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A Novel Cooperative Multi-Stage Hyper-Heuristic for
Combination Optimization Problems

Fuqing Zhao�, Shilu Di, Jie Cao, Jianxin Tang, and Jonrinaldi

Abstract: A hyper-heuristic algorithm is a general solution framework that adaptively selects the optimizer to address

complex problems. A classical hyper-heuristic framework consists of two levels, including the high-level heuristic

and a set of low-level heuristics. The low-level heuristics to be used in the optimization process are chosen by

the high-level tactics in the hyper-heuristic. In this study, a Cooperative Multi-Stage Hyper-Heuristic (CMS-HH)

algorithm is proposed to address certain combinatorial optimization problems. In the CMS-HH, a genetic algorithm

is introduced to perturb the initial solution to increase the diversity of the solution. In the search phase, an online

learning mechanism based on the multi-armed bandits and relay hybridization technology are proposed to improve

the quality of the solution. In addition, a multi-point search is introduced to cooperatively search with a single-point

search when the state of the solution does not change in continuous time. The performance of the CMS-HH

algorithm is assessed in six specific combinatorial optimization problems, including Boolean satisfiability problems,

one-dimensional packing problems, permutation flow-shop scheduling problems, personnel scheduling problems,

traveling salesman problems, and vehicle routing problems. The experimental results demonstrate the efficiency and

significance of the proposed CMS-HH algorithm.

Key words: hyper-heuristic algorithm; Multi-Armed Bandits (MAB); relay hybridization technology; combinatorial

optimization

1 Introduction

Combinatorial Optimization Problems (COPs) widely
exist in actual applications, including flight itineraries,
scheduling, economic management, transportation, and
logistics management[1]. The applications in these
domains promote the rapid development of enterprises
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and the national economy.
The objective of COPs is to search for the optimal

solution from the feasible solution set of combinatorial
problems. COPs are normally difficult to be solved
because of a widespread and heavily constrained search
space. Numerous COPs are considered as the NP-hard
problems, which are difficult to be addressed with exact
methods. Classical mathematical methods were initially
used by researchers to address COPs. Nevertheless, the
performance of the mathematical methods is limited by
the problem scales. In contrast, meta-heuristics have
been used to solve COPs because this method can
reasonably find a feasible solution within an acceptable
timeframe[2–4]. The Swarm Intelligence (SI) algorithms,
which are used to address continuous optimization
problems or COPs, are widely studied and effective to
address large-scale problems[5, 6]. The SI algorithms are
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inspired by the laws of human intelligence and social or
natural phenomena in biological groups. Representative
SI algorithms include the Genetic Algorithm (GA)[7, 8],
Particle Swarm Optimization algorithm (PSO)[9], and
Ant Colony optimization algorithm (ACO)[10].

Studies of the SI algorithm have been sustained for
decades. The SI algorithms have achieved significant
success in distributed flow-shop scheduling[11–13]. A
Discrete Water Wave Optimization algorithm (DWWO)
was proposed for the blocking flow-shop scheduling
problem. The multi-constraint blocking flow-shop
scheduling optimization method, DWWO, first uses a
heuristic method and disturbance process to initialize
the population. Then, the two-step refraction process
is used to search the solution space effectively, and
the path reconnection mechanism is integrated into the
refraction process. Finally, a variable neighborhood
search algorithm is implemented to enhance the local
mining ability of DWWO[14]. A Discrete Fruit fly
Optimization Algorithm (DFOA) was proposed for
the distributed blocking flow-shop scheduling problem.
Three stages are included in a DFOA. In the initialization
stage, the central position of all populations is initialized
by the construction heuristic method. In the smell-
based foraging stage, a neighborhood structure based
on insertion is used to guide the algorithm for global
search. In the vision-based foraging stage, a local search
algorithm is used to strengthen the local search mining
capacity of the scope. At the same time, the simulated
annealing-like receiving mechanism is used to prevent
the algorithm from falling into a local optimum[15]. A
Multi-Objective Discrete Invasive Weed Optimization
(MODIWO) algorithm was proposed to address the
multi-objective blocking flow-shop scheduling problem
with a due date. In MODIWO, the initial population is
first constructed using certain heuristic methods. Then,
the amounts of seeds produced by each individual are
determined by a breeding strategy based on a reference
line. At the same time, a spatial diffusion model based
on sliding insertion is used to spread all the seeds to
the whole solution space. In addition, a self-tuning
phase in its main framework is added to promote the
local mining ability of the algorithm. Finally, the
next-generation population is generated through the
competition exclusion mechanism based on Pareto[16].
The Discrete Pigeon-Inspired Optimization algorithm
(DPIO) that uses the metropolis acceptance criterion
was proposed to address Traveling Salesman Problems
(TSP)[17]. The effectiveness of the DPIO is verified by

numerous experimental results. The optimal foraging
algorithm was proposed to address multi-objective
Permutation Flow-shop Scheduling Problems (PFSP)[18].
In this algorithm, a PFSP model that contains four
objectives is established. These four objectives include
the make-span, total tardiness, energy consumption cost,
and inventory holding cost. A variant of Vehicle Routing
Problems (VRP) that considers carbon emissions was
proposed in fresh food e-commerce[19]. A variable
neighborhood search approach is introduced to address
the VRP. An Improved Artificial Bee Colony algorithm
(IABC) was proposed to address VRP with time
windows (VRPTW)[20]. In the IABC, two problem-
specific lemmas are derived to address the cross-
synchronization problem. Furthermore, a local search
static, which is based on variable length, is introduced to
promote the exploitation ability. The effectiveness of the
IABC is verified by a statistical analysis of 55 instances.

