

Distributed Flow Shop Scheduling with Sequence-Dependent Setup
Times Using an Improved Iterated Greedy Algorithm

Xue Han, Yuyan Han*, Qingda Chen, Junqing Li, Hongyan Sang,
Yiping Liu, Quanke Pan, and Yusuke Nojima

Abstract: To meet the multi-cooperation production demand of enterprises, the distributed permutation flow

shop scheduling problem (DPFSP) has become the frontier research in the field of manufacturing systems. In

this paper, we investigate the DPFSP by minimizing a makespan criterion under the constraint of sequence-

dependent setup times. To solve DPFSPs, significant developments of some metaheuristic algorithms are

necessary. In this context, a simple and effective improved iterated greedy (NIG) algorithm is proposed to

minimize makespan in DPFSPs. According to the features of DPFSPs, a two-stage local search based on

single job swapping and job block swapping within the key factory is designed in the proposed algorithm. We

compare the proposed algorithm with state-of-the-art algorithms, including the iterative greedy algorithm

(2019), iterative greedy proposed by Ruiz and Pan (2019), discrete differential evolution algorithm (2018),

discrete artificial bee colony (2018), and artificial chemical reaction optimization (2017). Simulation results

show that NIG outperforms the compared algorithms.

Key words: distributed permutation flow shop; iterated greedy; local search; swapping strategy

1 Introduction

Under the influence of globalization, distributed

manufacturing and scheduling have become a trend in
the production industry because many enterprises are
gradually turning to multiregional cooperation. In this
context, enterprises need several production centers
and must establish a distributed production model[1, 2].
Thus, the distributed production process flow has
gradually attracted researchers' attention and become a
hotspot for research[2]. The objective of the distributed
permutation flow shop scheduling problem (DPFSP) is
to assign some jobs to a factory and to balance the
efficiency of all the factories. Thus, the DPFSP consists
of two subproblems: the first is the distribution of jobs
among factories, and the second is the scheduling
sequence of jobs to be processed on machines, which
demonstrates that DPFSP is more complicated than the
traditional performance flow shop scheduling problem.

In actual factory production, operations such as
machine maintenance or blade replacement are often
required after a job is processed on the machine,
thereby creating extra time. These times become
sequence-dependent setup times (SDST) when their
length is related to the job being processed and to the

 • Xue Han, Yuyan Han, and Hongyan Sang are with the School

of Computer Science, Liaocheng University, Liaocheng
252000, China. E-mail: 1979124154@qq.com; hanyuyan@lcu-
cs.com; sanghongyan@lcu-cs.com.

 • Qingda Chen is with the State Key Laboratory of Synthetical
Automation for Process Industries, Northeastern University,
Shenyang 110819, China. E-mail: cqd0309@126.com.

 • Junqing Li is with the School of Information Science and
Engineering, Shandong Normal University, Jinan 252000,
China. E-mail: lijunqing@lcu-cs.com.

 • Yiping Liu is with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082,
China. E-mail: yiping0liu@gmail.com.

 • Quanke Pan is with the School of Mechatronic Engineering and
Automation, Shanghai University, Shanghai 200072, China. E-
mail: panquanke@mail.neu.edu.cn.

 • Yusuke Nojima is with the Department of Computer Science
and Intelligent Systems, Osaka Prefecture University, Osaka
599-8531, Japan. E-mail: nojima@cs.osakafu-u.ac.jp.

 * To whom correspondence should be addressed.
 Manuscript received: 2021-05-31; revised: 2021-07-13;

accepted: 2021-08-15

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 03/06 pp 198−217
Volume 1, Number 3, September 2021
DOI: 1 0 . 2 3 9 1 9 / C S M S . 2 0 2 1 . 0 0 1 8

© The author(s) 2021. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

previous job[3]. Therefore, this paper considers the
SDSTs and addresses the DPFSP-SDST to minimize
makespan.

We note that intelligent optimization algorithms
based on metaphors or inspired by nature have been
developed to solve the DPFSP, such as the estimation
of distribution algorithm (EDA)[4], the chemical
reaction optimization (CRO) algorithm[5], the discrete
artificial bee colony (DABC) algorithm[6], and the
iterative greedy (IG) algorithm[7−9]. These swarm
intelligence algorithms can provide multiple solutions
that are helpful in improving the diversity of solutions.
However, in the exploration of a single solution
neighborhood, these swarm intelligence algorithms are
slightly less effective than the IG algorithm. Especially
for flow shop scheduling problems, few local
optimums exist. Thus, we can select an algorithm with
good local exploitation ability to optimize the above
problems. Compared with traditional swarm
intelligence algorithms, the IG algorithm is a simple
and effective optimization algorithm that has shown
excellent local exploitation ability when solving
scheduling problems[6−9].

The IG algorithm is characterized by ease of
implementation, simple structure, few parameters, and
few mathematical requirements. It has two key stages:
destruction and construction, and local search, thereby
making it a parallel search framework[1]. Thus, many
heuristics, metaheuristics, and problem-dependent local
search methods, as well as operators, can be embedded
into the above search framework to further enhance
exploration and exploitation. Since the proposal of the
IG algorithm by Ruben and Thomas, it has been
continuously expanded and improved for solving flow
shop scheduling problems[1]. From Ref. [10], the
simulation experimental results verify that the IG
algorithm is appropriate and competitive for solving
discrete optimization problems. To the best of our
knowledge, the IG algorithm has not yet been well
studied up to the present for the DPFSP-SDST. With
the above motivations, we propose an improved IG
algorithm to solve the DPFSP-SDST.

We know that the DPFSP has two key issues to be
solved: how to allocate jobs to appropriate factories
and how to generate the scheduling sequence of
operations on machines with minimal makespan. To
tackle these issues effectively, our contribution to the
algorithm is twofold.

The process of allocating jobs to appropriate

factories is often finished after the initialization
solution is generated. In this paper, an allocation
strategy based on the idle time of a factory and an
independent insertion operator is adopted according to
the initialization scheduling sequence.

Based on the distributed feature of DPFSP-SDST, a
two-stage local search strategy based on a single job
exchange and a job block swapping is proposed to
disturb the current solution within the key factory. This
two-stage local search has low computational
complexity, and it has more iterations and opportunities
to improve the quality of the solution than the
algorithms based on insertion operators.

This paper is organized as follows: Section 2 reviews
some related references. Section 3 introduces the
mathematical model of DPFSP-SDST. Section 4
introduces the IG algorithm and its improvement.
Section 5 provides experimental results and analysis.
The last section summarizes the strengths of our
algorithms and gives some perspectives for future
works.

2 Literature Review

The DPFSP-SDST is a multifactory production model;
thus, it has significant applications in real-world
problems. Therefore, this problem has attracted the
attention of many researchers. In this section, we have
summarized some single- and multi-objective DPFSPs
and the IG algorithm in recent years.

The change in production from a single factory to
multiple factories is to reduce processing times while
increasing processing efficiency or reducing energy
consumption. Thus, some significant research has been
conducted on the DPFSPs with the makespan
minimization, and many improvements of the
algorithms have been made, such as an efficient
EDA[4], a scattered search (SS) algorithm containing
restart and local search strategies[11], and a CRO
algorithm[5]. Recently, for the same criterion, Zhao et
al.[12] integrated two heuristics and a stochastic policy
to generate an initial solution and proposed the
ensemble discrete differential evolution algorithm.
Meng et al.[13] studied the three metaheuristics, namely,
variable neighborhood descent, artificial bee colony,
and IG. Li et al.[14] employed an improved DABC
algorithm, and the experimental results show that the
performance of the DABC is better than that of the
genetic algorithm and IG algorithm.

Except for the makespan, the objective of the total

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 199

flow time is also important. Thus, many studies have
been developed for DPFSPs with the minimization of
the total flow time. Fernandez-Viagas et al.[15]

proposed some constructive heuristics and an iterative
improvement algorithm to minimize the total flow
time. Next, Pan et al.[16] designed the three constructive
heuristics and four metaheuristics algorithms based on
a high-performance framework of a discrete artificial
swarm, SS, iterative local search, and IG. Recently, for
the same objective, Zhang et al.[17] proposed an
innovative 3D matrix-based distribution-based
estimation algorithm, and Song and Lin[18] proposed a
genetic program-based hyper-heuristic algorithm.

In various real-world applications, the DPFSPs
optimize not only one objective but also several
objectives. Deng and Wang[19] proposed a competitive
modal algorithm to optimize the two objectives of the
makespan and total tardiness criteria. Wang et al.[20]

employed a multiobjective whale swarm algorithm
(MOWSA), in which a problem-specific coding
scheme, crossover, and variational operations, as well
as efficient local search, are proposed to solve
multiobjective DPFSP-SDST. Furthermore, Wang et
al.[21] adopted the above-improved MOWSA to solve
the energy-efficient DPFSP. Chen et al.[22] proposed a
collaborative optimization algorithm using attributes
and some synergistic mechanisms for reducing
makespan and total energy consumption.

In production, after a machine has finished
machining a job, it often takes a certain amount of time
for operations, such as tool changes and machine
maintenance. When these operations are associated
with two jobs before and after machining on the same
machine, this time is referred to as SDST. SDST allows
for a more precise consideration of setup time and is
more coincident with the actual production activities in
most factories. Therefore, the study of SDST is more
relevant than the common fixed lead time. Most of the
early studies on SDST were conducted on specific real-
world problems. For example, Parthasarathy and
Rajendran[3] studied the problem of a flow shop of the
production of drill bits. Later, Mirabi[23] proposed an
improved ant colony optimization algorithm to solve
the permutation flow shop scheduling problem with
SDST/PFSP. For the same problem, an improved
neighborhood-based heuristic[24], an enhanced
migrating birds optimization algorithm[25], and an
effective DABC algorithm[6] are proposed to optimize
the makespan of DPFSP-SDST. In addition, for SDST-

PFSP with the total process time, Nagano et al.[26]

applied a new construction heuristic called QUARTS
to solve the above problem.

In the existing literature, some researchers proposed
many excellent heuristic and metaheuristic algorithms
for distributed flow shops with different constraints[27].
Li et al.[28] proposed a DABC algorithm to solve the
distributed heterogeneous no-wait flow shop
scheduling problem. Next, considering the distributed
heterogeneous hybrid flow shop scheduling problem
with unrelated parallel machines and the SDST, Li et
al.[29] studied a machine position-based mathematical
model and designed an improved artificial bee colony
algorithm. For the distributed assembly flow shop
scheduling problem, Zhao et al.[30] proposed a
cooperative water wave optimization algorithm to
minimize the maximum assembly completion time.
Next, based on the features of the same problem
mentioned above, Shao et al.[31] considered a
constructive heuristic based on a new assignment rule
of jobs and a product-based insertion procedure.

