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Abstract: To  meet  the  multi-cooperation  production  demand  of  enterprises,  the  distributed  permutation  flow

shop scheduling problem (DPFSP) has become the frontier research in the field of manufacturing systems. In

this  paper,  we investigate  the DPFSP by minimizing a  makespan criterion  under  the constraint  of  sequence-

dependent  setup  times.  To  solve  DPFSPs,  significant  developments  of  some  metaheuristic  algorithms  are

necessary.  In  this  context,  a  simple  and  effective  improved  iterated  greedy  (NIG)  algorithm  is  proposed  to

minimize  makespan  in  DPFSPs.  According  to  the  features  of  DPFSPs,  a  two-stage  local  search  based  on

single job swapping and job block swapping within the key factory is designed in the proposed algorithm. We

compare  the  proposed  algorithm  with  state-of-the-art  algorithms,  including  the  iterative  greedy  algorithm

(2019),  iterative  greedy  proposed  by  Ruiz  and  Pan  (2019),  discrete  differential  evolution  algorithm  (2018),

discrete  artificial  bee  colony  (2018),  and  artificial  chemical  reaction  optimization  (2017).  Simulation  results

show that NIG outperforms the compared algorithms.
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1    Introduction

Under  the  influence  of  globalization,  distributed

manufacturing and scheduling have become a  trend in
the  production  industry  because  many  enterprises  are
gradually  turning  to  multiregional  cooperation.  In  this
context,  enterprises  need  several  production  centers
and must  establish a distributed production model[1, 2].
Thus,  the  distributed  production  process  flow  has
gradually attracted researchers' attention and become a
hotspot for research[2].  The objective of the distributed
permutation flow shop scheduling problem (DPFSP) is
to  assign  some  jobs  to  a  factory  and  to  balance  the
efficiency of all the factories. Thus, the DPFSP consists
of two subproblems: the first is the distribution of jobs
among  factories,  and  the  second  is  the  scheduling
sequence  of  jobs  to  be  processed  on  machines,  which
demonstrates that DPFSP is more complicated than the
traditional performance flow shop scheduling problem.

In  actual  factory  production,  operations  such  as
machine  maintenance  or  blade  replacement  are  often
required  after  a  job  is  processed  on  the  machine,
thereby  creating  extra  time.  These  times  become
sequence-dependent  setup  times  (SDST)  when  their
length  is  related  to  the  job  being processed  and to  the
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previous  job[3].  Therefore,  this  paper  considers  the
SDSTs  and  addresses  the  DPFSP-SDST  to  minimize
makespan.

We  note  that  intelligent  optimization  algorithms
based  on  metaphors  or  inspired  by  nature  have  been
developed to  solve  the  DPFSP,  such  as  the  estimation
of  distribution  algorithm  (EDA)[4],  the  chemical
reaction  optimization  (CRO)  algorithm[5],  the  discrete
artificial  bee  colony  (DABC)  algorithm[6],  and  the
iterative  greedy  (IG)  algorithm[7−9].  These  swarm
intelligence  algorithms  can  provide  multiple  solutions
that are helpful in improving the diversity of solutions.
However,  in  the  exploration  of  a  single  solution
neighborhood, these swarm intelligence algorithms are
slightly less effective than the IG algorithm. Especially
for  flow  shop  scheduling  problems,  few  local
optimums exist. Thus, we can select an algorithm with
good  local  exploitation  ability  to  optimize  the  above
problems.  Compared  with  traditional  swarm
intelligence  algorithms,  the  IG  algorithm  is  a  simple
and  effective  optimization  algorithm  that  has  shown
excellent  local  exploitation  ability  when  solving
scheduling problems[6−9].

The  IG  algorithm  is  characterized  by  ease  of
implementation,  simple  structure,  few parameters,  and
few mathematical  requirements.  It  has two key stages:
destruction and construction,  and local  search,  thereby
making  it  a  parallel  search  framework[1].  Thus,  many
heuristics, metaheuristics, and problem-dependent local
search methods, as well as operators, can be embedded
into  the  above  search  framework  to  further  enhance
exploration and exploitation. Since the proposal of the
IG  algorithm  by  Ruben  and  Thomas,  it  has  been
continuously  expanded and improved for  solving flow
shop  scheduling  problems[1].  From  Ref.  [10],  the
simulation  experimental  results  verify  that  the  IG
algorithm  is  appropriate  and  competitive  for  solving
discrete  optimization  problems.  To  the  best  of  our
knowledge,  the  IG  algorithm  has  not  yet  been  well
studied  up  to  the  present  for  the  DPFSP-SDST.  With
the  above  motivations,  we  propose  an  improved  IG
algorithm to solve the DPFSP-SDST.

We  know  that  the  DPFSP  has  two  key  issues  to  be
solved:  how  to  allocate  jobs  to  appropriate  factories
and  how  to  generate  the  scheduling  sequence  of
operations  on  machines  with  minimal  makespan.  To
tackle  these  issues  effectively,  our  contribution  to  the
algorithm is twofold.

The  process  of  allocating  jobs  to  appropriate

factories  is  often  finished  after  the  initialization
solution  is  generated.  In  this  paper,  an  allocation
strategy  based  on  the  idle  time  of  a  factory  and  an
independent  insertion operator  is  adopted according to
the initialization scheduling sequence.

Based  on  the  distributed  feature  of  DPFSP-SDST,  a
two-stage  local  search  strategy  based  on  a  single  job
exchange  and  a  job  block  swapping  is  proposed  to
disturb the current solution within the key factory. This
two-stage  local  search  has  low  computational
complexity, and it has more iterations and opportunities
to  improve  the  quality  of  the  solution  than  the
algorithms based on insertion operators.

This paper is organized as follows: Section 2 reviews
some  related  references.  Section  3  introduces  the
mathematical  model  of  DPFSP-SDST.  Section  4
introduces  the  IG  algorithm  and  its  improvement.
Section  5  provides  experimental  results  and  analysis.
The  last  section  summarizes  the  strengths  of  our
algorithms  and  gives  some  perspectives  for  future
works. 

2    Literature Review

The DPFSP-SDST is a multifactory production model;
thus,  it  has  significant  applications  in  real-world
problems.  Therefore,  this  problem  has  attracted  the
attention of many researchers. In this section, we have
summarized some single-  and multi-objective DPFSPs
and the IG algorithm in recent years.

The  change  in  production  from  a  single  factory  to
multiple  factories  is  to  reduce  processing  times  while
increasing  processing  efficiency  or  reducing  energy
consumption. Thus, some significant research has been
conducted  on  the  DPFSPs  with  the  makespan
minimization,  and  many  improvements  of  the
algorithms  have  been  made,  such  as  an  efficient
EDA[4],  a  scattered  search  (SS)  algorithm  containing
restart  and  local  search  strategies[11],  and  a  CRO
algorithm[5].  Recently,  for  the  same  criterion,  Zhao  et
al.[12] integrated  two  heuristics  and  a  stochastic  policy
to  generate  an  initial  solution  and  proposed  the
ensemble  discrete  differential  evolution  algorithm.
Meng et al.[13] studied the three metaheuristics, namely,
variable  neighborhood  descent,  artificial  bee  colony,
and  IG.  Li  et  al.[14] employed  an  improved  DABC
algorithm,  and  the  experimental  results  show  that  the
performance  of  the  DABC  is  better  than  that  of  the
genetic algorithm and IG algorithm.

Except  for  the  makespan,  the  objective  of  the  total
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flow  time  is  also  important.  Thus,  many  studies  have
been  developed  for  DPFSPs  with  the  minimization  of
the  total  flow  time.  Fernandez-Viagas  et  al.[15]

proposed  some constructive  heuristics  and  an  iterative
improvement  algorithm  to  minimize  the  total  flow
time. Next, Pan et al.[16] designed the three constructive
heuristics  and four metaheuristics  algorithms based on
a  high-performance  framework  of  a  discrete  artificial
swarm, SS, iterative local search, and IG. Recently, for
the  same  objective,  Zhang  et  al.[17] proposed  an
innovative  3D  matrix-based  distribution-based
estimation algorithm, and Song and Lin[18] proposed a
genetic program-based hyper-heuristic algorithm.

In  various  real-world  applications,  the  DPFSPs
optimize  not  only  one  objective  but  also  several
objectives.  Deng and Wang[19] proposed a competitive
modal  algorithm to  optimize  the  two objectives  of  the
makespan  and  total  tardiness  criteria.  Wang  et  al.[20]

employed  a  multiobjective  whale  swarm  algorithm
(MOWSA),  in  which  a  problem-specific  coding
scheme,  crossover,  and  variational  operations,  as  well
as  efficient  local  search,  are  proposed  to  solve
multiobjective  DPFSP-SDST.  Furthermore,  Wang  et
al.[21] adopted  the  above-improved  MOWSA  to  solve
the energy-efficient  DPFSP.  Chen et  al.[22] proposed a
collaborative  optimization  algorithm  using  attributes
and  some  synergistic  mechanisms  for  reducing
makespan and total energy consumption.