Most of the optimization methods are custom-tailored
to specific problems. Usually, the tailored heuristic
methods depend on problem-specific knowledge.
Therefore, the specific methods do not always perform
well when applied to other problems without significant
modification. On the basis of the above shortcomings,
the operations of specific problems are encapsulated
as Low-Level Heuristics (LLHs). The High-Level
Heuristics (HLHs) are used to control the selection of
LLHs. The proposed algorithm is not used to optimize
a single problem, but to optimize multiple problems
without making major parameter adjustments. A
classical hyper-heuristic framework consists of a control
layer and a set of LLHs. A hyper-heuristic is used
to explore a solution space composed of a given set
of LLHs. The LLH is applied in solutions directly
and a new solution is created subsequently[21]. The
pivotal motivation behind hyper-heuristic research is
to enhance the level of generality of solution methods
for computational search problems[22]. One of the
motivations of this paper is to use one algorithm to
optimize multiple problems. Another purpose is to
integrate the advantages of several heuristic components
into a hyper-heuristic framework. In the classical hyper-
heuristic framework, the domain barrier is used to
logically separate the problem domain from the control
layer[23]. Early work on hyper-heuristic focuses on
the research of selection hyper-heuristic algorithms,
which consist of the heuristic selection mechanism and
acceptance criteria. In the iterative process, a suitable
heuristic is chosen from a set of LLHs and applied to
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the incumbent solution. Then, the candidate solution
is judged whether to be accepted according to the
acceptance criteria[24]. The LLHs are certain problem-
specific operators that are diverse for different problem
domains[25]. The meta-heuristics and hyper-heuristics
are used as LLHs with the development of hyper
heuristics. The size of an LLH set is controlled by
specific approaches that are relay hybridization or tabu
search. Because each instance has a different landscape,
the components of HLHs have a great effect on the
performance of hyper-heuristics[26]. Therefore, interest
is growing in designing a novel heuristic selection
mechanism or developing different acceptance criteria.
A good high-level heuristic design requires that an
appropriate LLH is selected at any particular point
according to the current state of the solution, and a good
design of acceptance criteria guides the search process
toward an optimistic region[27].

Most of the hyper-heuristic algorithms published
are selection hyper-heuristics. The LLHs, which are
categorized as construction heuristics and perturbation
heuristics, are operators related to specific problems.
The high-level heuristic intelligently selects an LLH that
is appropriate for the state of the solution. The heuristic
selection mechanism and acceptance criteria are two
crucial components of hyper-heuristics. For example,
the Monte Carlo Tree Search (MCTS) was introduced
to explore a search space that is modeled as a tree[28].
In the tree, each LLH is considered as a node. A few
steps of the MCTS are performed to update the binary
tree. The Monte Carlo acceptance criterion, which is
introduced to the hyper-heuristics, is used to accept
the novel solution. The Gene Expression Programming
(GEP) algorithm was introduced to generate HLHs[29].
In the framework, a population formed by HLHs was
used to evolve. Each high-level heuristic is divided
into the heuristic selection mechanism and acceptance
criteria according to specific rules. The roulette wheel
tactic is used to choose the individual according to the
fitness values. A hyper-heuristic, which circularly uses
two interactional hyper-heuristics in multiple stages,
was proposed[30]. In the algorithm, the dominance-based
hyper-heuristic is used to decrease the number of LLHs,
which helps to exclude the inferior heuristic from the
set of the LLHs. In addition, the relay hybridization,
which uses the second heuristic for the novel solution
generated by the previous heuristic, is introduced in
another stage. The purpose of relay hybridization is to
obtain more potential heuristics by pairing two existing

heuristics. Furthermore, a method based on the adaptive
threshold acceptance was introduced to accept the novel
solution. Reinforcement learning was embedded in a
hyper-heuristic framework to address the multi-objective
optimization problems[31]. In the algorithm, a robust
selection method of LLHs and multiple acceptance
methods were used to generate adequate solutions.

The selection of LLHs depends on the feedback from
the subsequent decisions[32]. The feedback mechanism
embedded in diverse search methods was used to
guide the next search direction. The online learning
static is embedded in the hyper-heuristic framework to
handle feedback during the search process. A choice
function based on online learning was proposed to
address aircraft flight deck operations scheduling[33].
The online learning mechanism, which is based on
dynamic Thompson sampling, has a considerable effect
on the performance of local search[26]. Offline learning
is another learning mechanism that is trained on sample
problem instances[34]. The parameters are determined
according to the feedback information and used to guide
test instances. The mixed learning mechanism, which
combines online and offline learning, was proposed
to select the appropriate low-heuristics. In this study,
the online learning mechanism is used in the single-
point search. Furthermore, the relay hybridization is
embedded in the single-point search to promote the
search ability of the Cooperative Multi-Stage Hyper-
Heuristic algorithm (CMS-HH). The contributions of
this paper are summarized as follows:

A GA is introduced to perturb the initial solution to
increase the diversity of the solution.

An online learning mechanism based on the
Multi-Armed Bandits (MAB) mechanism and relay
hybridization technology is proposed to improve the
quality of the solution.

The multi-point search is introduced to cooperatively
search with a single point when the state of the solution
does not change in continuous time.

The remainder of this paper is described below. The
description of problems is introduced in Section 2. The
proposed algorithm is introduced in Section 3, and
Section 4 is the experiment and discussion. Conclusions
and future work are presented in Section 5.

2 Problem Description

The Hyper-heuristic Flexible framework software
(HyFlex) is used to study the hyper-heuristic
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algorithm. HyFlex is an interface that is used to support
the research of hyper-heuristics. The interface, which
involves six domains, is achieved by Java[21]. The
purpose of the Cross-domain Heuristic Search Challenge
(CHeSC) is to determine the best algorithm that is
well generalized to various examples of cross-domain
problems. This hyper-heuristic flexible framework
contains six problem domains. Five instances need to be
optimized for each domain. The researchers only focus
on the design of the high-level strategies.

In HyFlex, each domain contains a set of LLHs,
initial solution construction methods, and optimization
functions. A set of different LLHs is used to disturb the
complete solution, and a complete candidate solution is
established subsequently. These heuristics are classified
as mutation heuristics that modify a solution by moving,
exchanging, adding, or deleting components of the
solution, not ensuring the quality of the solution. The
ruin-recreate heuristic is used to destroy a part of
a complete solution, rebuild a novel, and complete
solution. The local search heuristic iteratively generates
a neighborhood solution and then receives a solution of
equal or better quality until the termination conditions
are met. The difference between the two heuristics is
that the local search heuristic is an iterative process
that merely accepts improved solutions. The crossover
heuristic combines the partial components of two given
solutions to produce a novel solution. In HyFlex, each
LLH is related to two parameters. The behavior of
an LLH is controlled by two parameters: the search
depth and mutation intensity. The number of heuristics
provided by HyFlex for each supported problem domain
are shown in Table 1. In Table 1, the variable “Xover”
represents the crossover heuristics, “HC” represents
the hill climbing heuristics, “R&R” represents the
ruin-recreate heuristics, “M” represents the mutational
heuristics, “Total” represents total number of heuristics
for each problem domain. The diverse instances in
HyFlex are derived from eminent benchmark suites. Six
optimization problem domains are provided via HyFlex.

Table 1 Number of different types of low-level heuristic in
different problem domains.

