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Abstract: With  the  increase  of  problem  dimensions,  most  solutions  of  existing  many-objective  optimization

algorithms  are  non-dominant.  Therefore,  the  selection  of  individuals  and  the  retention  of  elite  individuals  are

important.  Existing  algorithms  cannot  provide  sufficient  solution  precision  and  guarantee  the  diversity  and

convergence  of  solution  sets  when  solving  practical  many-objective  industrial  problems.  Thus,  this  work

proposes  an  improved  many-objective  pigeon-inspired  optimization  (ImMAPIO)  algorithm  with  multiple

selection  strategies  to  solve  many-objective  optimization  problems.  Multiple  selection  strategies  integrating

hypervolume, knee point, and vector angles are utilized to increase selection pressure to the true Pareto Front.

Thus, the accuracy, convergence, and diversity of solutions are improved. ImMAPIO is applied to the DTLZ and

WFG test functions with four to fifteen objectives and compared against NSGA-III, GrEA, MOEA/D, RVEA, and

many-objective  Pigeon-inspired  optimization  algorithm.  Experimental  results  indicate  the  superiority  of

ImMAPIO on these test functions.

Key words: pigeon-inspired optimization algorithm; many-objective optimization problem; multiple selection strategy;

elite individual retention

1    Introduction

Swarm  intelligence  algorithms  are  optimization
algorithms inspired by the behavior of some insects and
animals  in  nature.  These  algorithms  are  widely

common in the field of computational intelligence. For
example,  particle  swarm  optimization  (PSO)[1,  2]

simulates the predatory behavior of birds, which moves
towards  their  closest  neighbors  and  to  the  best  state
experienced.  The  bat  algorithm  (BA)[3, 4] simulates
bats’ use of sonar to detect prey and avoid obstacles in
nature.  Other  swarm  intelligence  optimization
algorithms, include the ant colony optimization (ACO)
algorithm[5],  cuckoo  search  algorithm (CS)[6, 7],  firefly
algorithm (FA)[8, 9], and artificial bee colony algorithm
(ABC)[10]. New evolutionary algorithms have also been
proposed  to  solve  practical  problems  in  various
fields[11, 12].

The  pigeon-inspired  optimization  (PIO)  algorithm
was proposed by Duan and Qiao[13] in 2014 as a swarm
intelligence  optimization  algorithm  for  the  air  robot
path planning problem.

PIO  simulates  pigeons’ spontaneous  homing
behavior.  However,  the  standard  PIO  simply  solves
single-objective  problems.  Given  the  challenge  of
selecting individuals according to the values calculated
by  functions,  a  new  mechanism  should  be  added  to
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increase  the  selection  pressure.  With  the  increase  of
industrial  problem  dimensions,  many  multi-objective
algorithms  have  been  developed[14, 15].  And  PIO
algorithms  for  multi-objective  optimization  problems
have  also  been  proposed  in  various  fields[16−18].  The
proposal  of  multi-objective  pigeon-inspired
optimization (MPIO) approach enriches the application
of  PIO  algorithms  in  real  life,  but  the  non-dominance
solutions  have  become  common  in  many-objective
optimization  problems.  Moreover,  the  Pareto
dominance  mechanism  has  become  inadequate  in  the
selection  of  individuals,  and  it  cannot  guarantee
convergence;  thus,  the  PIO  algorithm  for  many-
objective  optimization  problem  (MAPIO)[19] was
proposed.

Several  many-objective  optimization  algorithms  are
applied in various fields[20−22]. The MAPIO[19] extends
the  pigeon-inspired  optimization  algorithm  to  higher
dimensions,  but  it  only  considers  4,  6,  8,  and  10
objectives.  At  the  same  time,  the  solution  accuracy  is
insufficient. The solutions are non-dominant especially
when the number of objectives is more than 10. Hence,
choosing the best solutions and balancing convergence
and  diversity  are  extremely  important.  To  solve  these
problems,  this  study  proposes  the  improved  pigeon-
inspired  optimization  algorithm  for  many-objective
optimization  problems  with  multiple  selection
strategies  (ImMAPIO),  which  can  preserve  elite
individuals  and  extend  the  influence  of  the  initial
population  and  elite  individuals  on  velocity  and
position update.

The  main  contributions  of  this  work  can  be
summarized as follows:

(1)  An  improved  many-objective  pigeon-inspired
optimization  algorithm  is  proposed  to  solve  many-
objective  optimization  problems.  The  proposed
algorithm  can  retain  the  elite  individuals  in  the
population  and  improve  the  solution  accuracy.  It  also
provides  a  new  scheme  for  swarm  intelligence
algorithms to solve high-dimensional problems.

(2)  A  novel  selection  strategy  integrating  the
advantage  of  hypervolume,  knee  point,  and  vector
angles  is  suggested  to  improve  the  accuracy  of
selection  and  provide  additional  selection  pressure  to
the  true  Pareto  Front  (PF).  Through  this  strategy,  the
elite individuals are retained in the external archive set
to accelerate convergence in the population iteration.

The  rest  of  this  paper  is  organized  as  follows.  In
Section  2,  related  work  of  the  PIO  algorithm  is

described. Details  of the proposed algorithm are given
in Section 3.  In Section 4,  results  are discussed,  along
with  the  comparison  of  the  proposed  algorithm  with
five  of  the  most  advanced  algorithms  on  WFG  and
DTLZ test functions. Finally, the conclusion and future
work are summarized in Section 5.

2    Related Work

Pigeon-inspired  optimization  algorithm[13] simulates
the behavior of pigeons’ spontaneous homing. Standard
PIO is composed of two independent iterative loops.

In  these  iterative  loops,  different  cycle  stages  of
flight  are  simulated  using  different  navigation  tools.
These  tools  include  landmark  operator  and  map  and
compass  operator.  The  process  of  pigeons  using
landmarks  in  navigate  is  simulated  by  the  landmark
operator model. The map and compass operator model
imitates  the  effect  of  the  height  of  the  sun  and  the
magnetic  field  of  the  earth  on  pigeons.  To  solve  the
problem  of  the  standard  PIO  algorithm  easily  falling
into  the  local  optimum,  Li  and  Duan[23] proposed  the
Simulated  Annealing  Pigeon-Inspired  Optimization
(SAPIO)  algorithm  with  the  goal  of  completing  the
target detection approach for unmanned aerial vehicles
(UAVs)  by  using  the  simulated  annealing  mechanism
and  the  and  the  edge  potential  function  (EPF).  The
simulated  annealing  mechanism  can  form  new
individuals  and  avoid  local  optimum.  The  EPF  can
provide  an  attractive  pattern  for  the  target  by
calculating  its  value  from  the  original  image’ edge
map. Duan et  al.[24] proposed the collaborative control
method  with  predation  and  escape  pigeon-inspired
algorithm  for  UAV  tight  formation;  the  method  uses
the  inner  and  outer  ring  controller  to  solve  the  tight
formation  cooperative  control  system  problem.  The
predation  and  escape  mechanism  can  avoid  the
tendency  of  the  PIO  algorithm  to  easily  fall  into  the
local optimum and improve the overall performance of
PIO.  Zhang  and  Duan[25] put  forth  the  predator  prey
PIO  in  a  dynamic  environment  used  in  areas  of
uninhabited  combat  aerial  vehicles  (UCAV).  The
algorithm can solve the problems of 3D path planning,
improve global best properties with the use of the prey
predator  concept,  and  enhance  the  speed  of
convergence. By using the sequence of nodes to define
the path of UACVs, all considerations of the ideal path
are  abstracted  as  the  cost  functions.  Therefore,  the
establishment  of  the  path  planner  becomes  the
optimization of the cost functions. Many scholars have
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applied PIO to multiple fields[26, 27].
With  the  increasing  of  scale  of  problems,  the

difficulty  of  solving  the  problems  also  increases.
Hence,  MPIO  has  been  proposed  accordingly.
Qiu  and  Duan[28] proposed  a  variant  of  PIO  called
multi-objective  PIO,  which  is  used  in  the  parameter
design of brushless direct current motors. This method
uses  a  Pareto  sorting  scheme[29] and  consolidation
operator  to  enhance  the  selection  pressure  of  the
individuals  in  a  population  to  the  true  PF.  Duan  et
al.[30] proposed a novel MPIO that uses the limit cycle-
based mutant mechanism to produce new solutions and
search  directions.  This  method  achieves  good
performance  in  terms  of  the  diversity  and  accuracy  of
solutions. Liang et al.[31] proposed the MPIO algorithm
with  a  self-organizing  multimodal  feature,  which  can
improve  the  solution  efficiency  for  multimodal
problems;  the  algorithm uses  a  self-organizing  map to
transform  the  space  dimension  of  a  solution  set  and
improves the space division of the solution set by using
a  special  crowding distance.  The efficiency of  solving
multimodal problems is thus improved.

The existing MPIO suffers from insufficient solution
accuracy  and  algorithm  convergence.  Thus,  the  PIO
algorithm for many-objective optimization problems is
proposed.  Cui  et  al.[19] proposed  the  MAPIO,  which
uses  the  balanceable  fitness  estimation  (BFE)
approach[32] and  the  external  archive  approach[32] to
improve the selection capacity of individuals. The BFE
approach[32] can measure  the  overall  performance of  a
population’s  individuals.  The  external  archive
approach[32] can  retain  the  elite  individuals  in  the
population.

In  sum,  the  selection  pressure  and  calculation
accuracy  of  many-objective  optimization  algorithms
need  to  be  improved.  Therefore,  ImMAPIO  is
proposed. Details are presented in Section 3.

3    ImMAPIO

The growing scale of problems increases the difficulty
of solution selection, which emphasizes convergence in
the early stage of evolution and distribution in the late
stage  of  evolution.  Thus,  to  measure  the  performance
of distribution and convergence, this study proposes the
ImMAPIO with multiple selection strategies.

3.1    Multiple selection strategies for elite individual
retention

3.1.1    Elite individual retention strategy
Most  evolutionary  algorithms  mainly  adopt

corresponding evolutionary strategies for selected elite
individuals  to  update  target  populations.  When  the
complexity  of  a  problem  increases,  these  evolution
strategies  lead  to  the  loss  of  some  elite  individuals  in
the  process  of  evolution,  resulting  in  the  poor
performance  of  solution  sets.  In  recent  years,  some
algorithms  based  on  the  elite  individual  mechanism
have  been  proposed[33].  Inspired  by  the  advantages  of
multiple  selection  strategies,  this  study  proposes  an
elite  individual  retention  strategy  to  improve  the
performance  of  solution  sets  in  terms  of  convergence,
diversity, uniformity, and solution precision.