In  production,  after  a  machine  has  finished
machining a job, it often takes a certain amount of time
for  operations,  such  as  tool  changes  and  machine
maintenance.  When  these  operations  are  associated
with two jobs before and after machining on the same
machine, this time is referred to as SDST. SDST allows
for  a  more  precise  consideration  of  setup  time  and  is
more coincident with the actual production activities in
most  factories.  Therefore,  the  study  of  SDST  is  more
relevant than the common fixed lead time. Most of the
early studies on SDST were conducted on specific real-
world  problems.  For  example,  Parthasarathy  and
Rajendran[3] studied the problem of a flow shop of the
production  of  drill  bits.  Later,  Mirabi[23] proposed  an
improved  ant  colony  optimization  algorithm  to  solve
the  permutation  flow  shop  scheduling  problem  with
SDST/PFSP.  For  the  same  problem,  an  improved
neighborhood-based  heuristic[24],  an  enhanced
migrating  birds  optimization  algorithm[25],  and  an
effective  DABC algorithm[6] are  proposed  to  optimize
the makespan of DPFSP-SDST. In addition, for SDST-

PFSP  with  the  total  process  time,  Nagano  et  al.[26]

applied  a  new  construction  heuristic  called  QUARTS
to solve the above problem.

In  the  existing  literature,  some researchers  proposed
many  excellent  heuristic  and  metaheuristic  algorithms
for distributed flow shops with different constraints[27].
Li  et  al.[28] proposed  a  DABC  algorithm  to  solve  the
distributed  heterogeneous  no-wait  flow  shop
scheduling  problem.  Next,  considering  the  distributed
heterogeneous  hybrid  flow  shop  scheduling  problem
with  unrelated  parallel  machines  and  the  SDST,  Li  et
al.[29] studied  a  machine  position-based  mathematical
model  and  designed  an  improved  artificial  bee  colony
algorithm.  For  the  distributed  assembly  flow  shop
scheduling  problem,  Zhao  et  al.[30] proposed  a
cooperative  water  wave  optimization  algorithm  to
minimize  the  maximum  assembly  completion  time.
Next,  based  on  the  features  of  the  same  problem
mentioned  above,  Shao  et  al.[31] considered  a
constructive  heuristic  based  on  a  new assignment  rule
of jobs and a product-based insertion procedure.

Among  the  above  algorithms,  the  IG  algorithm  has
shown good performance in solving PFSP[10].  With its
simplicity,  ease  of  operation,  and  superiority  over
many other metaphor-based algorithms[10, 32, 33], IG has
attracted  great  attention  from  researchers  for  use  in
solving various PFSP problems. IG was first  proposed
to  solve  DPFSP  by  Naderi  and  Ruiz[1],  and  the
experimental  results  show  its  great  performance.  The
use of insertion operations in the local search phase in
their work leads to an improvement in the quality of the
solution.  Subsequently,  scholars  and  producers  have
spent  many  efforts  to  modify  the  IG  algorithms  and
achieve  significant  improvements  in  their
performance[34−37].  More  recently,  Fernandez-Viagas
and  Framinan[38] compared  the  existing  IG  algorithms
and  their  variants  to  derive  a  new  best-in-class
algorithm.  Mao  et  al.[39] improved  the  initial  phase  of
the IG algorithm and the damage reconstruction phase.
Instead  of  applying  a  simple  simulated  annealing
criterion  to  the  IG  algorithm[40],  Lin  et  al.[34] used  an
acceptance  criterion  with  a  settling  temperature  value
and included the number of elements to be removed in
the  destruction  step  as  a  variable.  Ruben  et  al.[7]

employed  an  improved  IG  algorithm  to  optimize  the
makespan  of  DPFSP.  Jing  et  al.[41] adopted  an
improved  IG  algorithm  to  solve  the  DPFSP  with
windows.  Huang  et  al.[8] combined  the  proposed  six
different  operators  with  the  IG  algorithm  to  greatly
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improve  the  performance  of  the  IG  algorithm  and
applied two different local searches based on insertion
operations to improve the quality of the solution.

In summary, research on the above DPFSP-SDSTs is
relatively  few.  In  addition,  although  IG  has  shown
good performance in solving DPFSP, for most existing
IG  algorithms,  the  local  search  based  on  insertion
operator  is  often  adopted.  We  know  that  the  insertion
operations  require  more  running  time  and  will  lose
opportunities  to  generate  promising  solutions  by
several  iterations.  Thus,  efforts  are  needed  to  reduce
the time complexity of the IG algorithm. In this paper,
a  two-stage  local  search  strategy  is  designed  and
integrated into the IG algorithm. 

3    SDST-DPFSP Problem

For  example,  the  parallelization  of  cutoff  pair
interactions is mature on CPUs and typically employs a
voxel-based method.

n f
m

Cmax

DPFSP-SDST  has  been  described  as  follows:  There
are  jobs,  which  need  to  be  processed  in  identical
factories,  and  each  factory  has  machines.  This
problem has the following constraints: (1) Each job can
be processed in any factory. (2) The job is processed in
the  order  from  the  first  machine  to  the  last  machine,
and  the  factory  cannot  be  changed  during  processing.
(3) Each machine can process only one job at any time.
(4) Only one job can be processed in the same factory.
(5)  All  operations  are  independent,  and  all  factories
start  processing  from  0  moment  when  processing  the
job.  The  purpose  of  DPFSP-SDST  in  this  paper  is  to
assign  jobs  reasonably  to  the  factory  and  find  a  job
sequence  to  minimize  makespan  ( ).  The
mathematical  model  of  the  problem  and  its  notations
are described as follows:

Notations:
f : The number of factories.
m: The number of machines in each factory.
n: The number of jobs that need to be processed.
J = {J1, J2, ..., Jn} n: The set of  jobs to be processed.
M = {M1,M2, ...,Mm} m

Mi

Mi ∈ M

: The set of  machines, where is
 machine used to complete the q-th process of jobs,

.
F =
{
F1,F2, ...,F f

}
f

Fl F Fl ∈ F
:  The  set  of  parallel  factories,

where  is the l-th factory from set , .
oi, j J j Mi: The operation of job  on machine .
pi, j J j Mi: The processing time of job  on machine .
si, j′, j J j Mi

Mi

: The setup time of job  on machine , when
the  job  is  the  first  job  processed  on  machine ,  then

J′ = J .
S Ti, j oi, j: The start time of .
CTi, j J j Mi: The completion time of job  on machine .
MS Tl,i,q Fl

Mi

:  The start  time of  the q-th job of  factory 
on machine .

MCTl,i,q

Fl Mi

:  The  completion  time  of  the q -th  job  of
factory  on machine .

Cmax(πF f )
F f

: The completion time of the jobs processed
in factory .

G: A fairly large positive integer.
Cmax: The completion time of all the jobs.
Decision variables:
x j,i,l,q J j

Mi Fl

:  When  job  is  the q -th  job  processed  on
machine  in  factory ,  the  value  of  the  decision
variable is 1; otherwise, it is 0.

yi,l J j Fl: When job  is processed in factory , the value
of the decision variable is 1; otherwise, it is 0.

Objective:
 

MinCmax = max f
i=1

{
Cmax(πF1 ),Cmax(πF2 ), ...,Cmax(πF f )

}
(1)

Subject to
 

y j,l =

n∑
q=1

x j,i,l,q,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F (2)

 

n∑
j=1

x j,i,l,q ⩽ 1,∀Fl ∈ F,∀Mi ∈ M,∀q ∈ {1,2, ...,n} (3)

 

n∑
j=1

x j,i,l,q ⩾
n∑

j′=1

x j′,i,l,q+1,∀Fl ∈ F,∀Mi ∈ M,

∀q ∈ {1,2, ...,n−1} (4)
 

S Ti+1, j ⩾CTi, j,∀J j ∈ J,∀Mi ∈ {1,2, ...,m−1} (5)
 

MCTl,i,q = MS Tl,i,q+
∑n

j=1
pi, jx j,i,l,q,∀Mi ∈ M,

∀F1 ∈ F,∀q ∈ {1,2, ...,n}
(6)

 

MS Tl,i,q+1 =MCTl,i,q,∀Mi ∈M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(7)

 

MS Tl,s,q+1+G(1− x j,i,l,q) ⩾ MCTl,i,q+
∑n

j′=1
si, j′, jx j′,i,l,q,

∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n−1}
(8)

 

MS Tl,i,1+G(1− x j,i,1,1) ⩾ si, j, j,∀J j ∈ J,∀Mi ∈ M,∀Fl ∈ F
(9)

 

CTi, j = S Ti, j+Pi, j,∀J j ∈ J,∀Mi ∈ M (10)
 

MS Tl,i,q ⩾ 0,∀Mi ∈ M,∀Fl ∈ F,∀q ∈ {1,2, ...,n} (11)
 

S Ti, j ⩾ 0,∀J j ∈ J,∀Mi ∈ M (12)
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Equation  (1)  is  the  objective  function  to  be
minimized.  Constraint  (2)  is  that  each  job  can  be
processed on only  one machine  in  a  factory  at  a  time,
and  Constraint  (3)  means  that  each  machine  can
process only one job at a time. Constraint (4) states that
the  processing  of  operations  on  the  machine  can  be
performed  only  sequentially,  and  the  processing  time
cannot  be  overlapped.  Constraint  (5)  shows  that  the
processing  sequence  of  the  job  cannot  be  changed.
Constraint  (6)  describes  the  start  time  and  completion
time of a job processing. Constraint (7) represents that
the  start  time  must  be  equal  or  greater  than  the
completion  time  of  two  adjacent  jobs  on  a  certain
machine.  Constraint  (8)  describes  the  constraints
between the start time and completion time of the job,
including preparation time. Constraint  (9) refers to the
situation  when  the  job  is  first  processed  on  the
machine.  In  Constraint  (10),  the  completion  time  of  a
job is the sum of the start time and the processing time
of  the  job.  Constraints  (11)  and  (12)  indicate  that  the
start time of each machine and each job is not less than
0, respectively.

