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3D Environmental Perception Modeling in the Simulated
Autonomous-Driving Systems

Chunmian Lin, Daxin Tian, Xuting Duan�, and Jianshan Zhou

Abstract: Self-driving vehicles require a number of tests to prevent fatal accidents and ensure their appropriate

operation in the physical world. However, conducting vehicle tests on the road is difficult because such tests

are expensive and labor intensive. In this study, we used an autonomous-driving simulator, and investigated the

three-dimensional environmental perception problem of the simulated system. Using the open-source CARLA

simulator, we generated a CarlaSim from unreal traffic scenarios, comprising 15 000 camera-LiDAR (Light Detection

and Ranging) samples with annotations and calibration files. Then, we developed Multi-Sensor Fusion Perception

(MSFP) model for consuming two-modal data and detecting objects in the scenes. Furthermore, we conducted

experiments on the KITTI and CarlaSim datasets; the results demonstrated the effectiveness of our proposed

methods in terms of perception accuracy, inference efficiency, and generalization performance. The results of this

study will faciliate the future development of autonomous-driving simulated tests.
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1 Introduction

An autonomous-driving system comprises a
comprehensive software and hardware platform
that provides a wide spectrum of safety-related functions
and requires extensive testing to ensure safety prior to
large-scale production. However, research on urban
autonomous-driving involves large infrastructure
costs and poses challenges in real-world system
tesing. Specifically, the construction and operation of
automated vehicles require huge investments of funds
and manpower. In addition, conducting vehicle tests
in urban environments is dangerous, cumbersome,
and time-consuming. For instance, model tesing
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and validation of environmental perception require
extensive labeling of urban scene data covering as
many traffic scenarios as possible, which is costly and
labor-intensive. These challenges severely hinder the
practical application and development of automated
vehicles in the physical world.

An alternative is to use simulation software to train
and validate driving strategies, which can facilitate
autonomous-driving research. Simulation is also useful
for system testing as certain traffic scenarios are
too dangerous to stage in the real world, e.g., an
elderly person walking onto the road in front of a
vehicle. With the recent advancements in computer
graphics and rendering technology, several simulation
frameworks[1–5] and racing game engines[6–9] have
become available for use in autonomous-driving
research. These simulators mimic large-scale traffic
scenarios and real-world situations and can be used
to evaluate new approaches to autonomous driving.
Specifically, given sufficient computational resources, a
large-scale urban dataset featuring diverse conditions
can be quickly simulated. Data labeling can also
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be fully automated, eliminating the need for manual
supervision[10]. Overall, these advantages enable
efficient and effective system validation, and simulation
is currently regarded as an important method for
automated vehicle testing in unseen environments.

As the basis of the autonomous-driving system, the
environmental perception module must provide accurate
scene information to guide path planning and vehicle
control. The majority of relevant studies have focused
on the design of deep-learning based[11] perception
models and the adoption of existing autonomous-driving
datasets[12–14] for model training and testing. There are
several limitations in the current research. First, although
autonomous-driving datasets have been obtained from
real-world scenarios, the limited amount of data leads
to poor performance accuracy and robustness due to the
lack of scene diversity. There have also been difficulties
in developing an accurate perception model that can
precisely detect objects in traffic scenarios. Therefore,
future studies on autonomous-driving systems must
focus on acquiring a diverse range of data from different
urban scenes and developing a more powerful perception
model.

To the end, in this study, we focused on
autonomous-driving simulated systems and investigated
the performance of an environmental perception model
on the basis of simulated data. Specifically, we
synthesized and generated data for large-scale traffic
scenarios from various urban scenes using the CARLA
simulator[15], which is an open source autonomous-
driving simulator that can export high-quality and
synchronized sensor data with annotations. The CARLA
simulated dataset, i.e., CarlaSim, comprises 15 000
camera-LiDAR (Light Detection and Ranging) samples
with accurate annotation and calibration files. We
designed a Multi-Sensor Fusion Perception (MSFP)
network that has a two-stream architecture with a
feature fusion module for aggregating camera and
LiDAR data. We conducted extensive experiments on the
KITTI[12] and CarlaSim datasets; the results revealed the
effectiveness of the simulated data and perception model.
The contributions of this study can be summarized as
follows:

(1) We constructed a large-scale simulated dataset
named CarlaSim, which contains 15 000 images and
point-cloud data generated from a diverse range of traffic
scenes using the CARLA simulator.

