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Scheduling Storage Process of Shuttle-Based Storage and Retrieval
Systems Based on Reinforcement Learning

Lei Luo, Ning Zhao*, and Gabriel Lodewijks

Abstract: The Shuttle-Based Storage and Retrieval System (SBS/RS) has been widely studied because it is currently
the most efficient automated warehousing system. Most of the related existing studies are focused on the prediction
and improvement of the efficiency of such a system at the design stage. Hence, the control of existing SBS/RSs has
been rarely investigated. In existing SBS/RSs, some empirical rules, such as storing loads column by column, are
used to control or schedule the storage process. The question is whether or not the control of the storage process
in an existing system can be improved further by using a different approach. The storage process is controlled to
minimize the makespan of storing a series of loads into racks. Empirical storage rules are easy to control, but they do
not reach the minimum makespan. In this study, the performance of a control system that uses reinforcement learning
to schedule the storage process of an SBS/RS with fixed configurations is evaluated. Specifically, a reinforcement
learning algorithm called the actor-critic algorithm is used. This algorithm is made up of two neural networks and is
effective in making decisions and updating itself. It can also reduce the makespan relative to the existing empirical
rules used to improve system performance. Experiment results show that in an SBS/RS comprising six columns and
six tiers and featuring a storage capacity of 72 loads, the actor-critic algorithm can reduce the makespan by 6.67%
relative to the column-by-column storage rule. The proposed algorithm also reduces the makespan by more than

30% when the number of loads being stored is in the range of 7-45, which is equal to 9.7%—62.5% of the systems’

storage capacity.
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1 Introduction

1.1 Background
During the COVID-19 pandemic, online shopping has
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become the norm. Warehouses play a very important
role in facilitating online shopping, and highly efficient
and autonomous facilities are urgently needed. An
increasing number of distribution centers are utilizing
Shuttle-Based Storage and Retrieval Systems (SBS/RSs)
in their high-density warehouses to meet the increasing
throughput. Figures 1 and 2 show the side and top views
of a typical SBS/RS, respectively. The system consists
of a lift that raises or lowers loads and a fleet of shuttle
carriers in each tier of the rack. The lift does the vertical
movement of the loads while the shuttle carriers do the
horizontal movement. When properly controlled, an
SBS/RS can be very efficient!!.

Different layout configurations and control procedures
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Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).



132 Complex System Modeling and Simulation, June 2021, 1(2): 131-144

carrier

&— Shuttle carrier

,,,,,,,,,,,,,,, | e
Buffer = g-Load
[  E—
Lift
Conveyer
—
|\
Fig.1 Side view of an SBS/RS.
Inbound
Conveyer : buffer
Lift! | Aisle
butbound
buffer

Fig.2 Top view of an SBS/RS.

in SBS/RSs may lead to different performance
outcomes. The length of a rack can be expected to
affect the average time needed to store a load in it. The
height of the rack also affects the time needed by a
lift to vertically move a load. However, controlling
these moves simultaneously is a challenging task, and
predicting and improving the performance of the systems
are difficult because of their complexity. Therefore,
most previous studies on SBS/RSs have focused on the
prediction and improvement of the throughput of these
systems. Malmborg!?! (2002) was the first to investigate
Autonomous Vehicle Storage and Retrieval Systems
(AVS/RSs), which use the same technology as SBS/RSs.
A continuous Markov chain that models horizontal and
vertical material flows was used to calculate the expected
storage-retrieval cycle time and throughput.

Kuo et al.’! (2007) proposed M/G/V and M/G/L
queuing models to estimate the waiting time of vehicles
and lifts. Fukunari and Malmborg!* (2008) proposed a
network queuing approach to predict the cycle time of
storage and retrieval transactions of AVS/RSs. Ekren et
al.’! (2010) developed simulation models to identify
the factors affecting the performance of AVS/RSs