The  following  example  illustrates  a  scheduling  case

x2,1,1,1 = 1 x1,2,1,1 = 1
x5,3,1,1 = 1 x2,1,1,2 = 1 x1,2,1,2 = 1 x5,3,1,2 = 1 x4,1,2,1 = 1
x3,2,2,1 = 1 x6,3,2,1 = 1 x4,1,2,2 = 1 x3,2,2,2 = 1 x6,3,2,2 = 1
y2,1 = 1 x2,1,1,1 = 1 y5,1 = 1 y4,2 = 1 y3,2 = 1 y6,1 = 1

considered  in  DPFSP-SDST.  Suppose  that  there  is  a
scheduling  sequence  with  six  jobs,  two  factories,  and
two machines per factory. The processing time of the 6
jobs on two machines is (4, 3, 1, 3, 6, 8) and (3, 7, 2, 1,
9,  4),  respectively.  The  setup  times  of  the  six  jobs  on
two  machines  with  different  sequences  are  shown  in
Table 1. The jobs assigned to the first factory are 2, 1,
5, and the jobs assigned to the second factory are 4, 3,
6.  For  decision  variables, , ,

, , , , ,
, , , , ,

, , , , , and .
The  remaining  decision  variables  are  0. Table 1
presents the setup time for jobs on different machines.

Figure 1 gives  the  Gantt  chart  of  the  scheduling
sequence  (2,  4,  1,  3,  6,  5)  on  the  two  machines  and
factories.  In  this  study,  we  consider  minimizing  the
maximum  makespan  of  scheduling.  From  this  Gantt
chart, we see that the value of makespan is 38 units of
the time given by the maximum completion time of the
last job on the second machine in the two factories. It is
easy  to  understand  that  if  the  number  of  factories  is
equal to one, then the makespan must be larger than 38.

 

s(i, j′, j) M1 M2Table 1    Sequence-dependent setup times  of jobs on machines  and 

J′j
M1 M2

J1 J2 J3 J4 J5 J6 J1 J2 J3 J4 J5 J6

J′1 4 3 6 1 2 4 1 4 6 7 3 2
J′2 7 8 2 7 5 1 5 2 8 1 7 8
J′3 4 5 8 1 3 7 2 3 2 4 6 3
J′4 1 2 6 9 4 9 9 8 4 2 1 3
J′5 3 7 5 4 8 6 6 7 1 5 2 3
J′6 3 6 1 2 6 4 4 5 3 1 2 6

 

 

Processing time

Setup time

Idle time

M2 4

4 4 3 3 6 6
2 12

4 3 3 6 6
13 17 19 21 26 34

129 18 19 26 34

102 17 22 25

108 17 21 23 29
2 2 1 1 5

2 2 11 5 5

5
28 29 38

38
M1

M2

F2

F1
M1

Time (s)
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

 
Fig. 1    Gantt chart for a solution to the example problem.
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From the Gantt  chart,  we can see that distributed flow
shop  scheduling  can  reduce  the  production  cycle  or
completion time, accelerate the manufacturing process,
and  enhance  production  efficiency.  Thus,  it  has
applications  that  are  more  important  in  manufacturing
than the traditional PFSPs. 

4    Iterative Greedy Algorithm

As mentioned above, the IG algorithm is a simple local
search  method.  In  the  framework of  the  IG algorithm,
two local searches are performed. However, most local
search  methods  are  based  on  insertion  operations,
which  will  consume running  time.  In  addition,  for  the
distributed  characteristic,  DPFSP-SDST  is  lack  of
operators  assigning  jobs  to  factories.  The  above
difficulties  may  be  encountered  when  solving  the
DPFSP-SDST.  To  address  the  above  drawbacks,  this
section presents an improved IG algorithm for solving
the DPFSP- SDST, including the initialization, the two
local  searches,  destruction  and  construction,  and
acceptance criteria.  In  the  proposed IG algorithm,  two
local  search  strategies  based  on  job  swapping  and  job
block  swapping  within  the  key  factory  are  proposed.
Notably,  a  discrete  job  permutation-based  coding
scheme is utilized to directly solve the discrete problem
considered  in  this  paper. Algorithm 1  shows  the  main
structure  of  the  proposed  IG  algorithm.  In  the  next
section, we describe each of its components. 

4.1    Initialization method

The  construction  heuristic  aims  to  obtain  a  feasible
solution in a reasonable amount of time. The quality of
the  solution  obtained  using  a  constructive  heuristic  is
better than that obtained by using a random method to
generate the initial solution. A good initial solution can
enhance the convergence of an algorithm. The relevant
references  on  the  constructive  heuristic  algorithms

prove their excellent performance in solving flow shop
scheduling  problems[6, 31,  42−45] .  Thus,  a  construction
heuristic is adopted in initializing the solution.

posl∗

posl∗

The IG algorithm usually uses a heuristic,  i.e.,  NEH
(Nawaz,  Enscore,  and  Ham),  to  generate  the  initial
solution. To solve the DPFSP, Naderi and Ruiz[1] used
a  modified  NEH  called  NEH2  to  generate  the  initial
solution. In 2019, Ruiz et al.[7] extended NEH2, called
NEH2_en.  The  experimental  results  demonstrated  that
NEH2_en  performs  better  when  optimizing  the
makespan of  the DPFSP than other heuristics[7].  Thus,
in  this  paper,  we  adopted  NEH2_en  to  generate  the
initial solution. The main steps are as follows: (1) The
sum  of  the  processing  times  for  each  job  on  all
machines  is  calculated;  (2)  A  nonincreasing  sequence
based on the above sum values is obtained; (3) The first
jobs  in  the  sequence  are  sequentially  assigned  to  each
factory,  and  the  remaining  jobs  are  taken  out  of  the
sequence  in  turn;  (4)  All  locations  in  all  factories  are
evaluated  until  the  location ,  and  when  the
smallest makespan is found, it is inserted; (5) After the
insert  operation,  the  job  before  or  after  the  position

 is randomly extracted and tested in all positions in
the same factory. (6) Steps 3 and 4 are repeated until all
jobs  have  been  inserted. Algorithm 2  lists  the
initialization procedure.
 

 

Algorithm 1　Two-stage IG algorithm
d T1: Defining constants , 

π =GenerateInitialS olution2: 
π0 = LocalS earch(π)→ LS _N3: // The new local search based on

　 single job swapping is applied
4: While (Satisfying the cyclic condition) do

πD = πR = Destruction(π0,d)5: 　
π′ =Construction(πD,πR)6: 　
π′′ = LocalS earch(π′)→ LS _N27: 　 // The local search based job

　　 block swapping is proposed.
π0 = AcceptaneCriterion(π′′,π0,T )8: 　

9: end while
 

 

Algorithm 2　Initialization based on NEH2_en
TotalP j =

∑m
i=1 pi, J j ∈ J TotalP j

J j

1: Calculate  (  is the total
processing time for job )
τ = τ1, τ2, ..., τn TotalP j2:  (sort jobs according to the decreasing )

j = 1 f3: for  to 
τi τ F j4: 　Take job  from  and assign it to factory 

5: endfor
j = f +1 n6: for  to  do

l = 1 f7: 　for  to 
τ j πl8: 　　Test  in all possible positions in // Taillard

acceleration is applied
C′l F j9: 　　  is the lowest makespan of factory  obtained

posl C′l10: 　　  is the position where the  is generated
11: 　endfor

l× = arg(min f
l=1C′l )12: 　

τ j πl∗ posl∗13: 　Insert  in the sequence  at position 
h posl∗ −1 posl∗ +1

πl∗

14: 　Extract at random job  from position  or 
from 

h πl∗15: 　Test job  in all possible positions of 
h πl∗16: 　Insert job  in  at the position resulting in the lowest

makespan
17: end for
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4.2    New local search based on single swapping

For  example,  the  parallelization  of  cutoff  pair
interactions is mature on CPUs and typically employs a
voxel-based method.

In  most  IG  algorithms,  the  local  search  based  on
insertion  operator  is  adopted.  However,  the  insertion
operations  consume  running  time  and  will  lose
opportunities  to  generate  promising  solutions  by
several  iterations.  Thus,  in  this  paper,  we  propose  a
new local  search  based on single  job  swapping within
the  key  factory  named  LS_N. Algorithm 3  lists  the
proposed local search procedure.

Fc1 = argmaxc1=(1,2,..., f )

Cmax(πFc1 ) Fc2 = argmaxc1=(1,2,..., f )/c1Cmax(πFc2 )
Fc1

Fc2

Fc1 Fc2

C∗max

C∗max

Cmax Cnt =Cnt+1

In  Line  1  of Algorithm 3,  
 and   aim

to  find  the  critical  factory, ,  with  the  maximal
makespan,  as  well  as  the  secondary  critical  factory,

, with the secondary maximal makespan among the
factories. In Lines 5 to 7, we randomly select two jobs
from  and  ,  respectively,  to  perform  the  swap
operator, and reevaluate the two new solutions obtained
by implementing the swap operator. Next, Line 8 finds
the maximal makespan, denoted as . Lines 9 to 15
employ the acceptance criterion. If  is smaller than

, then the swap is kept. Otherwise, . 

