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Multi-Robot Indoor Environment Map Building Based on
Multi-Stage Optimization Method

Hui Lu, Siyi Yang, Meng Zhao, and Shi Cheng�

Abstract: For a multi-robot system, the accurate global map building based on a local map obtained by a single robot

is an essential issue. The map building process is always divided into three stages: single-robot map acquisition,

multi-robot map transmission, and multi-robot map merging. Based on the different stages of map building, this

paper proposes a multi-stage optimization (MSO) method to improve the accuracy of the global map. In the map

acquisition stage, we windowed the map based on the position of the robot to obtain the local map. Furthermore, we

adopted the extended Kalman filter (EKF) to improve the positioning accuracy, thereby enhancing the accuracy of

the map acquisition by the single robot. In the map transmission stage, considering the robustness of the multi-robot

system in the real environment, we designed a dynamic self-organized communication topology (DSCT) based on

the master and slave sketch to ensure the efficiency and accuracy of map transferring. In the map merging stage,

multi-layer information filtering (MLIF) was investigated to increase the accuracy of the global map. We performed

simulation experiments on the Gazebo platform and compared the result of the proposed method with that of classic

map building methods. In addition, the practicability of this method has been verified on the Turtlebot3 burger robot.

Experimental results proved that the MSO method improves the accuracy of the global map built by the multi-robot

system.
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1 Introduction

Compared with the single-robot system, the multi-
robot system has higher working efficiency, better task
completion efficiency, lower production cost, and other
advantages[1]. The multi-robot system has been applied
in different environments in a multitude of fields. In
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particular, the indoor environment is one of the popular
environments for multi-robot applications that have
received extensive attention[2–7]. The cooperation of the
robots in an indoor environment relies on a consistent
and reliable global map[8]. Therefore, map building
is one of the important challenges faced by the multi-
robot system. An efficient and accurate map-building
mechanism is of great significance to the multi-robot
system.

Considering the application of the multi-robot system
in the real environment, the multi-robot map building
technology faces many challenges. First, the accuracy
of the global map is based on the mapping ability of the
single robot. Therefore, the impact of the positioning
error of a single robot should be considered in the map
building process. Second, a lot of researches in the
field of map building have only focused on obtaining a



146 Complex System Modeling and Simulation, June 2021, 1(2): 145–161

high-precision global map while ignoring the efficiency
of map building[9]. In addition, the robustness of the
system is not considered during the map transmission
process, and one or more faulty robots can lead to system
performance degradation[10–12].

This paper proposes a multi-stage optimization (MSO)
method for map building of a multi-robot system.
Considering a real environment, the process of building a
global map for the multi-robot system is divided into the
single-robot map acquisition stage, the multi-robot map
transmission stage, and the multi-robot map merging
stage.

To improve the efficiency of map transmission, we first
selected a local map within a certain range of the robot
according to the location. Considering that the robot
is in an unknown environment, the uncertainty of its
positioning will increase the difficulty of map building,
which may eventually lead to a useless and inaccurate
global map. The proposed method adopts the extended
Kalman filter (EKF) to enhance the accuracy of the
single robot positioning estimation, thereby improving
the accuracy of map building during the local map
acquisition stage.

Second, considering the robustness of the multi-robot
system in the real environment, the MSO method takes
the dynamic self-organized communication topology
(DSCT), which adaptively adjusts the communication
topology in response to changes in the network to
improve the effectiveness and accuracy of the multi-
robot map transmission stage.

Finally, considering the characteristics of the indoor
environment, a multi-layer information filter (MLIF) is
designed to filter the incorrect information generated in
the global map, thereby improving the accuracy of the
multi-robot map merging stage.

A series of experiments are performed to verify the
effectiveness of the proposed method. The experimental
accuracy and efficiency results of the global map are
compared with those of previous classic methods. In
addition, the applicability of the method is also verified
in a real environment. The experimental results show
that the MSO method enables the multi-robot system to
build a global map quicker and more accurately.

The remainder of this paper is organized as follows.
Section 2 discusses the recent literature on map building.
Section 3 introduces the key content of the method
proposed in the paper in detail. Section 4 shows the
experimental results and corresponding analysis. Finally,
Section 5 presents the conclusion of this paper.

2 Related Work

The indoor environment is a structured environment with
boundaries. A boundary refers to an obstacle in the
target area that could not be crossed by multiple robots.
A structured environment means that the environment
can be divided into multiple rectangular sub-regions.
As a typical environment, the indoor environment has
captured a lot of attention in the problem of multi-robot
map building[13–15]. Thus, map building in the indoor
environment is a matter of concern.

Most map building methods are based on the
occupancy grid map after simultaneous localization
and mapping (SLAM) construction[16]. SLAM refers
to the process of sensing the environment and fusing
available sensor information to generate a consistent
map[17]. With the emergence of cluster robots that
require interaction, extensive research is being conducted
to extend the SLAM problem to multiple robots called
multi-robot SLAM (MRSLAM)[18]. In previous research,
the method based on MRSLAM collaboration can be
divided into sharing raw sensor data[19] or sharing
processed maps[16]. Since the sharing of occupancy
grid map has the advantages of saving bandwidth
and reducing the processing of raw data, it has been
extensively studied[17]. This method of sharing the
occupancy grid map after MRSLAM processing is called
map merging. Moreover, the multi-robot map merging
has now attracted the attention of many researchers.
It is applied to many environments, with the indoor
environment being one of the classics.