P
P1, P2, P3 N

3N

N
A

As  shown  in Fig. 1,  three  different  selection
strategies  are  used  to  generate  individuals  from  the
initial  population  and  form  new  offsprings

.  Each  of  the  offsprings  has  individuals.
The  selection  strategy  pool  with  individuals  is
constructed  by  the  offspring  individuals  produced  by
different strategies. Then, the best  of them is selected
to  update  the  external  archive .  Finally,  the  retention
of elite individuals is realized.

The  selection  strategy  pool  of  the  ImMAPIO
includes  the  hypervolume  (HV)  based  selection
strategy[34], which is based on the HV indicator, which
can  comprehensively  consider  the  convergence  and
diversity of solutions. In the present work, this strategy
is mainly used to improve the selection accuracy of the
algorithm and help it obtain satisfactory solution sets in
solving  industrial  problems.  The  knee  point  based
selection strategy[35] can be approximately regarded as
a  preference  for  a  large  HV  and  is  thus  efficient  in
accelerating  the  convergence  of  solutions.  The  knee
points  of  a  non-dominated  front  of  the  current
population are a  subset  of  the Pareto optimal  solution.
Therefore,  the  selection  of  knee  points  can  ensure  the
good convergence of the solution set. The vector angle-
based selection strategy[36] adopts the maximum vector
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Fig. 1    Main procedure of elite individual retention.
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angle  first  principle  to  ensure  the  diversity  and
uniformity  of  solution  sets.  The  diversity  and
uniformity  of  solution  sets  are  guaranteed  by  finding
the solutions with the largest vector angle and extreme
solutions.

P1, P2 P3

A j

S i S i A j

The  framework  of  the  elite  individual  retention
strategy is described in Algorithm 1. , and  are
the  offsprings  generated  by  different  selection
strategies. In Lines 2−5, the sub-offsprings are obtained
by different operators and form a new solution set S. In
Lines  7−14,  the  Pareto  dominance relationships  of  the
solutions  between A and S are  compared.  If 
dominates ,  it  returns  1.  When  dominates ,  it
returns  −1.  In  Lines  16−22,  the  external  archive A is
updated  according  to  the  fitness  values  calculated  by
BFE method[32].
3.1.2    Hypervolume-based selection strategy
The  HV-based  selection  strategy[34] uses  the  rankings
of HV values to assign fitness values to individuals and
choose the individuals  with the best  performance.  The
HV  indicator  is  strictly  monotonic  under  Pareto
dominance.  When  one  Pareto  set  is  approximately
completely  better  than  another,  the  value  of  the  HV
indicator  is  better  than  that  of  the  other.  Thus,  this
strategy  is  used  in  this  work  to  improve  the  selection

r > 3
accuracy  of  the  algorithm.  In  the  high-dimensional
objective  space  (objective  number ),  the  problem
is  recursively  transformed  into  that  in  the  low-
dimensional  objective  space  through  continuous
mapping to the r − 1 object space to reduce complexity.
The recursive process is carried out until the number of
objects  is  reduced  to  3.  The  detailed  calculation
procedure  of  the  HV-based  selection  strategy  for  a
three-dimensional case is available in Ref. [37].

The Hypervolume calculation in the two-dimensional
case is shown in Eq. (1):
 

HV(S ) =
n∑

i=1

∣∣∣obj2 (pi)−obj2 (Ref)
∣∣∣ · ∣∣∣obj1 (pi)−obj1 (pi−1)

∣∣∣
(1)

S obji
(
p j
)

p j

obj2 (Ref)
obj1 (p0) HV

where  is  the  solution  set.  represent  the
objective  value  of  the j-th  individual  on  the i-th
dimensional.  is  the  initial  value  of  objective

. By comparing the  values of individuals in
the  population,  the  individuals  with  relatively  larger
values are selected to guarantee the solving accuracy of
the algorithm.
3.1.3    Knee point based selection strategy
The  knee  point  based  selection  strategy[35] uses  three
championship  selection  strategies,  namely,  dominance
relationship,  knee  point  criterion,  and  weighted
distance measure. Knee points are the subset of Pareto
optimal  solutions  and  are  defined  of  bias  of  large
Hypervolume.  Thus,  they  can  be  used  as  the  main
criterion  to  measure  population  convergence.  At  the
same time, the adaptive recognition of knee points in a
small  field  is  conducted  without  the  knowledge of  the
number  of  knee  points.  The  local  knee  points  are
located by the adaptive strategy so as to accelerate the
convergence.

The  dominant  relationship  is  used  initially  to  select
the solution. In the case in which the solutions are not
dominated  by  each  other,  it  is  considered  whether  the
solutions  are  knee  points,  the  knee  points  are  given
priority  as  the  first  choice.  If  neither  is  the  case,  then
the weight distance between the solutions is judged. If
the  weight  distance  is  the  same,  then  a  solution  is
selected randomly.

The determination of knee points is shown in Fig. 2,
where B', G',  and E' are  the  knee  points.  But  if  the
number of the neighbor is 1, only E' is the knee point.
Details of the knee point strategy are available in Ref.
[35].

p
k

The  weight  distance  (population  size  is ,  nearest
neighbors is ) is calculated as follows: 

 

Algorithm 1  Elite individual retention strategy 

Input: The population P, the population size N, the reference
                set R, the objectives number M, the set of knee points K,
                  the external archive A;

1: P1 = Hypervolume_based (P);
2: P2 = Knee points_based (P);
3: P3 = Vector Angle_based (P);
4: 
5: for i = 1 to |S|

for j = 1 to |A|6:    
7:    
8:      if 1teb ==
9:          jA is tagged as the dominated solution;
10:      else if −1teb ==

11:          iS is tagged as the dominated solution;
12: end if      
13: end for
14: remove all of the tagged solutions from the archive A;
15: if is not tagged
16:      add individual iS

iS
to A;

17:      if |A| > N
18:          calculate the function values;
19:           remove the worst individuals according to the fitness;
20:       end if
21: end if
22: end for
Output: Archive A

S = P1    P2    P3;

teb = CheckDominance(Si, Aj);
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DW(p) =
k∑

i=1

wpidisppi (2)

 

wpi =
rpi

k∑
i=1

rpi

(3)

 

rpi =
1∣∣∣∣∣∣∣disppi −

1
k

k∑
i=1

disppi

∣∣∣∣∣∣∣
(4)

pi p wpi

pi disppi

p
pi rpi disppi

where  is the i-th nearest neighbor of individual , 
is  the  weight  of ,  is  the  Euclidean  distance
calculated by the individual  and the nearest neighbor

, and  denotes the sorting of the distance .
3.1.4    Vector angles based selection strategy
In  the  vector  angle  based  selection  strategy[36],  the
maximum  vector  angle  first  principle  is  adopted  to
ensure  the  distribution  of  the  solution  sets.  After  the
nondominant  sort,  the  norm  of  each  solution  in  the
normalized  objective  space  is  calculated.  Then,  the
vector  angles  between  two  solutions  in  a  normalized
vector  space  are  also  calculated.  The  vector  angles
between individuals are used to select elite individuals.
The  diversity  and  uniformity  of  the  solution  set  are
guaranteed  by  finding  the  solutions  with  the  largest
vector angles.

x j

x j

 is the solution in the objective space. The norm of
 is  defined as  Eq.  (5),  and the  vector  angle  between

two solutions is defined as Eq. (6):
 

norm
(
x j
)
≜

√√ m∑
i=1

f ′i
(
x j
)2

(5)
 

angle
(
x j,yk

)
≜ arccos

∣∣∣∣∣∣∣∣
F
′ (

x j
)
·F′ (yk)

norm
(
x j
)
·norm(yk)

∣∣∣∣∣∣∣∣ (6)

f
′
i

(
x j
)

x j F
′ (

x j
)
·F′ (yk)

F
′ (

x j
)

F
′
(yk)

where  represents  the i-th  normalized  value  of
objective  vector  and  is  the  inner
product  between  normalized  objective  vector 
and  , it can be calculated by Eq. (7):
 

F
′ (

x j
)
·F′ (yk) =

m∑
i=1

f
′
i

(
x j
)
· f ′i (yk) (7)

3.2    Velocity and position update

The  ImMAPIO  uses  the  velocity  and  position  update
equation  proposed  by  Cui  et  al. [19] to  provide  a  new
search  direction  for  individual  pigeons,  namely,  the
evolution direction from the center position point to the
global optimal position direction. The proposed update
equation is as follows:
 

Vi (tnow) = e−Rt ·Vi (tnow−1)+ r1 · r2 · tr ·
(
1− logtnow

T

)
·(

Xglo−Xi (tnow)
)
+ r3 · r4 · tr · logtnow

T ·

(Xcen−Xi (tnow))+ r5 · r6 ·
(
Xglo−Xcen

) (8)

 

Xi (tnow) = Xi (tnow−1)+Vi (tnow) (9)

tnow T

tr

Xglo

Xcen

Xcen

where  represents the number of current iteration, 
represents the largest number of iteration, R denotes the
map  and  compass  operator,  is  the  migration  factor
used  to  ensure  the  smooth  transition  of  the  two
operators in the algorithm,  is position information
about  the  global  best  in  all  pigeons,  and  is  the
center  position  information  of  some  individuals  in  the
current  iteration.  can  be  calculated  according  to
Eq. (10).
 

Xcen =

nx
1∑

j = 1

SX
1, j

nx
1

SX
1 nX

1 (10)

nx
1∑

j=1

SX
1, j

SX
1 nX

1

SX
1

where  represents  the  sum  of  all  solutions  of

individuals  in  the  non-dominated  set  and  is  the
number of the solutions in the set .

r1 r3 r5

r2 r4

r6

The parameters , ,  and  represent three random
distribution numbers to provide extra random updating
of different degree within [0, 1]. Meanwhile, , , and

 represent  three  learning  factors  and  are  defined
according to the following Eq. (11):
 

 

First objective
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Fig. 2    Determining  knee  points  for  two  objectives
minimization problem.
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ri =


0, 0 < rand() ⩽

1
M

;

1,
1
M
< rand() ⩽ 1

(11)

rand() M
ri

Xi (t)
ri

M

where  is  a  random value  between  [0,  1]  and 
presents the number of the objectives. If the value of 
is 0, it presents  will not update this part to the new
velocity. If the value of  is 1, then the velocity updates
this part dynamically with the change of parameter .