Number Domain Xover HC R&R M Total
1 SAT 2 2 1 6 11
2 BP 1 2 2 3 8
3 PFSP 4 4 2 5 15
4 PS 3 5 3 1 12
5 TSP 4 3 1 5 13
6 VRP 2 3 2 3 10

(1) Boolean SATisfiability (SAT) problems: The
SAT determines the maximum number of clauses in
the conjunctive normal form of a given Boolean form.
This result is achieved by assigning truth values to the
formula variables. The goal is to minimize the number of
items that are not met[35]. The properties of the problem
instances are exhibited in Table 2. In Table 2, “Variables”
represents the number of variables in a given Boolean
logic formula, and “Clauses” represents the number
of clauses of Boolean formula. The initial solution is
constructed by randomly assigning a true or false value
to each variable of the conjunctive normal form formula,
and the quality of the solution is measured by the number
of unsatisfied terms in the given formula. In SAT, the
physical meaning of the objective function value is the
number of clauses in the conjunctive normal form of a
given Boolean form.

(2) One-dimensional Bin Packing problems (BP):
Given items with stationary weight and bin with a
specific capacity, the purpose is to put all the items
into the bins using a minimum number of bins. This
optimization process must satisfy the specific constraints.
Every item is only packed into one bin. The overall
size of items for every bin is not allowed to exceed
the capacity of the bin. The ultimate objective of the
optimization is to use the minimum number of bins
as much as possible[36]. The properties of the problem
instances are exhibited in Table 3, where “Capacity”
represents the capacity of single bin, and its unit is kg.
“Pieces” represents the total number of goods. The initial

Table 2 Boolean satisfiability problems instance.
Number Instance Name Variables Clauses

1 SAT1
parity-games/instance-
n3-i3-pp

525 2276

2 SAT2
parity-games/instance-
n3-i4-pp-ci-ce

696 3122

3 SAT3
parity-games/instance-
n3-i3-pp-ci-ce

525 2336

4 SAT4
jarvisalo/eq.atree.braun.
8.unsat

684 2300

5 SAT5
highgirth/3SAT/HG-
3SAT-V300-C1200-4

300 1200

Table 3 One-dimensional bin packing instance.
Number Instance Name Capacity (kg) Pieces

1 BP1 triples2004/instance1 1000 2004
2 BP2 falkenauer/u1000-01 150 1000
3 BP3 test/testdual7/binpack0 100 5000
4 BP4 50–90/instance1 150 2000
5 BP5 test/testdual10/binpack0 100 5000
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solution is constructed by the first fit heuristic method. A
sequence of items is randomly generated, and the items
are put into bins in turn until the constraints of the bin
are violated. The quality of the solution is assessed in
the following:

quality D 1 � .1=nb/ �

nbX
iD1

.fi=C /
2 (1)

where nb is the number of bins, fi is the total size of
the items in bin i , and C is the bin capacity. In BP, the
physical meaning of the objective function value is the
percentage of empty parts of bins in the capacity of all
used bins.

(3) PFSP: The PFSP is described as follows: given
n jobs, each job is processed on m machines according
to the same process route. The mission is to seek
the sequence of n jobs on m machines with the
minimal completion time of the last job. The following
constraints must be respected by the generated sequence.
Each job must be processed on one machine at a time,
and each machine cannot process multiple jobs at the
same time. Following the processing sequence of the
jobs, the machine cannot remain idle when a job is
ready to be processed[37]. The properties of the problem
instances are exhibited in Table 4. In Table 4, “Jobs”
represents the total number of jobs for processing, and
“Machines” represents the total number of machines in
a single factory. The initial solution is generated by the
Nawaz-Enscore-Ham(NEH) algorithm. It first assigns
priority according to the total processing time of the
jobs and then continuously inserts the job to obtain a
complete schedule. In PFSP, the physical meaning of
the objective function value is the completion time of
the last job in a job sequence. The unit of the objective
function value is hour.

(4) Personnel Scheduling problem (PS): Personnel
scheduling is a famous combinatorial optimization
problem. The personnel scheduling is described as
follows. The detailed arrangement shifts of a working
day, predefined working days, and specific work are
categorized to some employees. The task is to arrange
for all employees to satisfy specific requirements and
some preferences within a reasonable period[38]. The

Table 4 Permutation flow shop instance.
Number Instance Name Jobs Machines

1 PFSP1 100 � 20/2 100 20
2 PFSP2 500 � 20/2 500 20
3 PFSP3 100 � 20/4 100 20
4 PFSP4 200 � 20/1 200 20
5 PFSP5 500 � 20/3 500 20

properties of the problem instances are exhibited in
Table 5. In Table 5, “Staff” represents the number of
employees, “Shift types” represents the number of shift
types, and “Days” represents the predefined working
days of a single shift. The initial solutions are created
by a method based on the neighborhood operator. In this
method, the new shifts are gradually added to the roster
until all staff are scheduled. The quality of the solutions
is measured by the number of satisfied soft constraints.
In PS, the physical meaning of the objective function
value is the time required to complete all shifts. The unit
of the objective function value is hour.

(5) TSP: Given some cities and related coordinates,
the purpose is to seek the shortest path. Every city
is reached only one time, and the route is ended
at the starting city. The target is to minimize the
sum of traveling distances[39]. The properties of the
problem instances are exhibited in Table 6. In Table 6,
“Cities” represents the total number of cities. The initial
solution is created by randomly generating permutation
sequences. The quality of the solution is measured by the
total traveling distance of the solution path. The value of
the objective function of a given solution is calculated
as follows:

f D

ncX
iD1

ncX
i¤j;jD1

Dijxij (2)

where xij is the path from city i to j ,Dij is the distance
between cities i and j , and nc is the number of cities.
In TSP, the physical meaning of the objective function
value is the total traveling distance of connecting all
cities. The unit of the objective function value is km.

(6) VRP: Various customers have different demands
and service times. A few vehicles have a definite capacity.

Table 5 Personnel scheduling problem instance.
Number Instance Name Staff Shift types Days

1 PS1
Ikegami-3Shift-

DATA1.2
25 3 30

2 PS2 MER-A 54 12 42
3 PS3 ERRVH-B 51 8 42
4 PS4 BCV-A.12.1 12 5 31
5 PS5 ORTEC01 16 4 31

Table 6 Traveling salesman problem instance.
Number Instance Name Cities

1 TSP1 pr299 299
2 TSP2 usa13 509 13 509
3 TSP3 rat575 575
4 TSP4 d2152 2152
5 TSP5 D1291 1291
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The mission is to seek the minimum cost sets of routes
that serve all customers. The starting and ending points
for each vehicle must be the same depot. The vehicle
capacity cannot exceed the total demand of each route.
Furthermore, every customer may only be visited once
by one vehicle during its time window[40]. The properties
of the problem instances are exhibited in Table 7.
In Table 7, “Vehicle” represents the total number of
vehicles, and “Capacity” represents the capacity of single
vehicle. The unit of Capacity is kg. The set of an initial
solution are created by the following rules: An empty
route is created first, and any customer who does not
breach any constraints will be added to the present route
until all customers are visited. Furthermore, a new route
will be created if no customer is added to the current
route. The procedure is reduplicated until the customers
who meet the constraints are allocated to the related
route. The quality of the solution is measured by the
total travel distance, which is calculated in the following:

F D nv � Cv C

nvX
iD1

di (3)

where nv is the number of vehicles, Cv is a fixed constant
with a value of 1000, and di is the distance traveled
by the vehicles. In VRP, the physical meaning of the
objective function value is the total length traveled by all
vehicles. The unit of the objective function value is km.

