of  scheduling problems,  and

then discuss the fusion modes of reinforcement learning and meta-heuristics. Finally, we analyze the existing

problems in current research, and point out the future research direction and significant contents to promote the

research and applications of RL-based scheduling optimization.
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1    Introduction

Production  scheduling  is  a  crucial  connecting
component  in  the  manufacturing  system.  To  improve
the production efficiency and effectiveness, scheduling
algorithms  play  an  important  role,  which  have  always
been  a  significant  research  topic  in  interdisciplinary
fields,  like  industrial  engineering,  automation,
management science, and so on. Production scheduling
algorithms  mainly  include  three  categories,  accurate
algorithms,  heuristics,  and  meta-heuristics.  The  exact
algorithm can guarantee to obtain the optimal solution
in  theory,  but  it  is  difficult  to  solve  the  large-scale
problems efficiently and effectively due to the NP-hard
nature.  Heuristics  adopt  some  rules  to  construct
scheduling  solutions  efficiently  but  without  global
optimization perspective. Moreover, the design of rules

highly  depends  on  the  deep  understanding  of  the
problem  specific  characteristics.  Meta-heuristics  can
obtain excellent scheduling solutions within acceptable
computation time, but the design of search operators is
seriously  problem  dependent.  At  the  same  time,  for
large-sacle problems the iterative search process is very
time-consuming  and  difficult  to  be  applied  for  real-
time scenarios, such as Meituan on-line food delivery.

With  the  development  of  artificial  intelligence,
Reinforcement  Learning  (RL)  has  been  successfully
applied  to  the  sequential  decision-making  problems,
such  as  games[1] and  robots  control[2].  During  recent
years,  RL  has  been  successfully  applied  to  solve
several  combinatorial  optimization  problems,  such  as
Vehicle  Routing  Problem[3] (VRP)  and  Traveling
Salesman  Problem[4] (TSP).  Supposing  a  production
scheduling  problem  can  be  regarded  as  the
environment of RL, an agent can learn a policy or rule
via reasonable designs of actions and states, as well as
interaction  with  the  environment  through  a  large
number of offline training. Such a new idea provides a
novel  approach  for  solving  scheduling  problems,
especially  the  uncertain  and  dynamic  problems  with
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high  real-time  requirements.  By  retrieving  in  Scopus
with “reinforcement  learning” and “shop  scheduling”
as  the  subject  terms,  it  finds  214  articles. Figure 1
shows the statistics of these articles. It can be observed
that  articles  about  RL-based  shop  scheduling
optimization  have  increased  rapidly  since  2015.
Table 1 lists  the  publications  in  different  directions
with  more  than  3  relevant  articles.  Clearly,  by  fusing
operation  research  and  artificial  intelligence,
scheduling  optimization  based  on  RL  has  become  an
emerging topic in the relate fields.

Since  RL  has  been  a  hotspot,  this  paper  provides  a
review  of  the  RL-based  research  progress  for
manufacturing scheduling.  The remainder of the paper
is  organized as  follows.  Section 2  reviews the  designs

of  action  and  state  in  RL for  scheduling  optimization.
In  Section  3,  RL-based  algorithms  for  scheduling  are
summarized.  Section 4 reviews the applications of  RL
for  different  types  of  scheduling  problems.  Section  5
discusses  the  integration  mode  of  RL  and  meta-
heuristics. Finally, we analyze the existing problems in
current  research  and  point  out  the  future  research
direction  and  significant  contents  to  promote  the
development  and  applications  of  RL-based  scheduling
optimization.

2    State and Action Designs for Scheduling

Different from supervised learning, RL allows an agent
to  learn  optimal  behavior  without  the  labelled  data
through  trial-and-error  interactions  with  the
environment  so  as  to  maximize  a  numerical  reward
signal. Figure 2 illustrates  the  interaction  between  the
agent and the environment in the framework of RL. To
be specific, at time t, the agent senses the state signal st
from the  environment  and  performs  action at.  Thus,  a
reward signal rt+1 can be obtained and the environment
changes to a new state st+1. Then the agent updates the
policy according to rt+1 and selects the action at+1 under
the  state st+1 to  obtain  the  reward  signal rt+2.  Through
interaction  with  the  environment,  the  agent  learns  the
decision-making  policy  in  the  process  of  trial-and-
error.  Finally,  the  agent  can  select  appropriate  actions
according  to  the  policy  under  state s to  maximize  the
cumulative reward.

Through  interaction  with  the  environment  by
extensive offline training, an agent can learn a policy or
rule.  As  crucial  component  in  RL,  reasonable  designs
of  action  and  state  can  describe  the  scheduling
environment  accurately  and  improve  the  efficiency  of
the learning process. In this section, we first review the
designs of state and action for scheduling.

2.1    Designs of state for scheduling

The  designs  of  state  for  scheduling  problem  can  be
divided into three categories.

(1)  Take  the  production  information  or  the  statistics
of  production  information  as  the  state,  including
processing  information,  processing  environment
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Fig. 1    Statistics of the RL-based scheduling in Scopus.

 

 

Table 1    Source of the articles.

No. Publication Number of
articles

1 Lecture Notes in Computer Science 20
2 International J. of Production Research 9
3 Computers and Industrial Engineering 7
4 IEEE Access 7

5 IEEE Trans. on Automation Science and
Engineering 5

6 Procedia CIRP 5
7 European Journal of Operational Research 4
8 Winter Simulation Conference 4

9 International J. of Advanced Manufacturing
Technology 4

10 International J. of Simulation Modelling 3
11 IEEE Trans. on Industrial Informatics 3
12 Computer Integrated Manufacturing Systems 3

13 Advances in Intelligent Systems and
Computing 3

14 Investigacion Operacional 3
15 Control and Decision 3

16 IEEE International Conference on Robotics
and Automation 3
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information,  order  information,  etc.  This  method  can
effectively  reduce  the  loss  of  information.  However,
the  production  information  is  usually  continuous  data
and the increase of problem scale will bring dimension
disaster.  Thus,  neural  network  is  usually  used  to
approximate the value and policy function.