3.3    Additional strategies

In  ImMAPIO,  an  external  archive[32] is  adopted  to
retain  the  elitist  solutions,  which  can  provide  the
appropriate  selection  to  the  true  PF.  Meanwhile,  by
using the BFE method[32], elite individuals are retained
in  the  external  archive  for  the  next  generation  of
iterative  optimization.  External  archive A preserves
elite individuals. The new solution set S emerges from
the  population  after  the  evolution  process.  By
comparing the Pareto dominance relationships between
S and A,  the  external  archive A is  updated  until  it
reaches the ter minal condition.

Inspired by the work in Ref. [38], ImMAPIO uses an
evolutionary  search  pattern  that  includes  simulated
binary  crossover  (SBX)  and  polynomial  mutation
(PM)[38] to  further  improve  the  selection  of  non-
dominant  solutions.  By  using  the  BFE  method[32] and
the  evolutionary  strategies  in  Ref.  [38],  the  solution
accuracy  is  improved,  and  elite  individuals  are
retained.

3.4    Framework of ImMAPIO

This  study  investigates  the  role  of  different  selection
strategies  in  the  process  of  choosing  solutions  and
analyzes the characteristics of each strategy. This work
screens  different  offspring  generation  solutions  from
the  perspective  of  multiple  selection  strategies.  The
selection  strategy  pool  is  constructed  to  improve  the
algorithm  performance  and  find  relatively  satisfactory
solutions.

P N
A A

Xi

Vi pi

P A

The  ImMAPIO  algorithm  framework  is  detailed  in
Algorithm 2. The initialization process proceeds in the
parent  population  with  individuals,  iteration
number, and the external archive . External archive 
is  null  in  initialized  procedure.  The  position  and
velocity  of  pigeon  individual  and  the  individual
best positon are initialized in Lines 2−6. Then, the non-
dominant solution in  is  added to external  archive ,
and the fitness values of the solutions are calculated. In
Lines  10−17,  the  velocity  and  position  of  pigeon

A

A
S

S
A

individuals  are  updated  by  Eqs.  (7)  and  (8),
respectively.  In Line 18, the new external archive  is
composed  of  elite  individuals  by  using  multiple
selection  strategies.  The  external  archive  set  is  then
updated,  and  the  new  swarm  is  generated  by
processing the population on the basis  of  evolutionary
strategies SBX and PM. The function fitness of the new
solutions  in  is  also  calculated.  Subsequently,  the
external  archive  is  updated  again.  This  evolutionary
procedure  is  repeated  until  the  iteration  reaches  the
maximum number.

4    Experimental Results and Discussion

In  this  section,  the  performance  of  ImMAPIO  in
standard  benchmark  problems,  such  as  DTLZ[39] and
WFG[40],  is  compared  with  that  of  NSGA-III[41],
GrEA[42],  MOEA/D[43],  RVEA[44],  and  MAPIO[19].
Meanwhile,  the  results  of  the  comparative  experiment
are subjected to the Wilcoxon signed-rank test to prove
the superiority of the proposed algorithm.

4.1    Benchmark problem

The  experiments  were  conducted  on  standard
benchmark  problems,  such  as  DTLZ[27] and  WFG[28].
DTLZ1–DTLZ8  are  selected  as  the  test  examples  for

 

Algorithm 2  Framework of ImMAPIO

1:  Initialization: The population P, individuals number N, the
external archive A, the maximum number of iteration maxT ;

2:  for i = 1 to N
3:     position iX is randomly initialized, and Vi = 0 for pi;
4:     calculate the function values of individual ip ;
5:     set as the individual best position to ip ;
6:  end for
7: the non-dominance solutions in P are added into archive A;
8:  calculate the fitness of the individuals in the archive A;
9:  while T≤Tmax

10:    for i = 1 to N
11:      update the velocity iV of ip by Eq. (7);
12:      update the position iX of ip by Eq. (8);
13:       evaluate the objective fitness for pi;
14:          if pi

best cannot dominate ip
15:             set pi

best = pi;
16:          end if
17:     end for
18:   Selection strategy pool is generated by multiple selection 

strategies in Section 3.1;
19:   Choose the elite individuals into the archive A;
20: A = Update_Archive (A, P);
21:     executing evolutionary strategies on A to get a new swarm S; 
22:     calculate the objectives fitness of new solutions in S;
23: A = Update_Archive (A, S);
24: end while 
25: output A;

pi
best = pi
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the DTLZ problems, and WFG1–WFG9 are chosen for
the  WFG  problems.  For  these  problems  in  the
experiment, the cases with objective numbers of 4, 6, 8,
10, and 15 should be considered.

M k
l

The  DTLZ[39] and  WFG[40] test  problems  have  their
own  characteristics,  such  as  linear,  multi-modal,
disconnected,  mixed  convex/concave,  and  deceptive
characteristics. Table 1 lists  the  characteristics  of  the
different  DTLZ  and  WFG  test  problems. Table 2
presents  the  parameters  of  the  different  test  functions,
where  is  the  number  of  objectives,  is  a  fixed
position-related parameter, and  is set to 20 and is the
fixed distance-related parameter.

nc = 20

The  simulated  binary  crossover  SBX[41] and
polynomial mutation PM[41] have been adopted in some
algorithms[41, 44] to  produce  offspring;  the  distribution
indexes  of  crossover  and  mutation  are  set  to 

nm = 20
pc = 1.0

pm = 1/D D
div

N/10

tr = 1

and ,  respectively.  And  the  probability  of
crossover  and  mutation  are  set  to  and

,  where  represents  the  number  of  decision
variables. For GrEA[42], the setting of the parameter 
which  denotes  the  number  of  divisions  in  each
dimension  is  taken  from  Ref.  [42].  The  parameter
pertaining to the range of neighborhood in MOEA/D is
set  to  for  all  of  the  test  problems;  the  other
relevant  parameters  are  available  in  Ref.  [43].  The
parameter  pertaining  to  MAPIO  is  set  to ,  which
indicates that the transition factor is 1.

The  population  size  changes  with  the  number  of
objectives. The settings of population size are 120, 132,
156, 275, and 135, with the number of objectives are 4,
6,  8,  10,  and  15.  The  running  time  is  set  to  30  times
with each algorithm for each test function.

4.2    Performance metric

In the evaluation of the performance of many-objective
evolutionary  algorithms,  the  convergence,
homogeneity,  and  universality  of  the  solution  set  are
usually  evaluated.  At  the  same  time,  the  indicators  of
diversity  include  evenness  and  spread.  Therefore,  two
indicators,  namely,  inverted  generational  distance
(IGD)[45] and  HV[46],  which  can  simultaneously
measure  convergence  and  diversity,  are  used  in  the
performance evaluation.

(1) Inverted generational distance (IGD)
The IGD[45] indicates the average distance from each

reference point to the nearest solution. The smaller the
IGD  value  is,  the  better  the  comprehensive
performance  of  the  algorithm  is.  The  IGD  can  be
calculated using Eq. (12):
 

IGD
(
Q, Q∗

)
=

∑
x∈Q∗

min
y∈Q

dis (x,y)

|Q∗| (12)

Q
Q∗

dis (x,y) x
Q∗ y

Q

where  is the approximation solution set obtained by
the algorithm.  represents a reference points set that
is  uniformly  distributed  and  sampled  from  true  PF.

 denotes the Euclidean distance between point 
in  reference  points  set  and  point  belongs  to
approximation solution set . During the calculation of
IGD  value,  the  computation  is  efficient  and  measures
the convergence and multiformity of the algorithm.

(2) Hypervolume (HV)
HV[46] indicates  the  volume  of  a  region  in  the

objective space bounded by the non-dominant solution
set  PF  and  the  reference  point  obtained  by  the
algorithm.  The  higher  the  HV  value  is,  the  better  the

 

Table 1    Characterization of test instances DTLZ1−DTLZ7
and WFG1−WFG9.

Problem Feature
DTLZ1 Linear, multi-modal
DTLZ2 Concave
DTLZ3 Concave, multi-modal
DTLZ4 Concave, biased
DTLZ5 Concave, degenerate
DTLZ6 Concave, degenerate, biased
DTLZ7 Mixed, disconnected, multi-modal, scaled
WFG1 Mixed, biased, scaled

WFG2 Convex, disconnected, multi-modal, non-separable,
scaled

WFG3 Linear, degenerate, non-separable, scaled
WFG4 Concave, multi-modal, scaled
WFG5 Concave, deceptive, scaled
WFG6 Concave, non-separable, scaled
WFG7 Concave, biased, scaled
WFG8 Concave, biased, non-separable, scaled

WFG9 Concave, biased, multi-modal, deceptive, non-
separable, scaled

 

 

Table 2    Parameter settings for the test functions.

Test function
n

Number of decision
variables ( ) Parameter Maxgen

DTLZ1 M−1+ k k = 5 700
DTLZ2 M−1+ k k = 10 250
DTLZ3 M−1+ k k = 10 1000

DTLZ4−DTLZ6 M−1+ k k = 10 250
DTLZ7, DTLZ8 M−1+ k k = 20 250

WFG1 M−1+ k k = M−1, l = 20 1000
WFG2 M−1+ k k = M−1, l = 20 700

WFG3−WFG9 M−1+ k k = M−1, l = 20 250
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comprehensive  performance  of  the  algorithm  is.  The
value of HV can be calculated using Eq. (13):
 

HV = δ

 |S |∪
i=1

vi

 (13)

δ

|S |
vi

P∗

where  represents  the  Lebesgue  measure  of  the
volume,  is  the  number  of  individuals  in  the  non-
dominance solution set PF,  is the hypervolume of the
reference  point  and  the i-th  solution  in  the  PF  set.
During the calculation of HV value, the non-dominated
solution set PF and reference set  need not be known,
but  the  selection  of  reference  points  determines  the
accuracy of the HV indicator to a certain degree.