Among the above algorithms, the IG algorithm has
shown good performance in solving PFSP[10]. With its
simplicity, ease of operation, and superiority over
many other metaphor-based algorithms[10, 32, 33], IG has
attracted great attention from researchers for use in
solving various PFSP problems. IG was first proposed
to solve DPFSP by Naderi and Ruiz[1], and the
experimental results show its great performance. The
use of insertion operations in the local search phase in
their work leads to an improvement in the quality of the
solution. Subsequently, scholars and producers have
spent many efforts to modify the IG algorithms and
achieve significant improvements in their
performance[34−37]. More recently, Fernandez-Viagas
and Framinan[38] compared the existing IG algorithms
and their variants to derive a new best-in-class
algorithm. Mao et al.[39] improved the initial phase of
the IG algorithm and the damage reconstruction phase.
Instead of applying a simple simulated annealing
criterion to the IG algorithm[40], Lin et al.[34] used an
acceptance criterion with a settling temperature value
and included the number of elements to be removed in
the destruction step as a variable. Ruben et al.[7]

employed an improved IG algorithm to optimize the
makespan of DPFSP. Jing et al.[41] adopted an
improved IG algorithm to solve the DPFSP with
windows. Huang et al.[8] combined the proposed six
different operators with the IG algorithm to greatly

 200 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

improve the performance of the IG algorithm and
applied two different local searches based on insertion
operations to improve the quality of the solution.

In summary, research on the above DPFSP-SDSTs is
relatively few. In addition, although IG has shown
good performance in solving DPFSP, for most existing
IG algorithms, the local search based on insertion
operator is often adopted. We know that the insertion
operations require more running time and will lose
opportunities to generate promising solutions by
several iterations. Thus, efforts are needed to reduce
the time complexity of the IG algorithm. In this paper,
a two-stage local search strategy is designed and
integrated into the IG algorithm.

3 SDST-DPFSP Problem

For example, the parallelization of cutoff pair
interactions is mature on CPUs and typically employs a
voxel-based method.

n f
m

Cmax

DPFSP-SDST has been described as follows: There
are jobs, which need to be processed in identical
factories, and each factory has machines. This
problem has the following constraints: (1) Each job can
be processed in any factory. (2) The job is processed in
the order from the first machine to the last machine,
and the factory cannot be changed during processing.
(3) Each machine can process only one job at any time.
(4) Only one job can be processed in the same factory.
(5) All operations are independent, and all factories
start processing from 0 moment when processing the
job. The purpose of DPFSP-SDST in this paper is to
assign jobs reasonably to the factory and find a job
sequence to minimize makespan (). The
mathematical model of the problem and its notations
are described as follows:

Notations:
f : The number of factories.
m: The number of machines in each factory.
n: The number of jobs that need to be processed.
J = {J1, J2, ..., Jn} n: The set of jobs to be processed.
M = {M1,M2, ...,Mm} m

Mi

Mi ∈ M

: The set of machines, where is
 machine used to complete the q-th process of jobs,

.
F =
{
F1,F2, ...,F f

}
f

Fl F Fl ∈ F
: The set of parallel factories,

where is the l-th factory from set , .
oi, j J j Mi: The operation of job on machine .
pi, j J j Mi: The processing time of job on machine .
si, j′, j J j Mi

Mi

: The setup time of job on machine , when
the job is the first job processed on machine , then

J′ = J .
S Ti, j oi, j: The start time of .
CTi, j J j Mi: The completion time of job on machine .
MS Tl,i,q Fl

Mi

: The start time of the q-th job of factory
on machine .

MCTl,i,q

Fl Mi

: The completion time of the q -th job of
factory on machine .

Cmax(πF f)
F f

: The completion time of the jobs processed
in factory .

G: A fairly large positive integer.
Cmax: The completion time of all the jobs.
Decision variables:
x j,i,l,q J j

Mi Fl

: When job is the q -th job processed on
machine in factory , the value of the decision
variable is 1; otherwise, it is 0.

yi,l J j Fl: When job is processed in factory , the value
of the decision variable is 1; otherwise, it is 0.

Objective:

MinCmax = max f
i=1

{
Cmax(πF1),Cmax(πF2), ...,Cmax(πF f)

}
(1)

Subject to

y j,l =

n∑
q=1

x j,i,l,q,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F (2)

n∑
j=1

x j,i,l,q ⩽ 1,∀Fl ∈ F,∀Mi ∈ M,∀q ∈ {1,2, ...,n} (3)

n∑
j=1

x j,i,l,q ⩾
n∑

j′=1

x j′,i,l,q+1,∀Fl ∈ F,∀Mi ∈ M,

∀q ∈ {1,2, ...,n−1} (4)

S Ti+1, j ⩾CTi, j,∀J j ∈ J,∀Mi ∈ {1,2, ...,m−1} (5)

MCTl,i,q = MS Tl,i,q+
∑n

j=1
pi, jx j,i,l,q,∀Mi ∈ M,

∀F1 ∈ F,∀q ∈ {1,2, ...,n}
(6)

MS Tl,i,q+1 =MCTl,i,q,∀Mi ∈M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(7)

MS Tl,s,q+1+G(1− x j,i,l,q) ⩾ MCTl,i,q+
∑n

j′=1
si, j′, jx j′,i,l,q,

∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(8)

MS Tl,i,1+G(1− x j,i,1,1) ⩾ si, j, j,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F
(9)

CTi, j = S Ti, j+Pi, j,∀J j ∈ J,∀Mi ∈ M (10)

MS Tl,i,q ⩾ 0,∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n} (11)

S Ti, j ⩾ 0,∀J j ∈ J,∀Mi ∈ M (12)

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 201

Equation (1) is the objective function to be
minimized. Constraint (2) is that each job can be
processed on only one machine in a factory at a time,
and Constraint (3) means that each machine can
process only one job at a time. Constraint (4) states that
the processing of operations on the machine can be
performed only sequentially, and the processing time
cannot be overlapped. Constraint (5) shows that the
processing sequence of the job cannot be changed.
Constraint (6) describes the start time and completion
time of a job processing. Constraint (7) represents that
the start time must be equal or greater than the
completion time of two adjacent jobs on a certain
machine. Constraint (8) describes the constraints
between the start time and completion time of the job,
including preparation time. Constraint (9) refers to the
situation when the job is first processed on the
machine. In Constraint (10), the completion time of a
job is the sum of the start time and the processing time
of the job. Constraints (11) and (12) indicate that the
start time of each machine and each job is not less than
0, respectively.

The following example illustrates a scheduling case

x2,1,1,1 = 1 x1,2,1,1 = 1
x5,3,1,1 = 1 x2,1,1,2 = 1 x1,2,1,2 = 1 x5,3,1,2 = 1 x4,1,2,1 = 1
x3,2,2,1 = 1 x6,3,2,1 = 1 x4,1,2,2 = 1 x3,2,2,2 = 1 x6,3,2,2 = 1
y2,1 = 1 x2,1,1,1 = 1 y5,1 = 1 y4,2 = 1 y3,2 = 1 y6,1 = 1

considered in DPFSP-SDST. Suppose that there is a
scheduling sequence with six jobs, two factories, and
two machines per factory. The processing time of the 6
jobs on two machines is (4, 3, 1, 3, 6, 8) and (3, 7, 2, 1,
9, 4), respectively. The setup times of the six jobs on
two machines with different sequences are shown in
Table 1. The jobs assigned to the first factory are 2, 1,
5, and the jobs assigned to the second factory are 4, 3,
6. For decision variables, , ,

, , , , ,
, , , , ,

, , , , , and .
The remaining decision variables are 0. Table 1
presents the setup time for jobs on different machines.

Figure 1 gives the Gantt chart of the scheduling
sequence (2, 4, 1, 3, 6, 5) on the two machines and
factories. In this study, we consider minimizing the
maximum makespan of scheduling. From this Gantt
chart, we see that the value of makespan is 38 units of
the time given by the maximum completion time of the
last job on the second machine in the two factories. It is
easy to understand that if the number of factories is
equal to one, then the makespan must be larger than 38.

s(i, j′, j) M1 M2Table 1 Sequence-dependent setup times of jobs on machines and

J′j
M1 M2

J1 J2 J3 J4 J5 J6 J1 J2 J3 J4 J5 J6

J′1 4 3 6 1 2 4 1 4 6 7 3 2
J′2 7 8 2 7 5 1 5 2 8 1 7 8
J′3 4 5 8 1 3 7 2 3 2 4 6 3
J′4 1 2 6 9 4 9 9 8 4 2 1 3
J′5 3 7 5 4 8 6 6 7 1 5 2 3
J′6 3 6 1 2 6 4 4 5 3 1 2 6

Processing time

Setup time

Idle time

M2 4

4 4 3 3 6 6
2 12

4 3 3 6 6
13 17 19 21 26 34

129 18 19 26 34

102 17 22 25

108 17 21 23 29
2 2 1 1 5

2 2 11 5 5

5
28 29 38

38
M1

M2

F2

F1
M1

Time (s)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

Fig. 1 Gantt chart for a solution to the example problem.

 202 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

From the Gantt chart, we can see that distributed flow
shop scheduling can reduce the production cycle or
completion time, accelerate the manufacturing process,
and enhance production efficiency. Thus, it has
applications that are more important in manufacturing
than the traditional PFSPs.

4 Iterative Greedy Algorithm

As mentioned above, the IG algorithm is a simple local
search method. In the framework of the IG algorithm,
two local searches are performed. However, most local
search methods are based on insertion operations,
which will consume running time. In addition, for the
distributed characteristic, DPFSP-SDST is lack of
operators assigning jobs to factories. The above
difficulties may be encountered when solving the
DPFSP-SDST. To address the above drawbacks, this
section presents an improved IG algorithm for solving
the DPFSP- SDST, including the initialization, the two
local searches, destruction and construction, and
acceptance criteria. In the proposed IG algorithm, two
local search strategies based on job swapping and job
block swapping within the key factory are proposed.
Notably, a discrete job permutation-based coding
scheme is utilized to directly solve the discrete problem
considered in this paper. Algorithm 1 shows the main
structure of the proposed IG algorithm. In the next
section, we describe each of its components.

4.1 Initialization method

The construction heuristic aims to obtain a feasible
solution in a reasonable amount of time. The quality of
the solution obtained using a constructive heuristic is
better than that obtained by using a random method to
generate the initial solution. A good initial solution can
enhance the convergence of an algorithm. The relevant
references on the constructive heuristic algorithms

prove their excellent performance in solving flow shop
scheduling problems[6, 31, 42−45] . Thus, a construction
heuristic is adopted in initializing the solution.

posl∗

posl∗

The IG algorithm usually uses a heuristic, i.e., NEH
(Nawaz, Enscore, and Ham), to generate the initial
solution. To solve the DPFSP, Naderi and Ruiz[1] used
a modified NEH called NEH2 to generate the initial
solution. In 2019, Ruiz et al.[7] extended NEH2, called
NEH2_en. The experimental results demonstrated that
NEH2_en performs better when optimizing the
makespan of the DPFSP than other heuristics[7]. Thus,
in this paper, we adopted NEH2_en to generate the
initial solution. The main steps are as follows: (1) The
sum of the processing times for each job on all
machines is calculated; (2) A nonincreasing sequence
based on the above sum values is obtained; (3) The first
jobs in the sequence are sequentially assigned to each
factory, and the remaining jobs are taken out of the
sequence in turn; (4) All locations in all factories are
evaluated until the location , and when the
smallest makespan is found, it is inserted; (5) After the
insert operation, the job before or after the position

 is randomly extracted and tested in all positions in
the same factory. (6) Steps 3 and 4 are repeated until all
jobs have been inserted. Algorithm 2 lists the
initialization procedure.