3 Proposed CMS-HH Algorithm

3.1 Proposed hyper-heuristic framework

The HLHs and LLHs are included in the hyper-
heuristic framework. The high-level heuristic consists
of two ingredients: a heuristic selection mechanism
and acceptance criterion. A series of perturbative LLHs,
initial solution construction, objective function, and the
memory mechanism are included in the framework. The
proposed algorithm is started from an initial solution,
and the neighborhood structure is iteratively explored
by applying perturbed LLHs. This hyper-heuristic
framework continuously calls the following steps at a
certain stage:

Table 7 Vehicle routing problem instance.
Number Instance Name Vehicles Capacity (kg)

1 VRP1 Homberger/RC/RC2-10-1 250 1000
2 VRP2 Solomon/RC/RC103 25 200
3 VRP3 Homberger/C/C1-10-1 250 200
4 VRP4 Solomon/R/R101 25 1000
5 VRP5 Homberger/RC/RC1-10-5 250 200

� The selection mechanism is invoked, and a
disturbance heuristic is chosen from the set of LLHs.
� A solution is randomly selected from the memory

mechanism.
� The selected LLH is applied to the incumbent

solution to create a candidate solution.
� The candidate solution is assessed by invoking the

objective function. If the candidate solution is superior
to the existing solution, accept it. If not, decide whether
to accept it by using the selection mechanism.
� The memory mechanism and related parameters are

updated, and the next-generation iteration is continued.
The entire framework of the multi-stage hyper-

heuristic is presented in Fig. 1. In this framework, the
control layer of the proposed hyper-heuristic algorithm
is separated from the problem domain through the
domain barrier. The multi-stage level is employed to
cyclically select two interacting HLHs, namely S1HH
and S2HH. Where “Stagek” represents the k-th stage,
“SiHH” means that S1HH or S2HH is selected in Stagek .
Each HLH consists of a heuristic selection mechanism
and moving acceptance criteria. The heuristic selection
is used to choose one heuristic (LLHk/ from the set
of LLHs according to the Roulette Wheel Strategy
(RWS). The selected LLH is applied to the incumbent
solution (Sincumbent/. A new candidate solution(Scandidate/

is generated subsequently, “Sbest” represents the best
solution obtained at a certain stage. The acceptance
criteria are used to accept the candidate solution. The
pseudocode of proposed hyper-heuristics is shown in
Algorithm 1, where p is a random probability within
interval (0,1). The calculation of probability pr is shown
in Eq. (4).8 COMPLEX SYSTEM MODELING AND SIMULATION, xxxxxxx 20xx, x(x): xxx-xxx

as follows:

 
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where npit is the present number of iterations, pl is 

the total number of iterations, ntotal is the number of 

improved solutions obtained by the single-point 

search, and nrelay is the number of improved

solutions obtained by the relay hybridization 

technology.

Two tactics are used to select appropriate LLHs 

in the single-point search. The MAB is a sequential 

decision-making problem, and the purpose of this 

strategy is to maintain the balance between

exploitation and exploration. The exploitation, which 

is to ensure the best return on past decisions, is used to 

select the LLH that continuously improves on the

incumbent solution. The exploration, which is for

obtaining a bigger payoff in the future, is used to 

select the other LLH effectively. Relay hybridization 

is a successful tactic used in the literature. The 

pairwise heuristics are employed in the incumbent

solution to obtain a better solution. In other words, the

first LLH is applied in the incumbent solution to

obtain a poorer solution, and the second LLH is used 

in the candidate solution to produce a better solution

than the incumbent solution. The MAB and relay 

hybridization technique strategies are described below. 

3.2.1 MAB 

The MAB is an online learning mechanism. The 

principle adopted by MAB is the upper confidence 

bound. The number of LLHs is represented by Nop in 

a certain problem domain. MAB selects an LLH that

maximizes the accumulated reward, 
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where c (c = 12) is a scaling factor, which maintains 

the balance between the LLHs with a high probability 

of reward and the LLHs that are infrequently applied. 

ni(t) is the number of times that the ith LLH has been 

applied up to time t. nj(t)is the number of times that a 

low-level heuristic has been called up to time t. The 

qi(t) is the average reward obtained by the ith LLH at 

time t, which is calculated in the following:

 

     

 
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i t
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where ri(t) is the value of the cumulative reward of 

the ith LLH at time t, which is calculated in the 

following:

     100  in n ini t
r f f f (7) 

where fin is the function value of the incumbent 

solution. fn is the function value of the new solution 

generated by applying the ith LLH to the incumbent

solution. The number of times that each low-level

heuristic ni calls is initialized to 0, and the selection

probability of each low-level heuristic qi is initialized 

to 0. The pseudocode of MAB is exhibited in

Algorithm 2.

Algorithm 2 The pseudocode of multi-armed bandits

1: for i = 1 to N do 
2: ni ← 0 

3: qi ← 0 

4: end 
5: while notSatisfied (terminationCriteria) do 
6: if LLHs are not applied then
7: LLH ← Select one LLH randomly
8: Apply the LLH 
9: end 
10: else 
11: Select one LLH using Eq. (5) 
12: Apply the LLH 
13: end 
14: Update ni, ni+1
15: Update qi using Eq. (6)

16: end while 

3.2.2 Relay hybridization technique 

The relay hybridization technique is employed as 

the number of current iterations increases. Two 

heuristics are successively applied in an iteration. The 

selection of the second heuristic depends on the 

choice of the first heuristic. The strategy of roulette 
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Fig. 1 Framework of the multi-stage hyper-heuristic
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Fig. 1 Framework of the multi-stage hyper-heuristic.