4.3    Experiment results and analysis

Tables 3 − 5 reveal  the  details  of  the  comparison
results. Table 3 shows  the  performance  of  the  IGD  in
the DTLZ test  functions relative to the six algorithms.
Tables 4 and 5 show the properties of the IGD and HV
values of the WFG test functions on the six algorithms.
In these tables, the bold parts represent the best results.
“+”, “−”, and “=” in Tables 3, 4, and 5 denote that the
results  from  other  algorithms  are  higher  than,  lower
than,  or  equal  to  the  results  from  the  proposed
ImMAPIO, respectively. On the basis of the numerical
analysis  of  the  experimental  results,  the  superiority  of
ImMAPIO is analyzed.

 

Table 3    IGD values of six algorithms for different objectives in the DTLZ test problems.

Problem M
IGD value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

DTLZ1

4 2.3888 × 101

(5.83 × 100) −
2.4071 × 101

(7.48 × 100) −
7.2175 × 100

(3.10 × 100) +
1.9722 × 101

(5.57 × 100) =
1.6976 × 101

(5.99 × 100) =
1.9585 × 101

(5.62 × 100)

6 2.0401 × 101

(7.24 × 100) =
2.4501 × 101

(7.27 × 100) =
5.8150 × 100

(2.53 × 100) +
1.6796 × 101

(4.97 × 100) +
1.8277 × 101

(4.61 × 100) +
2.2822 × 101

(7.40 × 100)

8 2.5337 × 101

(7.80 × 100) =
2.3780 × 101

(7.10 × 100) =
6.2681 × 100

(2.98 × 100) +
1.7858 × 101

(4.56 × 100) +
1.7862 × 101

(5.85 × 100) +
2.3125 × 101

(6.09 × 100)

10 2.7201 × 101

(8.48 × 100) −
2.6984 × 101

(6.26 × 100) −
7.3240 × 100

(3.16 × 100) +
2.3775 × 101

(7.71 × 100) =
1.9401 × 101

(5.50 × 100) =
2.0198 × 101

(5.22 × 100)

15 2.2261 × 101

(7.88 × 100) =
2.3769 × 101

(7.69 × 100) =
7.3268 × 100

(3.23 × 100) +
1.2768 × 101

(3.39 × 100) +
1.6969 × 101

(4.65 × 100) +
2.2674 × 101

(6.23 × 100)

DTLZ2

4 5.0397 × 10−1

(3.18 × 10−2) −
4.9442 × 10−1

(3.47 × 10−2) −
4.3144 × 10−1

(4.43 × 10−2) −
5.2941 × 10−1

(4.44 × 10−2) −
3.5691 × 10−1

(2.30 × 10−2) −
3.2650 × 10−1

(2.14 × 10−2)

6 7.3475 × 10−1

(3.40 × 10−2) −
7.1729 × 10−1

(3.87 × 10−2) −
7.1453 × 10−1

(8.24 × 10−2) −
7.5866 × 10−1

(4.37 × 10−2) −
5.5658 × 10−1

(2.88 × 10−2) −
5.0884 × 10−1

(2.66 × 10−2)

8 9.0014 × 10−1

(4.31 × 10−2) −
8.6907 × 10−1

(4.56 × 10−2) −
8.2620 × 10−1

(9.30 × 10−2) −
9.3744 × 10−1

(3.85 × 10−2) −
7.3065 × 10−1

(3.08 × 10−2) −
6.7541 × 10−1

(3.50 × 10−2)

10 9.9208 × 10−1

(4.50 × 10−2) =
9.9122 × 10−1

(3.73 × 10−2) =
1.0046 × 100

(3.35 × 10−2) =
9.9227 × 10−1

(2.87 × 10−2) =
9.8746 × 10−1

(3.82 × 10−2) =
9.9872 × 10−1

(2.80 × 10−2)

15 1.2018 × 100

(3.46 × 10−2) −
1.1669 × 100

(3.58 × 10−2) −
1.1952 × 100

(7.96 × 10−2) −
1.2790 × 100

(5.74 × 10−2) −
1.0439 × 100

(2.58 × 10−2) −
1.0212 × 100

(2.77 × 10−2)

DTLZ3

4 2.6493 × 102

(5.65 × 101) =
2.4989 × 102

(3.76 × 101) +
7.5101 × 101

(1.75 × 101) +
2.3674 × 102

(3.36 × 101) +
1.8886 × 102

(3.75 × 101) +
2.8646 × 102

(5.91 × 101)

6 2.9861 × 102

(4.81 × 101) =
2.9476 × 102

(5.29 × 101) =
6.1431 × 101

(1.38 × 101) +
2.3572 × 102

(5.58 × 101) +
2.3187 × 102

(4.00 × 101) +
2.7578 × 102

(5.85 × 101)

8 3.0952 × 102

(6.44 × 101) −
3.6041 × 102

(5.95 × 101) −
7.0422 × 101

(2.00 × 101) +
2.2531 × 102

(4.34 × 101) +
2.4397 × 102

(4.01 × 101) +
2.6897 × 102

(3.95 × 101)

10 3.7231 × 102

(5.99 × 101) −
3.6206 × 102

(5.61 × 101) −
7.0760 × 101

(2.39 × 101) +
3.2356 × 102

(5.69 × 101) =
2.4865 × 102

(3.56 × 101) +
2.9963 × 102

(5.72 × 101)

15 3.5092 × 102

(7.94 × 101) −
3.6350 × 102

(7.67 × 101) −
7.9687 × 101

(1.82 × 101) +
2.0457 × 102

(5.01 × 101) +
2.2626 × 102

(3.74 × 101) +
2.9846 × 102

(5.63 × 101)

DTLZ4

4 8.7855 × 10−1

(8.38 × 10−2) −
8.0189 × 10−1

(9.52 × 10−2) −
8.8553 × 10−1

(2.03 × 10−1) −
7.4879 × 10−1

(7.54 × 10−2) =
7.5976 × 10−1

(9.77 × 10−2) =
7.4544 × 10−1

(1.04 × 10−1)

6 1.0763 × 100

(7.93 × 10−2) −
1.0064 × 100

(8.25 × 10−2) −
1.1349 × 100

(1.00 × 10−1) −
1.0685 × 100

(8.44 × 10−2) −
8.8936 × 10−1

(6.75 × 10−2) =
8.8272 × 10−1

(8.88 × 10−2)

8 1.1102 × 100

(7.31 × 10−2) −
1.0409 × 100

(5.48 × 10−2) −
1.1979 × 100

(1.07 × 10−1) −
1.1272 × 100

(7.53 × 10−2) −
9.4858 × 10−1

(6.68 × 10−2) =
9.1424 × 10−1

(6.48 × 10−2)

10 1.1442 × 100

(6.09 × 10−2) =
1.1291 × 100

(6.08 × 10−2) =
1.1370 × 100

(5.25 × 10−2) =
1.1403 × 100

(5.81 × 10−2) =
1.1425 × 100

(3.92 × 10−2) =
1.1444 × 100

(5.00 × 10−2)

15 1.2471 × 100

(5.36 × 10−2) −
1.1985 × 100

(5.23 × 10−2) −
1.3014 × 100

(7.10 × 10−2) −
1.2929 × 100

(5.56 × 10−2) −
1.0667 × 100

(4.07 × 10−2) =
1.0749 × 100

(5.46 × 10−2)
(To be continued)
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Table 3    IGD values of six algorithms for different objectives in the DTLZ test problems. (Continued)

Problem M
IGD value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

DTLZ5

4 3.4967 × 10−1

(5.29 × 10−2) −
3.4604 × 10−1

(3.51 × 10−2) −
2.3627 × 10−1

(6.94 × 10−2) −
4.2477 × 10−1

(5.39 × 10−2) −
1.4400 × 10−1

(5.83 × 10−2) +
1.7401 × 10−1

(2.20 × 10−2)

6 3.8873 × 10−1

(3.61 × 10−2) −
3.8807 × 10−1

(4.20 × 10−2) −
3.0491 × 10−1

(6.37 × 10−2) −
5.0149 × 10−1

(5.89 × 10−2) −
1.8638 × 10−1

(3.78 × 10−2) =
1.8392 × 10−1

(2.50 × 10−2)

8 3.6485 × 10−1

(3.96 × 10−2) −
3.8458 × 10−1

(4.21 × 10−2) −
2.7851 × 10−1

(8.50 × 10−2) −
5.4130 × 10−1

(6.42 × 10−2) −
1.8872 × 10−1

(2.78 × 10−2) =
1.9267 × 10−1

(2.47 × 10−2)

10 3.6992 × 10−1

(3.74 × 10−2) =
3.6597 × 10−1

(3.67 × 10−2) =
3.8113 × 10−1

(3.00 × 10−2) =
3.5890 × 10−1

(3.77 × 10−2) =
3.7866 × 10−1

(3.49 × 10−2) =
3.7017 × 10−1

(3.42 × 10−2)

15 3.9242 × 10−1

(4.33 × 10−2) −
3.8907 × 10−1

(5.12 × 10−2) −
3.2872 × 10−1

(8.10 × 10−2) −
5.6115 × 10−1

(7.91 × 10−2) −
2.0885 × 10−1

(2.98 × 10−2) =
2.0679 × 10−1

(3.60 × 10−2)

DTLZ6

4 8.0477 × 100

(2.14 × 10−1) −
7.9284 × 100

(2.17 × 10−1) −
7.8025 × 100

(4.67 × 10−1) −
8.0799 × 100

(3.18 × 10−1) −
6.4606 × 100

(7.11 × 10−1) =
6.6087 × 100

(5.38 × 10−1)

6 8.2582 × 100

(1.91 × 10−1) −
8.1236 × 100

(1.45 × 10−1) −
7.7522 × 100

(5.25 × 10−1) −
8.3874 × 100

(2.73 × 10−1) −
6.6396 × 100

(6.90 × 10−1) =
6.6123 × 100

(5.19 × 10−1)

8 8.1601 × 100

(1.80 × 10−1) −
8.1142 × 100

(1.87 × 10−1) −
7.4586 × 100

(6.07 × 10−1) −
8.4815 × 100

(2.30 × 10−1) −
6.3743 × 100

(6.18 × 10−1) =
6.3994 × 100

(6.41 × 10−1)