Algorithm 1　Two-stage IG algorithm
d T1: Defining constants ,

π =GenerateInitialS olution2:
π0 = LocalS earch(π)→ LS _N3: // The new local search based on

　 single job swapping is applied
4: While (Satisfying the cyclic condition) do

πD = πR = Destruction(π0,d)5: 　
π′ =Construction(πD,πR)6: 　
π′′ = LocalS earch(π′)→ LS _N27: 　 // The local search based job

　　 block swapping is proposed.
π0 = AcceptaneCriterion(π′′,π0,T)8: 　

9: end while

Algorithm 2　Initialization based on NEH2_en
TotalP j =

∑m
i=1 pi, J j ∈ J TotalP j

J j

1: Calculate (is the total
processing time for job)
τ = τ1, τ2, ..., τn TotalP j2: (sort jobs according to the decreasing)

j = 1 f3: for to
τi τ F j4: 　Take job from and assign it to factory

5: endfor
j = f +1 n6: for to do

l = 1 f7: 　for to
τ j πl8: 　　Test in all possible positions in // Taillard

acceleration is applied
C′l F j9: 　　 is the lowest makespan of factory obtained

posl C′l10: 　　 is the position where the is generated
11: 　endfor

l× = arg(min f
l=1C′l)12: 　

τ j πl∗ posl∗13: 　Insert in the sequence at position
h posl∗ −1 posl∗ +1

πl∗

14: 　Extract at random job from position or
from

h πl∗15: 　Test job in all possible positions of
h πl∗16: 　Insert job in at the position resulting in the lowest

makespan
17: end for

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 203

4.2 New local search based on single swapping

For example, the parallelization of cutoff pair
interactions is mature on CPUs and typically employs a
voxel-based method.

In most IG algorithms, the local search based on
insertion operator is adopted. However, the insertion
operations consume running time and will lose
opportunities to generate promising solutions by
several iterations. Thus, in this paper, we propose a
new local search based on single job swapping within
the key factory named LS_N. Algorithm 3 lists the
proposed local search procedure.

Fc1 = argmaxc1=(1,2,..., f)

Cmax(πFc1) Fc2 = argmaxc1=(1,2,..., f)/c1Cmax(πFc2)
Fc1

Fc2

Fc1 Fc2

C∗max

C∗max

Cmax Cnt =Cnt+1

In Line 1 of Algorithm 3,
 and aim

to find the critical factory, , with the maximal
makespan, as well as the secondary critical factory,

, with the secondary maximal makespan among the
factories. In Lines 5 to 7, we randomly select two jobs
from and , respectively, to perform the swap
operator, and reevaluate the two new solutions obtained
by implementing the swap operator. Next, Line 8 finds
the maximal makespan, denoted as . Lines 9 to 15
employ the acceptance criterion. If is smaller than

, then the swap is kept. Otherwise, .

4.3 New local search based on job block swapping

After the destruction and reconstruction operators are

Fc1

Fc2

Fc1 Fc2

C∗max = max f
i=1

{
Cmax(πF1),Cmax(πF2), ...,Cmax(πF f)

}

C∗max Cmax

Cnt =Cnt+1

used, the second local search strategy is employed,
which is called LS_N2. Similarly, to reduce the
computational complexity, a job block-based swapping
strategy is considered in the second local search stage.
First, the critical factory, , with the maximal
makespan and subcritical factory, , with the
secondary maximal makespan among the factories are
obtained (see Line 1 of Algorithm 4). Furthermore,
some adjacent jobs are selected randomly from the two
factories, respectively, block_1 and block_2. As with
the job-based exchange strategy, block_1 and block_2
are swapped, and two new solutions of and are
obtained (see Lines 5 to 8 of Algorithm 4). Next,

 is
computed, and the maximal makespan of all the
factories is recorded. Finally, the acceptance criterion is
executed. If is smaller than , then the swap is
kept. Otherwise, .

l l = 3 i
n

i ⩽ n− l+1 [i, i+2]
i > n− l+1 [n−2,n]

To further clearly describe the above job block
selection process, a simple example is given. Suppose
that jobs are available in the scheduling sequence, and
the size of the job block is (). First, the job (
ranges from 1 to) is selected randomly. When

, the jobs at interval are selected.
When , the jobs at interval are
selected. The above selection strategy ensures the

Algorithm 3　Local search based on single job swapping
πInput:
π CmaxOutput: ,

1 : Fc1 = argmaxc1=(1,2,..., f)Cmax(πFc1)
Fc2 = argmaxc1=(1,2,..., f)/c1Cmax(πFc2)

,
　

Cnt = 02:
Cnt < n n FC13: While do // is the number of jobs in factory

πInitial = π4: 　
τ′ = Fc15: 　 randomly selected job in
τ′′ = Fc26: 　 randomly selected job in

τ′ τ′′ πFc1 πFc27: 　Swap job and , and revaluate and

C∗max = max f
i=1

{
Cmax(πF1),Cmax(πF2), ...,Cmax(πF f)

}
8: 　

C∗max <Cmax9: 　if
Cmax <C∗max10: 　　

Fc1 = argmaxc1=(1,2,..., f)Cmax(πFc1)11: 　　

Fc2 = argmaxc1=(1,2,..., f)/c2Cmax(πFc1)12: 　　

Cnt = 013: 　　

14: 　else
π = πInitial Cnt =Cnt+115: 　　 and

16: 　end if
17: end while

Algorithm 4　Local search based on job block swapping
πInput:
π CmaxOutput: ,

1 : Fc1 = argmaxc1=(1,2,..., f)Cmax(πFc1)
Fc2 = argmaxc1=(1,2,..., f)/c1Cmax(πFc2)

,
　

Cnt = 02:
Cnt < n n FC13: While do // is the number of jobs in factory

πInitial = π4: 　
τ′ = Fc15: 　 randomly selected job in
τ′′ = Fc26: 　 randomly selected job in

7: 　Determine the job block block_1 and block_2.
πFc1 πFc28: 　Swap block_1 and block_2, and revaluate and

C∗max = max f
i=1

{
Cmax(πF1),Cmax(πF2), ...,Cmax(πF f)

}
9: 　

C∗max <Cmax10: 　if
Cmax <C∗max11: 　　

Fc1 = argmaxc1=(1,2,..., f)Cmax(πFc1)12: 　　

Fc2 = argmaxc1=(1,2,..., f)/c2Cmax(πFc1)13: 　　

Cnt = 014: 　　

15: 　else
π = πInitial Cnt =Cnt+116: 　　 and

17: 　end if
18: end while

 204 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

legitimacy of the positions of the selected job.
Through the above example, we describe the process

of job block selection. In this paper, we also proposed
an algorithm based on job block swapping called
LS_N2. The proposed local search procedure is listed
in Algorithm 4.

4.4 Destruction, reconstruction, and acceptance
criteria

π

πD πR

d π πR = π−πD

FC1

d−d/2

In the IG algorithm, destruction and reconstruction are
constantly performed within the IG loop to keep the
algorithm from falling into a local optimum. The
destruction operator is applied to the original . In this
paper, we first randomly select djobs and place them
into in turn. Then a subsequence is obtained by
deleting jobs from (). Based on the
distributed characteristic of the DPFSP, we delete d/2
jobs from the critical factory, , and delete the

 jobs from the noncritical factories. Next, a
reconstruction operation is employed to generate a
completed sequence.

πR
The reconstruction operation aims to reinsert the

deleted jobs into . The process is given as follows:
πD(1) The job is taken from in turn and inserted at

all the possible positions, respectively.
(2) Second, the position with the smallest makespan

is selected, and the job is inserted into the selected
position.

(3) Steps (1) and (2) are repeated until all jobs in
have been removed. After the destruction and
reconstruction operators, a simple thermostatic
acceptance criterion proposed by Ruiz and Stutzle is
applied.

Temperature = T ×

∑m

i=1

∑n

j=1
pi, j

n×m×10
(13)

T pi, j

J j Mi n m

T

T

where is a constant temperature value, is the
processing time of job on machine , and and
refer to the number of jobs and machines of the
example, respectively. For the value, the
experimental results verify that some acceptance
criteria without parameters, which were proposed by
Hatamit et al.[45], did not yield significant
improvements in initial testing[27]. needs calibration
but has shown robustness (most values are not zero and
not too high).

5 Experiment and Experimental Result

The experimental data in this paper are the same as in
Ref. [8], with a total of 150 test cases, where the

f ∈ {2,3,4,5,6,7}
n ∈ {100,200,300,400,500}

m ∈ {5,8,10}
f actor ∈ {25,50,100} (1+ rand()%99)×
f actor/100

number of factories is , the number of
jobs is , the number of
machines is , and the impact factor is

. We use
 to generate serially relevant preparation

times and processing times through the impact factors.
Thus, the values of processing times and SDSTs are in
the range [1, 99). Each instance is independently
executed with five replications, and the minimum
makespan was taken as the final result of that
algorithm.

TimeLimit =CPU ×n×m

In these experiments, all the algorithms are written in
Visual C++ 2019, and the same library functions are
employed to make fair comparisons. All the algorithms
are implemented on a PC with Microsoft Windows 10
operating system, 16 GB DDR4 memory, and a 1.00
GHz Intel Core i5-1035G1 processor. For the
termination criterion of these algorithms, the same
maximal elapsed CPU time of
millisecond is employed.

For the evaluation indicator, we adopt the relative
percentage increase (RPI) to test the efficiency of the
proposed algorithm. The RPI is calculated as follows:

RPI =
Mi−Mbest

Mbest
×100 (14)

Mbest

Mi

where is the minimum makespan obtained by all
the compared algorithms for each test instance. is
the best makespan of the i -th algorithm for each test
instance. A small RPI corresponds to improved results
obtained by the algorithm.

In this paper, to demonstrate the performance of the
proposed algorithm, we select the existing five
compared algorithms used to solve the DPFSP. The
compared algorithms are artificial CRO[5], DABC[46],
DDE[47], improved iterative greedy algorithm (IGA)[7],
and iterative greedy algorithm with a restart scheme
(IGR)[8].

During solving the above instances, if we obtain a
better solution of an instance by using the proposed
algorithm than that of the comparative algorithms, then
we update its upper bound. In the experiments, we
report the computational results related to the following
aspects:

• Comparison results of the local search based on
single job swapping and job block swapping.

• Comparison results between the proposed algorithm
and the five compared ones.

• Update of upper bounds of some benchmark
problems.

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 205

5.1 Comparison results of a local search based on
single job and job block swapping

In this paper, we propose a two-stage local search; that
is, the local search is divided into a local search for the
initial solution and a local search within the IG loop.
NIG_X is the proposed improved Iterated greedy
algorithm in which the local search based on single job
swapping is performed in the first stage, and a job
block swapping is performed in the second local
search. NIG2_X is the algorithm in which job block
swapping is employed in the two local search stages.
“X” represents the number of jobs in the job block and
is taken to be 1 to 5 in this experiment.

Figure 2 shows the interval plot of NIG_X and
NIG2_X, where “X” equals 2, 3, 4, and 5, respectively.
From the results of Fig. 2, the strategies of NIG_X and
NIG2_X show good performance, suggesting that the
proposed two-stage local search can enhance the
performance of the proposed algorithm. Among these
proposed strategies, only when the job block length is
equal to 2 (X = 2) NIG_2 performs slightly better than
NIG2_X. The performances of NIG_X and NIG2_X
become increasingly worse as the number of jobs in the
job block increases. In addition, for NIG_X and
NIG2_X, the RPI of the former is slightly better than
that of the latter. The reason may be that the job block
that includes more than two jobs destroys the sequence
within the critical factory to a large degree, resulting in
reduced local exploitation ability of the proposed
algorithm.