For the permutation flow shop scheduling, Wang and
Pan[5] selected  the  processing  time  of  jobs  on  each
machine as the state, and proposed an improved pointer
network to learn the policy.  For the dynamic job-shop
scheduling  in  smart  manufacturing,  Wang  et  al.[6]

defined  three  matrices:  the  processing  time  matrix  of
the operations in jobs, the job processing status matrix,
and  the  machine  designated  matrix  as  the  state,  and
input the three matrices into neural network to learn the
policy. Qu et al.[7] adopted the buffer size, workstation
health information, and the workforce condition as the
state of the system to guide the selection of the action
for  the  next  decision.  For  the  dynamic  multi-objective
flexible job shop scheduling problem, Luo et al.[8] took
10 kinds of problem information, such as the number of
machines, average utilization rate of machines, and the
due  date  tightness  as  the  state,  and  proposed  an
effective Deep Q-learning Network (DQN).

(2)  Define  the  state  according  to  the  quantitative
relationship between the production information or the
statistics of the production information. In this way, the
challenge  of  larger  state  space  caused  by  the  increase
of problem scale can be avoided, but it will lead to the
loss of problem information.

For the dynamic single machine scheduling problem,
Wang  and  Usher[9] defined  the  states  according  to  the
quantity situation for the number of jobs in buffer and
the  estimation  of  the  total  lateness,  which  effectively
reduced  the  state  space.  For  the  integrated  scheduling
and  flexible  maintenance  in  deteriorating  multi-state
single machine system, Wang et al.[10] divided the state
space  according  to  the  quantitative  relationship
between  the  mean  normal  processing  time  and  the
estimation  of  the  mean  lateness  of  the  remaining  job.
For the job shop scheduling, Zhao et al.[11] defined six
states  by  comparing  the  estimated  average  slack  time
with the estimated average remaining time.

(3)  Convert  the  scheduling  problem  to  a  graph,  and
define the state according to the situation of the nodes
and edges in the graph. This method well considers the
structural characteristics of the problem and efficiently
represents  the  production  environment.  Meanwhile,
Graph  Neural  Network  (GNN),  Convolutional  Neural

Network  (CNN),  Graph  Convolutional  Network
(GCN),  and  other  networks  are  usually  adopted  to
extract the problem characteristics effectively.

Zhang  et  al.[12] adopted  disjunctive  graph  to  model
the  job  shop  scheduling  problem  and  proposed  a
Proximate  Policy  Optimization  (PPO)  to  optimize  the
GNN.  For  the  adaptive  job  shop  scheduling  problem,
Han  and  Yang[13] represented  the  production
information  as  multi-channel  images,  and  a  CNN was
used to approximate the state-action value function. For
the  dynamic  scheduling  of  flexible  manufacturing
system,  Hu  et  al.[14] used  Petri-net  to  model  the
problem  and  a  GCN  was  adopted  to  approximate  the
state-action value function in DQN.

In addition,  there are some other ways to design the
state.  For  example,  for  the  permutation  flow  shop
scheduling  problem,  Zhang  and  Ye[15] adopted  the
unprocessed  jobs  set  on  the  first  machine  as  the  state.
When  there  are n unprocessed  jobs,  the  number  of
states  is  2n.  For  the  unrelated  parallel  machine
scheduling  problem  with  sequence  dependent  setup
time,  Silva  et  al.[16] proposed  a  multi-agent
optimization  framework  and  designed  four
neighborhood structures as the state of the algorithm.

In  conclusion,  it  can  be  seen  that  there  are  many
ways  of  state  designs.  The  preeminent  state  designs
need to balance the loss of information and the size of
state  space.  Meanwhile,  the  characteristics  of  the
scheduling  problem  and  the  optimization  goal  also
should be taken into account.

2.2    Designs of action for scheduling

The designs of action for scheduling problem can also
be divided into three categories.

(1) Select heuristics as action. In this way, heuristics
can be used cooperatively, and the number of actions is
constant  and  independent  of  the  size  of  the  problem.
However, the performance of the algorithm depends on
the efficiency and quality of the selected heuristics.

Lin et al.[17] proposed a smart manufacturing factory
framework based on edge computing. Seven heuristics,
such  as  Most-Operations-Remaining  (MOR),  First-In-
First-Out (FIFO), and Longest-Processing-Time (LPT),
were selected as the actions in DQN. For the dynamic
permutation  flow  shop  scheduling  problem,  Yang
et  al.[18] took  five  rules,  such  as  Shortest-Processing-
Time (SPT) and LPT, as the actions of the agents. For
the dynamic flexible job shop scheduling with new job
insertions,  Luo[19] designed  six  scheduling  rules  and
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used these rules as the actions.
(2)  Take  the  scheduling  solution,  such  as  job

sequence, as the action. This method is mainly adopted
to solve the static scheduling problem by using the end-
to-end  mode.  In  this  way,  the  agent  can  quickly
construct a scheduling solution.

For the permutation flow shop scheduling, Wang and
Pan[5] designed  a  new  policy  network  to  model  the
problem.  The  policy  network  can  directly  output  the
scheduling sequence using the processing information.
For  the  workflow  management  system,  Kintsakis
et al.[20] designed a neural network to achieve sequence
to  sequence  generation  and  directly  output  the
scheduling solutions.