and performed regression analysis to determine the
relationship between rack configuration and system
performance. Ekren and Heragu!® (2011) utilized a
simulation method to determine the optimal number
of vehicles and lifts in a system that results in high
performance under various predefined storage rack
configuration scenarios. Ekren et al.l’! (2013) proposed
an analytical model, called the semi-open queuing
network model, to determine system performance. They
applied this model to the analysis of a warehouse
in France that utilizes an AVS/RS. Marchet et al.[%]
(2012) presented an open queuing network approach
to estimate the performance (transaction cycle time and
waiting time) of an SBS/RS. Lerher!®! (2013) studied
energy regeneration models for SBS/RSs. In the study,
the energy consumption of the SBS/RS was identified
as another performance indicator in the design of a
warehouse, and a model considering the reduction of
energy consumption was proposed. Lerher!!”! (2016)
proposed a travel time model for an SBS/RS. On the
basis of the proposed travel time model, the expected
cycle time for the single- and dual-command cycles of
the SBS/RS was estimated. Lerher!'!! (2016) combined
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previous studies and proposed an estimation model for
calculating the throughput and energy consumption of
an SBS/RS. Zhao et al.l'?! (2016) used a simulation
method to identify the best configuration on the basis of
numerous experiments. They presented a simulation
model of a multielevator tier-captive SBS/RS and
analyzed its throughput performance.

Many researchers also have focused on special
configurations or special control policies. Carlo and
Vis!!3 (2012) were the first to study storage systems with
multiple lifts and shuttles. They proposed an integrated
look-ahead heuristics strategy to study the scheduling
problem of two nonpassing lifts in an SBS/RS. Their
strategy considerably improves the system in terms of
total handling times and throughput relative to a single
lift system. Zhao et al.'*l (2018) extended Carlo and
Vis’ research!!®! by considering the acceleration and
deceleration of lifts. They proposed a collision-free
lift trajectory prediction method and found it to be
more effective than the constant velocity method in
decreasing the makespan. They also used the genetic
algorithm to find the best order of all tasks. Similarly,
Xin et al."31 adopted the genetic algorithm in their
work on a collision-free multirobot station. Lerher!!’!
(2016) proposed a travel time model of a double-
deep SBS/RS. This special model expands the storage
capacity of such systems. Lerher et all'®! (2021)
later presented analytical travel time models for the
computation of cycle times and throughput performance
of AVS/RSs with multitier shuttle vehicles. They
considered a multitier shuttle vehicle that travels in a
horizontal direction and moves in a vertical direction
simultaneously in a storage rack. Tappia et al.l'”! (2016)
proposed a novel queuing network model to estimate the
performance of single-tier and multitier shuttle-based
compact systems. D’ Antonio et al.['8 (2018) proposed
analytical models for evaluating the performances of
deep-lane AVS/RSs. Zou et al.l'! (2016) focused
on the study of the parallel movement of lifts and
shuttles. They proposed a parallel processing policy
and reported a significant performance improvement.
All the aforementioned studies aimed to improve the
performance of SBS/RSs by finding other efficient layout
configurations or control policies.

In general, capacity or throughput is the most
important key performance indicator, because it
represents the efficiency of the system. Another way to
analyze throughput is by studying the makespan, which
refers to the duration of a sequence of tasks. The shorter

the makespan, the more efficient the system. Therefore,
most researchers have proposed methods to predict
or evaluate the performance of SBS/RSs to guide
distribution centers in the design of new versions
of such systems. However, some distribution centers
may have already been utilizing SBS/RSs. In such
distribution centers, the layout and scheduling strategies
have been determined. Hence, a key issue is to improve
the efficiency of existing systems. This gap may be
addressed through further research.

1.2 Reinforcement learning in scheduling

In this work, reinforcement learning is applied to
improve an existing system’s performance. For an
existing system, changing its layout is generally difficult
because doing so is a costly and time-consuming
endeavor. Therefore, the scheduling control should be
modified to improve the performance of the system.

With different columns and different tiers in the rack
of an SBS/RS, the makespan of storing a load at a
certain storage location in the rack depends specifically
on that location. Consider the process of storing a
series of loads column by column. When the first load
arrives, the control system needs to determine a storage
place following the rules used. Thereafter, a series of
movement commands are issued to store the load in
the selected storage place. When the succeeding loads
arrive, the control system performs the same process of
finding a storage place and issuing movement commands.
This type of control is usually based on some empirical,
rigid rules. One empirical rule for the control system,
for example, is always storing loads column by column
on one side of the shelf. Further details about empirical
rules are discussed in Section 2. As empirical rules are
robust, their application tends to be relatively simple.
However, they may not always be very efficient because
the control system does not gain experience over time.
Therefore, in this work, the application of reinforcement
learning, which allows the control system to learn from
previous experiences, will be studied.