To further verify the performance of the proposed
NIG and NIG_X (X = 2, 3, 4, 5), Table 2 and Figs. 3
and 4 list the experimental results of the comparison of
NIG, NIG_X, IGA, and IGR at CPU = 10. In Table 2,
when X = 2, the makespan values obtained by the
proposed NIG, NIG_2, NIG_3, NIG_4, and NIG_5 are
smaller than those of IGA and IGR for all the test

instances, suggesting that the two-stage local search
strategy can generate better solutions than all the
compared algorithms, and more upper bounds obtained
by the proposed algorithms are updated. As the number
of factories increase, the superiority of the NIG,
NIG_2, NIG_3, and NIG_4 over the IGA and IGR
algorithms is demonstrated for the mean values of all
test sets in Table 2 . NIG is better than the compared
algorithms because the two-stage local search based on
single job swapping can slightly disrupt the current
solution within the critical factory and improve the
exploitation ability of NIG.

To effectively demonstrate the convergence of the
proposed algorithm, we also plotted the evolutionary
curves of the seven algorithms above. According to
requirements, all the compared algorithms are run
using the same CPU time with the step size of 0.5 s on
the aforementioned PC.

We randomly chose a small-scale instance and a
large-scale instance of 100×5×2 and 500×10×5,
respectively. Compared with the convergence curves of
IGA, IGR, NIG, and NIG_X, the convergence curve of
NIG is the highest as the runtime increases, followed
by NIG_2, NIG_3, NIG_4, IGR, IGA, and NIG_5,
suggesting that the proposed algorithms have the
capacity to guide the solution to the optimal solution.
The superiority of NIG is due to the two-stage local
search.

In summary, NIG is significantly superior in all the
test instances with respect to makespan, convergence
curve, and interval plot compared with NIG_X, IGA,
and IGAR. For this case, the reason for this superior
performance may be that the NIG adopts a two-stage
local search based on a single job swapping operator
rather than an insertion operator, thereby decreasing the
computational complexity of the local search and
having more iterations to improve the quality of the
solution than the compared algorithms.

5.2 Performance of all the compared algorithms

The experimental results in Subsection 5.1 show that
the proposed NIG algorithm outperforms NIG_X and
NIG2_X. Thus, in this section, we will further validate
the effect of the proposed NIG algorithm. We compare
NIG with DABC[46], CRO[5], DDE[47], IGA[7], and
IGR[8] in terms of makespan and PRI on 150 test
instances. All the compared algorithms have the same
computational time and experimental environment.
Tables 3 and 4 highlight the best mean result of the
comparative methods.

4

3

2R
PI

1

0

NIG
_1

NIG
2_

1
NIG

_2

NIG
2_

2
NIG

_3

NIG
2_

3
NIG

_4

NIG
2_

4
NIG

_5

NIG
2_

5

Fig. 2 Confidence intervals for two-stage IG and job block-
based exchange IG.

 206 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

Table 2 Makespan values of all the compared algorithms when CPU = 10.

f actory J×M IGA IGR NIG_2 NIG_3 NIG_4 NIG_5 NIG

f=2

100×5 3423 3405 3335 3343 3371 3415 3329
100×8 3832 3703 3579 3610 3658 3652 3537
100×10 3864 3804 3675 3755 3731 3776 3652
200×5 6630 6506 6328 6415 6451 6435 6300
200×8 6937 6812 6670 6680 6774 6740 6588
200×10 7313 7117 6913 6959 6986 7045 6818
300×5 9853 9682 9436 9498 9549 9587 9345
300×8 10305 10027 9760 9870 9867 9908 9667
300×10 10257 10260 9997 10058 10141 10047 9881
400×5 13517 12984 12645 12802 12841 12860 12477
400×8 13402 13053 12753 12787 12879 12894 12672
400×10 13578 13399 13116 13261 13319 13365 13069
500×5 15795 15468 15287 15357 15426 15383 15080
500×8 16603 16385 15979 16064 16114 16223 15877
500×10 16838 16752 16274 16385 16416 16454 16215
Mean 10143.1 9957.13 9716.47 9789.6 9834.87 9852.27 9633.8

f=3

100×5 2345 2331 2305 2334 2336 2359 2249
100×8 2632 2566 2469 2523 2509 2543 2446
100×10 2840 2805 2752 2776 2793 2833 2728
200×5 4467 4367 4338 4357 4390 4403 4298
200×8 4835 4689 4597 4648 4689 4678 4508
200×10 5083 4894 4816 4827 4897 4934 4745
300×5 6678 6533 6457 6469 6537 6578 6410
300×8 7015 6795 6630 6685 6733 6778 6545
300×10 7152 7094 6880 6948 6951 6994 6823
400×5 8792 8696 8528 8627 8694 8687 8475
400×8 9331 9107 8913 8999 9083 9057 8811
400×10 9247 9165 8969 9056 9081 9164 8881
500×5 10839 10570 10473 10595 10608 10645 10419
500×8 11248 10964 10658 10760 10827 10862 10620
500×10 11473 11344 11033 11144 11221 11301 10956
Mean 6931.8 6794.67 6654.53 6716.53 6756.6 6787.73 6594.27

f=4

100×5 1861 1816 1784 1798 1814 1846 1793
100×8 2136 2064 2045 2047 2091 2082 2015
100×10 2250 2237 2177 2221 2217 2254 2143
200×5 3431 3371 3344 3385 3408 3424 3316
200×8 3821 3677 3573 3641 3628 3721 3578
200×10 3973 3965 3846 3893 3906 3961 3814
300×5 5091 4963 4854 4911 4930 4973 4820
300×8 5503 5229 5132 5155 5225 5240 5078
300×10 5580 5514 5408 5455 5500 5535 5348
400×5 8792 8696 8528 8627 8694 8687 8475
400×8 9331 9107 8913 8999 9083 9057 8811
400×10 9247 9165 8969 9056 9081 9164 8881
500×5 8297 8037 7947 8017 8023 8105 7833
500×8 8728 8556 8430 8472 8508 8587 8309
500×10 8964 8720 8546 8549 8621 8688 8414
Mean 5800.33 5674.47 5566.4 5615.07 5648.6 5688.27 5508.53

(To be continued)

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 207

Table 2 Makespan values of all the compared algorithms when CPU = 10. (Continued)

f actory J×M IGA IGR NIG_2 NIG_3 NIG_4 NIG_5 NIG

f=5

100×5 1515 1482 1483 1504 1506 1532 1474
100×8 1826 1796 1751 1793 1777 1818 1723
100×10 1954 1912 1858 1889 1909 1944 1832
200×5 2858 2728 2701 2724 2742 2782 2629
200×8 3037 2988 2950 2986 2998 3004 2908
200×10 3303 3236 3151 3195 3244 3226 3105
300×5 4096 3997 3933 3974 4002 4012 3920
300×8 4422 4322 4217 4271 4295 4310 4160
300×10 4693 4554 4453 4528 4535 4541 4386
400×5 5479 5264 5210 5230 5237 5273 5171
400×8 5758 5599 5523 5554 5633 5590 5477
400×10 5951 5878 5668 5735 5773 5789 5632
500×5 6807 6604 6456 6514 6558 6597 6401
500×8 7130 6877 6751 6803 6846 6953 6688
500×10 7337 7125 7014 7033 7088 7155 6877
Mean 4411.067 4290.8 4207.93 4248.87 4276.2 4301.73 4158.87

f=6

100×5 1345 1307 1287 1305 1306 1335 1291
100×8 1548 1488 1455 1482 1512 1529 1456
100×10 1736 1689 1673 1658 1721 1703 1630
200×5 2403 2357 2285 2340 2344 2366 2268
200×8 2685 2579 2517 2552 2607 2618 2514
200×10 2839 2803 2740 2750 2800 2798 2694
300×5 3451 3326 3284 3334 3363 3380 3269
300×8 3851 3707 3620 3613 3666 3679 3553
300×10 3988 3934 3810 3845 3872 3919 3740
400×5 4525 4355 4329 4361 4363 4375 4248
400×8 4909 4828 4717 4742 4809 4771 4677
400×10 5210 5042 4941 4953 4990 5012 4842
500×5 5570 5397 5379 5417 5458 5503 5287
500×8 6011 5866 5759 5896 5910 5978 5724
500×10 6305 6124 5951 6036 6055 6111 5925
Mean 3758.4 3653.47 3583.13 3618.93 3651.73 3671.8 3541.2

f=7

100×5 1185 1156 1142 1152 1174 1160 1133
100×8 1390 1362 1332 1344 1353 1377 1320
100×10 1546 1548 1493 1499 1518 1526 1487
200×5 2131 2093 2055 2078 2103 2122 2032
200×8 2413 2334 2302 2320 2329 2357 2252
200×10 2608 2535 2482 2526 2540 2550 2445
300×5 3422 2909 2861 2897 2922 2942 2838
300×8 3325 3206 3135 3148 3175 3202 3071
300×10 3539 3456 3366 3433 3455 3455 3320
400×5 3930 3843 3802 3839 3880 3890 3752
400×8 4334 4202 4137 4151 4201 4237 4086
400×10 4602 4460 4363 4405 4399 4461 4308
500×5 4840 4679 4604 4687 4702 4747 4584
500×8 5213 5037 4955 5012 5041 5077 4902
500×10 5525 5370 5235 5283 5351 5394 5176
Mean 3333.53 3212.67 3150.93 3184.93 3209.53 3233.13 3113.733

 208 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

Tables 3 and 4 list the new upper bounds of
makespan and RPI produced by all the six compared
algorithms when CPU = 5 and CPU = 10, respectively.
From Tables 3 and 4 , the makespan and RPI values
produced by the proposed NIG algorithm are smaller
than the ones obtained by the compared algorithms in
all the test sets. In addition, when the number of
factories is equal to 2, 3, 4, 5, 6, and 7, the proposed
algorithm still achieves good performance in all the test

sets. Except for NIG, the IGR and DDE algorithms are
superior to the DABC, CRO, and IGA algorithms.
Furthermore, the performance of IGR improves
progressively as the size increases.

To further evaluate the performance of the proposed
NIG algorithm, we investigated the convergence of
different algorithms in this section. We randomly select
an instance with 100 jobs, 5 machines, and 2 factories,
and an instance with 500 jobs, 10 machines, and 5
factories. Figure 5 gives the best makespan values
obtained by DABC, CRO, DDE, IGA, IGR, and NIG
algorithms as the computation time increases. Figure 6
indicates that the convergence curve of the proposed
NIG reaches the lowest levels among the compared
algorithms for two given instances as the computation
time increases, followed by the convergence curve of
DDE, IGR, CRO, IGA, and DABC.

The above results indicate that the superiority of NIG
is mainly attributed to the two-stage local search
strategy proposed in Subsections 4.2 and 4.3 because
they enhance the exploitation abilities of the algorithm.
NIG adopts a two-stage local search based on a single
job swapping operator rather than an insertion operator,
which is why the computational complexity of NIG is
lower than that of the compared algorithms. In
addition, all algorithms adopt the same maximal
elapsed CPU time with the unit of a millisecond as the
termination criterion. Thus, the NIG has more
iterations and opportunities to improve the quality of
the solution than the compared algorithms. In
summary, the proposed algorithm is effective and can
generate the solution with good convergence.