The map merging problem is divided into two: merging
with known initial positions and merging without known
initial positions. The former can obtain the relative
position of the robot before the exploration map task
begins, while the latter requires calculating the relative
position of the robot as the robot completes the task.

2.1 Merging with known initial positions

In the multi-robot system, the local map of each robot
should be merged into a global map as soon as possible
to obtain a consistent map to better coordinate the
exploration of each robot. Knowing the relative position
of each robot from the beginning can obtain the global
map earlier. In such a way, the robots can be well-
coordinated at the beginning[20–22]. The boundary refers
to the part where the free area and the unknown area
are connected[1]. Simmons introduced an optimization
method, in which the local robot first builds a local map,
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reduces errors by matching laser scanning, and further
improves the global map by the global map processing
module[22]. Burgard proposed a method that discusses
how to coordinate multiple robots to effectively explore
the environment considering the cost of reaching the
target point and its utility[21].

2.2 Merging without known initial positions

The premise of Section 2.1 requires a known initial
position of the robots. Some papers discuss a more
general situation of not knowing the relative initial
position of the robot. This situation is generally divided
into two categories: direct map merging and indirect
map merging[23].

2.2.1 Direct map merging
Direct map merging refers to relying on sensors
to calculate the map transformation matrix among
robots, thus fusing to obtain a global map. The main
situation includes map merging after the relative position
estimation is obtained under the premise that the robots
meet[24]. The method proposed by Howard et al.[25] has
provided an effective online map merging algorithm,
which obtains the relative position of robots when they
meet to perform map merging and stitching. This
situation limits the conditions for map merging, where
the robot meets another robot at least once. In addition,
it may cause a relatively low map merging efficiency
for taking a long time before the meeting. Furthermore,
some papers considered that in a map building process
by one robot, the position of another robot is estimated to
obtain the relative position between every two robots[26].
In addition, there are other methods for estimating the
relative position among robots in recent years. For
example, the robot can utilize visual sensors to observe
each other and non-unique landmarks to determine the
relative position of the robot. The maps are then merged
by propagating the uncertainty[27].

2.2.2 Indirect map merging
Indirect map merging refers to estimating the relative

position between local maps through the characteristics
of the overlapping parts between the local maps, and
then performing map merging to obtain the global map.
The method proposed in Ref. [28] is based on the
combination of the scale-invariant feature transform
(SIFT) and the iterative closest point algorithm to
achieve the merge of local maps. A multi-robot map
merging method based on speeded up robust features
(SURF)[29] determines a master robot coordinate system
and then performs rigid body transformation on the
remaining slave robot coordinate systems to convert the
map merging problem into an image matching quasi-
minimization problem. Another method also converts
the map merging problem into an image registration
problem, which finds the best solution by rotating and
translating the local map[13]. A method was proposed
to match the occupancy grid graph by finding the
correspondence between sparse feature sets[30]. This
method adopted the improved random sample consensus
(RANSAC) algorithm to search for the dynamic number
of the internally consistent subsets of feature pairs and
then calculating the translation and rotation between
the maps. However, this has been tested on a series
of atlases without considering the multi-carrier control
problem. In addition to the above merging methods for
grid maps, there are also studies of map merging for
geometric features. Some approaches fit the measured
line segments in the building of the local map, which
finds the geometric similarity of the local map according
to the matching of points and lines[31, 32]. Nevertheless,
the geometric feature-based map merging method is not
suitable for unstructured environments. Besides, whether
it is a map merge algorithm based on grid maps or a map
merge algorithm based on geometric features, most of
the overlapping parts are required between local maps,
and the accuracy of merging depends on the size of
the overlapping parts. Thereby, the efficiency of map
merging and the time of map merging will be most
affected.

Table 1 lists the strengths and weaknesses of different

Table 1 Features of the algorithms used for map building in an unknown environment.
Algorithm Feature

Knowing initial position
Strengths: The relative position of the local map can be obtained from the beginning
to merge the global map.
Weaknesses: There is a limitation on the need to know the relative position.

Unknowing initial
position

Direct map merging
Strengths: There is no need to know the initial relative position between the robots.
Weaknesses: It requires robots to meet at least once.

Indirect map merging
Strengths: There is no need to know the initial relative position between the robots.
Weaknesses: It is necessary to obtain the overlapping area between the local maps.
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multi-robot map-building algorithms. In summary, the
advantage of the method with a known initial position is
that the relative position of the local map can be obtained
from the beginning to merge the global map. This
facilitates better coordination among multiple robots
and promotes the effective completion of the task of
building a map. However, the premise of map-building
method with a known initial position is to know the
relative positions of the robots at the beginning, which
means a limitation. When the initial position is unknown,
there is no way to obtain the relative position among
robots. Most direct map merging methods require robots
to meet at least once, which may take a long time, leading
to inefficient map building. The indirect map merging
method does not require robots to satisfy the condition
of meeting at least once. However, it is necessary to
obtain the overlapping area between the local maps so
that the feature can be extracted based on the overlapping
area. In addition, when the initial position is unknown,
a global map could not be obtained from the beginning,
and multiple robots could not be better coordinated.
Thus, the efficiency of the map merging process is
ignored. For an indoor environment, the coordination
among multiple robots will greatly affect the mapping
efficiency.