4.3    New local search based on job block swapping

After  the  destruction  and  reconstruction  operators  are

Fc1

Fc2

Fc1 Fc2

C∗max = max f
i=1

{
Cmax(πF1 ),Cmax(πF2 ), ...,Cmax(πF f )

}

C∗max Cmax

Cnt =Cnt+1

used,  the  second  local  search  strategy  is  employed,
which  is  called  LS_N2.  Similarly,  to  reduce  the
computational complexity, a job block-based swapping
strategy is considered in the second local search stage.
First,  the  critical  factory, ,  with  the  maximal
makespan  and  subcritical  factory, ,  with  the
secondary  maximal  makespan  among  the  factories  are
obtained  (see  Line  1  of Algorithm 4 ).  Furthermore,
some adjacent jobs are selected randomly from the two
factories,  respectively,  block_1  and  block_2.  As  with
the  job-based  exchange  strategy,  block_1 and block_2
are swapped, and two new solutions of  and  are
obtained  (see  Lines  5  to  8  of  Algorithm  4).  Next,

 is
computed,  and  the  maximal  makespan  of  all  the
factories is recorded. Finally, the acceptance criterion is
executed. If  is smaller than , then the swap is
kept. Otherwise, .

l l = 3 i
n

i ⩽ n− l+1 [i, i+2]
i > n− l+1 [n−2,n]

To  further  clearly  describe  the  above  job  block
selection  process,  a  simple  example  is  given.  Suppose
that jobs are available in the scheduling sequence, and
the  size  of  the  job  block  is ( ).  First,  the  job  (
ranges  from  1  to )  is  selected  randomly.  When

,  the  jobs  at  interval  are  selected.
When ,  the  jobs  at  interval  are
selected.  The  above  selection  strategy  ensures  the

 

Algorithm 3　Local search based on single job swapping
πInput: 
π CmaxOutput: , 

1 : Fc1 = argmaxc1=(1,2,..., f )Cmax(πFc1 )
Fc2 = argmaxc1=(1,2,..., f )/c1Cmax(πFc2 )

,
　 

Cnt = 02: 
Cnt < n n FC13: While  do //  is the number of jobs in factory 

πInitial = π4: 　
τ′ = Fc15: 　  randomly selected job in 
τ′′ = Fc26: 　  randomly selected job in 

τ′ τ′′ πFc1 πFc27: 　Swap job  and , and revaluate  and 

C∗max = max f
i=1

{
Cmax(πF1 ),Cmax(πF2 ), ...,Cmax(πF f )

}
8: 　

C∗max <Cmax9: 　if 
Cmax <C∗max10: 　　

Fc1 = argmaxc1=(1,2,..., f )Cmax(πFc1 )11: 　　

Fc2 = argmaxc1=(1,2,..., f )/c2Cmax(πFc1 )12: 　　

Cnt = 013: 　　

14: 　else
π = πInitial Cnt =Cnt+115: 　　  and 

16: 　end if
17: end while
 

 

Algorithm 4　Local search based on job block swapping
πInput: 
π CmaxOutput: , 

1 : Fc1 = argmaxc1=(1,2,..., f )Cmax(πFc1 )
Fc2 = argmaxc1=(1,2,..., f )/c1Cmax(πFc2 )

,
　 

Cnt = 02: 
Cnt < n n FC13: While  do //  is the number of jobs in factory 

πInitial = π4: 　
τ′ = Fc15: 　  randomly selected job in 
τ′′ = Fc26: 　  randomly selected job in 

7: 　Determine the job block block_1 and block_2.
πFc1 πFc28: 　Swap block_1 and block_2, and revaluate  and 

C∗max = max f
i=1

{
Cmax(πF1 ),Cmax(πF2 ), ...,Cmax(πF f )

}
9: 　

C∗max <Cmax10: 　if 
Cmax <C∗max11: 　　

Fc1 = argmaxc1=(1,2,..., f )Cmax(πFc1 )12: 　　

Fc2 = argmaxc1=(1,2,..., f )/c2Cmax(πFc1 )13: 　　

Cnt = 014: 　　

15: 　else
π = πInitial Cnt =Cnt+116: 　　  and 

17: 　end if
18: end while
 

    204 Complex System Modeling and Simulation, September  2021, 1(3): 198−217

 



legitimacy of the positions of the selected job.
Through the above example, we describe the process

of job block selection. In this paper, we also proposed
an  algorithm  based  on  job  block  swapping  called
LS_N2.  The  proposed  local  search  procedure  is  listed
in Algorithm 4. 

4.4    Destruction,  reconstruction,  and  acceptance
criteria

π

πD πR

d π πR = π−πD

FC1

d−d/2

In the IG algorithm, destruction and reconstruction are
constantly  performed  within  the  IG  loop  to  keep  the
algorithm  from  falling  into  a  local  optimum.  The
destruction operator is applied to the original . In this
paper,  we  first  randomly  select  djobs  and  place  them
into  in  turn.  Then a subsequence  is  obtained by
deleting  jobs  from  ( ).  Based  on  the
distributed  characteristic  of  the  DPFSP,  we  delete d/2
jobs  from  the  critical  factory, ,  and  delete  the

 jobs  from  the  noncritical  factories.  Next,  a
reconstruction  operation  is  employed  to  generate  a
completed sequence.

πR
The  reconstruction  operation  aims  to  reinsert  the

deleted jobs into . The process is given as follows:
πD(1)  The  job  is  taken  from  in  turn  and  inserted  at

all the possible positions, respectively.
(2)  Second,  the position with the smallest  makespan

is  selected,  and  the  job  is  inserted  into  the  selected
position.

(3)  Steps  (1)  and  (2)  are  repeated  until  all  jobs  in
have  been  removed.  After  the  destruction  and
reconstruction  operators,  a  simple  thermostatic
acceptance  criterion  proposed  by  Ruiz  and  Stutzle  is
applied.
 

Temperature = T ×

∑m

i=1

∑n

j=1
pi, j

n×m×10
(13)

T pi, j

J j Mi n m

T

T

where  is  a  constant  temperature  value,  is  the
processing time of job  on machine , and  and 
refer  to  the  number  of  jobs  and  machines  of  the
example,  respectively.  For  the  value,  the
experimental  results  verify  that  some  acceptance
criteria  without  parameters,  which  were  proposed  by
Hatamit  et  al.[45],  did  not  yield  significant
improvements  in  initial  testing[27].  needs  calibration
but has shown robustness (most values are not zero and
not too high). 

5    Experiment and Experimental Result

The experimental data in this paper are the same as in
Ref.  [8],  with  a  total  of  150  test  cases,  where  the

f ∈ {2,3,4,5,6,7}
n ∈ {100,200,300,400,500}

m ∈ {5,8,10}
f actor ∈ {25,50,100} (1+ rand()%99)×
f actor/100

number of factories is ,  the number of
jobs  is ,  the  number  of
machines  is ,  and  the  impact  factor  is

.  We  use 
 to  generate  serially  relevant  preparation

times and processing times through the impact factors.
Thus, the values of processing times and SDSTs are in
the  range  [1,  99).  Each  instance  is  independently
executed  with  five  replications,  and  the  minimum
makespan  was  taken  as  the  final  result  of  that
algorithm.

TimeLimit =CPU ×n×m

In these experiments, all the algorithms are written in
Visual  C++  2019,  and  the  same  library  functions  are
employed to make fair comparisons. All the algorithms
are implemented on a PC with Microsoft Windows 10
operating  system,  16  GB  DDR4  memory,  and  a  1.00
GHz  Intel  Core  i5-1035G1  processor.  For  the
termination  criterion  of  these  algorithms,  the  same
maximal elapsed CPU time of 
millisecond is employed.

For  the  evaluation  indicator,  we  adopt  the  relative
percentage  increase  (RPI)  to  test  the  efficiency  of  the
proposed algorithm. The RPI is calculated as follows:
 

RPI =
Mi−Mbest

Mbest
×100 (14)

Mbest

Mi

where  is the minimum makespan obtained by all
the  compared  algorithms  for  each  test  instance.  is
the  best  makespan  of  the i -th  algorithm  for  each  test
instance. A small RPI corresponds to improved results
obtained by the algorithm.

In this  paper,  to demonstrate the performance of the
proposed  algorithm,  we  select  the  existing  five
compared  algorithms  used  to  solve  the  DPFSP.  The
compared  algorithms  are  artificial  CRO[5],  DABC[46],
DDE[47],  improved iterative greedy algorithm (IGA)[7],
and  iterative  greedy  algorithm  with  a  restart  scheme
(IGR)[8].

During  solving  the  above  instances,  if  we  obtain  a
better  solution  of  an  instance  by  using  the  proposed
algorithm than that of the comparative algorithms, then
we  update  its  upper  bound.  In  the  experiments,  we
report the computational results related to the following
aspects:

•  Comparison  results  of  the  local  search  based  on
single job swapping and job block swapping.

• Comparison results between the proposed algorithm
and the five compared ones.

•  Update  of  upper  bounds  of  some  benchmark
problems. 
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5.1    Comparison results of a local search based on
single job and job block swapping

In this paper, we propose a two-stage local search; that
is, the local search is divided into a local search for the
initial  solution  and  a  local  search  within  the  IG  loop.
NIG_X is  the  proposed  improved  Iterated  greedy
algorithm in which the local search based on single job
swapping  is  performed  in  the  first  stage,  and  a  job
block  swapping  is  performed  in  the  second  local
search.  NIG2_X is  the  algorithm  in  which  job  block
swapping  is  employed  in  the  two  local  search  stages.
“X” represents the number of jobs in the job block and
is taken to be 1 to 5 in this experiment.