5.3 Gantt charts of specific instances

To show the optimal scheduling sequence, Figure 6
shows the Gantt chart of a job sequence with 100 jobs,
3 factories, and 5 machines. In the Gantt chart, the
horizontal axis represents the makespan value. The
yellow rectangle represents the processing time of a job
on a machine, and the blue rectangle is the preparation
time. The serial numbers of the jobs are marked in the
yellow rectangle. Figures 6a − 6c provide the optimal
scheduling plan for managers in 3 factories,
respectively. In the first factory, the optimal scheduling
plan is 18-8-47-98-45-12-80-26-75-56-65-55-3-84-92-
21-1-36-78-27-54-70-35-60-10-97-91-15-62-0-66-57
and the makespan value is equal to 2248. In the second
factory, the optimal scheduling plan is 16-7-76-42-71-
74-61-95-64-29-37-81-11-49-51-2-40-72-33-69-23-68-
82-46-17-89-41-30-31-58-43-99-50-32-77 and the
makespan value is equal to 2248 . In the third factory,

6

5

4

3R
PI

2

1

0

NIG
_2IG

A
IG

R
NIG

_3
NIG

_4
NIG

_5 NIG

Fig. 3 Confidence intervals for some improved IG
algorithms.

4000

3900

3800

3700

3600

M
ak

es
pa

n
M

ak
es

pa
n

3500

3400

3300

3200
0 1 2

Running time (s)
(a) Evolutionary curve of 100×5×2

(b) Evolutionary curve of 500×10×5
Running time (s)

3

IGA
IGR
NIG
NIG_2
NIG_3
NIG_4
NIG_5

4 5

0 10 20 4030 50 60

8200

8000

7800

7600

7400

7200

7000

6800

IGA
IGR
NIG
NIG_2
NIG_3
NIG_4
NIG_5

Fig. 4 Evolutionary curves for some improved IG
algorithms.

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 209

Table 3 Makespan and RPI values of all the six algorithms when CPU = 5.

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=2

100×5 3473 4.13 3405 2.1 3366 0.93 3441 3.18 3351 0.48 3335 0
100×8 3823 7.9 3794 7.08 3584 1.16 3832 8.16 3694 4.26 3543 0
100×10 3917 7.25 3931 7.64 3712 1.64 3864 5.81 3799 4.03 3652 0
200×5 6553 3.67 6539 3.45 6426 1.66 6637 5 6478 2.48 6321 0
200×8 6943 5.29 6894 4.55 6678 1.27 6937 5.2 6841 3.75 6594 0
200×10 7245 6.13 7137 4.56 6854 0.41 7313 7.13 7093 3.91 6826 0
300×5 9802 4.73 9674 3.37 9478 1.27 9853 5.28 9632 2.92 9359 0
300×8 10094 4.41 10025 3.69 9778 1.14 10333 6.88 10046 3.91 9668 0
300×10 10364 4.81 10247 3.63 9975 0.88 10282 3.98 10257 3.73 9888 0
400×5 13202 5.68 13224 5.85 12714 1.77 13517 8.2 12992 3.99 12493 0
400×8 13222 4.34 13167 3.91 12759 0.69 13402 5.76 13045 2.94 12672 0
400×10 13742 5.11 13468 3.01 13206 1.01 13578 3.85 13526 3.46 13074 0
500×5 15535 3 15702 4.1 15346 1.74 15795 4.72 15554 3.12 15083 0
500×8 16509 3.98 16375 3.14 16101 1.41 16603 4.57 16367 3.09 15877 0
500×10 16753 3.31 16828 3.77 16336 0.73 16838 3.83 16684 2.88 16217 0
Mean 10078 4.92 10027 4.26 9754 1.18 10148 5.44 9957 3.26 9640 0

f=3

100×5 2434 8.23 2449 8.89 2257 0.36 2345 4.27 2338 3.96 2249 0
100×8 2589 5.76 2638 7.76 2484 1.47 2638 7.76 2573 5.11 2448 0
100×10 2888 5.9 2876 5.46 2728 0.04 2850 4.51 2803 2.79 2727 0
200×5 4406 2.13 4438 2.87 4337 0.53 4467 3.55 4385 1.65 4314 0
200×8 4755 5.36 4858 7.64 4542 0.64 4848 7.42 4726 4.72 4513 0
200×10 5027 5.97 5040 6.24 4767 0.48 5083 7.15 4948 4.3 4744 0
300×5 6696 4.45 6543 2.06 6432 0.33 6678 4.16 6525 1.78 6411 0
300×8 6905 5.34 6817 4 6599 0.67 7022 7.12 6841 4.36 6555 0
300×10 7151 4.81 7036 3.12 6833 0.15 7161 4.95 7027 2.99 6823 0
400×5 8868 4.56 8740 3.05 8519 0.45 8811 3.89 8655 2.05 8481 0
400×8 9306 5.51 9211 4.43 8865 0.51 9375 6.29 9149 3.73 8820 0
400×10 9376 5.38 9150 2.84 8902 0.06 9247 3.93 9124 2.55 8897 0
500×5 10808 3.68 10711 2.75 10482 0.56 10839 3.98 10683 2.48 10424 0
500×8 11095 4.6 11013 3.83 10607 0 11251 6.07 10976 3.48 10620 0.12
500×10 11516 5.02 11290 2.95 11030 0.58 11473 4.62 11359 3.58 10966 0
Mean 6921 5.11 6854 4.53 6626 0.45 6939 5.31 6807 3.3 6599 0.01

f=4

100×5 1876 4.86 1838 2.74 1789 0 1865 4.25 1829 2.24 1793 0.22
100×8 2156 6.89 2132 5.7 2042 1.24 2136 5.9 2080 3.12 2017 0
100×10 2293 7 2306 7.61 2194 2.38 2261 5.51 2239 4.48 2143 0
200×5 3542 6.82 3472 4.7 3342 0.78 3436 3.62 3382 1.99 3316 0
200×8 3816 6.62 3777 5.53 3597 0.5 3823 6.82 3669 2.51 3579 0
200×10 4034 5.74 4012 5.16 3832 0.45 3983 4.4 3931 3.04 3815 0
300×5 5071 5.1 4966 2.92 4862 0.77 5091 5.51 4927 2.11 4825 0
300×8 5364 5.63 5335 5.06 5126 0.95 5504 8.39 5274 3.86 5078 0
300×10 5670 6.02 5533 3.46 5380 0.6 5580 4.34 5531 3.42 5348 0
400×5 6704 5.38 6601 3.76 6422 0.94 6637 4.32 6519 2.47 6362 0
400×8 7226 7.04 7070 4.73 6754 0.04 7032 4.16 6942 2.83 6751 0
400×10 7419 6.69 7264 4.46 6984 0.43 7309 5.1 7187 3.35 6954 0
500×5 8306 5.96 8082 3.1 7940 1.29 8313 6.05 8064 2.87 7839 0
500×8 8772 5.26 8596 3.14 8438 1.25 8728 4.73 8589 3.06 8334 0
500×10 9025 7.2 8740 3.81 8626 2.46 8965 6.49 8729 3.68 8419 0
Mean 5418 6.15 5315 4.39 5155 0.94 5378 5.31 5259 3 5105 0.01

(To be continued)

 210 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

Table 3 Makespan and RPI values of all the six algorithms when CPU = 5. (Continued)

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=5

100×5 1563 6.04 1547 4.95 1487 0.88 1519 3.05 1483 0.61 1474 0
100×8 1890 9.69 1836 6.56 1758 2.03 1836 6.56 1786 3.66 1723 0
100×10 1998 8.65 1957 6.42 1917 4.24 1954 6.25 1902 3.43 1839 0
200×5 2887 9.69 2879 9.38 2728 3.65 2858 8.59 2743 4.22 2632 0
200×8 3115 8.27 3053 6.12 2877 0 3037 5.56 3007 4.52 2908 1.08
200×10 3394 9.24 3297 6.12 3141 1.09 3303 6.31 3248 4.54 3107 0
300×5 4144 5.71 4058 3.52 3944 0.61 4101 4.62 3992 1.84 3920 0
300×8 4477 7.62 4436 6.63 4214 1.3 4422 6.3 4267 2.57 4160 0
300×10 4709 7.59 4667 6.63 4377 0 4693 7.22 4554 4.04 4386 0.21
400×5 5479 5.87 5409 4.52 5229 1.04 5486 6.01 5279 2.01 5175 0
400×8 5933 8.13 5642 2.82 5564 1.4 5758 4.94 5587 1.82 5487 0
400×10 6067 7.65 5903 4.74 5694 1.03 5951 5.59 5818 3.23 5636 0
500×5 6810 6.34 6772 5.75 6489 1.33 6816 6.43 6600 3.06 6404 0
500×8 7158 6.98 6836 2.17 6720 0.43 7139 6.7 6908 3.24 6691 0
500×10 7420 7.82 7226 5 7012 1.89 7343 6.7 7135 3.68 6882 0
Mean 4470 7.69 4368 5.42 4210 1.4 4414 6.05 4287 3.1 4162 0.09

f=6

100×5 1387 7.44 1357 5.11 1294 0.23 1345 4.18 1304 1.01 1291 0
100×8 1549 6.02 1579 8.08 1479 1.23 1548 5.95 1513 3.56 1461 0
100×10 1787 9.63 1752 7.48 1673 2.64 1736 6.5 1697 4.11 1630 0
200×5 2476 9.12 2394 5.51 2321 2.29 2403 5.91 2341 3.17 2269 0
200×8 2727 8.47 2602 3.5 2526 0.48 2689 6.96 2608 3.74 2514 0
200×10 2980 10.5 2919 8.27 2834 5.12 2839 5.3 2802 3.93 2696 0
300×5 3506 7.25 3452 5.6 3366 2.97 3451 5.57 3323 1.65 3269 0
300×8 3881 9.17 3809 7.14 3672 3.29 3851 8.33 3715 4.5 3555 0
300×10 4007 7.14 4001 6.98 3944 5.45 3999 6.93 3924 4.92 3740 0
400×5 4622 8.8 4417 3.98 4480 5.46 4529 6.61 4346 2.31 4248 0
400×8 5095 8.94 4900 4.77 4878 4.3 4935 5.52 4828 3.23 4677 0
400×10 5283 9.09 5150 6.34 4963 2.48 5219 7.76 5042 4.11 4843 0
500×5 5688 7.58 5518 4.37 5425 2.61 5570 5.35 5428 2.67 5287 0
500×8 6199 8.15 6019 5.01 5929 3.44 6011 4.87 5894 2.83 5732 0
500×10 6291 6.14 6147 3.71 6070 2.41 6305 6.38 6102 2.95 5927 0
Mean 3832 8.23 3734 5.72 3657 2.96 3762 6.14 3658 3.25 3543 0

f=7

100×5 1229 8.57 1190 5.12 1132 0 1185 4.68 1142 0.88 1134 0.18
100×8 1436 8.79 1415 7.2 1375 4.17 1390 5.3 1357 2.8 1320 0
100×10 1666 12 1582 6.39 1545 3.9 1546 3.97 1542 3.7 1487 0
200×5 2234 9.94 2144 5.51 2061 1.43 2131 4.87 2087 2.71 2032 0
200×8 2549 12.8 2400 6.29 2294 1.59 2422 7.26 2359 4.47 2258 0
200×10 2723 11.2 2585 5.6 2561 4.62 2608 6.54 2558 4.49 2448 0
300×5 3097 9.13 3050 7.47 2944 3.74 3422 20.5 2917 2.78 2838 0
300×8 3387 10 3257 5.78 3194 3.73 3325 7.99 3181 3.31 3079 0
300×10 3731 11.7 3509 5.12 3443 3.15 3539 6.02 3463 3.74 3338 0
400×5 4097 9.14 3947 5.14 3896 3.78 3931 4.71 3824 1.86 3754 0
400×8 4508 10.3 4295 5.12 4278 4.7 4344 6.31 4203 2.86 4086 0
400×10 4741 10 4502 4.45 4420 2.55 4602 6.77 4465 3.6 4310 0
500×5 4996 8.68 4760 3.55 4807 4.57 4842 5.33 4688 1.98 4597 0
500×8 5319 8.51 5083 3.69 5067 3.37 5213 6.34 5063 3.28 4902 0
500×10 5679 9.72 5445 5.2 5390 4.13 5538 6.99 5379 3.92 5176 0
Mean 3426 10.05 3278 5.44 3227 3.29 3336 6.91 3215 3.09 3117 0.01

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 211

Table 4 Makespan and RPI of the compared algorithms when CPU = 10.