(3)  Define  the  scheduling  operators  based  on  the
problem  characteristics  as  action.  The  agent  learns  to
select  an  appropriate  operator,  such  as  deciding  the
machine  assignment,  adjusting  the  job  sequence,  etc.,
to generate a new solution. This approach should have
a  good  understanding  of  the  problem  to  avoid
generating infeasible solutions.

For the online single machine scheduling, Li et al.[21]

took the length of the jobs in the waiting queue as the
state,  and  defined  the  selection  of  an  unprocessed  job
as  the  action.  Q-learning,  single  step  State-Action-
Reward-State-Action  (SARSA),  multi-step  Watkins’s
Q,  and  multi-step  SARSA  were  adopted  to  solve  the
problem,  respectively.  For  the  job  shop  scheduling
problems, Williem and Setiawan[22] selected the critical
path  schedule  as  initial  state.  Two  operators,  pool-
reassignment  and  task-move,  were  designed  as  the
action.  To  solve  the  flow  shop  scheduling  with  two-
robot  job  transfer,  Arviv  et  al.[23] proposed  an  RL
algorithm with two Q-learning functions. The transfers
of jobs were defined as the action and the cooperative
scheduling  between  robots  and  production  line  was
realized.  For  the  robust  scheduling  of  semiconductor
manufacturing  facilities,  Park  et  al.[24] constructed  the
state by concatenating four local features of a machine
and defined the selection of an unprocessed job as the
action.

Besides  the  above  three  categories,  there  are  other
methods  for  the  action  design.  For  example,  Silva
et  al.[16] proposed  a  multi-agent  framework  combined
with  metaheuristics  for  unrelated  parallel  machines
scheduling.  The action was defined as the selection of
neighbourhood  structures.  For  the  scheduling  problem
in  multi  storage  edge  computing,  Wang  et  al.[25]

adopted PPO to solve the problem and the selection of

where to execute the task was defined as the action.
It  can  be  seen  that  there  are  various  methods  of

action designs. We need to consider the property of the
problem in order  to  generate  the appropriate  form and
number of actions.

3    RL-Based Algorithm for Scheduling

According to the usage of the environment model,  RL
can be divided into two categories, i.e., model-free RL
and  model-based  RL.  Model-based  RL  relies  on  the
environment model which contains state transition and
reward prediction. Although agents of the model-based
RL can  directly  obtain  the  new state  and  reward,  it  is
difficult  to  obtain  state  transition  information  for
production  scheduling  problems.  Unlike  model-based
RL,  model-free  RL  relies  on  the  real-time  interaction
between  the  agent  and  the  environment  without  state
transition  information.  Currently,  most  of  the  existing
RL-based  production  scheduling  optimization
algrorithms are model-free RL algorithms which can be
further  divided  into  value-based  RL  and  policy-based
RL.

3.1    Value-based RL for scheduling

Value-based  RL  constructs  the  optimal  strategy  by
selecting  the  action  with  the  maximum  state-action
value.  Obviously,  the  construction  and  calculation  of
the value function are the core of  the value-based RL.
This  kind  of  RL  has  high  sample  utilization,  but  it  is
easy  to  over  fit  with  poor  generalization.  The
representative  algorithms  of  value-based  RL  on
production  scheduling  optimization  include  SARSA,
Q-learning, and DQN.
3.1.1    SARSA for scheduling
SARSA  is  an  on-policy  Temporal  Difference  (TD)
algorithm.  In  the  iterative  learning  process,  agent
adopts the ε-greedy method to select at under the state
st and  obtains  the  reward rt+1.  Then,  the  environment
changes  to  a  new  state st+1

[26].  For  the  new  state,  the
agent  continues  to  select at+1 by  using  the ε-greedy
method  and  updates  the  value  function q(st,at)  as
follows:
 

q(st,at) = q(st,at)+α× (rt+1+γ×q(st+1,at+1)−q(st,at))
(1)

where α is the learning rate and γ is the discount factor.
For  scheduling  optimization,  Palombarini  et  al.[27]

proposed  a  novel  approach  to  generate  rescheduling
knowledge based on SARSA and an industrial instance
was tested to verify the effectiveness of the algorithm.
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Chen  et  al.[28] designed  a  self-learning  Genetic
Algorithm  (GA)  and  introduced  SARSA  and  Q-
learning  to  improve  the  search  capability  in  different
stages.  Orhean  et  al.[29] adopted  SARSA  to  solve  the
scheduling  problem  in  heterogeneous  distributed
systems.  Experiments  show  that  the  performance  of
SARSA was better than Q-learning on this problem. As
for  dynamic  multi-site  scheduling  problem,  Aissani
et  al.[30] designed  a  multi-agent  approach  by  using
SARSA. The effectiveness of the proposed method was
verified  by  comparing  with  GA  and  mixed  integer
linear program.
3.1.2    Q-learning for scheduling
Different from SARSA, Q-learning is an off-policy TD
algorithm.  It  updates  the  value  function q(st,at)  as
follows:
 

q(st,at) = q(st,at)+α×
(
rt+1+γ×max

a
q(st+1,a)−q(st,at)

)
(2)