Fuqing Zhao et al.: A Novel Cooperative Multi-Stage Hyper-Heuristic for Combination Optimization Problems 97

Algorithm 1 Pseudocode of hyper-heuristic
1: Sincumbent  init()
2: while notSatisfied (terminationCriteria) do
3: count count + 1;
4: if notSatisfied (restart condition) then
5: Single-point search;
6: else
7: Multi-point search;
8: end
9: Update pr ;

10: if p > pr then
11: hindex  select one heuristic by MAB;
12: Scandidate  apply heuristic(hindex, Sincumbent/;
13: Update the set of probability for hindex;
14: else
15: hr1  select the first heuristic by RWS;
16: Scandidate  apply heuristic (hr1, Sincumbent/;
17: if Scandidate  not best since the last re-init then
18: hr2  select the second heuristic by RWS;
19: Scandidate  apply heuristic (hr2; Scandidate/;
20: Update the set of probability for hr1 and hr2I

21: end
22: end
23: if accept (Scandidate/ then
24: Sincumbent  Scandidate;
25: end
26: if count == pl then
27: count 0;
28: end while

3.2 Proposed high-level strategy

The proposed hyper heuristic performs the search in
a stage-based method. During the search process, the
operation mechanism used in different stages is switched
iteratively. The initial solution is formed according to
the initialization method of diverse problem domains.
A memory mechanism that contains multiple initial
solutions is introduced to retain the diversity of the
solution. The MAB and relay hybridization technology
are introduced to single-point search[41, 42]. During the
single-point search, the switching of two searching
methods is determined by the probability pr , which is
calculated as follows:

pr D .npit
ı

pl/.ntotal�nrelayC1/=.nrelayC1/ (4)

where npit is the present number of iterations, pl is
the total number of iterations, ntotal is the number of
improved solutions obtained by the single-point search,
and nrelay is the number of improved solutions obtained
by the relay hybridization technology.

Two tactics are used to select appropriate LLHs in the
single-point search. The MAB is a sequential decision-

making problem, and the purpose of this strategy
is to maintain the balance between exploitation and
exploration. The exploitation, which is to ensure the best
return on past decisions, is used to select the LLH that
continuously improves on the incumbent solution. The
exploration, which is for obtaining a bigger payoff in the
future, is used to select the other LLH effectively. Relay
hybridization is a successful tactic used in the literature.
The pairwise heuristics are employed in the incumbent
solution to obtain a better solution. In other words, the
first LLH is applied in the incumbent solution to obtain
a poorer solution, and the second LLH is used in the
candidate solution to produce a better solution than the
incumbent solution. The MAB and relay hybridization
technique strategies are described below.
3.2.1 MAB
The MAB is an online learning mechanism. The
principle adopted by MAB is the upper confidence
bound. The number of LLHs is represented by Nop in
a certain problem domain. MAB selects an LLH that
maximizes the accumulated reward,

max
iD1;:::;NOP

D

0BBB@qi.t/ C c

vuuuuut2 log
NopX
jD1

nj.t/

ni.t/

1CCCA (5)

where c (c = 12) is a scaling factor, which maintains
the balance between the LLHs with a high probability
of reward and the LLHs that are infrequently applied.
ni.t/ is the number of times that the i-th LLH has been
applied up to time t . nj.t/ is the number of times that
a low-level heuristic has been called up to time t . The
qi.t/ is the average reward obtained by the i-th LLH at
time t , which is calculated in the following:

qi.tC1/ D
ni.t/ � qi.t/ C ri.t/

ni.t/

(6)

where ri.t/ is the value of the cumulative reward of the
i-th LLH at time t , which is calculated in the following:

ri.t/ D ..fin � fn/=fin/ � 100% (7)

where fin is the function value of the incumbent solution.
fn is the function value of the new solution generated by
applying the i-th LLH to the incumbent solution. The
number of times that each low-level heuristic ni calls
is initialized to 0, and the selection probability of each
low-level heuristic qi is initialized to 0. The pseudocode
of MAB is exhibited in Algorithm 2.
3.2.2 Relay hybridization technique
The relay hybridization technique is employed as the
number of current iterations increases. Two heuristics
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Algorithm 2 Pseudocode of MAB
1: for i D 1 to N do
2: ni  0;
3: qi  0;
4: end
5: while notSatisfied (terminationCriteria) do
6: if LLHs are not applied then
7: LLH Select one LLH randomly;
8: Apply the LLH;
9: end

10: else
11: Select one LLH using Eq. (5);
12: Apply the LLH;
13: end
14: Update ni and niC1;
15: Update qi using Eq. (6);
16: end while

are successively applied in an iteration. The selection of
the second heuristic depends on the choice of the first
heuristic. The strategy of roulette selection is introduced
to select the first heuristic. The reward mechanism is
used to update the selection probabilities of all LLHs.
The initial selection probability of all heuristics is
initialized as 1/M . M is the number of the LLHs for
each problem domain. The roulette wheel strategy is
applied to select an appropriate heuristic, and it is
subsequently applied to the incumbent solution. The
punishment and reward mechanisms are used to update
the probabilities of LLHs. If the quality of the generated
solution is improved, the heuristic is rewarded to update
the probability of an LLH being selected in the heuristic
set with Eq. (8), while theM �1 heuristics are penalized
with Eq. (9),

proi D � � .1 � proi /C proi�1 (8)

proj D proj�1 � � � proj�1 (9)

where � is the penalty coefficient, and � D 0:5 here.
The second heuristic choice is based on the fact that

the first heuristic does not find a superior solution to the
incumbent solution. For each low-level heuristic, a list
of length 10 is retained. The subscript of the LLH that
has obtained the best solution is retained in the list. The
oldest element is replaced when a new superior solution
is found, or the elements of the list are full. The heuristic
index is allowed to appear multiple times in the list,
because this combination helps to promote the quality
of the incumbent solution again. Finally, if the LLH
matched with the above conditions is found in the list,
the second heuristic is selected randomly from the set of
the LLHs.

3.2.3 Acceptance mechanism
The improved solution generated by each iteration is
used to update the elements in the list (see Algorithm 3,
lines 3 and 4). The moving acceptance based on the list
is used to accept the worsening solution (see Algorithm
3, lines 12–23), where l is the maximum number (default
6) of each threshold value that accepts the worsening
solution, index is the subscript index of the elements in
the list, and f . � ) represents the objective function for
different problem domains. If the maximum number of
worsening solutions that the list can accept is exceeded,
the multi-point search method is used for the next phase
of the search. The pseudocode of the moving acceptance
mechanism is presented in Algorithm 3.