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=2

100×5 3965 8.04 3981 8.47 3769 2.7 3913 6.62 3840 4.63 3670 0
100×8 4453 7.77 4462 7.99 4132 0 4381 6.03 4271 3.36 4141 0.22
100×10 4578 7.26 4490 5.2 4287 0.45 4489 5.18 4419 3.54 4268 0
200×5 7521 6.06 7329 3.36 7218 1.79 7387 4.17 7255 2.31 7091 0
200×8 7976 5.21 7918 4.45 7759 2.35 8079 6.57 7944 4.79 7581 0
200×10 8338 6.54 8056 2.94 7893 0.86 8242 5.32 8154 4.19 7826 0
300×5 11067 5.24 10892 3.58 10821 2.9 11204 6.54 11003 4.63 10516 0
300×8 11880 5.52 11826 5.05 11377 1.06 11927 5.94 11724 4.14 11258 0
300×10 12185 5.18 12073 4.21 11714 1.11 12229 5.56 12118 4.6 11585 0
400×5 14995 6.67 14666 4.32 14458 2.85 14884 5.88 14667 4.33 14058 0
400×8 15425 5.59 14945 2.3 14752 0.98 15503 6.12 15179 3.9 14609 0
400×10 15820 4.5 15697 3.69 15352 1.41 16068 6.14 15768 4.15 15139 0
500×5 18400 6.28 18242 5.37 17843 3.06 18526 7.01 18246 5.39 17313 0
500×8 19031 4.77 18844 3.74 18529 2.01 19183 5.61 19006 4.64 18164 0
500×10 19787 4.25 19794 4.29 19292 1.64 20211 6.49 19883 4.76 18980 0
Mean 11694 5.93 11547 4.6 11279 1.68 11748 5.94 11565 4.22 11079 0.01

f=3

100×5 2757 6.57 2783 7.58 2618 1.2 2725 5.33 2693 4.1 2587 0
100×8 3081 8.72 3055 7.8 2857 0.81 3037 7.16 2947 3.99 2834 0
100×10 3201 6.99 3209 7.25 3030 1.27 3190 6.62 3131 4.65 2992 0
200×5 5002 6.95 4937 5.56 4787 2.35 4925 5.3 4894 4.64 4677 0
200×8 5491 5.76 5529 6.49 5252 1.16 5454 5.05 5411 4.22 5192 0
200×10 5860 6.2 5807 5.24 5589 1.29 5835 5.74 5736 3.95 5518 0
300×5 7562 6.1 7543 5.84 7253 1.77 7514 5.43 7438 4.36 7127 0
300×8 8243 5.8 8240 5.76 7831 0.51 8209 5.37 8122 4.25 7791 0
300×10 8288 5.24 8282 5.17 7969 1.19 8333 5.82 8211 4.27 7875 0
400×5 10164 6.17 10028 4.75 9807 2.44 10144 5.96 9945 3.89 9573 0
400×8 10462 5.14 10445 4.96 10048 0.97 10415 4.66 10342 3.93 9951 0
400×10 10863 5.5 10568 2.63 10347 0.49 10895 5.81 10655 3.48 10297 0
500×5 12615 5.94 12476 4.77 12097 1.59 12633 6.09 12398 4.11 11908 0
500×8 13178 6.46 12901 4.23 12674 2.39 13022 5.2 12914 4.33 12378 0
500×10 13468 5.5 13262 3.89 12874 0.85 13509 5.82 13261 3.88 12766 0
Mean 8015 6.2 7937 5.46 7668 1.35 7989 5.69 7873 4.14 7564 0

f=4

100×5 2160 7.78 2129 6.24 2033 1.45 2103 4.94 2084 3.99 2004 0
100×8 2507 9.24 2494 8.67 2346 2.22 2473 7.76 2388 4.05 2295 0
100×10 2723 9.58 2720 9.46 2541 2.25 2626 5.67 2605 4.83 2485 0
200×5 3873 7.11 3865 6.89 3616 0 3875 7.16 3763 4.07 3624 0.22
200×8 4404 6.02 4423 6.48 4205 1.23 4437 6.81 4292 3.32 4154 0
200×10 4620 7.44 4644 8 4403 2.4 4620 7.44 4511 4.91 4300 0
300×5 5978 8.51 5951 8.02 5608 1.8 5892 6.95 5846 6.12 5509 0
300×8 6128 4.31 6229 6.03 5917 0.71 6242 6.25 6180 5.19 5875 0
300×10 6634 6.79 6541 5.3 6356 2.32 6639 6.87 6471 4.17 6212 0
400×5 7673 5.24 7619 4.5 7401 1.51 7704 5.66 7610 4.38 7291 0
400×8 8168 6.74 8031 4.95 7751 1.29 8083 5.63 7957 3.99 7652 0
400×10 8496 7.5 8415 6.48 8051 1.87 8449 6.91 8250 4.39 7903 0
500×5 9467 7.74 9196 4.65 9052 3.02 9307 5.92 9144 4.06 8787 0
500×8 9901 6.07 9740 4.35 9489 1.66 9904 6.11 9702 3.94 9334 0
500×10 10340 6.46 10129 4.28 9820 1.1 10301 6.05 10125 4.24 9713 0
Mean 6204 7.1 6141 6.29 5905 1.66 6177 6.41 6061 4.38 5809 0.01

(To be continued)

 212 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

Table 4 Makespan and RPI of the compared algorithms when CPU = 10. (Continued)

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=5

100×5 1845 10.88 1803 8.35 1691 1.62 1763 5.95 1740 4.57 1664 0
100×8 2108 9.68 2050 6.66 1964 2.19 2017 4.94 1982 3.12 1922 0
100×10 2332 12.93 2248 8.86 2079 0.68 2209 6.97 2137 3.49 2065 0
200×5 3278 8.83 3233 7.34 3106 3.12 3241 7.6 3142 4.32 3012 0
200×8 3666 9.43 3627 8.27 3360 0.3 3549 5.94 3484 4 3350 0
200×10 3905 8.62 3844 6.93 3630 0.97 3836 6.7 3761 4.62 3595 0
300×5 4605 6.87 4602 6.8 4486 4.11 4653 7.98 4524 4.99 4309 0
300×8 5377 10.59 5142 5.76 4987 2.57 5092 4.73 5020 3.25 4862 0
300×10 5450 7.64 5399 6.64 5141 1.54 5378 6.22 5302 4.72 5063 0
400×5 6288 8.47 6107 5.35 5886 1.54 6155 6.18 5991 3.35 5797 0
400×8 6764 9.17 6576 6.13 6280 1.36 6640 7.17 6468 4.39 6196 0
400×10 7035 8.36 6789 4.57 6600 1.66 6990 7.67 6778 4.41 6492 0
500×5 7803 8.75 7548 5.2 7354 2.49 7667 6.86 7452 3.86 7175 0
500×8 8329 7.82 8189 6.01 8127 5.2 8216 6.36 8076 4.54 7725 0
500×10 8666 8.07 8430 5.13 8265 3.07 8599 7.23 8376 4.45 8019 0
Mean 5163 9.07 5039 6.53 4863 2.16 5067 6.57 4948 4.14 4749 0

f=6

100×5 1573 14.73 1536 12.04 1419 3.5 1470 7.22 1449 5.69 1371 0
100×8 1804 10.81 1806 10.93 1643 0.92 1721 5.71 1708 4.91 1628 0
100×10 2011 10.62 2002 10.12 1878 3.3 1938 6.6 1893 4.13 1818 0
200×5 2814 9.24 2803 8.81 2618 1.63 2712 5.28 2661 3.3 2576 0
200×8 3151 10.02 3100 8.24 2943 2.76 3066 7.05 3023 5.55 2864 0
200×10 3436 12.07 3280 6.98 3096 0.98 3260 6.33 3203 4.47 3066 0
300×5 4005 8.33 3928 6.25 3829 3.57 3922 6.09 3813 3.14 3697 0
300×8 4558 10.12 4485 8.36 4282 3.45 4438 7.22 4317 4.3 4139 0
300×10 4668 9.71 4543 6.77 4382 2.98 4576 7.54 4487 5.45 4255 0
400×5 5414 9.75 5250 6.43 5093 3.24 5274 6.91 5111 3.61 4933 0
400×8 5719 8.27 5587 5.77 5554 5.15 5618 6.36 5480 3.75 5282 0
400×10 6159 10.14 5928 6.01 5751 2.84 6014 7.55 5828 4.22 5592 0
500×5 6530 6.8 6412 4.87 6368 4.15 6534 6.87 6349 3.84 6114 0
500×8 7142 9.61 6905 5.97 6904 5.95 6934 6.41 6789 4.19 6516 0
500×10 7368 8.42 7174 5.56 7060 3.88 7288 7.24 7024 3.35 6796 0
Mean 4423 9.91 4316 7.54 4188 3.22 4317 6.69 4209 4.26 4043 0

f=7

100×5 1378 10.42 1354 8.49 1315 5.37 1312 5.13 1276 2.24 1248 0
100×8 1637 13.52 1608 11.51 1498 3.88 1547 7.28 1517 5.2 1442 0
100×10 1704 7.17 1741 9.5 1642 3.27 1687 6.1 1648 3.65 1590 0
200×5 2465 10.39 2403 7.61 2333 4.48 2396 7.3 2305 3.22 2233 0
200×8 2770 9.79 2722 7.89 2583 2.38 2690 6.62 2622 3.92 2523 0
200×10 3065 11.7 2982 8.67 2829 3.1 2960 7.87 2869 4.56 2744 0
300×5 3590 10.6 3522 8.5 3388 4.37 3438 5.91 3375 3.97 3246 0
300×8 3880 9.95 3816 8.13 3652 3.49 3767 6.74 3672 4.05 3529 0
300×10 4230 11.17 4060 6.7 3920 3.02 4056 6.6 3955 3.94 3805 0
400×5 4640 8.54 4578 7.09 4342 1.57 4538 6.15 4429 3.6 4275 0
400×8 5189 11.38 4952 6.29 4707 1.03 4954 6.33 4841 3.91 4659 0
400×10 5395 9.72 5227 6.3 5028 2.26 5279 7.36 5108 3.88 4917 0
500×5 5810 9.58 5593 5.49 5537 4.43 5648 6.53 5518 4.07 5302 0
500×8 6127 8.35 5992 5.96 5959 5.38 6105 7.96 5866 3.73 5655 0
500×10 6554 9.76 6266 4.94 6135 2.75 6384 6.92 6184 3.57 5971 0
Mean 3895 10.14 3787 7.54 3657 3.38 3784 6.72 3679 3.84 3542 0

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 213

4000

3900

3800

3700

3600

M
ak

es
pa

n

M
ak

es
pa

n

3500

3400

3300

3200
0 1 2

Running time (s)
(a) Evolutionary curve of 100×5×2 (b) Evolutionary curve of 500×10×5

Running time (s)
3 4 5 0 10 20 4030 50 60

8200

8000

7800

7600

7400

7200

7000

6800

CRO
DABC
IGA
NIG
DDE
IGR

CRO
DABC
IGA
NIG
DDE
IGR

Fig. 5 Evolutionary curves for CRO, DABC, IGA, NIG, DDE, and IGR.