Unlike  SARSA,  Q-learning  selects  the  maximum
value  of q(st+1, a)  under  the  new  state st+1 to  update
q(st, at)[26].  In recent years, Q-learning has made some
progress for scheduling optimization. To solve flexible
job-shop  scheduling,  Bouazza  et  al.[31] applied  Q-
learning  to  select  rules  such  as  Shortest-Queue  (SQ)
and  Less-Queued-Element  (LQE)  to  realize  machine
selection.  Meanwhile,  some  rules,  such  as  FIFO  and
Shortest-Job-First  (SJF),  were  selected  to  sequence
jobs. Moreover, two Q-matrices were adopted to record
the  state-action  value.  For  the  dynamic  job  shop
scheduling,  Wang[32] proposed  a  weighted  Q-learning
algorithm  based  on  clustering  and  dynamic  search.
Four  state  features  were  defined  to  reduce  the
dimension  of  the  state  space.  An  improved  and
iteration  update  strategy  was  proposed  to  select  the
optimal  state-action  pair.  For  adaptive  order
dispatching  in  the  semiconductor  industry,  Stricker  et
al.[33] designed an RL-based adaptive control system by
using  Q-learning.  To  address  the  uncertainty  of
production  environment,  Wang  and  Yan[34] proposed
an  adaptive  scheduling  mechanism  based  on  Q-
learning.  To avoid  the  impact  of  large  state  space  and
minimize  the  error  between  the  clustering  and  real
states,  the  state  membership  was  included  when
updating  the  weighted  Q-value.  Experiments  showed
that  this  strategy  can  improve  the  performance  of  the
algorithm  effectively.  For  the  adaptive  assembly
scheduling  of  aero-engine,  Wang  et  al.[35] proposed  a
double-layer  Q-learning  method.  The  top  level  of  Q-

learning was used to learn machine allocation, and the
bottom  level  of  Q-learning  was  used  to  learn  the
scheduling  policy  for  the  jobs  on  each  machine.  The
experimental  results  showed  that  the  proposed
algorithm  is  able  to  achieve  good  and  adaptive
performances.
3.1.3    Deep Q-learning network for scheduling
Both  SARSA  and  Q-learning  adopt  a  table  to  record
the  state-action  value,  but  the  table  is  no  longer
applicable  when  the  scale  of  the  state  space  or  the
action  space  is  too  large.  Therefore,  the  deep  Q-
learning network is proposed by integrating Q-learning
and the  deep neural  network to  approximate  the  value
function.  DQN  uses  experience  replay  and  target
network  to  overcome  the  instability  of  the  algorithm.
Liu et al.[36] provided a review about the DQN and its
improved methods.

For  scheduling  optimization,  Waschneck  et  al.[37]

presented  the  Deep  RL  (DRL)  method  for  production
scheduling  by  using  DQN  and  adopted  a  case  of
semiconductor  production  to  validate  the  proposed
algorithm.  For  the  flexible  shop  floor,  Hu  et  al.[38]

proposed  an  adaptive  DRL  based  AGVs  real-time
scheduling  approach  by  using  DQN.  The  suitable
scheduling  rules  and  AGVs  can  be  selected  under
different  states.  The  real-world  case  was  used  to
validate  the  effectiveness  of  the  algorithm.  For  the
closed-loop rescheduling, Palombarini and Martínez[39]

adopted the Gantt chart and prior knowledge as inputs,
and proposed a rescheduling algorithm based on DQN.
The effectiveness of the algorithm was verified with an
industrial example.

Among  the  three  value-based  RL  algorithms,  Q-
learning  is  greedy  and  easy  to  be  trapped  into  local
optimization. SARSA is relatively conservative, but the
exploration  rate  in  the ε-greedy  method  needs  to  be
controlled to ensure the convergence.  DQN is  suitable
for  solving  the  large-scale  problems,  but  the  sampling
of  DQN  is  inefficient  and  strongly  dependent  on  the
parameter setting.

3.2    Policy-based RL for scheduling

Different  from  the  value-based  RL,  the  policy-based
RL  does  not  consider  the  value  function  and  directly
searches  for  the  best  policy.  Moreover,  the  policy-
based  RL  usually  adopts  a  neural  network  to  fit  the
policy  function.  Such  kinds  of  algorithms  have  their
own  exploration  mechanisms,  but  the  sample
utilization  rate  is  low  and  it  is  easy  to  cause  local
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optimization  with  large  variance.  At  present,  the
policy-based  RL  has  not  been  widely  used  for
scheduling  problems.  The  typical  algorithms  include
REINFORCE,  PPO,  and  Trust  Region  Policy
Optimization (TRPO).

For  permutation  flow-shop  scheduling  problem,
Wang and Pan[5] proposed a novel pointer network, and
adopted  REINFORCE  method  to  train  the  network.
The  superior  performance  of  the  algorithm  was
demonstrated  by  comparing  with  other  algorithms  on
the  benchmark.  Rummukainen  and  Nurminen[40]

applied  PPO  to  solve  the  stochastic  economic  lot
scheduling  problem.  Zhang  et  al.[12] used  disjunctive
graph to  describe  the  job shop scheduling and input  it
into  GNN.  PPO  is  used  to  train  the  network.
Experiments  showed  that  the  algorithm  has  good
performance. Considering the characteristics of smaller
batch  size,  larger  product  variety,  and  complex
processes  in  production  system,  Kuhnle  et  al.[41]

designed  an  autonomous  dispatching  algorithm  based
on  TRPO.  The  effectiveness  of  the  proposed
scheduling  algorithm  was  verified  by  using  the  real-
world case in the semiconductor industry.

Among  the  three  policy-based  RL  methods,
REINFORCE belongs  to  policy  gradient  based  Monte
Carlo  algorithm  with  good  stability  but  low  sample
utilization.  The  performances  of  the  PPO  and  TRPO
are  not  strongly  dependent  on  super  parameters,  but
their  sampling  rates  are  low  with  strong  running
environment support.