In this study, the multi-point search, which employs
a GA, is used to cooperatively explore the search
space with the single-point search. In the population,
the individual is coded using the index of a set of
LLHs for a particular problem domain. An individual
is considered a chromosome in the population. Each
individual is randomly initialized with a different length
of the chromosome. Two-parent individuals selected by
tournament rules and crossover operations are executed
on the parent individuals to complete the evolution of
the population. In the process of evolution, the LLHs for
each individual are applied to the incumbent solution in

Algorithm 3 Pseudocode of the moving acceptance
1: Input: l , index, count
2: if (f .Scandidate/ < f .Sincumbent// then
3: if f .Scandidate/ < runbest list(0)) then
4: runbest list.push(f .Scandidate//;
5: index 0;
6: Sincumbent  Scandidate;
7: l  0;
8: end
9: else if f .Scandidate/ D f .Sincumbent/ then

10: Sincumbent  ScandidateI

11: else
12: if f .Scandidate/ <runbest list.get(index/ then
13: Sincumbent  ScandidateI

14: count count + 1;
15: end
16: if count > l then
17: count 0;
18: index index + 1;
19: end
20: if index > bestlist size then
21: perform multi-point search;
22: index index � 1;
23: end
24: end
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turn, and the incumbent solution is updated whenever
the quality of the solution is improved.

4 Experimental Results and Analysis

The experimental section mainly compares the
performance of the CMS-HH algorithm with other
algorithms. The objectives are as follows: (1) To
evaluate the benefits of combining MAB with relay
hybridization. (2) To verify the consistency and
generality of the CMS-HH in six various domains. In
this paper, two sets of experiments are conducted for
each problem instance. (1) The first set of experiments
compares the performance of the CMS-HH without
relay hybridization technology (denoted as HH1), the
CMS-HH without the MAB strategy (denoted as HH2),
and the combination of the two strategies used in the
hyper-heuristic separately. (2) The performances of
the CMS-HH and five other top algorithms in the
CHeSC competition are compared in the second set of
experiments.

The CMS-HH is run 31 times independently using
various random seeds and initial solutions according to
CHeSC rules. When the termination condition of the
algorithm is reached, the runtime is over, which is 600
seconds. The standard software provided by the CHeSC
competition website is used to fairly compare among
diverse algorithms for various platforms. Furthermore,
the percentage deviation of the best value from the
comparison algorithms is calculated as follows:
�.%/ D .bestCMS-HH � best�/=best� � 100% (10)

where bestCMS-HH is the minimum value obtained by the
CMS-HH, and best* is the minimum value produced
by other comparison algorithms. The performance of
the CMS-HH is compared with HH1, HH2, and other
existing hyper-heuristics to validate the consistency,
generality, and effectiveness of CMS-HH algorithms.
The Formula One System is used to assess the
performance of the CMS-HH algorithm with other
compared algorithms. The same method is used by the
CHeSC organizers to rank diverse algorithms.

4.1 Parameters setting

Six instances selected from diverse problem domains
are tested to obverse the performance of the proposed
algorithm under the different parameter settings. The
proposed algorithm is run 10 times individually for
selected instances. Each LLH in HyFlex is related to
a parameter that affects its behavior to a certain extent.
The performance of the proposed algorithm is affected

by two numerical parameters: ˛ and ˇ.06 [˛; ˇ�6
1/; representing the intensity of mutation and depth
of search, respectively, which control the behavior of
certain LLHs. Through a lot of simulation experiments,
two numerical parameters in the CMS-HH are suggested
as follows: ˛ D 0:4 and ˇ D 0:3.

4.2 Computational results of the CMS-HH
compared to HH1 and HH2

The comparison of the CMS-HH, HH1, and HH2 across
six domains is presented in the first set of experiments.
Five instances are contained in each domain for a total of
30 instances. The experimental results of the CMS-HH,
HH1, and HH2 for the 30 instances are summarized in
Table 8, where “Min” represents the minimum value
of objective function. “Avg” represents the average
values of 31 runs for each instance. “Std” represents the
standard deviation, and “Median” represents the median
of objective function over 31 trials for each instance. For
the minimum values of objective function, the CMS-HH
outperforms, matches, and underperforms HH1 on 21,
7, and 2 instances, respectively. CMS-HH outperforms
HH2 on 18 instances. In addition, the consistency of
CMS-HH is analyzed by the standard deviation and
the median. the standard deviation is calculated in the
following:

std D

vuut 1

N1

N1X
iD1

.Xi � �/
2 (11)

whereN1 (N1 D 31/ is the run times, Xi is the objective
value of each run, and � is objective average value of
N1 runs.

The standard deviation of CMS-HH is superior to
those of HH1 and HH2 in most instances. The following
conclusions are obtained regarding the median: CMS-
HH outperforms, matches, and underperforms HH1 on
19, 5, and 6 instances, respectively. CMS-HH obtained
29 better results than HH2 and matched HH2 on 1
instance.

The various statistical conclusions considering the
performance of CMS-HH, HH1, and HH2 are obtained.
In addition to the above results, the Wilcoxon test is used
to verify the statistical performance differences between
the CMS-HH algorithm and two comparison algorithms
in Table 9. Expressly, two pairwise comparisons between
CMS-HH and the other algorithms are designed to
visualize the significance of the proposed MAB strategy
and relay hybridization technology. The Wilcoxon test
uses the sign test of paired observation data to deduce the
probability when the difference appears. RC represents
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Table 9 Statistical analysis of Wilcoxon’s rank-sum test.
CMH-HH

vs. RC R� Z p-value

 D 0:05

p-value<
?

 D 0:1

p-value<
?
HH1 377 88 �2.972 2.96�10�3 Yes Yes
HH2 408 570 �3.610 3.06�10�3 Yes Yes

positive rank. R� represents negative rank. In the
Wilcoxon test, p-value is the probability of sample
observation results when the original hypothesis is
true, if p-value is less than the p-value obtained under

 , significant differences are present in the pairwise
algorithms. Z is the normalized value of Willcoxon
statistic. “Yes” means that CMS-HH algorithm is
superior to other comparison algorithms in 90% (
 D
0:1/ and 95% (
 D 0:05/ confidence intervals. Table 9
shows that all p-values are less than the p-value obtained
under 
 . Therefore, the CMS-HH is significantly better
than HH1 and HH2.

The Friedman-test is used to make a statistical
comparison between the CMS-HH and two compared
algorithms in Table 10. The Friedman-test is a
nonparametric statistical test for determining significant
differences in multiple (related) samples. The results
from the Friedman-test are shown in Fig. 2. From Fig. 2,
CD represents the critical difference, which is obtained
by the Friedman-test. The solid line in Fig. 2 represents
the mean rank value when CD equals 0.578 and 
 equals

Table 10 Friedman-test results of CMS-HH, HH1, and
HH2.

Algorithm Mean rank
CMS-HH 1.23

HH1 1.93
HH2 2.83

Fig. 2 Mean rank of the Friedman-test.