0 500 1000 1500 2000
Makespan
(a) factory1

(b) factory2

(c) factory3

M1

M2

M3

M4

M5

M1

M2

M3

M4

M5

M1

M2

M3

M4

M5

fa
ct

or
y1

0 500 1000 1500 2000
Makespan

0 500 1000 1500 2000
Makespan

fa
ct

or
y2

fa
ct

or
y3

18

18

18

18

18

8

8

8

8

8

47

47

47

47

47

98

98

98

98

98

45

45

45

45

45

12

12

12

12

12

80

80

80

80

80

26

26

26

26

26

75

75

75

75

75

56

56

56

56

56

65

65

65

65

65

55

55

55

55

55

3

3

3

3

3

84

84

84

84

84

92

92

92

92

92

21

21

21

21

21

1

1

1

1

1

36

36

36

36

36

78

78

78

78

78

27

27

27

27

27

54

54

54

54

54

70

70

70

70

70

35

35

35

35

35

60

60

60

60

60

10

10

10

10

10

97

97

97

97

97

91

91

91

91

91

15

15

15

15

15

62

62

62

62

62

0

0

0

0

0

66

66

66

66

66

57

57

57

57

57

16

16

16

16

16

7

7

7

7

7

76

76

76

76

76

42

42

42

42

42

71

71

71

71

71

74

74

74

74

74

61

61

61

61

61

95

95

95

95

95

64

64

64

64

29

29

29

29

29

37

37

37

37

37

81

81

81

81

81

11

11

11

11

11

49

49

49

49

49

51

51

51

51

51

2

2

2

2

2

40

40

40

40

40

72

72

72

72

72

33

33

33

33

33

69

69

69

69

69

23

23

23

23

23

68

68

68

68

82

82

82

82

82

46

46

46

46

46

17

17

17

17

17

89

89

89

89

89

41

41

41

41

41

30

30

30

30

30

31

31

31

31

31

58

58

58

58

58

43

43

43

43

43

99

99

99

99

99

50

50

50

50

50

32

32

32

32

32

77

77

77

77

77

28

28

28

28

28

48

48

48

48

48

13

13

13

13

13

96

96

96

96

96

73

73

73

73

73

93

93

93

93

93

88

88

88

88

88

24

24

24

24

24

94

94

94

94

94

14

14

14

14

14

53

53

53

53

53

44

44

44

44

44

5

5

5

5

5

86

86

86

86

86

85

85

85

85

85

87

87

87

87

87

52

52

52

52

52

34

34

34

34

34

59

59

59

59

59

79

79

79

79

79

25

25

25

25

25

63

63

63

63

63

4

4

4

4

4

39

39

39

39

39

38

38

38

38

38

20

20

20

20

20

67

67

67

67

67

90

90

90

90

90

83

83

83

83

83

6

6

6

6

6

22

22

22

22

22

9

9

9

9

9

19

19

19

19

19

Fig. 6 Gantt chart of the optimal scheduling sequence with 100 jobs and 5 machines in 3 factories.

 214 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

the optimal scheduling plan is 28-48-13-96-73-93-88-
24-94-14-53-44-5-86-85-87-52-34-59-79-25-63-4-39-
38-20-67-90-83-6-22-9-19 and the makespan value is
equal to 2249 . Thus, the final makespan for this
instance is 2249.

6 Conclusion and Future Prospect

In this paper, we proposed an NIG algorithm based on
a two-stage local search strategy for solving DPFSP-
SDST. Based on the distributed feature of DPFSP-
SDST, a single job swapping operator is proposed to
disrupt the current solution within the critical factory in
the first local search stage. In the second local search
stage, job block swapping is designed to further
enhance the exploitation ability of the proposed
algorithm. This two-stage local search has low
computational complexity and more iterations and
provides more opportunities to improve the quality of
the solution than the algorithms based on insertion
operators. Computational experiments are given and
compared with the results obtained by the IGA, IGR,
DDE, DABC, and CRO algorithms.

Several problems and opportunities on DPFSP-SDST
need to be addressed in the future. For example,
DPFSP with multiobjective, blocking constraints, and
energy consumption or green objective problems can
be focused on in future research. In addition, we can
further consider DPFSP-SDST with uncertainties, such
as machine breakdowns, nondeterministic processing
time, operator illness, and the change of due date. We
believe that an increasing number of excellent findings
will be obtained as a result.

Acknowledgment

This work was jointly supported by the National
Natural Science Foundation of China (Nos. 61803192,
61973203, 61966012, 61773192, 61603169, 61773246,
and 71533001). Thanks for the support of Shandong
province colleges and universities youth innovation
talent introduction and education program.

References

 B. Naderi and R. Ruiz, The distributed permutation
flowshop scheduling problem, Comput. Oper. Res.,
vol. 37, no. 4, pp. 754–768, 2010.

[1]

 Y. P. Fu, Y. S. Hou, Z. F. Wang, X. W. Wu, K. Z. Gao,
and L. Wang, Distributed scheduling problems in
intelligent manufacturing systems, Tsinghua Sci. Technol.,
vol. 26, no. 5, pp. 625–645, 2021.

[2]

 S. Parthasarathy and C. Rajendran, An experimental
evaluation of heuristics for scheduling in a real-life

[3]

flowshop with sequence-dependent setup times of jobs,
Int. J. Prod. Econom., vol. 49, no. 3, pp. 255–263, 1997.
 S. Y. Wang, L. Wang, M. Liu, and Y. Xu, An effective
estimation of distribution algorithm for solving the
distributed permutation flow-shop scheduling problem,
Int. J. Prod. Econ., vol. 145, no. 1, pp. 387–396, 2013.

[4]

 H. Bargaoui, O. B. Driss, and K. Ghédira, A novel
chemical reaction optimization for the distributed
permutation flowshop scheduling problem with makespan
criterion, Comput. Ind. Eng., vol. 111, pp. 239–250, 2017.

[5]

 J. P. Huang, Q. K. Pan, Z. H. Miao, and L. Gao, Effective
constructive heuristics and discrete bee colony
optimization for distributed flowshop with setup times,
Eng. Appl. Artif. Intell., vol. 97, p. 104016, 2021.

[6]

 R. Ruiz, Q. K. Pan, and B. Naderi, Iterated Greedy
methods for the distributed permutation flowshop
scheduling problem, Omega, vol. 83, pp. 213–222, 2019.

[7]

 J. P. Huang, Q. K. Pan, and L. Gao, An effective iterated
greedy method for the distributed permutation flowshop
scheduling problem with sequence-dependent setup times,
Swarm Evol. Comput., vol. 59, p. 100742, 2020.

[8]

 H. X. Qin, Y. Y. Han, Q. D. Chen, J. Q. Li, and H. Y.
Sang, A double level mutation iterated greedy algorithm
for blocking hybrid flow shop scheduling, (in Chinese),
Control Decision, doi: 10.13195/j.kzyjc.2021.0607.

[9]

 K. Sörensen, Metaheuristics—The metaphor exposed, Int.
Trans. Oper. Res., vol. 22, no. 1, pp. 3–18, 2015.

[10]

 B. Naderi and R. Ruiz, A scatter search algorithm for the
distributed permutation flowshop scheduling problem,
Eur. J. Oper. Res., vol. 239, no. 2, pp. 323–334, 2014.

[11]

 F. Q. Zhao, L. X. Zhao, L. Wang, and H. B. Song, An
ensemble discrete differential evolution for the distributed
blocking flowshop scheduling with minimizing Makespan
Criterion, Expert Syst. Appl., vol. 160, p. 113678, 2020.

[12]

 T. Meng, Q. K. Pan, and L. Wang, A distributed
permutation flowshop scheduling problem with the
customer order constraint, Knowledge-Based Syst.,
vol. 184, p. 104894, 2019.

[13]

 Y. L. Li, F. Li, Q. K. Pan, L. Gao, and M. F. Tasgetiren,
An artificial bee colony algorithm for the distributed
hybrid flowshop scheduling problem, Procedia Manuf.,
vol. 39, pp. 1158–1166, 2019.

[14]

 V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M.
Framinan, The distributed permutation flow shop to
minimise the total flowtime, Comput. Ind. Eng. , vol. 118,
pp. 464–477, 2018.

[15]

 Q. K. Pan, L. Gao, L. Wang, J. Liang, and X. Y. Li,
Effective heuristics and metaheuristics to minimize total
flowtime for the distributed permutation flowshop
problem, Expert Syst. Appl., vol. 124, pp. 309–324, 2019.

[16]

 Z. Q. Zhang, B. Qian, R. Hu, H. P. Jin, and L. Wang, A
matrix-cube-based estimation of distribution algorithm for
the distributed assembly permutation flow-shop
scheduling problem, Swarm Evol. Comput. , vol. 60,
p. 100785, 2021.

[17]

 H. B. Song and J. Lin, A genetic programming hyper-
heuristic for the distributed assembly permutation flow-
shop scheduling problem with sequence dependent setup
times, Swarm Evol. Comput., vol. 60, p. 100807, 2021.

[18]

 J. Deng and L. Wang, A competitive memetic algorithm
for multi-objective distributed permutation flow shop
scheduling problem, Swarm Evol. Comput. , vol. 32,

[19]

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 215

pp. 121–131, 2017.
 G. C. Wang, X. Y. Li, L. Gao, and P. G. Li, A multi-
objective whale swarm algorithm for energy-efficient
distributed permutation flow shop scheduling problem
with sequence dependent setup times, IFAC-
PapersOnLine, vol. 52, no. 13, pp. 235–240, 2019.

[20]

 G. C. Wang, L. Gao, X. Y. Li, P. G. Li, and M. F.
Tasgetiren, Energy-efficient distributed permutation flow
shop scheduling problem using a multi-objective whale
swarm algorithm, Swarm Evol. Comput. , vol. 57,
p. 100716, 2020.