The indoor environment has many rectangular areas.
The lack of communication between the exploration
robots will lead the robot to repeatedly explore certain
rectangular areas, thereby increasing the time to
complete the map and reducing efficiency. Consequently,
it requires each robot to share the local map in time to
ensure effective communication. Moreover, the accuracy
of the global map depends on the accuracy of SLAM
construction. Thereby, the processing of the map after
SLAM construction to ensure the accuracy of the map is

also a problem that requires attention.
The communication limitation of the multi-robot

system in the actual environment is also worthy of
attention. The limited communication of the multiple
robots in the swarm robotic exploration problem was
discussed in Ref. [33]. This problem was expressed as an
optimization problem and solved by an improved brain
storm optimization (BSO) algorithm. BSO algorithm[34]

is a common evolutionary algorithm in the field of
optimization. Reference [35] considered the problem
of attenuation of the communication signal through the
wall, proposed an outdoor-indoor signal fading model,
and made a decision-making scheme.

Considering the accuracy and effectiveness of map
building and the communication problems in the
actual environment, the MSO method in the indoor
environment is proposed. This method considers the
uncertainty of the real environment and optimizes the
mapping process according to the number and order of
robot participation to ultimately improve the accuracy of
the global map.

3 Multi-Stage Optimization (MSO) Method

3.1 Framework of the MSO method

In the MSO method (Fig. 1), the map building process
is divided into three different stages based on the
relationship between the single robot and the multiple
robots in the multi-robot system: (1) the extended
Kalman filter (EKF) in the single-robot map acquisition
stage, (2) the DSCT in the multi-robot map transmission
stage, and (3) the MLIF in the multi-robot map merging
stage. In the multi-robot system, each stage cooperates
to complete the task of building a global map in the
indoor environment.

For the single-robot map acquisition stage, we

Fig. 1 Framework of the MSO method.
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first optimize the global map from the single robot
perspective. According to the process of obtaining the
local map, the accuracy of the global map is based on
the positioning result of the robots. When the robots
travel through an unknown environment, the uncertainty
over their positioning increases and the building of a
global map becomes arduous. To improve the accuracy
of a local map by the single robot, the MSO method
uses the EKF. The EKF integrates the wheel odometry
information and laser odometry information of the robot
to output more accurate positioning results, thereby
improving the accuracy of map building for the single
robot. Second, in the multi-robot map transmission stage,
the MSO method uses the DSCT to add a dynamic self-
organized mechanism based on a basic communication
network to deal with the failure of the robots. To allow
robust communication between the robots, the MSO
method predicts the dynamic changes in the building
process of a global map and sets a backup master to
complete the transfer of the topology center. Finally, the
MSO method uses the MLIF to optimize the global map
in the multi-robot map merging stage. The MLIF depicts
and optimizes different erroneous information through
different layers, filters the map in order, and then outputs
a global map with higher precision.

3.2 EKF in the map acquisition stage

Because the unknown grid occupies most of the map
generated by SLAM and the occupancy grid map
retains the previously updated grid information every
time, direct transmission and merging of the map
built by SLAM will have a lot of invalid information.
Considering that SLAM builds maps based on radar laser,
the information within a certain range around the robot
is valid. Dividing the local area and transmitting them
after can ensure that the map information is updated
while using a certain amount of communication data.
Therefore, in the map acquisition stage, this work first
uses the radar laser of the robot to build an occupancy
grid map and then obtain the current position of the
robot through EKF. A window is added to the occupancy
grid map based on the map and location of the robot to
obtain the local map around each robot and then carry
out subsequent transmission.

Through the EKF, the robot can obtain more accurate
positioning information under a limited sensor accuracy.
The EKF is divided into two parts: prediction and
measurement, which are defined by Eqs. (1) and (2),
respectively. Here, Eq. (1) is approximated as a linear

equation with an independent variable xt�1, and Eq. (2)
is approximated as a linear equation with an independent
variable xt .
g.ut ; xt�1/ D g.ut ; �t�1/CWt .xt�1 � �t�1/ (1)

zt D h. N�t /CHt .xt � �t / (2)

where g is the prediction function, h is the measurement
function, Wt is the state transition, and Ht is the
observation matrix.

Equations (3)–(7) present the specific updating
process of the EKF. Equations (3) and (4) show that
the state at the current moment can be predicted by
the state .�t�1; ˙t�1/ at the previous moment t � 1
and the control quantity ut at the current moment t .
�t�1 refers to the mean of the stake and ˙t�1 refers to
the covariance of the state. The predicted state refers
to the Gaussian function determined by N�t and Ṅ t ,
as shown in Eqs. (3) and (4). The former represents
the estimated value, while the latter represents the
uncertainty. The Kalman filter gain Kt is updated as
in Eq. (5). Equations (6) and (7) are the state outputs
after the comprehensive prediction and measurement,
i.e., the filtered output of the EKF.

N�t D g.ut ; �t�1/ (3)
Ṅ

t D Wt˙t�1W
T
t CRt (4)

Kt D Ṅ tH
T
t .Ht

Ṅ
tH

T
t CQt /

�1 (5)

�t D N�t CKt .zt � h. N�t // (6)

˙t D .I �KtHt / Ṅ t (7)

where Rt is the uncertainty of prediction and Qt is the
uncertainty of measurement at moment t .