0.02. The dotted line in Fig. 2 represents the mean rank
value when CD equals 0.500 and 
 equals 0.1. The mean
rank of CMS-HH is the minimum. Furthermore, the
performance of CMS-HH is excellent compared with
other algorithms. In general, significant differences are
found among multiple algorithms, and the mean rank of
CMS-HH is smaller than those of other algorithms. In
general, the results validate the superiority of the
CMS-HH over HH1 and HH2 in terms of consistency,
generality, and efficiency. The performance of the CMS-
HH is reduced without the MAB strategy or the relay
hybridization strategy, according to the experimental
results.

4.3 Computational results of CMS-HH compared
to other hyper-heuristics

The results achieved by CMS-HH are listed in Table 11.
The minimum values of objective function, percentage
deviation, and instance ranking results of the comparison
algorithms are provided. “Rank” represents the ranking
of objective function value of CMS-HH algorithm for all
current comparison algorithms. For example, “1” means
that the objective function value of CMS algorithm is
the smallest in all comparison algorithms for current
instance. “D” means that there are other algorithms
getting the same minimum objective value as CMS-HH
algorithm for current instance. “2” means that CMS-HH
algorithm obtains the second smallest objective function
value in all comparison algorithms. The minimum values
of the experimental results are listed in bold. New
minimum values are produced by CMS-HH in 15 of
30 instances. CMS-HH matches the other algorithms
in minimum value in 10 instances and yields inferior
values in 5 instances. CMS-HH achieves superior results
on SAT, BP, and PFSP instances. Furthermore, three
superior objective values for TSP and VRP are obtained
by CMS-HH. The optimization of CMS-HH for PS
instances is inferior and only two good results are
obtained. In Table 12, the median of objective function,
percentage deviation, and instance ranking results of the
comparison algorithms are provided. The best median
results of the experimental results are listed in bold. New
minimum values are produced by CMS-HH in 17 of 30
instances. CMS-HH matches the other algorithms in
minimum value in 5 instances and yields inferior values
in 8 instances. For these 8 instances, CMS-HH obtains
the suboptimal median for 2 instances, the third median
for 4 instances, the fourth median for 1 instance, and
the fifth median for 1 instance. Although the CMS-
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Table 11 Performance comparison of CMS-HH and the top-five comparison algorithms based on the minimum objective values
over 31 trials in different instances from six diverse problem domains.

Domain Instance CMS-HH
Top five comparison algorithms

� (%) Rank
AdapHH VNS-TW ML PHUNTER EPH

SAT

SAT1 0 1 1 1 1 4 �100 1
SAT2 1 3 1 3 5 5 0 =
SAT3 1 1 1 1 2 2 0 =
SAT4 1 1 1 4 4 5 0 =
SAT5 7 9 7 7 7 7 0 =

BP

BP1 1.06 1.31 2.98 3.23 3.97 4.30 �19.000 1
BP2 0.27 0.28 0.36 0.67 0.34 0.34 �3.571 1
BP3 0.04 0.04 1.36 1.24 1.78 0.80 0 =
BP4 10.83 10.83 10.87 10.84 10.88 10.83 0 =
BP5 0.03 0.31 2.38 1.78 3.18 1.36 �90.322 1

PFSP

PFSP1 6205 6214 6230 6226 6221 6232 �0.149 1
PFSP2 26 692 26757 26 765 26 744 26 786 26 738 �0.172 1
PFSP3 6303 6303 6303 6304 6303 6309 0 =
PFSP4 11311 11318 11333 11338 11336 11328 �0.062 1
PFSP5 26 479 26 541 26 535 26 559 26 600 26 569 �0.211 1

PS

PS1 13 17 13 11 13 16 18.18 2
PS2 9259 9435 9347 9436 9624 9747 �0.966 1
PS3 3134 3142 3124 3138 3142 3142 0.320 2
PS4 1425 1448 1370 1384 1350 1469 5.556 4
PS5 280 295 290 300 290 310 �3.448 1

TSP

TSP1 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 0 =
TSP2 2.05���107 2.07�107 2.08�107 2.08�107 2.08�107 2.09�107 �0.966 1
TSP3 6796.0 6797.5 6796.0 6805.3 6796.0 6799.2 0 =
TSP4 65 704.0 66 277.1 66 830.2 66 428.2 66 641.4 65 958.6 �0.386 1
TSP5 52 272.0 52 383.8 52 896.5 52 626.7 52 172.0 52 053.4 0.420 2

VRP

VRP1 57 876.0 58 052.1 68 340.4 67 622.1 61 139.3 63 932.2 �0.303 1
VRP2 12 298.9 13 304.9 13 298.1 13 298.4 12 263.0 13 284.0 0.293 2
VRP3 142 488.6 145 481.5 144 012.6 142 517.0 143 663.9 143 510.8 �0.020 1
VRP4 20 650.8 20 652.3 20 651.1 20 651.1 20 650.8 20 650.8 0 1
VRP5 144 558.1 146 154.0 146 513.6 146 200.8 146 472.9 145 976.5 �0.972 1

HH algorithm does not obtain the minimum value of
objective function and minimum median for all instances,
the percentage deviation of those instances is relatively
small. Therefore, the CMS-HH outperforms the top five
comparison algorithms. To validate the performance of
the proposed algorithms, other related algorithms (GEP-
HH, MSHH, MCTS-HH) are chosen to compare with
CMS-HH. The average values and standard deviations of
CMS-HH and the comparison algorithms are shown in
Table 13. The optimal values of all algorithms are shown
in boldface. The average values and standard deviations
are derived from the results of 31 independent runs. For
the best results, the CMS-HH algorithm produced 9 new
minimum values and 8 results that match the minimum
values of the other three algorithms. For the median of
objective function, the CMS-HH algorithm obtained 15

new minimum values and only 4 instances that match
the other three algorithms. The CMS-HH algorithm is
inferior to GEP-HH in VRP instances and MSHH in
SAT instances. In general, CMS-HH outperforms the
three other algorithms.

The Average Relative Percentage Deviation (ARPD)
is considered to evaluate the quality of the best results
obtained by CMS-HH and is defined as

ARPD D .1=R/
RX
1

..Ci � C�/=C�/ � 100% (12)

where Ci is the result of the i -th algorithm for the current
instance, R is the number of independent runs, and
C� is the best result of the current instances. For a
clear comparison of the experimental results of the top-
five hyper-heuristics, a visualization of the experimental
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Table 12 Performance comparison of CMS-HH and five comparison algorithms based on the median objective values over 31
trials in different instances from six diverse problem domains.