Figure 2 shows  the  interval  plot  of  NIG_X and
NIG2_X, where “X” equals 2, 3, 4, and 5, respectively.
From the results of Fig. 2, the strategies of NIG_X and
NIG2_X show  good  performance,  suggesting  that  the
proposed  two-stage  local  search  can  enhance  the
performance  of  the  proposed  algorithm.  Among  these
proposed strategies,  only when the  job block length is
equal to 2 (X = 2) NIG_2 performs slightly better than
NIG2_X.  The  performances  of  NIG_X and  NIG2_X
become increasingly worse as the number of jobs in the
job  block  increases.  In  addition,  for  NIG_X and
NIG2_X,  the  RPI  of  the  former  is  slightly  better  than
that of the latter. The reason may be that the job block
that includes more than two jobs destroys the sequence
within the critical factory to a large degree, resulting in
reduced  local  exploitation  ability  of  the  proposed
algorithm.

To  further  verify  the  performance  of  the  proposed
NIG  and  NIG_X (X  =  2,  3,  4,  5), Table 2  and  Figs. 3
and 4 list the experimental results of the comparison of
NIG, NIG_X,  IGA, and IGR at CPU = 10. In Table 2,
when X  =  2,  the  makespan  values  obtained  by  the
proposed NIG, NIG_2, NIG_3, NIG_4, and NIG_5 are
smaller  than  those  of  IGA  and  IGR  for  all  the  test

instances,  suggesting  that  the  two-stage  local  search
strategy  can  generate  better  solutions  than  all  the
compared algorithms, and more upper bounds obtained
by the proposed algorithms are updated. As the number
of  factories  increase,  the  superiority  of  the  NIG,
NIG_2,  NIG_3,  and  NIG_4  over  the  IGA  and  IGR
algorithms  is  demonstrated  for  the  mean  values  of  all
test  sets  in Table 2 .  NIG  is  better  than  the  compared
algorithms because the two-stage local search based on
single  job  swapping  can  slightly  disrupt  the  current
solution  within  the  critical  factory  and  improve  the
exploitation ability of NIG.

To  effectively  demonstrate  the  convergence  of  the
proposed  algorithm,  we  also  plotted  the  evolutionary
curves  of  the  seven  algorithms  above.  According  to
requirements,  all  the  compared  algorithms  are  run
using the same CPU time with the step size of 0.5 s on
the aforementioned PC.

We  randomly  chose  a  small-scale  instance  and  a
large-scale  instance  of  100×5×2  and  500×10×5,
respectively. Compared with the convergence curves of
IGA, IGR, NIG, and NIG_X, the convergence curve of
NIG  is  the  highest  as  the  runtime  increases,  followed
by  NIG_2,  NIG_3,  NIG_4,  IGR,  IGA,  and  NIG_5,
suggesting  that  the  proposed  algorithms  have  the
capacity  to  guide  the  solution  to  the  optimal  solution.
The  superiority  of  NIG  is  due  to  the  two-stage  local
search.

In  summary,  NIG is  significantly  superior  in  all  the
test  instances  with  respect  to  makespan,  convergence
curve,  and  interval  plot  compared  with  NIG_X,  IGA,
and  IGAR.  For  this  case,  the  reason  for  this  superior
performance  may  be  that  the  NIG  adopts  a  two-stage
local  search  based  on  a  single  job  swapping  operator
rather than an insertion operator, thereby decreasing the
computational  complexity  of  the  local  search  and
having  more  iterations  to  improve  the  quality  of  the
solution than the compared algorithms. 

5.2    Performance of all the compared algorithms

The  experimental  results  in  Subsection  5.1  show  that
the  proposed  NIG  algorithm  outperforms  NIG_X and
NIG2_X. Thus, in this section, we will further validate
the effect of the proposed NIG algorithm. We compare
NIG  with  DABC[46],  CRO[5],  DDE[47],  IGA[7],  and
IGR[8] in  terms  of  makespan  and  PRI  on  150  test
instances.  All  the  compared  algorithms  have  the  same
computational  time  and  experimental  environment.
Tables 3 and  4  highlight  the  best  mean  result  of  the
comparative methods.
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Fig. 2    Confidence intervals for two-stage IG and job block-
based exchange IG.
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Table 2    Makespan values of all the compared algorithms when CPU = 10.

f actory J×M IGA IGR NIG_2 NIG_3 NIG_4 NIG_5 NIG

f=2

100×5 3423 3405 3335 3343 3371 3415 3329
100×8 3832 3703 3579 3610 3658 3652 3537
100×10 3864 3804 3675 3755 3731 3776 3652
200×5 6630 6506 6328 6415 6451 6435 6300
200×8 6937 6812 6670 6680 6774 6740 6588
200×10 7313 7117 6913 6959 6986 7045 6818
300×5 9853 9682 9436 9498 9549 9587 9345
300×8 10305 10027 9760 9870 9867 9908 9667
300×10 10257 10260 9997 10058 10141 10047 9881
400×5 13517 12984 12645 12802 12841 12860 12477
400×8 13402 13053 12753 12787 12879 12894 12672
400×10 13578 13399 13116 13261 13319 13365 13069
500×5 15795 15468 15287 15357 15426 15383 15080
500×8 16603 16385 15979 16064 16114 16223 15877
500×10 16838 16752 16274 16385 16416 16454 16215
Mean 10143.1 9957.13 9716.47 9789.6 9834.87 9852.27 9633.8

f=3

100×5 2345 2331 2305 2334 2336 2359 2249
100×8 2632 2566 2469 2523 2509 2543 2446
100×10 2840 2805 2752 2776 2793 2833 2728
200×5 4467 4367 4338 4357 4390 4403 4298
200×8 4835 4689 4597 4648 4689 4678 4508
200×10 5083 4894 4816 4827 4897 4934 4745
300×5 6678 6533 6457 6469 6537 6578 6410
300×8 7015 6795 6630 6685 6733 6778 6545
300×10 7152 7094 6880 6948 6951 6994 6823
400×5 8792 8696 8528 8627 8694 8687 8475
400×8 9331 9107 8913 8999 9083 9057 8811
400×10 9247 9165 8969 9056 9081 9164 8881
500×5 10839 10570 10473 10595 10608 10645 10419
500×8 11248 10964 10658 10760 10827 10862 10620
500×10 11473 11344 11033 11144 11221 11301 10956
Mean 6931.8 6794.67 6654.53 6716.53 6756.6 6787.73 6594.27

f=4

100×5 1861 1816 1784 1798 1814 1846 1793
100×8 2136 2064 2045 2047 2091 2082 2015
100×10 2250 2237 2177 2221 2217 2254 2143
200×5 3431 3371 3344 3385 3408 3424 3316
200×8 3821 3677 3573 3641 3628 3721 3578
200×10 3973 3965 3846 3893 3906 3961 3814
300×5 5091 4963 4854 4911 4930 4973 4820
300×8 5503 5229 5132 5155 5225 5240 5078
300×10 5580 5514 5408 5455 5500 5535 5348
400×5 8792 8696 8528 8627 8694 8687 8475
400×8 9331 9107 8913 8999 9083 9057 8811
400×10 9247 9165 8969 9056 9081 9164 8881
500×5 8297 8037 7947 8017 8023 8105 7833
500×8 8728 8556 8430 8472 8508 8587 8309
500×10 8964 8720 8546 8549 8621 8688 8414
Mean 5800.33 5674.47 5566.4 5615.07 5648.6 5688.27 5508.53

(To be continued)
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Table 2    Makespan values of all the compared algorithms when CPU = 10. (Continued)

f actory J×M IGA IGR NIG_2 NIG_3 NIG_4 NIG_5 NIG

f=5

100×5 1515 1482 1483 1504 1506 1532 1474
100×8 1826 1796 1751 1793 1777 1818 1723
100×10 1954 1912 1858 1889 1909 1944 1832
200×5 2858 2728 2701 2724 2742 2782 2629
200×8 3037 2988 2950 2986 2998 3004 2908
200×10 3303 3236 3151 3195 3244 3226 3105
300×5 4096 3997 3933 3974 4002 4012 3920
300×8 4422 4322 4217 4271 4295 4310 4160
300×10 4693 4554 4453 4528 4535 4541 4386
400×5 5479 5264 5210 5230 5237 5273 5171
400×8 5758 5599 5523 5554 5633 5590 5477
400×10 5951 5878 5668 5735 5773 5789 5632
500×5 6807 6604 6456 6514 6558 6597 6401
500×8 7130 6877 6751 6803 6846 6953 6688
500×10 7337 7125 7014 7033 7088 7155 6877
Mean 4411.067 4290.8 4207.93 4248.87 4276.2 4301.73 4158.87

f=6

100×5 1345 1307 1287 1305 1306 1335 1291
100×8 1548 1488 1455 1482 1512 1529 1456
100×10 1736 1689 1673 1658 1721 1703 1630
200×5 2403 2357 2285 2340 2344 2366 2268
200×8 2685 2579 2517 2552 2607 2618 2514
200×10 2839 2803 2740 2750 2800 2798 2694
300×5 3451 3326 3284 3334 3363 3380 3269
300×8 3851 3707 3620 3613 3666 3679 3553
300×10 3988 3934 3810 3845 3872 3919 3740
400×5 4525 4355 4329 4361 4363 4375 4248
400×8 4909 4828 4717 4742 4809 4771 4677
400×10 5210 5042 4941 4953 4990 5012 4842
500×5 5570 5397 5379 5417 5458 5503 5287
500×8 6011 5866 5759 5896 5910 5978 5724
500×10 6305 6124 5951 6036 6055 6111 5925
Mean 3758.4 3653.47 3583.13 3618.93 3651.73 3671.8 3541.2