Figure 2 shows the specific flowchart of this process.
As shown in Fig. 2, the wheel odometry estimates
the relative position of the robot according to the
number of turns of the wheel. The laser odometry
processes the scanned laser data, matches the position
transformation of consecutive frames, and obtains
the relative position transformation by an incremental
method. The advantage of the wheel odometer is that

Fig. 2 Flowchart of the EKF process.
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the sampling frequency is high, and the relative position
of the robot can be measured in a short time. However,
in reality, the wheels always spin and slip, resulting
in significant deficiencies in the positioning accuracy.
Fortunately, the laser odometer is not affected by the
wheel condition. The EKF can compensate for the
error of the situation, thereby improving the positioning
accuracy and ultimately improving the accuracy of the
local map.

3.3 DSCT in the map transmission stage

For the multi-robot system to complete the map building
in the real environment, communication robustness is a
key point that needs to be paid attention to. We first
construct a basic communication network, and then
design a dynamic communication network that has a
self-organized topology to deal with the complexity and
variability of the real environment (Fig. 3).

The basic communication network refers to the
collaborative mechanism of robots under stable
communication conditions. As shown in Fig. 3, the

Fig. 3 Basic communication network.

MSO method builds a centralized system based on
the master and slave sketch. The master robot has
the advantages of simple implementation and ensuring
the optimality of the entire task. The exploration robot
r1; : : : ; ri obtains the local map through the first stage
and then transmits it to the master robot r0. The master
robot r0 sends the global map to each exploration
robot in time to facilitate its further path planning.
This collaborative framework guarantees the effective
execution of global map building in the multi-robot
system.

However, the communication network could not
always remain stable in a real environment. Therefore, it
is necessary to consider possible changes in the network
caused by insufficient battery power of the robot, sudden
network failure, etc. Table 2 summarizes the possible
emergencies. The MSO method adopts the DSCT for
handling these uncertainties. The process in Fig. 4 shows
the specific content of DSCT.

Figure 4 shows the decision-making process of the
DSCT in the MSO method. The DSCT maintains a
robot list in the communication network on the master

Table 2 Possible emergencies and their specific situations
are reflected in the network.

Possible emergency
Reflected robot
network situation

� New robot requests to join the network
� Unstable communication environment

(1) Exploration robot
enters the network

� Program failure of robots
� Robot shuts down without power
� Unstable communication environment

(2) Exploration robot
exits the network

� Program failure of robots
� Robot shuts down without power
� Unstable communication environment

(3) Master robot
exits the network

Fig. 4 Process of the DSCT in the MSO method. In the robot list, the blue value represents the master robot in the network,
the black value represents the unchanged part, and the red value represents the current changed part.
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robot r0, and records the robot number, the robot IP,
and the least number of all exploration robots during
the process of organizing the network. The changes in
the multi-robot communication network mainly include
three situations: (1) the exploration robot enters the
network, (2) the exploration robot exits the network, and
(3) the master robot exits the network.

In a situation where the exploration robot enters the
network, a connection between the master robot and
the new exploration robot is created in the network on
the premise that the previous master and slave sketch
remains unchanged. For example, the master robot
r0 receives a request for joining the network from r4,
adds the number and IP of r4 to the robot list, and the
least number in the network remains unchanged. The
remaining exploration robots will not be affected and
continue completing their tasks.

For the situation where the exploration robot exits
in the network, the master robot updates the network
structure, deletes the connection with the exploration
robots that have exited the network, and informs other
exploration robots. For example, after the master robot
r0 has not received the information from r1 for a long
time, it will assume that r1 is malfunctioning, cuts off
the connection with it, and informs other exploration
robots. The master robot r0 deletes the information of
r1 in the robot list and checks whether the least number
in the network needs to be updated.

When the master robot withdraws from the network,
the previous master and slave sketch are destroyed, and
the exploration robots determined by the least number
need to rebuild a new star topology network. For
example, when all exploration robots have not received
information from the master robot r0 for a long time,
it will assume that r0 loses connection. r2, which is
determined by the least number, will automatically
become the next master robot and assume the task of re-
networking. The new master robot will inherit the global
map merged by the previous network and continues to
complete map building and environmental exploration
tasks.

Through the DSCT in the MSO method, the
collaboration of robots will not be affected by the
communication quality of the real environment, and the
task of building a global map can be completed. This
method guarantees the effectiveness of multi-robot map
building.

3.4 MLIF in the map merging stage

In the multi-robot map merging stage, the proposed
method adopts the MLIF to improve the accuracy of
the global map. The global map built by the multi-
robot system will produce incorrect information, such as
non-connected domain information, dynamic obstacle
information, and static non-smooth obstacle information.
Considering the rules generated by the actual situation
of multi-robot exploration in the indoor environment, we
filter the global map to eliminate the incorrect grid state.
Figure 5 shows the specific process.

The set of exploration robots in the multi-robot system
is R D frign, where n is the number of exploration
robots, and n > 2. The local map and grids updated
by ri are respectively represented by M i

t and Gi
t , and

G P i
t is the set of path grid points for ri in the t-th

step. According to the characteristics of multi-robot
exploration, the specific rules for map building could be
summarized as follows:

Rule 1: The grid status after the obstacle cannot
be updated, i.e., the grid updated must be in the same
connected domain as the exploration robot.

Gi
t �M

i c
t (8)

Here, M i c
t is the set of free grids points in the same

connected domain as ri in M i
t in the t -th step.

Rule 2: The grids covered by the path of the
exploration robots are in the same connected domain
as the exploration robots.