Domain Instance CMS-HH
Top five comparison algorithms

� (%) Rank
AdapHH VNS-TW ML PHUNTER EPH

SAT

SAT1 4 3 3 5 5 7 33.30 3
SAT2 6 5 3 10 11 11 100.00 3
SAT3 2 2 2 3 4 6 0 =
SAT4 4 3 3 9 9 15 33.34 3
SAT5 7 8 10 8 8 13 �12.50 1

BP

BP1 1.35 1.61 3.70 4.21 4.79 5.04 �16.15 1
BP2 0.35 0.36 0.72 0.75 0.36 0.36 �2.78 1
BP3 0.35 0.36 1.67 1.46 2.01 1.13 �2.78 1
BP4 10.83 10.83 10.88 10.85 10.91 10.87 0 =
BP5 0.32 0.35 2.78 2.18 3.95 2.24 �8.57 1

PFSP

PFSP1 6244 6240 6251 6245 6253 6250 0.064 2
PFSP2 26 776 26 814 26 803 26 800 26 858 26 816 �0.090 1
PFSP3 6323 6326 6328 6323 6350 6347 0 =
PFSP4 11 359 11 359 11 376 11 384 11 388 11 397 0 =
PFSP5 26 568 26 643 26 602 26 610 26 677 26 640 �0.128 1

PS

PS1 22 24 19 18 25 22 22.22 3
PS2 9415 9667 9628 9812 10 136 10 074 �2.21 1
PS3 3165 3289 3223 3228 3255 3232 �1.80 1
PS4 1709 1765 1590 1605 1595 1615 7.48 5
PS5 295 325 320 315 320 345 �6.35 1

TSP

TSP1 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 48 194.9 0 =
TSP2 2.06���107 2.08�107 2.10�107 2.11�107 2.12�107 2.11�107 �0.962 1
TSP3 6808.8 6810.5 6819.1 6820.6 6813.6 6811.9 �0.025 1
TSP4 66 320.5 66 879.8 67 378.0 66 894.0 67 136.8 66 756.2 �0.653 1
TSP5 52 658.8 53 099.8 554 028.6 54 368.4 52 934.4 52 925.3 �0.504 1

VRP

VRP1 59 961.8 60 900.6 76 147.1 80 671.3 64 717.8 74 715.8 �1.542 1
VRP2 13 319.2 13 347.6 13 367.9 13 329.8 12 290.0 13 335.6 8.374 2
VRP3 145 274.0 148 516.8 148 206.2 145 333.5 146 944.4 162 188.5 �0.041 1
VRP4 20 653.5 20 656.6 21 642.9 20 654.1 20 650.8 20 650.8 0.013 4
VRP5 146 136.4 148 689.2 149 132.4 148 975.1 148 659.0 155 224.7 �1.697 1

results is provided in Fig. 3. The horizontal axis is the
instances from different domains. The vertical axis is
the ARPD values for various contrast algorithms. For
the state-of-the-art algorithms, the ARPD values of
best results and best median results from three problem
domains are presented in Fig. 4, which shows a direct
expression for measuring the effectiveness of the CMS-
HH algorithm.

In this study, the Formula One Ranking System is used
to determine the score of CMS-HH and the compared
algorithms[29]. The ranking scores obtained by the CMS-
HH and the other top-five comparison algorithms are
shown in Table 14. The CMS-HH algorithms obtain
the first rank compared with the top-five comparison
algorithms.

The experimental results show that the CMS-HH

algorithm is superior to other top-five comparison
algorithms in six different complex optimization
problems. Moreover, the proposed CMS-HH algorithm
obtains new minimum values for 15 out of 30 instances
and matches the other top-five comparison algorithms for
9 instances. For all instances from six different domains,
the percentage deviation of CMS-HH is similar to those
of the other comparison algorithms. The new results are
due to the following two factors:

(1) The search space formed by LLHs is effectively
explored by CMS-HH algorithms. Online learning,
which is based on the multi-armed bandit, can select
an appropriate heuristic according to the state of the
current solution. The pairwise heuristic formed by
relay hybridization helps to promote the quality of the
solutions. By searching in a particular region of the
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(a) ARPD values of the best results (b) ARPD values of the best median results
Fig. 3 ARPD values of experimental results of CMS-HH and top-five hyper-heuristics.

(a) ARPD values of the best results for BP (b) ARPD values of the best median results for PFSP

(c) ARPD values of the best results for VRP (d) ARPD values of the best median results for BP

(e) ARPD values of the best median results for PFSP (f) ARPD values of the best median results for VRP
Fig. 4 ARPD values of experimental results of CMS-HH and state-of-the-art algorithms.



106 Complex System Modeling and Simulation, June 2021, 1(2): 91–108

Table 14 Ranking of CMS-HH with five comparison
algorithms.

No. Algorithm Score
1 CMS-HH 175.73
2 AdapHH 163.25
3 VNS-TW 114.25
4 ML 109.43
5 PHUNTER 81.10
6 EPH 75.25

solution space, the inferior LLHs are excluded and only
superior LLHs are applied.

(2) The different sequences of LLHs are generated by
CMS-HH during the search process. By generating a
different sequence of heuristics for each instance, the
changes that occurred during the research can be handled
by the CMS-HH algorithms. Furthermore, different areas
are explored by the CMS-HH algorithm, which helps it
to avoid falling to a local optimum.

5 Conclusion and Future Work

The proposed hyper-heuristic is a general-purpose search
method. The control layer and the low-level heuristic
are separated by a domain barrier. The operations based
on a certain problem domain must be encapsulated in a
low-level heuristic. These methods of control layer are
applied to the other problems without any modification,
which promotes the reusability of the algorithm. The
MAB and relay hybridization technology are well
combined to decide the selection of the LLHs, which
helps to explore the search space for diverse instances
from different problem domains. A list-based adaptive
threshold move acceptance method is introduced to
accept the inferior solution, which helps to avoid the
algorithm falling into a local optimum. The multi-
point search embedded in a single search effectively
promotes the search ability of the algorithm. The
proposed framework is demonstrated to generate highly
competitive results. The six problem domains are well
generalized by the CMS-HH algorithm compared with
other top-five hyper-heuristics. The proposed algorithm
is promising from the experimental results.

Despite the excellent performance, several issues still
need to be considered in future work. (1) Single-point
search and multi-point search are switched flexibly to
search the solution space independently; (2) To avoid the
search stopping for a long time, the various acceptance
mechanisms are introduced for the search to enter
another area; and (3) CMS-HH can be applied to address

the practical problems. For instance, the distributed flow-
shop scheduling problem considers minimizing blocking
time and total energy consumption as the optimization
objectives.
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