Reinforcement learning is an area of machine learning
that is concerned about how intelligent agents ought to
take actions in an environment so as to maximize the
notion of cumulative reward. The cumulative reward in
an SBS/RS is to maximize the throughput or minimize
the makespan. Reinforcement learning is one of the
three basic machine learning paradigms, with the two
other ones being supervised learning and unsupervised
learning. Reinforcement learning is now widely used
in image recognition, data processing, decision making,
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and many other fields. Alpha Go?”! (2016) is a globally
popular Go player that uses reinforcement learning to
learn how to play Go. Following full training, it can
beat professional human Go players. To some extent,
the game Go is similar to the storage process of an
SBS/RS. At the beginning of the game, the player
needs to carefully observe the game board to obtain
useful information, such as which board positions are
occupied by his or the opponent’s pieces, and on which
position the player can put the next piece. The player
formulates many ideas about the possible outcomes of
the succeeding moves on the basis of the combination
of information available. After considering all options
available, the player must then decide on the position on
which to place the specific piece. After the opponent’s
turn, the player goes through the same process, including
observing, deciding, and executing. Such a process
continues until the end of the competition. Similarly,
for the storage process in an SBS/RS, the first step
is to observe. When a load arrives at the input point,
information about empty storage places and the location
of the lift and shuttle carriers should be obtained. The
second step is to decide. The reinforcement learning
algorithm, which plays the same role as the player in Go,
decides and chooses a storage place for this load. The
third step for the SBS/RS is to execute and store the load
in the selected storage place. This loop repeats until all
the loads are stored.

In sum, the scheduling and storage procedure in
an SBS/RS involves observing, deciding, and then
executing. Empirical rules and other existing methods
for controlling the storage process make a series of
decisions for all loads. The time needed to execute these
decisions varies for each rule because different rules
follow different logics in decision making. Contrary to
rigid empirical rules, reinforcement learning is a flexible,
intelligent controller that learns from the environment
through observing and makes decisions to help the
system minimize the makespan.

1.3 Objectives

As mentioned in Sections 1.1 and 1.2, changing the
layout of an existing SBS/RS is difficult. Therefore,
exploring different methods to schedule the storage
process is necessary to improve system performance.
Empirical rules, such as storing loads column by column,
are easy but rigid. Reinforcement learning is a flexible

method that can make sound decisions and improve itself.

It can also improve the scheduling of the storage process
of an SBS/RS.

The objective of this work is to study the effects of
applying reinforcement learning to the makespan of the
scheduling and storage process of an SBS/RS. The actor-
critic (AC) reinforcement learning algorithm is used.
A three-dimensional SBS/RS model is developed to
provide a learning environment for the AC algorithm
to train its neural networks. Experiments are conducted
to determine the efficiency of the reinforcement learning
algorithm relative to empirical rules.

2 Problem Statement

2.1 Storage scheduling environment

The SBS/RS studied in this work is a common one that
comprises a lift at the Input/Output (I/0) side of the rack
and several shuttle carriers at each tier of the rack. These
shuttle carriers serve their own tiers. A typical storage
transaction starts with the arrival of a new load. After
the control center of the system decides where the load
should go, the lift goes to the I/O layer to obtain the load
and then moves to the target tier. When the lift arrives
at the determined level, it needs to check whether the
inbound buffer at this level is occupied or not. The lift
then places the load into the inbound buffer when it is
empty. The shuttle carrier at the target level continues
the storage transaction by obtaining the load from the
inbound buffer and placing it in the correct storage
position. The next storage transaction starts before the
end of the previous one. Specifically, it starts when a
new load arrives, and the lift is released regardless of the
state of the shuttle carriers. The lift and shuttle carriers
run according to the commands from the controller. That
is, their movements depend on the determined storage
location for a load. Therefore, storage scheduling entails
identifying the best storage place for each load and
minimizing the makespan of the total scheduling and
storage process.

2.2 Three-dimensional model for SBS/RS

A three-dimensional model of an SBS/RS was built with
the software Plant Simulation on the basis of a discrete
event simulation (Fig. 3). The model is a parameterized
model so that the number of tiers and columns can be
easily adjusted.