f=7

100×5 1185 1156 1142 1152 1174 1160 1133
100×8 1390 1362 1332 1344 1353 1377 1320
100×10 1546 1548 1493 1499 1518 1526 1487
200×5 2131 2093 2055 2078 2103 2122 2032
200×8 2413 2334 2302 2320 2329 2357 2252
200×10 2608 2535 2482 2526 2540 2550 2445
300×5 3422 2909 2861 2897 2922 2942 2838
300×8 3325 3206 3135 3148 3175 3202 3071
300×10 3539 3456 3366 3433 3455 3455 3320
400×5 3930 3843 3802 3839 3880 3890 3752
400×8 4334 4202 4137 4151 4201 4237 4086
400×10 4602 4460 4363 4405 4399 4461 4308
500×5 4840 4679 4604 4687 4702 4747 4584
500×8 5213 5037 4955 5012 5041 5077 4902
500×10 5525 5370 5235 5283 5351 5394 5176
Mean 3333.53 3212.67 3150.93 3184.93 3209.53 3233.13 3113.733
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Tables 3 and  4  list  the  new  upper  bounds  of
makespan  and  RPI  produced  by  all  the  six  compared
algorithms when CPU = 5 and CPU = 10, respectively.
From Tables 3  and  4 ,  the  makespan  and  RPI  values
produced  by  the  proposed  NIG  algorithm  are  smaller
than  the  ones  obtained  by  the  compared  algorithms  in
all  the  test  sets.  In  addition,  when  the  number  of
factories  is  equal  to  2,  3,  4,  5,  6,  and  7,  the  proposed
algorithm still achieves good performance in all the test

sets. Except for NIG, the IGR and DDE algorithms are
superior  to  the  DABC,  CRO,  and  IGA  algorithms.
Furthermore,  the  performance  of  IGR  improves
progressively as the size increases.

To further evaluate the performance of the proposed
NIG  algorithm,  we  investigated  the  convergence  of
different algorithms in this section. We randomly select
an instance with 100 jobs, 5 machines, and 2 factories,
and  an  instance  with  500  jobs,  10  machines,  and  5
factories. Figure 5  gives  the  best  makespan  values
obtained  by  DABC,  CRO,  DDE,  IGA,  IGR,  and  NIG
algorithms as the computation time increases. Figure 6
indicates  that  the  convergence  curve  of  the  proposed
NIG  reaches  the  lowest  levels  among  the  compared
algorithms for  two given instances  as  the  computation
time  increases,  followed  by  the  convergence  curve  of
DDE, IGR, CRO, IGA, and DABC.

The above results indicate that the superiority of NIG
is  mainly  attributed  to  the  two-stage  local  search
strategy  proposed  in  Subsections  4.2  and  4.3  because
they enhance the exploitation abilities of the algorithm.
NIG adopts a two-stage local search based on a single
job swapping operator rather than an insertion operator,
which is  why the computational  complexity of  NIG is
lower  than  that  of  the  compared  algorithms.  In
addition,  all  algorithms  adopt  the  same  maximal
elapsed CPU time with the unit of a millisecond as the
termination  criterion.  Thus,  the  NIG  has  more
iterations  and  opportunities  to  improve  the  quality  of
the  solution  than  the  compared  algorithms.  In
summary,  the  proposed  algorithm is  effective  and  can
generate the solution with good convergence. 

5.3    Gantt charts of specific instances

To  show  the  optimal  scheduling  sequence, Figure 6
shows the Gantt chart of a job sequence with 100 jobs,
3  factories,  and  5  machines.  In  the  Gantt  chart,  the
horizontal  axis  represents  the  makespan  value.  The
yellow rectangle represents the processing time of a job
on a machine, and the blue rectangle is the preparation
time. The serial numbers of the jobs are marked in the
yellow  rectangle. Figures 6a − 6c  provide  the  optimal
scheduling  plan  for  managers  in  3  factories,
respectively. In the first factory, the optimal scheduling
plan  is  18-8-47-98-45-12-80-26-75-56-65-55-3-84-92-
21-1-36-78-27-54-70-35-60-10-97-91-15-62-0-66-57
and the makespan value is equal to 2248. In the second
factory,  the optimal  scheduling plan is  16-7-76-42-71-
74-61-95-64-29-37-81-11-49-51-2-40-72-33-69-23-68-
82-46-17-89-41-30-31-58-43-99-50-32-77  and  the
makespan  value  is  equal  to 2248 .  In  the  third  factory,
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Table 3    Makespan and RPI values of all the six algorithms when CPU = 5.

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=2

100×5 3473 4.13 3405 2.1 3366 0.93 3441 3.18 3351 0.48 3335 0
100×8 3823 7.9 3794 7.08 3584 1.16 3832 8.16 3694 4.26 3543 0
100×10 3917 7.25 3931 7.64 3712 1.64 3864 5.81 3799 4.03 3652 0
200×5 6553 3.67 6539 3.45 6426 1.66 6637 5 6478 2.48 6321 0
200×8 6943 5.29 6894 4.55 6678 1.27 6937 5.2 6841 3.75 6594 0
200×10 7245 6.13 7137 4.56 6854 0.41 7313 7.13 7093 3.91 6826 0
300×5 9802 4.73 9674 3.37 9478 1.27 9853 5.28 9632 2.92 9359 0
300×8 10094 4.41 10025 3.69 9778 1.14 10333 6.88 10046 3.91 9668 0
300×10 10364 4.81 10247 3.63 9975 0.88 10282 3.98 10257 3.73 9888 0
400×5 13202 5.68 13224 5.85 12714 1.77 13517 8.2 12992 3.99 12493 0
400×8 13222 4.34 13167 3.91 12759 0.69 13402 5.76 13045 2.94 12672 0
400×10 13742 5.11 13468 3.01 13206 1.01 13578 3.85 13526 3.46 13074 0
500×5 15535 3 15702 4.1 15346 1.74 15795 4.72 15554 3.12 15083 0
500×8 16509 3.98 16375 3.14 16101 1.41 16603 4.57 16367 3.09 15877 0
500×10 16753 3.31 16828 3.77 16336 0.73 16838 3.83 16684 2.88 16217 0
Mean 10078 4.92 10027 4.26 9754 1.18 10148 5.44 9957 3.26 9640 0

f=3

100×5 2434 8.23 2449 8.89 2257 0.36 2345 4.27 2338 3.96 2249 0
100×8 2589 5.76 2638 7.76 2484 1.47 2638 7.76 2573 5.11 2448 0
100×10 2888 5.9 2876 5.46 2728 0.04 2850 4.51 2803 2.79 2727 0
200×5 4406 2.13 4438 2.87 4337 0.53 4467 3.55 4385 1.65 4314 0
200×8 4755 5.36 4858 7.64 4542 0.64 4848 7.42 4726 4.72 4513 0
200×10 5027 5.97 5040 6.24 4767 0.48 5083 7.15 4948 4.3 4744 0
300×5 6696 4.45 6543 2.06 6432 0.33 6678 4.16 6525 1.78 6411 0
300×8 6905 5.34 6817 4 6599 0.67 7022 7.12 6841 4.36 6555 0
300×10 7151 4.81 7036 3.12 6833 0.15 7161 4.95 7027 2.99 6823 0
400×5 8868 4.56 8740 3.05 8519 0.45 8811 3.89 8655 2.05 8481 0
400×8 9306 5.51 9211 4.43 8865 0.51 9375 6.29 9149 3.73 8820 0
400×10 9376 5.38 9150 2.84 8902 0.06 9247 3.93 9124 2.55 8897 0
500×5 10808 3.68 10711 2.75 10482 0.56 10839 3.98 10683 2.48 10424 0
500×8 11095 4.6 11013 3.83 10607 0 11251 6.07 10976 3.48 10620 0.12
500×10 11516 5.02 11290 2.95 11030 0.58 11473 4.62 11359 3.58 10966 0
Mean 6921 5.11 6854 4.53 6626 0.45 6939 5.31 6807 3.3 6599 0.01

f=4

100×5 1876 4.86 1838 2.74 1789 0 1865 4.25 1829 2.24 1793 0.22
100×8 2156 6.89 2132 5.7 2042 1.24 2136 5.9 2080 3.12 2017 0
100×10 2293 7 2306 7.61 2194 2.38 2261 5.51 2239 4.48 2143 0
200×5 3542 6.82 3472 4.7 3342 0.78 3436 3.62 3382 1.99 3316 0
200×8 3816 6.62 3777 5.53 3597 0.5 3823 6.82 3669 2.51 3579 0
200×10 4034 5.74 4012 5.16 3832 0.45 3983 4.4 3931 3.04 3815 0
300×5 5071 5.1 4966 2.92 4862 0.77 5091 5.51 4927 2.11 4825 0
300×8 5364 5.63 5335 5.06 5126 0.95 5504 8.39 5274 3.86 5078 0
300×10 5670 6.02 5533 3.46 5380 0.6 5580 4.34 5531 3.42 5348 0
400×5 6704 5.38 6601 3.76 6422 0.94 6637 4.32 6519 2.47 6362 0
400×8 7226 7.04 7070 4.73 6754 0.04 7032 4.16 6942 2.83 6751 0
400×10 7419 6.69 7264 4.46 6984 0.43 7309 5.1 7187 3.35 6954 0
500×5 8306 5.96 8082 3.1 7940 1.29 8313 6.05 8064 2.87 7839 0
500×8 8772 5.26 8596 3.14 8438 1.25 8728 4.73 8589 3.06 8334 0
500×10 9025 7.2 8740 3.81 8626 2.46 8965 6.49 8729 3.68 8419 0
Mean 5418 6.15 5315 4.39 5155 0.94 5378 5.31 5259 3 5105 0.01