In  addition  to  the  value-based  RL  and  policy-based
RL, there are other types of RL methods, such as actor-
critic  method.  To  solve  the  job  shop  scheduling
problem,  Liu  et  al.[42] proposed  a  parallel  training
method  to  train  the  model  using  asynchronous  update
and  DDPG.  Hubbs  et  al.[43] applied  advantage  actor-
critic  to  solve  chemical  production  scheduling.
Experiments  showed  that  the  speed  and  flexibility  of
RL are  helpful  to  realize  the  real-time optimization  of
scheduling  systems.  For  online  job  scheduling,  Chen
and  Tian[44] proposed  NeuRewriter  to  learn  the  policy
and  used  actor-critic  method  to  train  the  neural
network.  The  experimental  results  showed  the
effectiveness of the proposed algorithm.

Figure 3 shows  the  statistics  of  the  RL-based
algorithm  for  scheduling.  Although  there  are  many
works  on  the  value-based  RL  for  solving  production
scheduling,  the  study  of  policy-based  RL  for
scheduling remains a large space.

4    RL Applications for Scheduling

Regarding the applications of RL for different types of
scheduling problems, it shows the number of papers in
Fig. 4.  It  can  be  seen  that  RL  is  mostly  used  to  solve
job  shop  scheduling  problems.  The  applications  for
flow  shop,  parallel  machine,  and  single  machine
scheduling  problems  need  further  study.  Next,  we
summarize  the  typical  works  about  RL  for  different
types of scheduling problems.

4.1    RL for single machine scheduling

The  constraint  of  single  machine  scheduling  is
relatively  simple,  and  it  only  needs  to  decide  the  job
process  sequence  of  the  jobs.  Currently,  RL  is  mostly
used  to  solve  single  machine  scheduling  problems
under stochastic, dynamic, or online conditions.

Wang et al.[45] designed and compared two RL-based
methods  to  address  a  stochastic  economic  lot
scheduling problem for a single machine make-to-stock
production system. Xie et  al.[46] adopted Q-learning to
solve  the  online  single  machine  scheduling  problem.
The  states  of  the  machine  and  queue  were  selected  as
the state of the environment. Wang et al.[47] divided 23
states  and  two  virtual  states  according  to  the  situation
of  the  buffer.  Three  scheduling  rules,  Earliest-Due-
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Fig. 3    Statistics of the RL-based algorithm for scheduling.
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Fig. 4    Number  of  papers  of  RL  in  different  types  of
scheduling.
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Date (EDD), SPT, and FIFO, were selected to form the
action  set  to  optimize  three  objectives,  including  the
maximum delay time, the number of delayed jobs, and
the  average  flow  time.  For  multi-state  single  machine
production  scheduling  with  degradation  processes,
Yang et al.[48] proposed a novel heuristic RL method to
deal with the problem more efficiently. For production
scheduling  and  preventive  maintenance  in  multi-state
production  systems,  Yang  et  al.[49] transformed  the
problem into Markov decision process, and designed a
model-free  RL  algorithm  to  solve  the  problem.
Considering that the arrival time of jobs obeys Poisson
distribution, Wang and Usher[50] proposed a Q-learning
to  dynamically  select  three  scheduling  rules  to
minimize  the  average  delay  time  for  single  machine
scheduling problem.

4.2    RL for parallel machine scheduling

Compared  with  the  single  machine  scheduling,  the
parallel machine scheduling needs to consider machine
assignment.  The  design  of  the  state  and  action  of  the
agent  is  complex.  RL-based  parallel  machine
scheduling  optimization  algorithms  are  mainly
designed for the dynamic scheduling problem.

For  the  dynamic  parallel  machine  scheduling
problem  with  sequence-dependant  setup  times  and
machine-job  qualification  consideration,  Zhang
et  al.[51] adopted  Q-learning  to  minimize  the  mean
weighted  tardiness,  and  selected  five  heuristics  as
actions.  For  the  dynamic  scheduling  problem in  smart
manufacturing,  Zhou  et  al.[52] proposed  a  deep  RL
based  method  to  minimize  the  maximum  completion
time.  The  target  network  and  prediction  network  are
used to cooperate in the training process to improve the
stability.  For  the  parallel  machine  scheduling  with
dynamic  arrival  of  job,  Zhang  et  al.[53] converted  the
problem  into  a  Semi-Markov  Decision  Process
(SMDP).  Two heuristics  were  selected  as  actions,  and
R-learning  was  adopted  to  the  problem.  Considering
different  types  of  jobs  arriving  dynamically  in
independent Poisson processes, Zhang et al.[54] applied
an  on-line  R-learning  with  function  approximation  to
solve  the  unrelated  parallel  machine  scheduling.  The
performance  of  the  algorithm  was  better  than  four
heuristics.

4.3    RL for flow shop scheduling

Flow shop scheduling needs to consider the processing
of  multiple  stages.  In  order  to  realize  flexible
manufacturing,  there  are  several  parallel  machines  at

some  stages,  i.e,  hybrid  or  flexible  flow  shop
scheduling. Obviously, it is more complex than parallel
machine scheduling.

For  the  permutation  flow  shop  scheduling,  Zhang
and  Ye[15] transformed  the  problem  into  sequential
decision  problem,  and  proposed  a  Q-learning  based
scheduling  algorithm.  The  effectiveness  of  the
algorithm  was  verified  by  using  the  benchmark
instances.  For  the  non-permutation  flow  shop
scheduling  problem,  Xiao et  al.[55] proposed  a  deep
temporal  difference  RL  network.  Several  scheduling
rules were selected according to the environment state.
Zhang  et  al.[56] converted  the  non-permutation  flow
shop  scheduling  into  an  SMDP  by  constructing  state
features,  actions,  and  reward  function.  Moreover,  an
on-line  TD  (λ)  algorithm  was  applied  to  solve  the
problem.