10 8.3975 × 100

(1.54 × 10−1) =
8.3974 × 100

(9.50 × 10−2) =
8.3814 × 100

(1.32 × 10−1) =
8.3201 × 100

(1.68 × 10−1) =
8.3756 × 100

(1.09 × 10−1) =
8.3867 × 100

(1.13 × 10−1)

15 8.2145 × 100

(2.42 × 10−1) −
8.1845 × 100

(2.33 × 10−1) −
7.1694 × 100

(5.63 × 10−1) −
8.5950 × 100

(4.14 × 10−1) −
6.7692 × 100

(6.39 × 10−1) −
6.3664 × 100

(7.91 × 10−1)

DTLZ7

4 1.0721 × 101

(9.39 × 10−1) =
1.0523 × 101

(8.97 × 10−1) =
6.8686 × 100

(1.51 × 100) +
9.0019 × 100

(8.53 × 10−1) +
1.1170 × 101

(1.12 × 100) −
1.0333 × 101

(7.84 × 10−1)

6 1.7522 × 101

(1.41 × 100) −
1.7168 × 101

(1.25 × 100) −
1.2474 × 101

(1.92 × 100) +
1.6993 × 101

(1.70 × 100) −
1.6776 × 101

(1.79 × 100) −
1.5615 × 101

(1.70 × 100)

8 2.3403 × 101

(1.63 × 100) −
2.3105 × 101

(2.46 × 100) −
1.6554 × 101

(3.01 × 100) +
2.2673 × 101

(1.94 × 100) −
2.2713 × 101

(1.78 × 100) =
2.1635 × 101

(2.22 × 100)

10 2.8954 × 101

(1.83 × 100) =
2.8632 × 101

(2.23 × 100) =
2.9084 × 101

(2.09 × 100) =
2.9295 × 101

(1.82 × 100) =
2.9114 × 101

(2.52 × 100) =
2.8991 × 101

(2.84 × 100)

15 4.8157 × 101

(3.39 × 100) −
4.7771 × 101

(3.24 × 100) −
3.7765 × 101

(5.13 × 100) +
4.6075 × 101

(3.23 × 100) =
4.8246 × 101

(3.13 × 100) −
4.6251 × 101

(2.95 × 100)

DTLZ8

4 2.6816 × 10−1

(1.20 × 10−2) −
2.5290 × 10−1

(1.66 × 10−2) −
2.9764 × 10−1

(3.31 × 10−2) −
2.5702 × 10−1

(1.79 × 10−2) −
2.5491 × 10−1

(2.05 × 10−2) −
2.3448 × 10−1

(1.91 × 10−2)

6 3.2956 × 10−1

(1.36 × 10−2) −
3.2875 × 10−1

(1.60 × 10−2) −
3.7389 × 10−1

(3.52 × 10−2) −
3.5488 × 10−1

(2.08 × 10−2) −
3.1313 × 10−1

(1.76 × 10−2) −
2.9977 × 10−1

(1.69 × 10−2)

8 3.8214 × 10−1

(1.36 × 10−2) −
3.7347 × 10−1

(1.79 × 10−2) −
4.3741 × 10−1

(4.44 × 10−2) −
4.1455 × 10−1

(1.95 × 10−2) −
3.5998 × 10−1

(1.64 × 10−2) −
3.4724 × 10−1

(1.28 × 10−2)

10 4.0439 × 10−1

(1.03 × 10−2) =
4.0760 × 10−1

(1.28 × 10−2) =
4.0825 × 10−1

(1.33 × 10−2) =
4.1142 × 10−1

(1.06 × 10−2) =
4.1032 × 10−1

(1.25 × 10−2) =
4.0898 × 10−1

(1.14 × 10−2)

15 5.0885 × 10−1

(1.47 × 10−2) −
5.1728 × 10−1

(1.20 × 10−2) −
6.0916 × 10−1

(4.75 × 10−2) −
5.6736 × 10−1

(2.08 × 10−2) −
4.9992 × 10−1

(1.52 × 10−2) =
4.9466 × 10−1

(1.88 × 10−2)

+/−/= 0/28/12 1/28/11 14/20/6 8/21/11 9/11/20 　

Note: “+”, “−”, and “=” denote that the results from other algorithms are higher than, lower than, or equal to the results from the
proposed ImMAPIO, respectively. The bold parts represent the best results. The value before the brackets represents the mean value of
the indicator used to measure the algorithm, and the value in the brackets refers to the standard deviation of the indicator.
 

 

Table 4    IGD values of six algorithms for different objectives in the WFG test problems.

Problem M
IGD value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

WFG1

4 2.2679 × 100

(5.83 × 10−2) +
2.0836 × 100

(6.07 × 10−2) +
1.9482 × 100

(9.49 × 10−2) +
2.1434 × 100

(1.60 × 10−1) +
2.1668 × 100

(5.32 × 10−2) +
2.3239 × 100

(4.25 × 10−2)

6 2.6632 × 100

(3.62 × 10−2) =
2.5207 × 100

(4.50 × 10−2) +
2.3985 × 100

(3.50 × 10−2) +
2.7377 × 100

(1.51 × 10−1) =
2.5629 × 100

(2.97 × 10−2) +
2.6873 × 100

(4.78 × 10−2)

8 3.0568 × 100

(3.73 × 10−2) =
2.9148 × 100

(4.07 × 10−2) +
2.8456 × 100

(3.58 × 10−2) +
3.0935 × 100

(1.22 × 10−1) =
2.9695 × 100

(5.04 × 10−2) +
3.0501 × 100

(5.50 × 10−2)

10 3.3744 × 100

(2.58 × 10−2) =
3.3030 × 100

(3.10 × 10−2) +
3.2350 × 100

(3.25 × 10−2) +
3.4821 × 100

(8.31 × 10−2) −
3.3225 × 100

(2.93 × 10−2) +
3.3813 × 100

(3.10 × 10−2)

15 4.3397 × 100

(6.01 × 10−2) =
4.2716 × 100

(5.94 × 10−2) +
4.2636 × 100

(3.39 × 10−2) +
4.3775 × 100

(6.75 × 10−2) −
4.2776 × 100

(5.32 × 10−2) +
4.3155 × 100

(3.48 × 10−2)
(To be continued)
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Table 4    IGD values of six algorithms for different objectives in the WFG test problems. (Continued)

Problem M
IGD value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

WFG2

4 8.8248 × 10−1

(6.15 × 10−2) −
8.1748 × 10−1

(1.00 × 10−1) −
9.7502 × 10−1

(1.55 × 10−1) −
8.4418 × 10−1

(1.13 × 10−1) −
5.7956 × 10−1

(5.57 × 10−2) +
7.3098 × 10−1

(7.18 × 10−2)

6 1.4167 × 100

(2.03 × 10−1) =
1.1910 × 100

(1.14 × 10−1) +
1.5752 × 100

(2.99 × 10−1) =
1.2032 × 100

(1.56 × 10−1) +
1.1057 × 100

(2.22 × 10−1) +
1.4936 × 100

(2.46 × 10−1)

8 2.1908 × 100

(3.82 × 10−1) =
1.7794 × 100

(2.27 × 10−1) +
2.4856 × 100

(5.20 × 10−1) −
1.7235 × 100

(1.70 × 10−1) +
1.7806 × 100

(2.64 × 10−1) +
2.1205 × 100

(3.58 × 10−1)

10 3.3382 × 100

(4.79 × 10−1) −
2.9570 × 100

(5.79 × 10−1) =
2.6705 × 100

(6.97 × 10−1) =
2.7563 × 100

(4.26 × 10−1) =
2.5374 × 100

(3.46 × 10−1) =
2.6705 × 100

(3.92 × 10−1)

15 4.7815 × 100

(1.14 × 100) =
3.8352 × 100

(8.18 × 10−1) +
4.4897 × 100

(1.49 × 100) +
3.8040 × 100

(6.68 × 10−1) +
4.4664 × 100

(7.12 × 10−1) +
5.0460 × 100

(8.25 × 10−1)

WFG3

4 7.6595 × 10−1

(3.04 × 10−2) −
7.5258 × 10−1

(5.13 × 10−2) −
1.2244 × 100

(2.43 × 10−1) −
8.7538 × 10−1

(4.80 × 10−2) −
6.1213 × 10−1

(3.97 × 10−2) −
5.7753 × 10−1

(3.57 × 10−2)

6 1.1042 × 100

(4.48 × 10−2) −
1.0629 × 100

(5.37 × 10−2) −
1.8104 × 100

(3.36 × 10−1) −
1.5754 × 100

(9.76 × 10−2) −
8.1342 × 10−1

(3.78 × 10−2) −
7.7909 × 10−1

(3.96 × 10−2)

8 1.3299 × 100

(6.67 × 10−2) −
1.3116 × 100

(6.40 × 10−2) −
2.4667 × 100

(3.43 × 10−1) −
2.2462 × 100

(1.56 × 10−1) −
9.5307 × 10−1

(5.42 × 10−2) =
9.3275 × 10−1

(5.69 × 10−2)

10 1.5305 × 100

(6.61 × 10−2) =
1.5074 × 100

(6.31 × 10−2) =
1.5220 × 100

(6.56 × 10−2) =
1.5149 × 100

(6.00 × 10−2) =
1.5104 × 100

(5.34 × 10−2) =
1.5172 × 100

(6.61 × 10−2)

15 2.3159 × 100

(1.12 × 10−1) −
2.1354 × 100

(8.42 × 10−2) −
5.3943 × 100

(1.40 × 100) −
4.9843 × 100

(2.88 × 10−1) −
1.5755 × 100

(9.29 × 10−2) =
1.5687 × 100

(1.44 × 10−1)

WFG4

4 1.2495 × 100

(9.74 × 10−2) −
1.0623 × 100

(9.81 × 10−2) −
1.3239 × 100

(1.53 × 10−1) −
1.1744 × 100

(1.18 × 10−1) −
1.0430 × 100

(1.03 × 10−1) −
9.5073 × 10−1

(7.55 × 10−2)

6 3.5989 × 100

(2.80 × 10−1) −
3.4923 × 100

(2.35 × 10−1) −
3.6606 × 100

(4.57 × 10−1) −
3.9492 × 100

(3.52 × 10−1) −
2.9753 × 100

(2.94 × 10−1) −
2.7154 × 100

(2.41 × 10−1)