(2) We developed an MFSP model, which consumes
camera and LiDAR data separately, and then uses a

feature fusion module to combine multiscale feature
representations.

(3) We conducted validation experiments on
the KITTI and CarlaSim datasets, the outstanding
performance of which confirms the effectiveness of the
proposed methods.

2 Related Work

2.1 Autonomous-driving simulator

Typically, a versatile autonomous-driving simulator
includes a wide variety of traffic scenarios comprising
fine-grained details and high-level scenes. Such
simulators must satisfy the following requirements[16]:
(1) simulate large-scale environments and guarantee
both low-level details and high-level scenes; (2) provide
simple integration and comparison of different sensors,
actuators, and controllers; and (3) perform automated
regression testing to enable agile and customized
development.

Currently, a wide variety of simulation frameworks
are available, each of which has pros and cons. PTV
Vissim[1], Mathworks Simulink[2], and SUMO[3] provide
data-import functionality from OpenStreetMap and can
analyze traffic densities and weather conditions on
multiplatform machines. However, they cannot simulate
different cars, sensors, or controller models due to their
purely high-level nature. Gazebo is a popular simulation
framework[4] that enables the design of complex maps,
but it cannot import OpenStreetMap and provides limited
support for large-scale scenario simulations. Although
the CarSim[5] simulator has its own physics engine, it
runs only on the Windows system and does not support
cross-platform machines. With the recent developments
in computer graphics and rendering technology, several
game engines have been developed and applied
in autonomous-driving research. DeepDriving[6], a
perception-based method for predicting affordance
indicators for driving vehicles, directly maps an input
image to several key indicators related to the cost
of driving. These indicators also provide complete
descriptions of urban scenes to enable the control
of vehicle behavior. References [7, 8] emphasize the
importance of creating large urban datasets with a pixel-
wise label map. Reference [7] produced a pixel-level
semantic map with a computer game and graphics
hardware, whereas Ref. [8] created different high-
resolution video frames annotated with ground-truth data
for high-level and low-level vision tasks. TORCS[9] is a
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highly portable open-racing car simulator that supports
cross-platform development and deployment (i.e., Linux,
Windows, and FreeBSD). Originally developed as a
car racing game, it has subsequently been used for
autonomous-driving research.

The open-source CARLA[15] simulator has been
developed from the ground up to support the
development, training, and validation of autonomous-
driving systems. It supports flexible specification and
setup of sensor suites, environmental conditions, and
full control of all the static and dynamic actors
in autonomous-driving research. Moreover, different
versions of CARLA have been released on various
platforms, with functional APIs for system validation. In
CARLA, three general approaches are used to evaluate
autonomous-driving performance. First, the classic
modular pipeline comprises a vision perception module,
a rule-based planner, and a maneuver controller. Second,
an end-to-end imitation learning strategy, which uses
sensory input for training driving commands, is adopted.
Third, deep reinforcement learning is used to explore
and analyze end-to-end driving behavior. Due to its
generalizability and practicality, we used the CARLA
simulator to conduct our autonomous-driving system
research.

2.2 Environmental perception

In an autonomous-driving system, environmental
perception[17] includes object localization, offline
obstacle and road mapping, moving-obstacle tracking,
and traffic-signalization detection and recognition.
In this study, we mainly focused on the multi-
object three-dimensional (3D) perception problem in
autonomous-driving systems. Generally, the role of
environmental perception is to detect objects and derive
their localization information from sensor data in the
urban scene. Previous research on multiobject perception
for autonomous driving can be roughly divided into
the handcrafted feature algorithm and deep-learning[11]

methods. Handcrafted feature algorithms depend heavily
on professional knowledge and skills to extract
representative features; thus, it is difficult to achieve
satisfactory performance in complex environments using
this algorithm. With the recent advent of the deep-
learning method, a variety of 3D perception models have
been designed for detecting attended objects in a scene
using data from different sensors. This method can be
further classified into camera-based, LiDAR-based, and
multisensor fusion methods.