(To be continued)

    210 Complex System Modeling and Simulation, September  2021, 1(3): 198−217

 



Table 3    Makespan and RPI values of all the six algorithms when CPU = 5. (Continued)

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=5

100×5 1563 6.04 1547 4.95 1487 0.88 1519 3.05 1483 0.61 1474 0
100×8 1890 9.69 1836 6.56 1758 2.03 1836 6.56 1786 3.66 1723 0
100×10 1998 8.65 1957 6.42 1917 4.24 1954 6.25 1902 3.43 1839 0
200×5 2887 9.69 2879 9.38 2728 3.65 2858 8.59 2743 4.22 2632 0
200×8 3115 8.27 3053 6.12 2877 0 3037 5.56 3007 4.52 2908 1.08
200×10 3394 9.24 3297 6.12 3141 1.09 3303 6.31 3248 4.54 3107 0
300×5 4144 5.71 4058 3.52 3944 0.61 4101 4.62 3992 1.84 3920 0
300×8 4477 7.62 4436 6.63 4214 1.3 4422 6.3 4267 2.57 4160 0
300×10 4709 7.59 4667 6.63 4377 0 4693 7.22 4554 4.04 4386 0.21
400×5 5479 5.87 5409 4.52 5229 1.04 5486 6.01 5279 2.01 5175 0
400×8 5933 8.13 5642 2.82 5564 1.4 5758 4.94 5587 1.82 5487 0
400×10 6067 7.65 5903 4.74 5694 1.03 5951 5.59 5818 3.23 5636 0
500×5 6810 6.34 6772 5.75 6489 1.33 6816 6.43 6600 3.06 6404 0
500×8 7158 6.98 6836 2.17 6720 0.43 7139 6.7 6908 3.24 6691 0
500×10 7420 7.82 7226 5 7012 1.89 7343 6.7 7135 3.68 6882 0
Mean 4470 7.69 4368 5.42 4210 1.4 4414 6.05 4287 3.1 4162 0.09

f=6

100×5 1387 7.44 1357 5.11 1294 0.23 1345 4.18 1304 1.01 1291 0
100×8 1549 6.02 1579 8.08 1479 1.23 1548 5.95 1513 3.56 1461 0
100×10 1787 9.63 1752 7.48 1673 2.64 1736 6.5 1697 4.11 1630 0
200×5 2476 9.12 2394 5.51 2321 2.29 2403 5.91 2341 3.17 2269 0
200×8 2727 8.47 2602 3.5 2526 0.48 2689 6.96 2608 3.74 2514 0
200×10 2980 10.5 2919 8.27 2834 5.12 2839 5.3 2802 3.93 2696 0
300×5 3506 7.25 3452 5.6 3366 2.97 3451 5.57 3323 1.65 3269 0
300×8 3881 9.17 3809 7.14 3672 3.29 3851 8.33 3715 4.5 3555 0
300×10 4007 7.14 4001 6.98 3944 5.45 3999 6.93 3924 4.92 3740 0
400×5 4622 8.8 4417 3.98 4480 5.46 4529 6.61 4346 2.31 4248 0
400×8 5095 8.94 4900 4.77 4878 4.3 4935 5.52 4828 3.23 4677 0
400×10 5283 9.09 5150 6.34 4963 2.48 5219 7.76 5042 4.11 4843 0
500×5 5688 7.58 5518 4.37 5425 2.61 5570 5.35 5428 2.67 5287 0
500×8 6199 8.15 6019 5.01 5929 3.44 6011 4.87 5894 2.83 5732 0
500×10 6291 6.14 6147 3.71 6070 2.41 6305 6.38 6102 2.95 5927 0
Mean 3832 8.23 3734 5.72 3657 2.96 3762 6.14 3658 3.25 3543 0

f=7

100×5 1229 8.57 1190 5.12 1132 0 1185 4.68 1142 0.88 1134 0.18
100×8 1436 8.79 1415 7.2 1375 4.17 1390 5.3 1357 2.8 1320 0
100×10 1666 12 1582 6.39 1545 3.9 1546 3.97 1542 3.7 1487 0
200×5 2234 9.94 2144 5.51 2061 1.43 2131 4.87 2087 2.71 2032 0
200×8 2549 12.8 2400 6.29 2294 1.59 2422 7.26 2359 4.47 2258 0
200×10 2723 11.2 2585 5.6 2561 4.62 2608 6.54 2558 4.49 2448 0
300×5 3097 9.13 3050 7.47 2944 3.74 3422 20.5 2917 2.78 2838 0
300×8 3387 10 3257 5.78 3194 3.73 3325 7.99 3181 3.31 3079 0
300×10 3731 11.7 3509 5.12 3443 3.15 3539 6.02 3463 3.74 3338 0
400×5 4097 9.14 3947 5.14 3896 3.78 3931 4.71 3824 1.86 3754 0
400×8 4508 10.3 4295 5.12 4278 4.7 4344 6.31 4203 2.86 4086 0
400×10 4741 10 4502 4.45 4420 2.55 4602 6.77 4465 3.6 4310 0
500×5 4996 8.68 4760 3.55 4807 4.57 4842 5.33 4688 1.98 4597 0
500×8 5319 8.51 5083 3.69 5067 3.37 5213 6.34 5063 3.28 4902 0
500×10 5679 9.72 5445 5.2 5390 4.13 5538 6.99 5379 3.92 5176 0
Mean 3426 10.05 3278 5.44 3227 3.29 3336 6.91 3215 3.09 3117 0.01
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Table 4    Makespan and RPI of the compared algorithms when CPU = 10.

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=2

100×5 3965 8.04 3981 8.47 3769 2.7 3913 6.62 3840 4.63 3670 0
100×8 4453 7.77 4462 7.99 4132 0 4381 6.03 4271 3.36 4141 0.22
100×10 4578 7.26 4490 5.2 4287 0.45 4489 5.18 4419 3.54 4268 0
200×5 7521 6.06 7329 3.36 7218 1.79 7387 4.17 7255 2.31 7091 0
200×8 7976 5.21 7918 4.45 7759 2.35 8079 6.57 7944 4.79 7581 0
200×10 8338 6.54 8056 2.94 7893 0.86 8242 5.32 8154 4.19 7826 0
300×5 11067 5.24 10892 3.58 10821 2.9 11204 6.54 11003 4.63 10516 0
300×8 11880 5.52 11826 5.05 11377 1.06 11927 5.94 11724 4.14 11258 0
300×10 12185 5.18 12073 4.21 11714 1.11 12229 5.56 12118 4.6 11585 0
400×5 14995 6.67 14666 4.32 14458 2.85 14884 5.88 14667 4.33 14058 0
400×8 15425 5.59 14945 2.3 14752 0.98 15503 6.12 15179 3.9 14609 0
400×10 15820 4.5 15697 3.69 15352 1.41 16068 6.14 15768 4.15 15139 0
500×5 18400 6.28 18242 5.37 17843 3.06 18526 7.01 18246 5.39 17313 0
500×8 19031 4.77 18844 3.74 18529 2.01 19183 5.61 19006 4.64 18164 0
500×10 19787 4.25 19794 4.29 19292 1.64 20211 6.49 19883 4.76 18980 0
Mean 11694 5.93 11547 4.6 11279 1.68 11748 5.94 11565 4.22 11079 0.01

f=3

100×5 2757 6.57 2783 7.58 2618 1.2 2725 5.33 2693 4.1 2587 0
100×8 3081 8.72 3055 7.8 2857 0.81 3037 7.16 2947 3.99 2834 0
100×10 3201 6.99 3209 7.25 3030 1.27 3190 6.62 3131 4.65 2992 0
200×5 5002 6.95 4937 5.56 4787 2.35 4925 5.3 4894 4.64 4677 0
200×8 5491 5.76 5529 6.49 5252 1.16 5454 5.05 5411 4.22 5192 0
200×10 5860 6.2 5807 5.24 5589 1.29 5835 5.74 5736 3.95 5518 0
300×5 7562 6.1 7543 5.84 7253 1.77 7514 5.43 7438 4.36 7127 0
300×8 8243 5.8 8240 5.76 7831 0.51 8209 5.37 8122 4.25 7791 0
300×10 8288 5.24 8282 5.17 7969 1.19 8333 5.82 8211 4.27 7875 0
400×5 10164 6.17 10028 4.75 9807 2.44 10144 5.96 9945 3.89 9573 0
400×8 10462 5.14 10445 4.96 10048 0.97 10415 4.66 10342 3.93 9951 0
400×10 10863 5.5 10568 2.63 10347 0.49 10895 5.81 10655 3.48 10297 0
500×5 12615 5.94 12476 4.77 12097 1.59 12633 6.09 12398 4.11 11908 0
500×8 13178 6.46 12901 4.23 12674 2.39 13022 5.2 12914 4.33 12378 0
500×10 13468 5.5 13262 3.89 12874 0.85 13509 5.82 13261 3.88 12766 0
Mean 8015 6.2 7937 5.46 7668 1.35 7989 5.69 7873 4.14 7564 0