For  the  hybrid  flow  shop  scheduling  problem,  Han
et  al.[57] designed  an  effective  Q-learning  algorithm.
Boltzmann exploration policy was adopted to trade-off
the  exploration  and  exploitation.  Experiments
demonstrated  the  effectiveness  of  the  method.  For  the
flow  shop  scheduling  with  sequence  dependent  setup
time,  Fonseca-Reyna  and  Martínez-Jiménez[58]

presented  an  improved  Q-learning  to  minimize  the
completion  time  of  all  jobs.  For  the  distributed
assembly no-idle  flow shop scheduling problem, Zhao
et  al.[59] proposed a  cooperative  water  wave algorithm
with  RL,  and  adopted  Q-learning  to  balance  the
exploration  and  exploitation  capabilities  of  the
algorithm.

4.4    RL for job shop scheduling

Compared  with  the  above  three  kinds  of  scheduling
problems,  job  shop  scheduling  needs  to  consider
different  machine  processing  routes  for  jobs.  For
flexible  job  shop  scheduling,  the  machine  assignment
should also be considered. Therefore, the design of the
scheduling algorithm is more complex.

In  the  static  scenario,  Gabel  and  Riedmilier[60]

transformed  the  classical  job  shop  scheduling  into  a
sequential decision problem, and introduced the neural
network  to  approximate  the  value  function.  The
simulation  results  showed  that  the  performance  of  the
designed  algorithm  was  better  than  the  existing  rules.
Combining  the  learning  and  optimization,  Martínez
et  al.[61] proposed  a  two-stage  method  to  solve  the
flexible job shop scheduling problem. In the first stage,
Q-learning was used to realize machine assignment and
job  scheduling  and  the  feasible  solution  can  be
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generated.  In  the  second stage,  several  strategies  were
designed to optimize and improve the obtained feasible
solution.  The  effectiveness  of  the  algorithm  was
verified by comparing with the existing approaches.

In the dynamic scenario, Kardos et al.[62] designed a
Q-learning  based  scheduling  algorithm  to  solve  the
dynamic  job  shop scheduling  problem effectively.  For
the  job  shop  scheduling  problem  with  random  job
arrivals,  Luo et  al.[63] proposed a double loop deep Q-
network  with  exploration  loop  and  exploitation  loop.
For each job, two ratios related to processing time were
selected as  the state  variables.  Zhao et  al.[11] proposed
an  improved  Q-learning  algorithm  to  solve  job  shop
scheduling  problem.  The  concept  of  the  urgency  of
remaining  tasks  was  adopted  to  describe  the  state
space,  and several  scheduling rules,  such as  FIFO and
SPT,  were  selected  as  actions  to  minimize  the  total
tardiness. For the flexible job shop scheduling problem
with  new  job  insertions,  Luo[19] proposed  six
dispatching  rules  and  developed  a  deep  Q-network  to
minimize the total tardiness. For the dynamic job shop
scheduling  problem  with  random  job  arrivals  and
machine  breakdowns,  Shahrabi  et  al.[64] proposed  an
RL-based  variable  neighborhood  search  to  minimize
the  mean  flow  time.  Several  states  were  defined  by
using  the  number  of  jobs  and  the  average  processing
time  of  current  jobs.  Q-learning  was  used  to  learn  the
parameter  selection  in  different  states.  Considering
machine  breakdown,  new  machine  arrival,  job
cancellation,  and  new  job  arrival,  Csáji  et  al.[65]

proposed  a  triple-level  learning  mechanism to  achieve
adaptive behavior and search space reduction. The top
level  is  composed  of  simulated  annealing  algorithm,
and  the  middle  level  contains  an  RL  system,  and  the
lower  level  is  a  numerical  function  approximator.  For
the  assembly  job  shop  scheduling  problem  with
uncertain assembly, Wang et al.[66] designed a dual Q-
learning  method  to  minimize  the  total  weighted
earliness  penalty  and  completion  time  cost.  The  top
level  Q-learning  was  used  to  find  the  dispatching
strategy and the  bottom level  Q-learning was  used for
global optimization. The experiments showed that dual
Q-learning  can  yield  better  results  than  single  Q-
learning.

4.5    RL for other scheduling problems

RL  has  also  been  applied  for  some  other  types  of
scheduling  problems,  such  as  distributed  scheduling,
energy  efficiency  scheduling,  and  multi-objective
scheduling. Moreover, RL has made progress in several

real production scenarios, such as edge computing task
scheduling and agricultural irrigation scheduling.

For  the  multi-site  companies  scheduling  problem,
Aissani  et  al.[30] proposed a  multi-agent  method based
on  RL.  Each  company  was  composed  of  an  observer
agent,  many  inventory  agents,  and  resource  agents.
Compared  with  GA  and  mixed  integer  linear
programming,  the  effectiveness  of  the  proposed
algorithm  was  verified.  To  deal  with  the  high-
dimensional  data  in  the  distributed  system,  Zhou
et  al.[67] presented  a  new  cyber-physical  integration
method  in  smart  factories  for  online  scheduling.  RL
was introduced to improve the decision-making ability
of the scheduling algorithm.