The following assumptions were made when building
the SBS/RS model:

(1) The model consists of storage racks on both sides
(left and right).

(2) The position of the input and output points is at
the second tier of the rack. The input point is set for a
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Fig. 3 Model of an SBS/RS.

load that needs to be stored, and the output point is set
for load retrieval.
(3) The buffer position is at the beginning of each tier.
(4) The lift and shuttle carriers run at a constant speed.
(5) The shuttle carriers only work on their own tiers.
(6) The SBS/RS has one control system.

2.3 Empirical rules in SBS/RS scheduling

Several empirical storage rules can be used to schedule
the storage process. Table 1 shows four typical rules.
Under the rule “ColByCol”, the load is be stored
column by column on one side of the rack until
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the side is full. Then, the succeeding loads are
similarly stored at the other side of the rack. The rule
“ColByCol_alternate” is similar to “ColByCol”, but
it selects storage positions alternately on both sides
of the rack. The rule “TierByTier” indicates that the
storage positions are selected tier by tier and side by
side. The “TierByTier_alternate” rule has the same
meaning as “ColByCol_alternate”, it stores loads row
by row alternately on both sides of the shelf.

The SBS/RS model used in the simulation to study
the performance of the four rules consists of six tiers
and six columns. The system has a storage capacity of
72 loads (6 tiers x6 columns x2 sides). The height
and width of each storage unit of the shelf are equal
to 1.2m. The speed of the lift and shuttle carriers is
1 m/s and is assumed to be constant. Two input variables
are used in each experiment: the number of loads to
be stored and the rule used. The output variable is the
makespan, which is the time needed to store a certain
number of loads under a certain rule. The outcomes of
the experiments are shown in Fig. 4 and Table 2. The
x-axis represents the number of loads stored, and the
y-axis represents the makespan.

From the experiment results, the first conclusion
obtained is that different rules result in a different
makespan. From this experience, the rule ColByCol
performs better than any other rules. Relative to that

Table 1 Several empirical storage rules.

Number Rule Notation
1 Store loads column by column on one side of the shelf ColByCol
2 Store loads column by column alternatively on both sides of the shelf ColByCol_alternate
3 Store loads row by row on one side of the shelf TierByTier
4 Store loads row by row alternatively on both sides of the shelf TierByTier-alternate
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Fig. 4 Makespan as a function of number of loads using the four rules.
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Table 2 Makespan for each empirical storage rule.

Number Rule Total time (s)
1 ColByCol 409.07
2 ColByCol_alternate 431.27
3 TierByTier 500.27
4 TierByTier_alternate 556.27

of TierByTier_ alternate and ColByCol_alternate, the
makespan of ColByCol is reduced by 26.5% and 5.14%,
respectively.

The second conclusion is that the performance of the
scheduling and storage process following a specific rule
depends on the number of loads to be stored. Hence, a
rule may perform well when the number of loads stored
is high, but performs less when the stored number is
low. Take for example two polylines of ColByCol and
ColByCol_alternate. The orange polyline is lower than
the blue one at the beginning. This condition indicates
that ColByCol_alternate performs better than ColByCol.
However, the result is reversed upon the arrival of the

45th load, with ColByCol showing a better performance.

That is, if only 45 or fewer loads need to be stored,
then ColByCol_alternate is the best rule. However, if
the number of loads to be stored is more than 45, then
ColByCol is the better.

Empirical rules can effectively control the scheduling
and storing process, but each one cannot outperform
another by more than 26.5%. Moreover, no rule performs
the best during the whole storage process. Therefore, a
highly efficient and smart method is required. In this

Learning process
starts, the first round
learning starts

\ 4

work, the application of the reinforcement learning
algorithm to the storage process is evaluated to gage
its performance.

3 Reinforcement in Storage

Scheduling

Learning

3.1 Actor-critic algorithm

In this work, the performance of the reinforcement
learning algorithm in a scheduling and storage process
of an SBS/RS is studied. As described previously,
reinforcement learning is an area of machine learning
that concerns about how intelligent agents take actions
in an environment so as to maximize the notion of

2l Two neural networks, namely,

cumulative reward!
the actor and the critic, are used in the AC reinforcement
algorithm. These neural networks enable the algorithm
to learn how to maximize the notion of cumulative
reward over many steps.