[21]

 J. F. Chen, L. Wang, and Z. P. Peng, A collaborative
optimization algorithm for energy-efficient multi-objective
distributed no-idle flow-shop scheduling, Swarm Evol.
Comput., vol. 50, p. 100557, 2019.

[22]

 M. Mirabi, Ant colony optimization technique for the
sequence-dependent flowshop scheduling problem, Int. J.
Adv. Manuf. Technol., vol. 55, nos. 1–4, pp. 317–326,
2011.

[23]

 R. Vanchipura, R. Sridharan, and A. S. Babu,
Improvement of constructive heuristics using variable
neighbourhood descent for scheduling a flow shop with
sequence dependent setup time, J. Manuf. Syst. , vol. 33,
no. 1, pp. 65–75, 2014.

[24]

 A. Sioud and C. Gagné, Enhanced migrating birds
optimization algorithm for the permutation flow shop
problem with sequence dependent setup times, Eur. J.
Oper. Res., vol. 264, no. 1, pp. 66–73, 2018.

[25]

 M. S. Nagano, H. H. Miyata, and D. C. Araújo, A
constructive heuristic for total flowtime minimization in a
no-wait flowshop with sequence-dependent setup times, J.
Manuf. Syst., vol. 36, pp. 224–230, 2015.

[26]

 F. Q. Zhao, L. X. Zhang, Y. Zhang, W. M. Ma, C. Zhang,
and H. B. Song, A hybrid discrete water wave
optimization algorithm for the no-idle flowshop
scheduling problem with total tardiness criterion, Expert
Syst. Appl., vol. 146, p. 113166, 2020.

[27]

 H. R. Li, X. Y. Li, and L. Gao, A discrete artificial bee
colony algorithm for the distributed heterogeneous no-wait
flowshop scheduling problem, Appl. Soft Comput.,
vol. 100, p. 106946, 2021.

[28]

 Y. L. Li, X. Y. Li, L. Gao, and L. L. Meng, An improved
artificial bee colony algorithm for distributed
heterogeneous hybrid flowshop scheduling problem with
sequence-dependent setup times, Comput. Ind. Eng.,
vol. 147, p. 106638, 2020.

[29]

 F. Q. Zhao, L. X. Zhang, J. Cao, and J. X. Tang, A
cooperative water wave optimization algorithm with
reinforcement learning for the distributed assembly no-idle
flowshop scheduling problem, Comput. Ind. Eng.,
vol. 153, p. 107082, 2021.

[30]

 Z. S. Shao, W. S. Shao, and D. C. Pi, Effective
constructive heuristic and metaheuristic for the distributed
assembly blocking flow-shop scheduling problem, Appl.
Intell., vol. 50, no. 12, pp. 4647–4669, 2020.

[31]

 R. Ruiz and T. Stützle, A simple and effective iterated
greedy algorithm for the permutation flowshop scheduling
problem, Eur. J. Oper. Res. , vol. 177, no. 3, pp.
2033–2049, 2007.

[32]

 V. Fernandez-Viagas, R. Ruiz, and J. M. Framinan, A new
vision of approximate methods for the permutation
flowshop to minimise makespan: State-of-the-art and

[33]

computational evaluation, Eur. J. Oper. Res. , vol. 257,
no. 3, pp. 707–721, 2017.
 S. W. Lin, K. C. Ying, and C. Y. Huang, Minimising
makespan in distributed permutation flowshops using a
modified iterated greedy algorithm, Int. J. Prod. Res.,
vol. 51, no. 16, pp. 5029–5038, 2013.

[34]

 V. Fernandez-Viagas and J. M. Framinan, A bounded-
search iterated greedy algorithm for the distributed
permutation flowshop scheduling problem, Int. J. Prod.
Res., vol. 53, no. 4, pp. 1111–1123, 2015.

[35]

 Q. K. Pan and R. Ruiz, An effective iterated greedy
algorithm for the mixed no-idle permutation flowshop
scheduling problem, Omega, vol. 44, pp. 41–50, 2014.

[36]

 J. Y. Ding, S. J. Song, J. N. D. Gupta, R. Zhang, R.
Chiong, and C. Wu, An improved iterated greedy
algorithm with a Tabu-based reconstruction strategy for
the no-wait flowshop scheduling problem, Appl. Soft
Comput., vol. 30, pp. 604–613, 2015.

[37]

 V. Fernandez-Viagas and J. M. Framinan, A best-of-breed
iterated greedy for the permutation flowshop scheduling
problem with makespan objective, Comput. Oper. Res.,
vol. 112, p. 104767, 2019.

[38]

 J. Y. Mao, X. L. Hu, Q. K. Pan, Z. H. Miao, C. X. He, and
M. F. Tasgetiren, An iterated greedy algorithm for the
distributed permutation flowshop scheduling problem with
preventive maintenance to minimize total flowtime, in
2020 39th Chinese Control Conf., (CCC), Shenyang,
China, 2020, pp. 1507−1512.

[39]

 K. C. Ying, S. W. Lin, and C. Y. Huang, Sequencing
single-machine tardiness problems with sequence
dependent setup times using an iterated greedy heuristic,
Expert Syst. Appl., vol. 36, no. 3, pp. 7087–7092, 2009.

[40]

 X. L. Jing, Q. K. Pan, L. Gao, and Y. L. Wang, An
effective Iterated Greedy algorithm for the distributed
permutation flowshop scheduling with due windows, Appl.
Soft Comput., vol. 96, p. 106629, 2020.

[41]

 W. S. Shao, D. C. Pi, and Z. S. Shao, Local search
methods for a distributed assembly no-idle flow shop
scheduling problem, IEEE Syst. J. , vol. 13, no. 2,
pp. 1945–1956, 2019.

[42]

 D. P. Ronconi, A note on constructive heuristics for the
flowshop problem with blocking, Int. J. Prod. Econ.,
vol. 87, no. 1, pp. 39–48, 2004.

[43]

 Z. K. Zhang and Q. H. Tang, Integrating preventive
maintenance to two-stage assembly flow shop scheduling:
MILP model, constructive heuristics and meta-heuristics,
Flex. Serv. Manuf. J., doi: 10.1007/s10696-021-09403-0.

[44]

 S. Hatami, R. Ruiz, and C. Andrés-Romano, Heuristics
and metaheuristics for the distributed assembly
permutation flowshop scheduling problem with sequence
dependent setup times, Int. J. Prod. Econ. , vol. 169,
pp. 76–88, 2015.

[45]

 J. Q. Pan, W. Q. Zou, and J. H. Duan, A discrete artificial
bee colony for distributed permutation flowshop
scheduling problem with total flow time minimization, in
2018 37th Chinese Control Conf. (CCC), Wuhan, China,
2018, pp. 8379−8383.

[46]

 G. H. Zhang, K. Y. Xing, and F. Cao, Discrete differential
evolution algorithm for distributed blocking flowshop
scheduling with makespan criterion, Eng. Appl. Artif.
Intell., vol. 76, pp. 96–107, 2018.

[47]

 216 Complex System Modeling and Simulation, September 2021, 1(3): 198−217

Xue Han received the BS degree from
Liaocheng University, Liaocheng, China,
in 2020. Currently she is studying as a
master student in the School of Computer
Science at Liaocheng University,
Liaocheng, China. She is under the
supervision of associate professor Yuyan
Han. Her research interests include

intelligent optimization methods and scheduling.

Yuyan Han received the MS degree from
Liaocheng University, Liaocheng, China,
in 2012, and the PhD degree in control
theory and control engineering from China
University of Mining and Technology,
Xuzhou, China, in 2016. Since 2016, she
has been an associate professor with the
School of Computer Science, Liaocheng

University and department head of the School of Computer
Science. Her current research interests include evolutionary
computation, multi-objective optimization, and flow shop
scheduling. She has authored more than 30 refereed papers.

Qingda Chen received the PhD degree in
control theory and engineering from
Northeastern University, Shenyang, China,
in 2020. Since 2021, he has been working
in the State Key Laboratory of Synthetical
Automation for Process Industries of
Northeastern University. His current
research interests include modeling, plant-

wide control and optimization for the complex industrial
systems, stochastic distribution control, and multiobjective
evolutionary algorithms and its application. Around above
research, he has published more than ten papers.

Junqing Li received the master degree in
computer science and technology from
Shandong Economic University,
Shandong, China in 2004, and the PhD
degree from Northeastern University,
Shenyang, China in 2016. Since 2017, he
has been with the School of Information
Science and Engineering, Shandong

Normal University. His current research interests are intelligent
optimization and scheduling. He has authored more than 60
refereed papers.

Hongyan Sang received the MS degree
from Liaocheng University, Liaocheng,
China, in 2010, and the PhD degree in
industrial engineering from Huazhong
University of Science Technology, Wuhan,
China, in 2013. Since 2003, she has been
with the School of Computer Science,
Liaocheng University, where she became a

professor in 2021. Her current research interests include
intelligent optimization and scheduling. She has authored more
than 60 refereed papers.

Yiping Liu received the BEng degree in
electrical engineering and automation and
the PhD degree in control theory and
control engineering from China University
of Mining and Technology, Xuzhou, China
in 2012 and 2017, respectively. He is
currently an associate professor in the
College of Computer Science and

Electronic Engineering, Hunan University, Changsha, China.
During 2018−2020, he was a research assistant professor in the
Department of Computer Science and Intelligent Systems, Osaka
Prefecture University, Sakai, Japan. During 2016−2017, he was
a visiting scholar in the School of Electrical and Computer
Engineering, Oklahoma State University, Stillwater, OK, USA.
His research interests include evolutionary computation, multi-
objective optimization, and machine learning.

Quanke Pan received the BS and PhD
degrees from Nanjing University of
Aeronautics and Astronautics, Nanjing,
China, in 1993 and 2003, respectively.
From 2003 to 2011, he was with the
School of Computer Science, Liaocheng
University, China, where he became a full
professor in 2006. From 2011 to 2014, he

was with the State Key Laboratory of Synthetical Automation
for Process Industries, Northeastern University, China. From
2014 to 2015, he was with the State Key Laboratory of Digital
Manufacturing and Equipment Technology, Huazhong
University of Science and Technology, China. He has been with
the School of Mechatronic Engineering and Automation,
Shanghai University, China since 2015. He has authored one
academic book and more than 200 refereed papers. His current
research interests include intelligent optimization and scheduling
algorithms.

Yusuke Nojima received the BS and MS
degrees in mechanical engineering from
Osaka Institute of Technology, Osaka,
Japan, in 1999 and 2001, respectively, and
the PhD degree in system function science
from Kobe University, Hyogo, Japan, in
2004. Since 2004, he has been with Osaka
Prefecture University, Osaka, Japan, where

he is currently a professor in the Department of Computer
Science and Intelligent Systems. His research interests include
evolutionary fuzzy systems, evolutionary multiobjective
optimization, and parallel distributed data mining. He was a
guest editor for several special issues in international journals.
He was a task force chair on Evolutionary Fuzzy Systems in
Fuzzy Systems Technical Committee of IEEE Computational
Intelligence Society. He was an associate editor of IEEE
Computational Intelligence Magazine (2014−2019).

 Xue Han et al.: Distributed Flow Shop Scheduling with Sequence-Dependent Setup Times Using an Improved… 217