G P i
t �M

i c
t (9)

Rule 3: When the grid point results are inconsistent,
the judgment results of most exploration robots can
represent the final state of the grid.

Gt D
1

k

kX
iD1

Gi
t (10)

Here, k represents the number of times that the grid Gt

is updated before the t -th step.
Rule 4: The shape of the actual static obstacle is

smooth.
According to the above rules, we use different

approaches to solve different types of error information
in the global map. In Rule 1, the connected domain
judgment is used to filter out the incorrect feasible
domain map information outside the obstacle. For non-
connected domain information, we mark the connected
domains of the free areas of the global map and record
the connected domain number of the exploration robot
location. The free grids with inconsistent numbers are
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Fig. 5 MLIF framework in the MSO method. Error information refers to some errors that can be corrected in the process of
building a global map. According to the four different rules, four filter layers with different approaches are added.

considered error grids, which are corrected to unknown
grids.

In Rules 2 and 3, the dynamic obstacle information
includes two situations. One is the occupied grids
covered by the path of exploration robots. In this
case, we record the path point of each exploration
robot and remove the occupied grids in the fixed area
around each sampling point. The second situation is
that different exploration robots have different judgment
results for the same grid. For this situation, we trust the
sensor measurement results of most exploration robots.
Therefore, we use multi-robot voting to take the average
value to determine the value of each grid.

In Rule 4, static obstacles with uneven edges should
be processed. For the static non-smooth obstacle
information, we first provide a closed operation to
expand the global map and then perform the corrosion
operation to smooth the edges of the static obstacle.

According to the four rules, the MSO method can
correct the incorrect information according to the rules
of the real environment through the MLIF, thereby
obtaining a more accurate global map.

To summarize, the MSO method uses the EKF in the
map acquisition stage, the DSCT in the map transmission
stage, and the MLIF in the map merging stage to improve
the accuracy, efficiency, and effectiveness in building a
global map.

4 Experiment and Analysis

We carry out the experimental results both in the Gazebo
platform and real indoor environment to show the
performance of the proposed method. For the Gazebo
platform, we design different types and sizes of complex
indoor environments to illustrate the feasibility and
effectiveness of the proposed method in the indoor
environment. We focus on the accuracy and exploratory
efficiency of the MSO method with other algorithms,
such as the known initial position method (KIPM)
and the unknown initial position method (UIPM) in
the paper[8]. These algorithms use the same boundary
exploration method[36], in which each exploration robot
searches for the nearest boundary and explores based on
the map it acquires. Considering the size of the robot
and the grid, when the continuous grid of the boundary
is less than or equal to a certain number, it will not be
recorded as the boundary.

For actual scenarios, to illustrate the applicability
of the method in the real environment, we verify
the positioning accuracy, test the stability of the
communication network, and show the mapping results
in a real environment.

The type of robot selected in the experiment is
Turtlebot3 Burger (Fig. 6), and the size of the robot
is 138 mm �178 mm � 192 mm.
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Fig. 6 Turtlebot3 Burger robot.

4.1 Performance index

The performance indicators to evaluate the accuracy
and effectiveness of the global map are designed. The
specific evaluation content and indicators are as follows.

4.1.1 Accuracy of the global map
In the Gazebo platform, we took a two-dimensional
grid map of the environment as the comparison object.
We evaluated the structural similarity (StS) between the
global map built by different algorithms and the two-
dimensional grid map of the environment. Therefore,
the StS of the global maps is defined as Eq. (11).

StSD
P

m

P
n.Amn � NA/.Bmn � NB/q

.
P

m

P
n.Amn� NA/2/.

P
m

P
n.Bmn� NB/2/

(11)
where Am;n and Bm;n represent the two-dimensional
matrix of the single-robot occupancy grid map and
multi-robot occupancy grid map, respectively. StS
represents the accuracy of the global map. A and B
represent the two-dimensional matrix of the single-robot
occupancy grid map and multi-robot occupancy grid
map, respectively. NA represents the mean of array A and
NB represents the mean of array B .

In addition, the free area is very important, which
affects the judgment of the exploration robots. Therefore,
we also evaluated the accuracy of the map building from
the false positive rate (FPR) of the free area.

FPR D
numF N

numF S C numF N

(12)

where F S represents the free grids in the same
connected domain with exploration robots, and F N

represents the free grids that are not in the same
connected domain with the exploration robots. numF N

is the number of F N , and numF S is the number of F S .

4.1.2 Efficiency of the global map
We choose the time to explore the global map (TEGM),
and the average exploration rate (AER) to quantitatively
describe the efficiency of the mapping process. The
AER can be calculated by the average of the number
of exploration grids numne at the later moment minus
the number of exploration grids numpr at the previous
moment. Equation (13) shows the calculation of AER.

AER D
PN

1 .numne � numpr/

t
(13)

where N represents the final exploration time, and t
represents the duration of exploration.

4.2 Experimental results in the Gazebo platform

Since the sensors of the exploration robots and
communication environment are in stable conditions in
the Gazebo platform, it is not necessary to test the EKF
and the DSCT. In this section, we mainly tested the
performance of the MLIF in the MSO method from the
perspective of accuracy and efficiency.
4.2.1 Comparison for accuracy of the global map
The experimental results are presented from two aspects:
the StS and the FPR. We constructed ten different
environments and compared the accuracy of the three
algorithms. In ten environments, the initial positions
(IniP) of three exploration robots are the same. In
addition to comparing different environments in the
vertical direction, the same environment was also
compared in the horizontal direction. We chose a
different IniP in the same environment to compare the
accuracy of the map.