For  the  problem  of  energy  efficiency  scheduling  in
virtual  machines,  Wang  et  al.[68] proposed  a  deep  RL
model  based  on  Quality  of  Service  (QoS)  feature
learning.  Extensive  experiments  showed  that  the
proposed  method  can  effectively  reduce  the  energy
consumption.  For  reducing  energy  consumption  of
machining  job  shops,  He  et  al.[69] proposed  an
improved Q-learning algorithm to optimize total energy
consumption  of  task,  makespan,  and  workload  of
machine simultaneously.

For the dynamic multi-objective job shop scheduling
problem  with  just-in-time  constraint,  Hong  and
Prabhu[70] modelled  the  problem  as  SMDP  and
introduced  a  novel  scheduling  algorithm  by  using  Q-
learning.  The  performance  of  the  algorithm  was
significantly better than other scheduling rules. For the
multi-objective  scheduling  in  semiconductor  industry,
Kuhnle  et  al.[41] used  a  weighted  method  to  deal  with
the  two  objectives  optimization  problem.  By
introducing  RL,  the  scheduling  solution  can  be
generated  automatically.  For  the  multi-objective
scheduling  problem  with  uncertain,  Zhou  et  al.[71]

presented  a  new  RL-based  scheduling  method  with
composite  reward  functions  to  optimize  makespan,
production  cost,  balance  workloads,  and  other
indicators.  For  the  multi-objective  scheduling problem
in  heterogeneous  cloud  environment,  Yuan  et  al.[72]

designed  a  multi-objective  reinforcement  learning
based  on  analytic  hierarchy  process  to  optimize
execution  time,  energy  consumption,  and  execution
cost.

For  the  offloading  scheduling  in  vehicle  edge
computing, Zhan et al.[73] transformed the problem into
a  Markov  decision  process  and  introduced  CNN  to
approximate both policy and value function. Moreover,
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PPO  was  adopted  to  yield  better  performance  than
many  heuristic  algorithms.  For  the  irrigation
scheduling,  Yang  et  al.[74] introduced  a  deep  RL
algorithm  to  realize  highly  accurate  water  scheduling.
For  the  supply  chain  ordering  management  system,
Mortazavi  et  al.[75] used  RL  to  design  the  scheduling
algorithm and achieved good performance.

Figure 5 illustrated  the  statistics  of  the  RL for  static
scheduling  and  dynamic  scheduling.  It  can  be  found
that  RL-based  production  scheduling  optimization  are
mainly adopted to solve dynamic scheduling problems.
The  reason  is  that  after  learning  the  properties  and
knowledge  of  the  problems  from  the  interaction  with
environment,  the  RL  agent  can  continue  to  solve  the
following dynamic scheduling problem under the same
problem  scenario  to  obtain  the  solution  quickly.
However,  for  the  static  scheduling  problem,  when  the
trained RL agents are extended to solve the instances in
different  scenarios,  the  solution  obtained  by  RL  are
often  not  as  good  as  those  obtained  by  the  meta-
heuristics.  Thus,  the  research  on  RL  with  end-to-end
model  for  static  scheduling  needs  further  research.
Moreover,  RL  is  mainly  applied  to  scheduling
problems  in  simple  scenarios  even  with  single
objective.  Thus,  the  study  of  RL  for  solving  complex
scheduling  problems  and  multi-objective  optimization
should be stressed.

5    Integration of RL and Meta-Heuristic for
Scheduling

The RL applications for scheduling are very promising
and  still  need  to  be  discussed  and  studied.  In  recent
decades,  as  an  important  branch  of  artificial
intelligence,  computational  intelligence,  especially
meta-heuristic,  has  made  great  advances  in  the
production  scheduling.  However,  meta-heuristics  with
single  search  mode  are  difficult  to  deal  with  complex

scheduling problems effectively and efficiently, such as
distributed  scheduling  and  green  scheduling.  It  is
necessary  to  introduce  a  variety  of  mechanisms,  such
as  learning  mechanism,  to  assist  meta-heuristics  to
improve search efficiency. Thus, the integration of RL
and  meta-heuristic  is  a  promising  way  to  improve  the
algorithm performance.  In  this  section,  we  discuss  the
integration mode of RL and meta-heuristics.

(1) RL and meta-heuristics are regarded as two stages
of  the  algorithm.  This  is  a  simple  and  easy  way  to
combine  the  advantages  of  RL  and  meta-heuristics  to
improve  the  solution  quality.  For  the  flow  shop
scheduling  problem,  Wang and Pan[5] proposed a  new
network  to  model  the  problem  and  it  was  trained  by
RL.  After  the  network  output  a  solution,  an  iterative
greedy algorithm was adopted to improve the result.

(2)  RL  is  used  to  guide  the  parameter  selection  of
meta-heuristics.  Through  interaction  with  the
environment, RL can learn the knowledge of parameter
setting.  The  meta-heuristics  can  realize  the  adaptive
adjustment by using the guidance of the trained agent.

For  the  dynamic  job  shop  scheduling  problem,
Shahrabi  et  al.[64] adopted  Q-learning  to  learn  the
selection  of  core  parameters  of  VNS.  The  core
parameters  of  VNS  can  dynamically  adjust  in  the
iterative  search  process  to  improve  the  performance.
Xing  and  Liu[76] designed  an  adaptive  particle  swarm
optimization  algorithm  based  on  RL.  A  Q-learning
algorithm was  introduced  to  change  the  inertia  weight
dynamically, which effectively improves the efficiency
of the algorithm.

(3)  RL  is  adopted  to  guide  the  search  of  meta-
heuristics. In this way, the advantages of RL and meta-
heuristics can be used to realize the adaptive selection
of the search strategies and the adaptive adjustment of
the search directions. It is an effective way to cope with
the  complex  scheduling  problems,  such  as  green
scheduling and distributed scheduling.