Figure 5 schematically shows the learning process.
The process starts with an initiation phase. The agent
observes the environment, which is the status of the
SBS/RS in this case. On the basis of the observation,
the agent picks an action by using the knowledge from
previous actions and then proceeds to implement the
selected action. Here, the actions are storage decisions.
After the implementation of the action, the agent
evaluates the new state of the system. If the termination
condition, e.g., the makespan of the storage process is no
longer decreasing, is met, then the learning process ends.

Agent observes the
environment’s states [«
and gets observations

The next round
learning starts

\ 4

Agent picks action
through observations

A 4

Is termination
condition met?

Learning process ends

Environment
implements action
and feedback

A 4

Agent adjusts itself by
the picked action and
feedback

Fig.5 Learning process.
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If the termination condition is not met, then the next
round of the learning process starts with the knowledge
gained in the previous round.

Figure 6 shows in detail how the AC algorithm works.

The AC algorithm consists of two neural networks.
The first is called “actor”, which picks an action from
all available actions on the basis of observations. The
second is called “critic”’, which estimates the score of
the determined action selected by the actor'??!. This
neural network also scores the action on the basis of
observations. The neural network is a data fitting tool. A
large number of data are received and fitted through
multiple linear or nonlinear layers. The neural network
then determines the fitting result of the input data. In the
AC algorithm, these two neural networks are updated
after each round of simulation to enhance their fit
according to the series of actions, scores, and rewards.
The rewards come from the effect of the implementation
of the actions.

3.2 Observation values in SBS/RS scheduling

As mentioned in the last paragraph of Section 3.1,
observations play a vital role. Valid observations can
be used by the AC algorithm to make good decisions.
By contrast, invalid observations have no use. In the
AC algorithm, four types of observations are used to
describe the current state of the SBS/RS: (1) current
Response Time Matrix (RTM), (2) last few successive
RTMs, (3) available storage place expressed in a matrix
(permit position matrix), and (4) the last few decisions
expressed in a matrix (last selected position matrix). The
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first observation is the current RTM, which represents
the response time for the incoming load. The second
observation is the last few RTMs. This observation
includes several RTMs of the last few successive loads,
so that the last few states of the SBS/RS can be
considered. The third observation is the permit position
matrix, which describes the available storage place. A
value of 0 indicates an available place, while a value of
1 indicates an occupied place in the matrix. The last one
is the last selected position matrix, which contains the
information about the last few selected storage places. A
value of O represents the selected position.

The RTM plays a fundamental role in the AC
algorithm. When the target storage location of a new
load is known, the conditions of the lift and shuttle
carriers should be evaluated to predict the time needed
to store the new load. However, the conditions of the
lift and shuttle carriers of the SBS/RS are difficult to
describe in a brief mathematical language because of
their dynamic nature and accompanying uncertainties.
For example, when the lift is on the third floor of the rack,
its status of either waiting for a request or just passing by
is difficult to establish. When a shuttle carrier is carrying
a load at a certain place, its state of attending to another
request in its task queue is not easy to distinguish despite
the similarity in the description of the location. If the
shuttle carrier has another request in its task queue, then
it must finish the request before responding to a new
load. If it has no other task, then it can respond to a new
load immediately.

NNI1 and NN2 will be adjusted according to the
picked action, and the feedbacks of reward and score
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Given the fact that the conditions of the lift and shuttle
carriers of the SBS/RS are difficult to describe, an
RTM is proposed herein. The proposed RTM can clearly
describe the effects of the two facilities by representing
the response time of all available storage places to
the new load. Before the storage place for a new load
is selected, a series of response times are calculated
under the assumption that the load is deposited in
every available storage place. Figure 7 presents a
practical example of the calculation process. Assume
the availability of one storage place at Row;Col;. By
following the six steps described herein, the response
time of the available storage place can be determined.

Step 1: Obtain the current time (timeg,) and free
time (timeyg_gree) Of the lift.