First, for the StS, three exploration robots in 10
different environments are compared and the results are
shown in Table 3. For the sake of fairness, the global
maps were all clipped so that the indoor environment is
located at the same location throughout the map. The
covariance of the map built by the three algorithms and
the map built by the single robot is used to represent the
StS. The range of StS is between Œ�1; 1�, the closer the
StS value to 1, the greater the similarity between the two
graph structures.

The higher the StS value, the more similar is the
mapping result to the real map. The highlighted results
in Table 3 show the best experimental results in each
experiment. It is evident that among ten experiments, the
StS of the MSO method is the largest in nine experiments,
which proves that the map built by the MSO method is
more similar to the true value of the environment.

More than the longitudinal experiments, horizontal
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Table 3 Comparison of StS in different environments.
Environment MSO KIPM UIPM

1 0.4873 0.4358 0.4776
2 0.4110 0.2653 0.3335
3 0.4982 0.3092 0.0970
4 0.5279 0.3574 0.4054
5 0.3098 0.3066 0.1839
6 0.5096 0.1806 0.1581
7 0.4362 0.2613 0.4217
8 0.3547 0.3135 0.3159
9 0.2804 0.3231 0.2551

10 0.2107 0.1959 0.1977

experiment comparisons are also conducted. We
performed 14 experiments by varying the IniP value
in the same environment. Table 4 shows the results.

The highlighted results in Table 4 represent the
best results in different environments. All experimental
results show that for different IniP values in the same
environment, the MSO method has a relatively high StS,
which means that the map built by the MSO method
has higher accuracy. As can be seen from Tables 3 and
4, whether it is in different environments or there are
different IniP values in the same environment, the MSO
can obtain relatively high accuracy in most cases.

Furthermore, Table 5 lists the comparison results of
each algorithm in the FPR. These are the results of the
three exploration robots building maps in the previous
ten environments. The MSO method performs the MLIF
on a global map, which effectively reduces the FPR of
the free area.

The smaller the FPR, the higher the accuracy of the

Table 4 Comparison of StS in the same environment.
IniP MSO KIPM UIPM
IniP1 0.3191 0.3071 0.2886
IniP2 0.2818 0.2731 0.1787
IniP3 0.4626 0.3748 0.2609
IniP4 0.3987 0.3893 0.3782
IniP5 0.4421 0.3334 0.2767
IniP6 0.3935 0.3188 0.2790
IniP7 0.4107 0.3512 0.1448
IniP8 0.3183 0.3137 0.0698
IniP9 0.2344 0.1407 0.1008
IniP10 0.2817 0.2201 0.1426
IniP11 0.4059 0.2458 0.3368
IniP12 0.3057 0.3014 0.1103
IniP13 0.4316 0.2525 0.3622
IniP14 0.4399 0.3697 0.4362

AVERAGE 0.3661 0.2994 0.2404
MAX 0.4626 0.3893 0.4362
MIN 0.2344 0.1407 0.0698

Table 5 Comparison of FPR of the free area.
(%)

Environment MSO KIPM UIPM
1 0.00 5.10 0.81
2 0.00 4.89 8.27
3 0.00 2.63 2.03
4 0.00 1.57 0.37
5 0.00 1.73 0.86
6 0.00 15.12 1.89
7 0.00 2.09 0.78
8 0.00 2.41 3.17
9 0.00 2.30 1.12
10 0.00 2.21 3.97

map building. Table 5 highlights the best results in each
experiment. The FPR in MSO can be minimized because
MLIF is used to filter the error information in the global
map. Therefore, the MSO method can improve the
accuracy of the final global map.

4.2.2 Efficiency comparison of a global map
To verify the efficiency of the MSO method, we
compared the efficiencies of the map building between
different algorithms. In this part, we compared the
KIPM without the cooperation and the MSO with a
communication network in four indoor environments
(Fig. 7). The IniP of three exploration robots is changed
eight times in each environment. The experimental
results are presented from two aspects: the TEGM and
the AER.

First, we set a time node every 5 seconds and recorded
the time node when the environment is completely
explored in each experiment. Figure 8 shows the results
of the above 32 groups of the experiments.

Figure 8 shows that when considering the TEGM, the
MSO is superior to the KIPM in 32 situations. In the best

(a) Environment I (b) Environment II

(c) Environment III (d) Environment IV

Fig. 7 Simulation environments.
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Fig. 8 Comparison of TEGM in four environments.

case, the MSO is 5 seconds faster than the KIPM, which
is within an acceptable range. Nevertheless, in the worst
case, the MSO is 310 seconds faster than the KIPM.
Obviously, the TEGM will be unstable and inefficient
without a communication network.

Table 6 shows the AER. A higher AER means that
the algorithm has a higher mapping efficiency. In 32
experiments, the AER of the MSO is all better than the
KIPM, which proves that the MSO has higher efficiency.
Through the AER of the multi-robot system, a consistent
conclusion can be obtained.
4.2.3 Performance validation for more robots
To verify the generalization ability of the method in
the multi-robot system, we changed the number of
exploration robots and verified whether the algorithm is
still applicable in more exploration robot systems. Five
exploration robots conducted experiments on the four
environments mentioned in Section 4.3, and we changed

eight different IniP values in each environment. In this
section, we chose the StS as the accuracy performance
index and the TEGM as the efficiency performance
index.