8 6.5429 × 100

(3.66 × 10−1) −
6.3809 × 100

(3.94 × 10−1) −
6.0238 × 100

(4.31 × 10−1) −
7.1237 × 100

(4.26 × 10−1) −
5.4316 × 100

(4.31 × 10−1) =
5.3036 × 100

(4.05 × 10−1)

10 9.3553 × 100

(4.51 × 10−1) =
9.5364 × 100

(3.67 × 10−1) =
9.4802 × 100

(3.87 × 10−1) =
9.5797 × 100

(4.14 × 10−1) =
9.4157 × 100

(4.38 × 10−1) =
9.5146 × 100

(5.16 × 10−1)

15 1.8761 × 101

(7.33 × 10−1) −
1.7837 × 101

(7.92 × 10−1) −
1.8129 × 101

(1.12 × 100) −
1.9520 × 101

(9.30 × 10−1) −
1.7050 × 101

(1.12 × 100) =
1.6813 × 101

(9.02 × 10−1)

WFG5

4 1.1252 × 100

(4.47 × 10−2) −
1.0532 × 100

(4.12 × 10−2) −
1.5054 × 100

(2.21 × 10−1) −
1.1365 × 100

(3.27 × 10−2) −
1.0562 × 100

(3.54 × 10−2) −
9.8621 × 10−1

(3.16 × 10−2)

6 2.7896 × 100

(1.11 × 10−1) −
2.6278 × 100

(1.29 × 10−1) −
3.2877 × 100

(2.31 × 10−1) −
2.8435 × 100

(1.41 × 10−1) −
2.3348 × 100

(8.44 × 10−2) −
2.2062 × 100

(6.07 × 10−2)

8 5.0017 × 100

(2.60 × 10−1) −
4.7340 × 100

(2.40 × 10−1) −
5.5699 × 100

(3.87 × 10−1) −
5.2512 × 100

(2.32 × 10−1) −
4.1651 × 100

(1.11 × 10−1) −
4.0178 × 100

(1.10 × 10−1)

10 7.2526 × 100

(2.88 × 10−1) =
7.1248 × 100

(3.24 × 10−1) =
7.2314 × 100

(3.42 × 10−1) =
7.2017 × 100

(2.96 × 10−1) =
7.1677 × 100

(3.12 × 10−1) =
7.2006 × 100

(2.65 × 10−1)

15 1.4940 × 101

(6.03 × 10−1) −
1.5364 × 101

(6.09 × 10−1) −
1.5001 × 101

(1.06 × 100) −
1.6095 × 101

(8.23 × 10−1) −
1.3166 × 101

(5.92 × 10−1) −
1.2696 × 101

(5.08 × 10−1)

WFG6

4 1.2505 × 100

(4.23 × 10−2) −
1.2093 × 100

(4.29 × 10−2) −
1.6584 × 100

(2.31 × 10−1) −
1.3003 × 100

(6.09 × 10−2) −
1.1608 × 100

(4.65 × 10−2) −
1.0867 × 100

(4.38 × 10−2)

6 2.9531 × 100

(1.75 × 10−1) −
2.8090 × 100

(1.03 × 10−1) −
3.4805 × 100

(3.13 × 10−1) −
3.1188 × 100

(1.47 × 10−1) −
2.6019 × 100

(1.29 × 10−1) −
2.4118 × 100

(9.83 × 10−2)

8 5.2762 × 100

(2.94 × 10−1) −
5.0758 × 100

(2.36 × 10−1) −
5.6672 × 100

(2.72 × 10−1) −
5.6237 × 100

(3.36 × 10−1) −
4.7682 × 100

(3.18 × 10−1) −
4.4482 × 100

(1.99 × 10−1)

10 7.4959 × 100

(2.30 × 10−1) =
7.5062 × 100

(2.62 × 10−1) =
7.5112 × 100

(3.37 × 10−1) =
7.6682 × 100

(3.84 × 10−1) −
7.5592 × 100

(3.05 × 10−1) =
7.4866 × 100

(3.07 × 10−1)

15 1.5541 × 101

(8.42 × 10−1) −
1.5833 × 101

(6.47 × 10−1) −
1.5868 × 101

(7.99 × 10−1) −
1.6171 × 101

(7.16 × 10−1) −
1.4975 × 101

(7.09 × 10−1) −
1.4041 × 101

(5.77 × 10−1)

WFG7

4 1.1391 × 100

(6.44 × 10−2) −
1.0519 × 100

(6.12 × 10−2) −
1.4513 × 100

(2.11 × 10−1) −
1.1253 × 100

(5.14 × 10−2) −
1.0057 × 100

(7.45 × 10−2) −
9.3171 × 10−1

(4.16 × 10−2)

6 3.0335 × 100

(2.01 × 10−1) −
2.8505 × 100

(1.58 × 10−1) −
3.4183 × 100

(2.34 × 10−1) −
3.2046 × 100

(2.32 × 10−1) −
2.6170 × 100

(1.81 × 10−1) −
2.3913 × 100

(1.49 × 10−1)

8 5.4840 × 100

(3.35 × 10−1) −
5.2294 × 100

(3.19 × 10−1) −
5.8570 × 100

(3.46 × 10−1) −
5.8238 × 100

(4.26 × 10−1) −
5.0230 × 100

(3.23 × 10−1) −
4.6235 × 100

(2.15 × 10−1)

10 8.0380 × 100

(3.84 × 10−1) =
8.0994 × 100

(3.17 × 10−1) =
8.1133 × 100

(4.20 × 10−1) =
8.1266 × 100

(3.52 × 10−1) =
8.0862 × 100

(3.99 × 10−1) =
7.9913 × 100

(3.60 × 10−1)

15 1.6222 × 101

(7.83 × 10−1) −
1.6131 × 101

(6.31 × 10−1) −
1.6466 × 101

(9.98 × 10−1) −
1.7083 × 101

(6.68 × 10−1) −
1.5289 × 101

(7.77 × 10−1) −
1.4755 × 101

(6.68 × 10−1)
(To be continued)
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Table 4    IGD values of six algorithms for different objectives in the WFG test problems. (Continued)

Problem M
IGD value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

WFG8

4 1.3602 × 100

(4.34 × 10−2) −
1.3191 × 100

(4.73 × 10−2) −
1.6783 × 100

(1.20 × 10−1) −
1.4033 × 100

(6.55 × 10−2) −
1.3062 × 100

(5.37 × 10−2) −
1.2182 × 100

(5.06 × 10−2)

6 3.1347 × 100

(1.80 × 10−1) −
3.0351 × 100

(1.31 × 10−1) −
3.5691 × 100

(2.42 × 10−1) −
3.3104 × 100

(1.51 × 10−1) −
2.8526 × 100

(1.67 × 10−1) −
2.6735 × 100

(1.10 × 10−1)

8 5.4695 × 100

(2.57 × 10−1) −
5.2240 × 100

(1.88 × 10−1) −
5.9009 × 100

(3.95 × 10−1) −
5.8838 × 100

(3.13 × 10−1) −
5.1078 × 100

(2.78 × 10−1) −
4.7267 × 100

(1.94 × 10−1)

10 7.7556 × 100

(2.50 × 10−1) =
7.7605 × 100

(3.37 × 10−1) =
7.9148 × 100

(3.35 × 10−1) =
7.7397 × 100

(3.23 × 10−1) =
7.7631 × 100

(3.05 × 10−1) =
7.7501 × 100

(3.06 × 10−1)

15 1.5751 × 101

(6.14 × 10−1) −
1.5860 × 101

(5.12 × 10−1) −
1.6241 × 101

(8.39 × 10−1) −
1.6671 × 101

(8.24 × 10−1) −
1.5230 × 101

(8.01 × 10−1) −
1.4330 × 101

(6.44 × 10−1)

WFG9

4 1.2771 × 100

(6.50 × 10−2) −
1.2225 × 100

(6.66 × 10−2) −
1.5791 × 100

(1.05 × 10−1) −
1.3426 × 100

(7.02 × 10−2) −
1.1065 × 100

(7.48 × 10−2) −
1.0018 × 100

(4.89 × 10−2)

6 3.1110 × 100

(1.82 × 10−1) −
3.0923 × 100

(2.10 × 10−1) −
3.5141 × 100

(3.75 × 10−1) −
3.3101 × 100

(1.79 × 10−1) −
2.5172 × 100

(1.51 × 10−1) −
2.2930 × 100

(1.06 × 10−1)

8 5.5229 × 100

(3.33 × 10−1) −
5.3238 × 100

(2.83 × 10−1) −
5.6756 × 100

(3.51 × 10−1) −
5.9342 × 100

(3.48 × 10−1) −
4.4527 × 100

(2.51 × 10−1) −
4.2249 × 100

(1.89 × 10−1)

10 8.0942 × 100

(2.79 × 10−1) =
8.0332 × 100

(3.66 × 10−1) =
8.0114 × 100

(3.93 × 10−1) =
8.0706 × 100

(3.09 × 10−1) =
7.9967 × 100

(4.35 × 10−1) =
7.9617 × 100

(4.08 × 10−1)

15 1.6040 × 101

(6.28 × 10−1) −
1.5619 × 101

(8.42 × 10−1) −
1.5887 × 101

(1.09 × 100) −
1.6794 × 101

(6.36 × 10−1) −
1.3647 × 101

(7.31 × 10−1) −
1.2918 × 101

(5.12 × 10−1)

+/−/= 1/30/14 8/29/8 6/30/9 4/32/9 9/24/12 　

Note: “+”, “−”, and “=” denote that the results from other algorithms are higher than, lower than, or equal to the results from the
proposed ImMAPIO, respectively. The bold parts represent the best results. The value before the brackets represents the mean value of
the indicator used to measure the algorithm, and the value in the brackets refers to the standard deviation of the indicator.
 

 

Table 5    HV values of these algorithms for different objectives in the WFG test problems.