Step 2: Determine the start time (time, ) of the vertical
motion of the lift. If timeyg free 1S greater than timeggay,
then the lift cannot elevate the load at this point. If
timejif free 1S less than timeg,,, then the lift can elevate
the load immediately. That is

time, = max(timey, tiMejify_free)-
Step 3: Calculate the elevating time (timejifiing) Of the
lift. Consider the position of the lift and its request in

New load arrives
(timegary)

lRepeat until all the available storage
places have been calculated
Chose a place
(Row;Col)) from all
available storage places

A 4
Get free time
(timegputte free) OF
shuttle at the i-th row

Get free time
(timeyif_free) Of lift

'

Time to start moving vetically,
tilne\:lnax(tilneslarl, timelnﬁj}ee)

v

Time for lift to store load into
the buffer of the i-th row,
timeyiging=distancesnue/speedii

v

Time to start moving horizontally,
time,=max(time,+timejifing, tiMehuie frec)

v

Time for shuttle to store load
into the storage place,
timemoving=distanceshutie/Speedshutiie

Responsive time of Row;Col;,
R time=timep+timemoying

Fig.7 Calculation of RTM.

the task queue in calculating the distance);y; that the lift
needs to run. Therefore,

timeyiing = distanceyis/speed;;y,.
Step 4: Similar to Step 2, determine the start time

(timey,) of the horizontal motion of the shuttle carrier by
using the following equation:

time, = max(timev + tirnelifting’ tirneshuttlefree),

where timegpye_free TEpresents the free time of the shuttle
at tier 7.

Step 5: Calculate the moving time (timepoying)0f the
shuttle carrier,

til'nemoving = diStanceshuttle/Speedshuttle’

where distanceg,ye represents the total distance that the
shuttle needs to run on the basis of the shuttle’s current
position and the target position.

Step 6: Denote the response time of the storage place
as Row;Col;. Then Ryjye = timey, + timemoving-

After these six steps, another storage place is selected,
and Step 1 is rerun until the response time of each
available storage place is obtained. All the series of
response times make up the RTM. If the storage place is
unavailable, then the response time is infinite.

3.3 Application of AC algorithm to storage
scheduling

The three-dimensional SBS/RS model shown in Fig. 3
plays the role of the environment in the experiment
introduced in Section 4. The AC algorithm plays the
role of an agent that makes decisions about where
each load should be stored. The learning process is
shown in Fig. 8. A learning process consists of many
rounds of simulations. In one round of the simulation,

Round starts <

T I

Environment

Round is finished |~

SBS/RS model

New load arrives
at the entry

\
\
|
|

|
|
|
|
|
: | Update
| I neural
| v 'network
! I
: Calculate RTM ]I;pclies“i‘(::“ |
eCIS
1
! I
| 7'y ]
S D | /
Transfer Pass the determined h
information storage place /
:’ f 1/
| Agent Convert RTM . " /(
i into observation and Neural network e !
| AC algorithm serva » choosesstorage |
| get other
N place |
| observations |
! I

Fig. 8 Reinforcement learning in action on SBS/RS.
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the learning process starts when a load arrives at the
entrance of the rack. The model collects the required
information, the most important is the RTM. Then, all
information is sent to the agent, an AC algorithm coded
in Python. The AC algorithm then converts the received
information into a standard format. The neural network
serving as an actor picks an action (in the SBS/RS,
an action is a precise storage place), which is then
scored by the neural network serving as a critic. The
determined action is forwarded to the model so that
the load knows its assigned storage place. After the
load leaves the entrance, the next load follows, and
the process is repeated. When all the loads are stored,
this round of simulation is deemed complete, and the
next round starts after the neural networks in the AC
algorithm are updated.

The two neural networks and the proposed algorithm
are built as follows:

(1) The actor neural network, which is usually called
the policy network, consists of three convolution layers
and a linear layer.

(2) The critic neural network, which is called the value
network, consists of four convolution layers and a linear
layer. The first three convolution layers are shared with
the policy network.

(3) Four types of observations are used. The current
RTM and permit position matrix only contain one
matrix, and they are relatively fixed. The last few RTMs
contain several matrices depending on the number of
former states of the system intended to be used in the
neural network. A total of 35 matrices are used in the
system comprising six columns and six tiers. Hence, the
resulting decision is based on the situations of the last
35 loads.

(4) The learning rate is related to the changing
amplitude of the parameters of the neural networks and
thus affects the networks’ fitting capacity. Its initial value
is 0.004, and it decreases by 30% every 500 rounds in
the learning process.