For global map accuracy, we compared the StS values
of five exploration robots, and the results are shown in
Table 7.

As observed from Table 7, the MSO performed best
among the three algorithms in 21 experiments out of 24
experiments. This means that it has a higher similarity
with the true value of the environment, thus proving that
the mapping results of the MSO have higher accuracy.

For global map efficiency, Fig. 9 shows the
comparison of the TEGM in four environments. The
graph shows that in the system of five exploration robots,
the MSO can quickly complete the task of exploring
the global environment. To prove the effectiveness of
the MSO more comprehensively, we also compared the
TEGM of different numbers of exploration robots in

Table 6 Comparison of AER.
(grid/s)

IniP
Environment I Environment II Environment III Environment IV

MSO KIPM MSO KIPM MSO KIPM MSO KIPM
IniP1 114.93 78.371 157.186 148.750 108.137 98.224 101.054 95.989
IniP2 122.522 112.739 138.055 127.851 96.838 90.086 113.168 109.400
IniP3 88.797 82.737 113.303 102.190 98.874 91.056 130.820 113.548
IniP4 114.267 108.416 108.397 89.523 117.453 115.430 107.222 97.643
IniP5 108.815 101.127 124.008 105.954 136.836 131.297 116.350 108.600
IniP6 119.747 94.058 115.384 109.148 126.945 122.662 153.840 118.800
IniP7 121.091 114.038 101.794 98.551 161.346 150.777 141.269 135.972
IniP8 103.480 95.713 125.250 120.604 127.500 120.360 119.867 114.740
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Table 7 Comparison of StS in different environments (five
exploration robots).

Environment MSO KIPM UIPM

I

IniP1 0.4342 0.1012 0.2367
IniP2 0.4677 0.4344 0.3048
IniP3 0.4357 0.2427 0.3072
IniP4 0.3319 0.2245 0.3234
IniP5 0.3708 0.4615 0.2813
IniP6 0.1911 0.1354 0.0881

II

IniP1 0.4391 0.0122 0.2650
IniP2 0.2876 0.1325 0.2608
IniP3 0.4113 0.3351 0.2873
IniP4 0.4507 0.2505 0.0910
IniP5 0.3779 0.3205 0.3722
IniP6 0.4236 0.2091 0.1213

III

IniP1 0.3387 0.4370 0.2173
IniP2 0.1571 0.1211 0.0842
IniP3 0.4851 0.1658 0.1250
IniP4 0.4203 0.4664 0.4349
IniP5 0.2008 0.0850 0.1143
IniP6 0.4685 0.1904 0.0919

IV

IniP1 0.4326 0.4283 0.0865
IniP2 0.4468 0.3981 0.3120
IniP3 0.4540 0.4339 0.4181
IniP4 0.5464 0.3383 0.2386
IniP5 0.5271 0.2245 0.5006
IniP6 0.5212 0.2066 0.2497

the same environment. The TEGM for eight groups
of exploration robots in four environments to build the
global map is averaged. Table 8 shows the comparison
results.

The TEGM of five exploration robots is not
significantly shorter than that of the three exploration
robots. Increasing the number of exploration robots does
not present a shorter exploration time. The reason for
this situation is related to the size of the map. Increasing
the number of exploration robots when the map is
limited will not shorten the exploration time. Because
the possibility of exploration robots repeatedly exploring
a certain path becomes higher, it does not reflect the
advantages of increasing the exploration robots.

To further illustrate the effectiveness of the algorithm
in the multi-robot system, we set up a more complex
environment to carry out experiments on different
numbers of exploration robots. Figure 10 shows the
larger environment.

We conducted a comparative analysis of the system
of seven exploration robots in Environment V and
compared them with the system of five exploration
robots and three exploration robots. Figure 11 shows the
comparison results.

In Environment V, no matter how many exploration
robots are present, the MSO can build a global map faster

Fig. 9 Comparison of TEGM in four environments (five exploration robots).

Table 8 Average TEGM of different numbers of exploration robots in the same environment. (s)
Number of

robots
Environment I Environment II Environment III Environment IV

MSO KIPM MSO KIPM MSO KIPM MSO KIPM
3 256.875 333.750 296.875 380.625 178.750 261.875 166.250 308.125
5 219.375 333.750 263.125 361.875 180.000 290.625 175.000 316.250
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Fig. 10 Environment V.

Fig. 11 Comparison of TEGM in Environment V (s).

than the KIPM. Moreover, the performance of seven
exploration robots is better than that of five exploration
robots and three exploration robots, indicating that with

the increase of the environment size, the increase in the
number of exploration robots will help the system to
explore the environment faster.

4.3 Applicability of the method in actual scenarios

To examine the effectiveness of the proposed method
in a real environment, we compared and analyzed
the positioning accuracy and communication stability.
For the positioning accuracy, we compared the EKF
positioning results with the positioning results of the
other three algorithms. The real position is marked,
and the absolute position difference of each marked
point is recorded and averaged. For the effectiveness
of the communication, we tested the measures taken by
the MSO method when the network fails during map
building in a real environment.

Additionally, we displayed the MSO mapping process
in the real environment to prove the effectiveness of the
MLIF.