Problem M
HV value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

WFG1

4 3.5784 × 101

(1.85 × 101) +
9.0046 × 101

(2.00 × 101) +
9.2829 × 101

(2.28 × 101) +
1.1726 × 102

(1.70 × 101) +
6.3304 × 101

(1.74 × 101) +
2.0385 × 101

(1.26 × 101)

6 1.1416 × 104

(1.86 × 103) +
1.6261 × 104

(1.76 × 103) +
1.3574 × 104

(1.35 × 103) +
1.4804 × 104

(2.12 × 103) +
1.4192 × 104

(1.52 × 103) +
8.2635 × 103

(2.81 × 103)

8 3.6132 × 106

(3.59 × 105) +
4.5193 × 106

(1.58 × 105) +
3.5048 × 106

(2.91 × 105) +
4.0264 × 106

(4.85 × 105) +
4.0921 × 106

(3.18 × 105) +
2.9339 × 106

(9.62 × 105)

10 1.4806 × 109

(1.06 × 108) +
1.6884 × 109

(6.38 × 107) +
1.3266 × 109

(1.38 × 108) +
1.3983 × 109

(1.70 × 108) +
1.7054 × 109

(5.03 × 107) +
9.0170 × 108

(4.47 × 108)

15 2.4364 × 1016

(6.79 × 1014) +
2.5234 × 1016

(2.39 × 1014) +
1.8951 × 1016

(2.23 × 1015) +
2.3302 × 1016

(2.09 × 1015) +
2.0558 × 1016

(5.80 × 1015) +
9.9738 × 1015

(3.37 × 1015)

WFG2

4 3.8408 × 102

(1.20 × 101) −
3.9749 × 102

(1.17 × 101) −
3.4158 × 102

(2.62 × 101) −
3.8459 × 102

(1.84 × 101) −
4.3437 × 102

(1.16 × 101) +
4.1143 × 102

(1.02 × 101)

6 5.3681 × 104

(2.12 × 103) −
5.6442 × 104

(1.72 × 103) =
4.8562 × 104

(3.52 × 103) −
5.3773 × 104

(2.71 × 103) −
6.2267 × 104

(2.38 × 103) +
5.5325 × 104

(2.36 × 103)

8 1.3448 × 107

(5.10 × 105) −
1.4286 × 107

(6.13 × 105) =
1.2110 × 107

(1.31 × 106) −
1.3357 × 107

(7.98 × 105) −
1.5963 × 107

(4.86 × 105) +
1.4333 × 107

(4.39 × 105)

10 5.2616 × 109

(1.65 × 108) −
5.4782 × 109

(2.41 × 108) −
5.0647 × 109

(5.88 × 108) −
5.3277 × 109

(3.26 × 108) −
6.5392 × 109

(1.61 × 108) +
6.1226 × 109

(1.49 × 108)

15 8.3501 × 1016

(4.60 × 1015) −
8.9301 × 1016

(5.56 × 1015) =
7.6236 × 1016

(8.10 × 1015) −
8.3628 × 1016

(5.65 × 1015) −
1.0295 × 1017

(3.56 × 1015) +
8.9246 × 1016

(3.00 × 1015)

WFG3

4 6.7255 × 10−1

(2.21 × 10−1) −
6.2814 × 10−1

(2.41 × 10−1) −
2.6620 × 10−2

(5.10 × 10−2) −
4.0052 × 10−1

(1.89 × 10−1) −
9.8456 × 10−1

(2.56 × 10−1) −
1.1281 × 100

(2.64 × 10−1)

6 0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100)

8 0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100)

10 0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100)

15 0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100) =
0.0000 × 100

(0.00 × 100)
(To be continued)
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Table 5    HV values of these algorithms for different objectives in the WFG test problems. (Continued)

Problem M
HV value

NSGA-III GrEA MOEA/D RVEA MAPIO ImMAPIO

WFG4

4 2.0090 × 102

(7.17 × 100) −
2.1494 × 102

(8.23 × 100) −
1.6090 × 102

(1.96 × 101) −
1.9753 × 102

(1.07 × 101) −
2.3180 × 102

(1.10 × 101) −
2.4395 × 102

(8.49 × 100)

6 2.8430 × 104

(1.41 × 103) −
2.9478 × 104

(1.13 × 103) −
2.1901 × 104

(1.72 × 103) −
2.2975 × 104

(1.45 × 103) −
3.5850 × 104

(1.77 × 103) −
3.7948 × 104

(1.74 × 103)

8 7.8951 × 106

(2.75 × 105) −
8.2707 × 106

(3.00 × 105) −
6.0156 × 106

(5.60 × 105) −
6.0796 × 106

(2.62 × 105) −
1.0200 × 107

(4.00 × 105) −
1.0723 × 107

(4.02 × 105)

10 3.4974 × 109

(1.07 × 108) =
3.4541 × 109

(1.07 × 108) =
3.4326 × 109

(1.16 × 108) =
3.4557 × 109

(8.69 × 107) =
3.4728 × 109

(9.23 × 107) =
3.4472 × 109

(1.26 × 108)

15 6.0675 × 1016

(3.05 × 1015) −
6.4184 × 1016

(2.64 × 1015) −
4.6306 × 1016

(5.62 × 1015) −
4.3322 × 1016

(3.82 × 1015) −
7.7883 × 1016

(3.94 × 1015) −
8.0952 × 1016

(3.10 × 1015)

WFG5

4 1.6439 × 102

(6.53 × 100) −
1.7568 × 102

(6.79 × 100) −
1.0502 × 102

(1.86 × 101) −
1.5588 × 102

(7.28 × 100) −
1.7808 × 102

(6.93 × 100) −
1.9221 × 102

(5.20 × 100)

6 2.5761 × 104

(8.79 × 102) −
2.6921 × 104

(8.49 × 102) −
1.4994 × 104

(2.97 × 103) −
2.1958 × 104

(7.74 × 102) −
2.9153 × 104

(1.05 × 103) −
3.0877 × 104

(1.16 × 103)

8 7.2302 × 106

(2.71 × 105) −
7.6177 × 106

(1.66 × 105) −
4.1603 × 106

(9.29 × 105) −
5.8004 × 106

(2.75 × 105) −
8.2373 × 106

(3.02 × 105) −
8.6090 × 106

(2.83 × 105)

10 3.2628 × 109

(6.43 × 107) −
3.2956 × 109

(7.80 × 107) =
3.2963 × 109

(8.58 × 107) =
3.2922 × 109

(6.50 × 107) =
3.3015 × 109

(6.51 × 107) =
3.3026 × 109

(7.18 × 107)

15 5.4309 × 1016

(1.58 × 1015) −
5.6930 × 1016

(2.02 × 1015) −
3.0704 × 1016

(6.49 × 1015) −
3.7635 × 1016

(2.52 × 1015) −
6.3712 × 1016

(2.51 × 1015) −
6.6755 × 1016

(2.17 × 1015)

WFG6

4 1.4221 × 102

(6.04 × 100) −
1.4936 × 102

(6.11 × 100) −
8.2764 × 101

(2.10 × 101) −
1.2882 × 102

(8.17 × 100) −
1.6224 × 102

(7.44 × 100) −
1.7343 × 102

(6.17 × 100)

6 2.2630 × 104

(1.01 × 103) −
2.3855 × 104

(6.79 × 102) −
1.2621 × 104

(3.04 × 103) −
1.8782 × 104

(1.10 × 103) −
2.6545 × 104

(8.94 × 102) −
2.8445 × 104

(8.91 × 102)

8 6.3329 × 106

(2.32 × 105) −
6.7261 × 106

(2.09 × 105) −
3.7067 × 106

(6.93 × 105) −
5.0147 × 106

(3.09 × 105) −
7.5557 × 106

(2.38 × 105) −
7.9697 × 106

(2.67 × 105)

10 2.8954 × 109

(1.04 × 108) =
2.8886 × 109

(6.31 × 107) =
2.8932 × 109

(9.69 × 107) =
2.8775 × 109

(9.96 × 107) =
2.8897 × 109

(9.88 × 107) =
2.9020 × 109

(1.02 × 108)

15 4.7881 × 1016

(1.77 × 1015) −
4.9365 × 1016

(1.98 × 1015) −
2.7847 × 1016

(3.99 × 1015) −
3.3242 × 1016

(2.58 × 1015) −
5.7045 × 1016

(2.36 × 1015) −
6.1368 × 1016

(2.21 × 1015)

WFG7

4 1.8153 × 102

(5.66 × 100) −
1.9349 × 102

(7.23 × 100) −
1.2537 × 102

(2.25 × 101) −
1.7471 × 102

(6.68 × 100) −
2.1006 × 102

(6.05 × 100) −
2.2167 × 102

(4.70 × 100)

6 2.7572 × 104

(1.28 × 103) −
2.8581 × 104

(9.34 × 102) −
1.7851 × 104

(2.80 × 103) −
2.2908 × 104

(9.57 × 102) −
3.2718 × 104

(1.20 × 103) −
3.4878 × 104

(1.10 × 103)

8 7.7367 × 106

(2.74 × 105) −
8.0545 × 106

(2.48 × 105) −
4.6446 × 106

(8.49 × 105) −
6.1752 × 106

(3.61 × 105) −
9.0819 × 106

(3.77 × 105) −
9.6743 × 106

(3.31 × 105)

10 3.3529 × 109

(1.26 × 108) =
3.3313 × 109

(9.17 × 107) −
3.3678 × 109

(1.07 × 108) =
3.3659 × 109

(9.66 × 107) =
3.3725 × 109

(1.02 × 108) =
3.3945 × 109

(8.94 × 107)

15 5.8204 × 1016

(2.31 × 1015) −
6.1402 × 1016

(2.61 × 1015) −
3.8224 × 1016

(7.41 × 1015) −
4.2571 × 1016

(2.34 × 1015) −
7.1340 × 1016

(3.73 × 1015) −
7.3846 × 1016

(2.51 × 1015)

WFG8

4 1.4275 × 102

(4.75 × 100) −
1.5113 × 102

(5.78 × 100) −
8.1614 × 101

(1.51 × 101) −
1.3064 × 102

(7.23 × 100) −
1.5802 × 102

(7.83 × 100) −
1.6932 × 102

(6.04 × 100)

6 2.3171 × 104

(8.35 × 102) −
2.4173 × 104

(9.54 × 102) −
1.2178 × 104

(3.21 × 103) −
1.9003 × 104

(1.33 × 103) −
2.6918 × 104

(1.05 × 103) −
2.8651 × 104

(9.73 × 102)

8 6.7731 × 106

(2.14 × 105) −
7.0675 × 106

(2.12 × 105) −
3.4656 × 106

(7.54 × 105) −
5.1390 × 106

(3.03 × 105) −
7.8044 × 106

(3.40 × 105) −
8.3515 × 106

(2.46 × 105)