4 Experiment and Discussion

4.1 Learning process of AC algorithm

A training experiment consisting of 2000 rounds was
conducted to train the AC algorithm for the SBS/RS
with six columns and six tiers (Fig. 3). Figure 9
shows the results of the training process. The x-axis
represents the number of training rounds, and the y-
axis represents the time which is spent on storing all
72 loads in each round. At the beginning of the training,
all parameters in the neural networks were initialized by
the “kaiming_normal_” method, which can make these
parameters increasingly uniform. When the training
process reached about 700 rounds, the time spent on
the scheduling and storage process decreased greatly.
After 1000 rounds, the results began to converge. This
convergence indicated that the AC algorithm controlled
the scheduling and storage process effectively.

4.2 Experiment and analysis

As discussed previously, the four empirical storage rules
are ColByCol, ColByCol. alternate, TierByTier, and
TierByTier_alternate. The last two rules did not perform
particularly well and are thus not discussed further here.
A new empirical storage rule called the greed rule was
introduced following the proposal of the RTM. For each
load under the control of the greed rule, the shortest
time spent on reaching the storage place according to the
RTM was chosen.
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Fig. 9 Training process of AC algorithm on SBS/RS.
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The previous experiment described in Section 2.3 was
repeated but modified with new experiments following
the greed rule and using the AC algorithm. The results
are shown in Table 3 and Fig. 10. Figure 10 clearly
shows that the greed rule performed better than the
ColByCol and ColByCol_alternate rules for all numbers
of loads. However, it was outperformed by the AC
algorithm. The makespan of the AC algorithm decreased
by 6.67%, 1.71%, and 2.55% relative to the makespan

Table 3 Total time spent by empirical storage rules, the
greed rule, and AC algorithm.

No. Rule Total time (s)
1 ColByCol_alternative 431.27
2 ColByCol 409.07
3 Greed 412.61
4 AC algorithm 402.07

500

of the ColByCol_alternate, ColByCol, and greed rules,
respectively.

The reduction of the makespan of the AC algorithm
was calculated and compared with that of the other
rules to determine the degree of superiority of the
AC algorithm in the scheduling and storage process.
The results are shown in Fig. 11. The reduction was
calculated with the following equation:

reduction = (timeer_rule — timeac)/timeother_rule»
where timeymer e Means the makespan of empirical
rules and greed rule, and timeac means the makespan of
AC algorithm.

When the value of the reduction was greater than
0, the makespan of the AC algorithm was less than
that of the other rules. Figure 11 shows that the AC
algorithm generally performs well, especially when
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50

ey

M#\ 1

40 A\
Y AN
/

20

ane

T
Wil

Reduction (%)
=]
o

1A

7

B

40 50

Number of loads

Compare with ColByCoal

Compare with ColByCol_alternative

Compare with greed rule

Fig. 11 Makespan of AC algorithm compared with other rules under six tiers and six columns model.



Lei Luo et al.:

the number of stored loads exceeds 7. At loads greater
than 7, the AC algorithm shows a 30% reduction in
the makespan relative to ColByCol. When the number
of stored loads ranges from 7 to 45, which equates to
9.7% to 62.5% of the system’s storage capacity, the
AC algorithm still presents a 30% reduction in the
makespan. When the number of loads is between 45
and 64, the reduction in makespan still exceeds 10%.
As for the greed rule, it is better than ColByCol and
ColByCol_alternate rules. However, the AC algorithm
shows a 20% reduction in the makespan relative to the
greed rule when the number of loads is in the range of
19-52. This result indicates that the AC algorithm is
superior to the empirical storage rules for the full range
of loads to be stored.

700
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4.3 Experiments with a different SBS/RS

configuration

As mentioned previously, the AC algorithm outperforms
the empirical storage rules. To investigate whether or
not this superiority depends on the configuration of the
SBS/RS chosen, this study conducts another experiment
involving a model of the SBS/RS containing six tiers
and eight columns. The total number of storage places
therefore is increased from 72 to 96. Figures 12 and 13
show the results, which indicates that the AC algorithm
again outperforms the other rules over the full range of
loads to be stored. The makespan of the AC algorithm
decreases by 10.97%, 1.65%, and 3% relative to the
makespan of ColByCol_alternate, ColByCol, and greed
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Fig. 12 Makespan of empirical rules, greed rule, and AC algorithm under six tiers and eight columns model.
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rules, respectively. When the number of stored loads is
in the range of 11-74, which equates to 11.5%-77.1%
of the systems’ storage capacity, the AC algorithm
achieves a 20% reduction in the makespan relative to the
ColByCol rule. When the number of loads is between 74

and 86, the reduction in the makespan still exceeds 10%.