4.3.1 Analysis of the positioning error for a single
exploration robot

We compared the EKF fusion results with the wheel
odometer results and the two different separate laser
odometers are denoted as VO and RFTO, respectively.
We ran five experiments on the same map and recorded
the absolute error of all marked points in each
experiment, as shown in Fig. 12. We then counted the
average error and total average error of each algorithm

Fig. 12 Comparison of absolute errors of 4 experiments.
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in each experiment, as shown in Table 9.
Figure 12 and Table 9 indicate that based on the results

of the four tests and the final average value, the use
of EKF can reduce the positioning error in the real
environment. Although the EKF in Test 4 is not optimal,
it is not much different from that of the optimal result.
Improvement of the positioning accuracy will improve
the accuracy of SLAM to build local maps, which can
prove the necessity of the MSO method to use the EKF
for information fusion.

4.3.2 Analysis of the impact for dynamic network
For communication stability, we separately tested the
specific performance of the communication network in
three emergencies: the exploration robot entering the
network, the exploration robot exiting the network, and
the master robot exiting the network. In the experiment,
a process of network dynamic change is shown in
Table 10.

According to Table 10, the multi-robot system will
not be affected by unexpected robot accidents and
can complete the task of building a global map. This
confirmed the stability of the communication network in
the MSO method.

4.3.3 The mapping process in the real environment
We tested the usability of the method in a 3m� 3m real

Table 9 Average error and total average error of each
algorithm in each experiment.

Experiment ODOM VO RF2O EKF
1 0.1781 0.1237 0.2704 0.1167
2 0.1894 0.1851 0.2525 0.1733
3 0.1585 0.1508 0.2215 0.1111
4 0.1446 0.0878 0.0981 0.0984

Average 0.1677 0.1369 0.2106 0.1249

environment. Figure 13 shows the process of building a
global map. First, three robots start from three different
initial positions. Then, the robots continue to supplement
the global map as they explore. In this process, some
errors will be generated. Finally, the MSO method uses
MLIF to process the global map after the exploration
task is completed. It can be seen that the MLIF in the
MSO method can eliminate erroneous information in
the mapping process, and the MSO can guide multi-
exploration robots to build a global map in the real
environment.

5 Conclusion

This paper proposes a map-building method for a
multi-robot system named the MSO method. Through
this method, the multi-robot system can improve the
accuracy, efficiency, and effectiveness of building a
global map. The method considers different stages of
map building: the EKF in the map acquisition stage,
the DSCT in the map transmission stage, and the
MLIF in the map merging stage. The EKF in the map
acquisition stage is used to fuse the position estimates
given by different sensors to improve the accuracy of the
exploration robot positioning, ensuring the accuracy of
acquiring the map. In the second stage, the DSCT in the
MSO method is established to ensure the effectiveness of
map transmission and avoid the system paralysis caused
by the robot failure in a real environment. Finally, the
MLIF in the MSO is used in the map merging stage to
process the error information generated in the previous
two stages, improving the accuracy of the final global
map.

Table 10 Process of network dynamic change.
Situation Specific description Robot list Robot No. Explanation

1
Exploration robot 1
enters the network.

1: fchange number: 2, id: 1, number: 2g 1 New robot joins the network.

1
Exploration robot 2
enters the network.

1: fchange number: 1, id: 1, number: 1g
2: fchange number: 2, id: 2, number: 2g

1, 2 New robot joins the network.

1
Exploration robot 3
enters the network.

1: fchange number: 3, id: 1, number: 3g
2: fchange number: 3, id: 2, number: 3g
3: fchange number: 3, id: 3, number: 3g

1, 2, 3 New robot joins the network.

2
Exploration robot 1
exits the network.

2: fchange number: 1, id: 2, number: 2g
3: fchange number: 1, id: 3, number: 2g

2, 3 Robot 1 exits the network.

1
Exploration robot 4
enters the network.

2: fchange number: 4, id: 2, number: 3g
3: fchange number: 4, id: 3, number: 3g
4: fchange number: 4, id: 4, number: 3g

2, 3, 4 New robot joins the network.

3
Master robot 0 exits
the network.

1: fchange number: 2, id: 1, number: 2g
2: fchange number: 2, id: 2, number: 2g

1, 2
Exploration robot 2 is the master, and
the other robots are re-networked.
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(a)

(b) (c) (d)

Fig. 13 Process of building a map by three robots in a real
environment. (a) The real environment in which the multi-
robot system experiments. Yellow points denote the edge
points. (b) Exploration robots plan the route separately at
IniP. (c) An intermediate stage of the multi-robot system for
map building. The marked points are the three types of
incorrect information generated during the mapping process
described by the MLIF. (d) Global map built by the multi-
robot system through the MSO method. The marked points
correspond to the three incorrect information in Fig. 13b,
which shows that the MSO method adopts the MLIF to deal
with the errors in the global map.

The experimental results demonstrate that the MSO
method could effectively and accurately complete the
task of building a global map by multiple robots in the
indoor environment. Based on the Gazebo platform, its
accuracy is proved to be better than other map merging
algorithms, and the establishment of a communication
network can improve the efficiency of the map-building
process. In addition, we proved that the proposed method
could improve the ability of multiple robots to build a
global map in a real environment because it takes into
account the positioning error and the communication
environment.

Our future work will focus on three aspects. First,
a better communication mechanism will be used
to improve the stability and reliability of the map
transmission. Then, we will apply the MSO method to
other environments to verify its applicability. Finally, it
is also indispensable to optimize the exploration method
to improve the multi-robot exploration system.
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