For  the  energy-aware  distributed  hybrid  flow  shop
scheduling,  the  authors  in  Ref.  [77]  proposed  a
collaborative  memetic  algorithm and  designed  an  RL-
based  method  to  assist  in  the  selection  of  search
operators.  Li  et  al.[78] proposed  an  improved  genetic
algorithm  combined  with  RL.  The  gene  space  of
genetic  algorithm  is  regarded  as  the  action  strategy
space  and  the  Q-learning  algorithm  can  assist  in  the
search  of  genetic  algorithm.  For  the  additive
manufacturing  machine  scheduling,  Alicastro  et  al.[79]

proposed  an  iterative  local  search  algorithm  based  on
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Fig. 5    Statistics  of  the  RL  for  static  scheduling  and
dynamic scheduling.
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RL. In the search process, RL can assist in the selection
of neighbourhood structures. Zhao et al.[59] proposed a
cooperative  water  wave  algorithm  to  solve  the  flow
shop scheduling problem, and introduced Q-learning to
balance  the  exploration  and  exploitation  of  the
algorithm.

To  sum  up,  existing  researches  show  that  the
integration  of  RL  and  meta-heuristic  can  effectively
improve  the  performance  of  the  algorithm.  However,
related works are still not plentiful enough, which need
to  be  further  discussed.  Therefore,  it  is  necessary  to
explore new modes for the integration of RL and meta-
heuristics.

6    Discussion and Conclusion

Production scheduling is the core of the manufacturing
system and has attracted much concern. In view of the
large scale and the real-time requirements, the existing
scheduling algorithms are facing huge challenges. With
the development of artificial intelligence, RL has made
breakthroughs  in  many  combinatorial  optimization
problems  and  provides  a  new  way  for  scheduling
optimization.  In  this  paper,  the  RL  for  the  production
scheduling  is  reviewed  to  provide  a  guideline  for  RL
intelligent optimization for production scheduling.

From  the  existing  researches  about  RL-based
scheduling,  RL algorithms have  particular  advantages,
such  as  convenience  and  rapidity  in  solving  shop
scheduling  problems,  especially  dynamic  scheduling
problems.  However,  relevant  research  is  still  in  its
infancy and remains to be further explored in problem,
algorithm, and application domains.

(1) Problem domain
The existing works mainly focus on the RL to solve

the  single  objective  scheduling  problem.  Meanwhile,
the  rare  studies  about  multi-objective  optimization
mainly  consider  the  economic  and  time  index.  On  the
one  hand,  according  to  different  requirements,  it  is
necessary  to  study  the  machine  load  balance,  the
number  of  delayed  jobs,  and  other  scheduling
indicators;  on  the  other  hand,  the  proposal  of  carbon
peak  and  carbon  neutrality  targets  promotes  the  green
transformation  of  industry  and  accelerates  the
integration  of  intelligent  manufacturing  and  green
manufacturing.  Thus,  it  is  of  practical  significance  to
explore  the  RL  algorithm  to  optimize  economic  and
green objectives simultaneously.

In  addition,  most  literatures  about  the  RL  for  the
production  scheduling  problems  are  simplified  and

traditional. At the same time, many real-life constraints
should  be  considered,  such  as  no-idle,  no-wait,
sequence-dependent  setup  time,  and  machine
deterioration  effect.  It  is  of  great  practical  value  to
study  RL  algorithm  in  solving  production  scheduling
problems with complex process constraints.

(2) Algorithm domain
Currently,  the  existing  RL  algorithms  lack  the

theoretical analysis and support for solving scheduling
problems.  Besides,  the  absence  of  systematic  methods
to  guide  the  designs  of  state  and  action  is  also
unfavorable for the promotion and application of RL in
solving the production scheduling problems. Therefore,
the  research  on  the  theory  and  method  of  RL
algorithms  for  production  scheduling  optimization  has
very important academic value.

At present, policy-based RL algorithms seldom used
for production scheduling problems can search optimal
policy and generate the schedule in an end-to-end way,
which  can  cope  with  the  challenges  of  real-time
scenarios effectively. Therefore, it is important to solve
the  production  scheduling  problem  in  an  end-to-end
way  and  realize  the  adaptive  generation  of  scheduling
rules via research of policy-based RL algorithms, such
as PPO and TRPO.

Considering  the  synergy  with  meta-heuristics,  the
studies about  the cooperative RL are relatively rare.  It
is  a  promising  research  direction  to  explore  effective
fusion mechanisms of the RL and meta-heuristics. It is
expected  to  find  associated  knowledge  and  improve
search efficiency via giving full play to the advantages
of  RL  to  decide  the  search  direction  and  search  step
length,  and  adaptively  adjust  search  operations  and
parameters setting.

(3) Application domain
At present, most researches on RL for the scheduling

problems stay at  the academic level.  Relevant theories
and  methods  are  only  tested  and  analyzed  through
simulation,  lacking  the  application  of  practical
problems.  Therefore,  it  is  necessary  to  strengthen  the
understanding  and  refinement  of  practical  problems,
emphasize  problem  modeling,  and  algorithm  design,
and  promote  the  application  of  RL  algorithm  for
solving shop scheduling.

In  short,  the  research  of  production  scheduling
optimization  based  on  RL  is  promising,  while  many
areas  need  to  be  improved  and  explored.  With  the
development  of  RL  technology,  it  is  believed  that  the
theory,  method,  and  application  research  can  be
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comprehensively developed and enhanced.
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