The AC algorithm also reduces the makespan by 20%
relative to the greed rule when the number of loads is
between 26 and 60. The experiment results show that the
configuration of the SBS/RS do not affect the superiority
of the AC algorithm over the empirical storage rules, but
the degree of superiority is different.

According to the results of the two experiments, the
effect of the AC algorithm on each model varied. The
result of the first experiment (SBS/RS model with six
tiers and six columns) shows that when the number of
stored loads is in the range of 6—56, which equates
to 8.33%—77.78% of the systems’ storage capacity, the
AC algorithm reduces the makespan by more than 20%
relative to the ColByCol rule (Table 4). As presented in
Table 5, the second experiment (SBS/RS model with six
tiers and eight columns) shows that the AC algorithm
reduces the makespan by more than 20% when the
number of stored loads is in the range of 11-73, which
equated to 11.46%—76.04% of the systems’ storage
capacity. In sum, the AC algorithm performs better
in the first experiment than in the second experiment.
The difference is attributed to the complicated structure
of neural networks. The actor neural network has three
convolution layers and one linear layer, while the critic
neural network has four convolution layers and one linear
layer. Each layer comprises numerous nodes, and their
exact number depends on the scale of problem solving.
The first experiment involves 72 storage positions, and
the second one involves 96 storage positions. These
differences lead to the different scales of the two
neural networks. The greater the number of storage

positions, the more complicated the neural networks,
and the greater the number of coefficients. Thus, the AC
algorithm performs better in the first experiment than in
the second one.

5 Conclusion

This work focuses on improving the efficiency of an
existing SBS/RS by scheduling the storage process. The
study is a novel one because most existing research has
mainly focused on finding the best configurations of
SBS/RSs at the design stage. For an existing SBS/RS
device, the configuration is fixed, and changing it
to improve the performance of the device is costly.
Therefore, changing the schedule and storage process
is the best option. Empirical storage rules are easy and
robust, but they cannot effectively reduce the makespan.
Empirical storage rules may be efficient when the
number of loads to be stored reaches the rack capacity,
but the makespan is relatively long in the overall process.
When the AC algorithm is used, along with the two
neural networks and the proposed observation values, the
resulting scheduling and storage process outperform that
based on empirical rules. The AC algorithm outperforms
the empirical rules over the full range of rack occupancy.
The results of the experiments show that in an SBS/RS
with six columns and six tiers, the AC algorithm can
reduce the makespan by 6.67% relative to the column-
by-column rule. In the storage process, the AC algorithm
can reduce the makespan by more than 30% when the
number of loads to be stored is between 7 and 45,
which is equal to 9.7%—62.5% of the systems’ storage
capacity. Hence, the AC algorithm can outperform the
other empirical rules regardless of the number of loads.

In the future, the performance of the AC algorithm and
other reinforcement learning algorithms will be further
studied to find other efficient rules for scheduling the
storage process of large SBS/RSs (over 120 storage

Table 4 Distribution of makespan reduction in the first experiment.

Lower limit number Upper limit number

Lower limit of the systems’

Upper limit of the systems’  Reduction of

Number of the stored loads  of the stored loads storage capacity (%) storage capacity (%) makespan (%)
1 6 56 8.33 77.78 20-30
2 7 45 9.72 62.50 3040
3 12 31 16.67 43.06 More than 40
Table 5 Distribution of makespan reduction in the second experiment.
Number Lower limit number ~ Upper limit number  Lower limit of the systems’  Upper limit of the systems’  Reduction of
of the stored loads of the stored loads storage capacity (%) storage capacity (%) makespan (%)
11 73 11.46 76.04 20-30
2 18 56 18.75 58.33 30-40
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positions). The utilization of reinforcement learning
in retrieval transactions is also an interesting topic for
future research. In addition, reinforcement learning can
be used in scheduling other complex logistics systems,
such as a Robotic Mobile Fulfillment System (RMFS).
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