f=4

100×5 2160 7.78 2129 6.24 2033 1.45 2103 4.94 2084 3.99 2004 0
100×8 2507 9.24 2494 8.67 2346 2.22 2473 7.76 2388 4.05 2295 0
100×10 2723 9.58 2720 9.46 2541 2.25 2626 5.67 2605 4.83 2485 0
200×5 3873 7.11 3865 6.89 3616 0 3875 7.16 3763 4.07 3624 0.22
200×8 4404 6.02 4423 6.48 4205 1.23 4437 6.81 4292 3.32 4154 0
200×10 4620 7.44 4644 8 4403 2.4 4620 7.44 4511 4.91 4300 0
300×5 5978 8.51 5951 8.02 5608 1.8 5892 6.95 5846 6.12 5509 0
300×8 6128 4.31 6229 6.03 5917 0.71 6242 6.25 6180 5.19 5875 0
300×10 6634 6.79 6541 5.3 6356 2.32 6639 6.87 6471 4.17 6212 0
400×5 7673 5.24 7619 4.5 7401 1.51 7704 5.66 7610 4.38 7291 0
400×8 8168 6.74 8031 4.95 7751 1.29 8083 5.63 7957 3.99 7652 0
400×10 8496 7.5 8415 6.48 8051 1.87 8449 6.91 8250 4.39 7903 0
500×5 9467 7.74 9196 4.65 9052 3.02 9307 5.92 9144 4.06 8787 0
500×8 9901 6.07 9740 4.35 9489 1.66 9904 6.11 9702 3.94 9334 0
500×10 10340 6.46 10129 4.28 9820 1.1 10301 6.05 10125 4.24 9713 0
Mean 6204 7.1 6141 6.29 5905 1.66 6177 6.41 6061 4.38 5809 0.01

(To be continued)
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Table 4    Makespan and RPI of the compared algorithms when CPU = 10. (Continued)

factory J×M
DABC CRO DDE IGA IGR NIG

Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI Makespan RPI

f=5

100×5 1845 10.88 1803 8.35 1691 1.62 1763 5.95 1740 4.57 1664 0
100×8 2108 9.68 2050 6.66 1964 2.19 2017 4.94 1982 3.12 1922 0
100×10 2332 12.93 2248 8.86 2079 0.68 2209 6.97 2137 3.49 2065 0
200×5 3278 8.83 3233 7.34 3106 3.12 3241 7.6 3142 4.32 3012 0
200×8 3666 9.43 3627 8.27 3360 0.3 3549 5.94 3484 4 3350 0
200×10 3905 8.62 3844 6.93 3630 0.97 3836 6.7 3761 4.62 3595 0
300×5 4605 6.87 4602 6.8 4486 4.11 4653 7.98 4524 4.99 4309 0
300×8 5377 10.59 5142 5.76 4987 2.57 5092 4.73 5020 3.25 4862 0
300×10 5450 7.64 5399 6.64 5141 1.54 5378 6.22 5302 4.72 5063 0
400×5 6288 8.47 6107 5.35 5886 1.54 6155 6.18 5991 3.35 5797 0
400×8 6764 9.17 6576 6.13 6280 1.36 6640 7.17 6468 4.39 6196 0
400×10 7035 8.36 6789 4.57 6600 1.66 6990 7.67 6778 4.41 6492 0
500×5 7803 8.75 7548 5.2 7354 2.49 7667 6.86 7452 3.86 7175 0
500×8 8329 7.82 8189 6.01 8127 5.2 8216 6.36 8076 4.54 7725 0
500×10 8666 8.07 8430 5.13 8265 3.07 8599 7.23 8376 4.45 8019 0
Mean 5163 9.07 5039 6.53 4863 2.16 5067 6.57 4948 4.14 4749 0

f=6

100×5 1573 14.73 1536 12.04 1419 3.5 1470 7.22 1449 5.69 1371 0
100×8 1804 10.81 1806 10.93 1643 0.92 1721 5.71 1708 4.91 1628 0
100×10 2011 10.62 2002 10.12 1878 3.3 1938 6.6 1893 4.13 1818 0
200×5 2814 9.24 2803 8.81 2618 1.63 2712 5.28 2661 3.3 2576 0
200×8 3151 10.02 3100 8.24 2943 2.76 3066 7.05 3023 5.55 2864 0
200×10 3436 12.07 3280 6.98 3096 0.98 3260 6.33 3203 4.47 3066 0
300×5 4005 8.33 3928 6.25 3829 3.57 3922 6.09 3813 3.14 3697 0
300×8 4558 10.12 4485 8.36 4282 3.45 4438 7.22 4317 4.3 4139 0
300×10 4668 9.71 4543 6.77 4382 2.98 4576 7.54 4487 5.45 4255 0
400×5 5414 9.75 5250 6.43 5093 3.24 5274 6.91 5111 3.61 4933 0
400×8 5719 8.27 5587 5.77 5554 5.15 5618 6.36 5480 3.75 5282 0
400×10 6159 10.14 5928 6.01 5751 2.84 6014 7.55 5828 4.22 5592 0
500×5 6530 6.8 6412 4.87 6368 4.15 6534 6.87 6349 3.84 6114 0
500×8 7142 9.61 6905 5.97 6904 5.95 6934 6.41 6789 4.19 6516 0
500×10 7368 8.42 7174 5.56 7060 3.88 7288 7.24 7024 3.35 6796 0
Mean 4423 9.91 4316 7.54 4188 3.22 4317 6.69 4209 4.26 4043 0

f=7

100×5 1378 10.42 1354 8.49 1315 5.37 1312 5.13 1276 2.24 1248 0
100×8 1637 13.52 1608 11.51 1498 3.88 1547 7.28 1517 5.2 1442 0
100×10 1704 7.17 1741 9.5 1642 3.27 1687 6.1 1648 3.65 1590 0
200×5 2465 10.39 2403 7.61 2333 4.48 2396 7.3 2305 3.22 2233 0
200×8 2770 9.79 2722 7.89 2583 2.38 2690 6.62 2622 3.92 2523 0
200×10 3065 11.7 2982 8.67 2829 3.1 2960 7.87 2869 4.56 2744 0
300×5 3590 10.6 3522 8.5 3388 4.37 3438 5.91 3375 3.97 3246 0
300×8 3880 9.95 3816 8.13 3652 3.49 3767 6.74 3672 4.05 3529 0
300×10 4230 11.17 4060 6.7 3920 3.02 4056 6.6 3955 3.94 3805 0
400×5 4640 8.54 4578 7.09 4342 1.57 4538 6.15 4429 3.6 4275 0
400×8 5189 11.38 4952 6.29 4707 1.03 4954 6.33 4841 3.91 4659 0
400×10 5395 9.72 5227 6.3 5028 2.26 5279 7.36 5108 3.88 4917 0
500×5 5810 9.58 5593 5.49 5537 4.43 5648 6.53 5518 4.07 5302 0
500×8 6127 8.35 5992 5.96 5959 5.38 6105 7.96 5866 3.73 5655 0
500×10 6554 9.76 6266 4.94 6135 2.75 6384 6.92 6184 3.57 5971 0
Mean 3895 10.14 3787 7.54 3657 3.38 3784 6.72 3679 3.84 3542 0
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Fig. 6    Gantt chart of the optimal scheduling sequence with 100 jobs and 5 machines in 3 factories.
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the  optimal  scheduling  plan  is  28-48-13-96-73-93-88-
24-94-14-53-44-5-86-85-87-52-34-59-79-25-63-4-39-
38-20-67-90-83-6-22-9-19  and  the  makespan  value  is
equal  to 2249 .  Thus,  the  final  makespan  for  this
instance is 2249. 

6    Conclusion and Future Prospect

In this paper, we proposed an NIG algorithm based on
a  two-stage  local  search  strategy  for  solving  DPFSP-
SDST.  Based  on  the  distributed  feature  of  DPFSP-
SDST,  a  single  job  swapping  operator  is  proposed  to
disrupt the current solution within the critical factory in
the  first  local  search  stage.  In  the  second  local  search
stage,  job  block  swapping  is  designed  to  further
enhance  the  exploitation  ability  of  the  proposed
algorithm.  This  two-stage  local  search  has  low
computational  complexity  and  more  iterations  and
provides  more  opportunities  to  improve  the  quality  of
the  solution  than  the  algorithms  based  on  insertion
operators.  Computational  experiments  are  given  and
compared  with  the  results  obtained  by  the  IGA,  IGR,
DDE, DABC, and CRO algorithms.

Several problems and opportunities on DPFSP-SDST
need  to  be  addressed  in  the  future.  For  example,
DPFSP  with  multiobjective,  blocking  constraints,  and
energy  consumption  or  green  objective  problems  can
be  focused  on  in  future  research.  In  addition,  we  can
further consider DPFSP-SDST with uncertainties, such
as  machine  breakdowns,  nondeterministic  processing
time,  operator  illness,  and the change of  due date.  We
believe that an increasing number of excellent findings
will be obtained as a result. 
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