10 3.1409 × 109

(8.31 × 107) =
3.1283 × 109

(8.30 × 107) =
3.1125 × 109

(9.62 × 107) =
3.1360 × 109

(9.03 × 107) =
3.1194 × 109

(7.38 × 107) =
3.1146 × 109

(9.06 × 107)

15 5.2570 × 1016

(2.44 × 1015) −
5.5063 × 1016

(2.76 × 1015) −
2.8691 × 1016

(5.63 × 1015) −
3.5071 × 1016

(3.14 × 1015) −
6.3728 × 1016

(2.62 × 1015) −
6.7598 × 1016

(2.00 × 1015)

WFG9

4 1.5209 × 102

(8.27 × 100) −
1.5941 × 102

(1.05 × 101) −
8.9853 × 101

(1.76 × 101) −
1.3817 × 102

(1.13 × 101) −
1.8435 × 102

(1.12 × 101) −
2.0232 × 102

(8.42 × 100)

6 2.2504 × 104

(1.27 × 103) −
2.2896 × 104

(1.51 × 103) −
1.2910 × 104

(2.91 × 103) −
1.8568 × 104

(1.65 × 103) −
2.8914 × 104

(1.92 × 103) −
3.1961 × 104

(1.79 × 103)

8 6.4729 × 106

(3.35 × 105) −
6.7877 × 106

(3.83 × 105) −
3.4978 × 106

(9.81 × 105) −
4.8800 × 106

(4.10 × 105) −
8.2628 × 106

(4.38 × 105) −
8.9906 × 106

(3.56 × 105)

10 2.8154 × 109

(1.42 × 108) =
2.7936 × 109

(1.28 × 108) =
2.7844 × 109

(1.06 × 108) =
2.8074 × 109

(1.24 × 108) =
2.8082 × 109

(1.15 × 108) =
2.8361 × 109

(1.13 × 108)

15 4.8525 × 1016

(2.74 × 1015) −
5.1927 × 1016

(3.02 × 1015) −
2.9578 × 1016

(5.41 × 1015) −
3.1632 × 1016

(2.68 × 1015) −
6.2604 × 1016

(3.23 × 1015) −
6.9644 × 1016

(2.61 × 1015)
+/−/= 5/31/9 5/28/12 5/30/10 5/30/10 10/25/10 　

Note: “+”, “−”, and “=” denote that the results from other algorithms are higher than, lower than, or equal to the results from the
proposed ImMAPIO, respectively. The bold parts represent the best results. The value before the brackets represents the mean value of
the indicator used to measure the algorithm, and the value in the brackets refers to the standard deviation of the indicator.
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4.3.1    Results on DTLZ1−DTLZ7
To test the property of ImMAPIO, this study compares
the  proposed  algorithm  with  the  other  five  many-
objective optimization algorithms for the DTLZ[39] test
function.  The  comparison  results  are  evaluated  using
the  IGD  indicator.  The  PFs  obtained  by  these
algorithms  with  ten  objectives  on  the  DTLZ2  test
function  are  shown  in Fig. 3.  The  PFs  obtained  by
MOEA/D,  NSGA-III,  and  RVEA  have  poor
distribution.  The  distributions  obtained  by  GrEA  and

MAPIO  are  relatively  superior,  which  indicates  the
comprehensive  performance  of  these  algorithms  in
terms  of  diversity  and  convergence.  The  distribution
performance  of  ImMAPIO  falls  between  those  of
GrEA and MAPIO.

Table 3 reveals  the  results  of  the  comparison  of
ImMAPIO  with  five  state-of-the-art  algorithms,
namely,  GrEA,  NSGA-III,  RVEA,  MOEA/D,  and
MAPIO, on the DTLZ test functions using the IGD as
the  indicator[45].  As  observed  from  the  last  row  in

 

(a) NSGA-III on DTLZ2 (b) GrEA on DTLZ2

(c) MOEA/D on DTLZ2 (d) RVEA on DTLZ2

(e) MAPIO_JIANG on DTLZ2 (f) Improved_MAPIO on DTLZ2
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Fig. 3    Pareto front obtained by different algorithms on the 10-objective DTLZ2 test function.
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Table 3,  relative  to  NSGA-III  and  GrEA,  ImMAPIO
has  a  significant  advantage  on  the  40  test  functions.
The  performance  of  NSGA-III  is  weaker  than  that  of
the others on any function, and GrEA only has one best
result  relative  to  the  proposed  algorithm.  In  the
comparison  of  MOEA/D  and  RVEA,  14  items  of
MOEA/D and 8 items of RVEA are better than those of
the proposed algorithm.

MOEA/D  performs  better  than  the  other  algorithms
on  the  DTLZ1,  DTLZ3,  and  DTLZ7  test  functions
because  of  the  multiple  modal  features  of  the  test
functions  and  the  difficulty  of  obtaining  convergence
solutions.  Relative  to  MAPIO,  the  proposed algorithm
has a slight advantage as 9 of its items are worse than
those  of  MAPIO;  however,  MAPIO has  11  items  that
are  better  than  those  of  the  proposed  algorithm.  The
highlighted  region  shows  the  superior  performance  of
the  ImMAPIO  on  DTLZ2,  DTLZ4,  and  DTLZ8.  The
PF  of  DTLZ2  is  concave.  These  comparison  results
confirm the effectiveness of ImMAPIO.
4.3.2    Results on WFG1−WFG9
To  test  the  property  of  the  proposed  algorithm,  this
study  compares  the  ImMAPIO  algorithm  with  five
many-objective  optimization  algorithms  on  the
WFG[40] test  function.  The  comparison  results  are
evaluated by IGD[45] and HV[46].

Table 4 reveals the comparison results for ImMAPIO
and  five  of  the  most  advanced  algorithms,  namely,
NSGA-III,  MOEA/D,  RVEA,  GrEA,  and  MAPIO,  on
the basis of the WFG test functions using the indicator
of  IGD.  As  noticed  from  the  last  row  of Table 4,
relative  to  NSGA-III,  ImMAPIO  has  a  significant
advantage  over  the  45  test  functions.  Meanwhile,
NSGA-III  only  has  one  best  result  relative  to  the
proposed algorithm. Specifically, the use of the Pareto
dominance  relationship  and  reference  point  strategy
lack  selection  pressure  and  can  thus  lead  to  poor
convergence.  The  comparison  of  the  proposed
ImMAPIO with  other  methods  shows  that  8,  6,  and  4
items  of  GrEA,  MOEA/D,  and  RVEA,  respectively,
exceed  those  of  ImMAPIO.  The  proposed  algorithm
has a slight advantage because the proposed algorithm
and  MAPIO  adopt  the  BFE  strategy,  which  has  an
excellent performance in terms of the convergence and
diversity of the population.

Although the proposed algorithm’s performance does
not exceed that  of other algorithms for the WFG1 and
WFG2 test  problems,  it  performs better  than the  other
algorithms  on  the  whole  test  functions,  especially  on

the WFG6, WFG7, and WFG9 test functions. The HV-
based  selection  strategy  in  ImMAPIO  can  measure
multiformity  and  diversity  and  improve  the  selection
accuracy.  The  knee  point  based  selection  strategy  can
improve the convergence of the population. The vector
angle based selection strategy can ensure wideness and
uniformity.

Table 5 displays  the  comparison  of  the  ImMAPIO
algorithm  with  the  other  five  algorithms  on  the  WFG
test functions with 4, 6, 8, 10, and 15 objectives on the
basis  of  the  indicator  HV[46].  By  using  the  same
analysis  method,  NSGA-III,  GrEA, MOEA/D,  RVEA,
and  MAPIO  are  compared  with  the  ImMAPIO
algorithm,  which  shows  obvious  significant
advantages. The property of GrEA exceeds those of the
other algorithms on WFG1 because the grid dominance
in  GrEA  can  provide  additional  selection.  The
performance  of  MAPIO on  the  WFG2 test  function  is
obviously excellent.

Meanwhile,  the  performance  of  the  proposed
algorithm is superior to that of the other algorithms on
the  WFG4–WFG9  test  functions.  The  numerical
analysis  shows  that  for  the  45  comparison  results,  31,
28, 30, and 25 items of ImMAPIO are superior to those
of  NSGA-III,  GrEA,  RVEA,  MOEA/D,  and  MAPIO,
respectively. The highlighted region shows the superior
property  of  the  proposed algorithm on WFG4–WFG9.
These comparison results confirm the superiority of the
proposed algorithm on the WFG test functions.
4.3.3    Wilcoxon  signed-rank  test  of  the  comparison

results
The  Wilcoxon  signed-rank  test,  also  known  as  the
signed-rank  sum  test,  is  based  on  the  assumption  that
the  two  treatment  effects  of  a  pairing  are  the  same.  If
the  value  of  the  significance  difference  is  less  than
0.05,  then  the  null  hypothesis  is  rejected,  and  a
significant  difference  between  the  matched  samples  is
considered.  The  Wilcoxon  signed-rank  test  is  used  in
this  work  to  inspect  the  differences  in  the  IGD
indicators  between  the  proposed  ImMAPIO  algorithm
and  the  other  five  algorithms  for  the  WFG  test
functions.

As  shown  in Table 6,  the  value  of  the  significant
difference  is  significantly  less  than  0.5,  and  some
values are even 0. In the case in which the comparison
results  of  the proposed algorithm are  better  than those
of  the  other  algorithms,  significant  differences  are
noted  in  the  compared  data.  Hence,  the  proposed
algorithm  is  significantly  better  than  the  other
algorithms.
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5    Conclusion

ImMAPIO  is  proposed  to  solve  many-objective
optimization  problems.  Then,  an  integration-based
selection  strategy  that  integrates  three  strategies  and
their  advantages  is  proposed.  The  advantages  of  each
strategy  are  combined  while  the  convergence  and
multiformity  of  solution sets  are  guaranteed.  By using
the DTLZ and WFG test functions, the performance of
ImMAPIO  is  verified  and  compared  with  that  of  five
many-objective  optimization  evolutionary  algorithms.
The  comparison  and  the  Wilcoxon  signed-rank  test
results  show  the  advantages  of  the  ImMAPIO
algorithm.  In  our  future  work,  we  will  solve  practical
engineering problems by using the proposed algorithm.
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