Camera-based methods perform 3D object detection
directly from two-dimensional (2D) RGB images by first
regressing the proposed 2D object and then predicting
the 3D bounding-box result on the basis of its geometric
relationship or constraint in 3D space[18–21]. The
Mono3D[18] method infers a monocular 3D bounding
box with semantic segmentation and contextual features
(e.g., size, location, and shape). In Ref. [19], geometric
constraints are imposed on a 2D bounding box and a 3D
bounding box with the object pose which is produced
from a single image. To mimic a LiDAR signal from
images, pseudo-LiDAR[20, 21] was defined, whereby a set
of pseudo points is generated from an RGB image using
a depth-estimation algorithm.

LiDAR-based detection is the mainstream method
used for 3D object perception in autonomous-driving
systems. This method uses a PointNet architecture
to directly consume raw point-cloud data[22–24], or it
transforms points into a regular voxel representation[25]

and adopts a convolutional operation for 3D object
detection[26, 27]. PointNet architectures[22, 23] take point-
cloud data as input and apply a max-pooling operation
to retain the permutation invariance of unordered
points. On this basis, the TANet method[24] designs
triple attention modules and a coarse-to-fine regression
strategy for robust object localization. Reference [25]
proposed VoxelNet, which uses a point-voxel encoding
module that converts point-cloud data into a regular grid
format for feature extraction. Subsequently, Ref. [26]
reported the development of a 3D sparse convolutional
operation to accelerate voxel feature encoding and 3D
object detection.

The multisensor fusion method has emerged as a
promising approach that uses multimodal input data
(i.e., image and point-cloud data) and combines their
respective feature maps using various fusion strategies
to achieve a more accurate and robust detection[28–31].
MV3D[28] encodes sparse 3D point-cloud data with
compact multiview representation and combines region
features from multiple views for object detection in 3D
space. The frustum PointNet[29] framework leverages a
mature 2D object detector to generate region proposals
and precisely estimates 3D bounding boxes under
the constraint of the geometric relationship. AVOD[30]

aggregates views for object detection in autonomous-
driving scenarios. In the proposed network, a shared
feature map is generated from point-cloud and RGB
image data, and the multimodal feature maps are then
fused for reliable 3D object proposals via a region
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proposal network. This method is effective for object
detection in urban scenes. In this study, we developed an
MSFP network based on AVOD architecture to realize
3D object detection in an autonomous-driving system.

3 Methodology
In this section, we introduce the simulated CarlaSim
dataset and the proposed MSFP model, separately.

3.1 CarlaSim

To reduce the data-acquisition cost and facilitate
autonomous-driving simulation testing, we use the
CARLA simulator for generating high-quality urban
scene data. CARLA includes various functionalities, i.e.,
LiDAR-to-camera projection, 2D and 3D bounding box
labeling, and sensor calibration matrices. For simplicity,
the formats of the annotation and calibration files are the
same as those used in the KITTI benchmark; this makes
them compatible with several existing object-detection
models. Here, we set LiDAR and camera sensor suites
in the CARLA simulated environment; these suites are
placed and synchronized such that a full LiDAR rotation
is possible in each image. In other words, this setting
provides an approximate correspondence relationship
between the points obtained from the LiDAR and camera
sensors. Subsequently, the raw data are projected to a
unified coordinate space; then, the visible object is found
in the urban scene, and its coordinates are determined
relative to those used in KITTI.

Free content in the CARLA simulator includes
different urban layouts, various vehicle models,

pedestrians, buildings, and traffic infrastructure. A
variety of environments can also be specified, including
weather conditions, illumination, and time of day. The
simulation platform also provides signals, such as the
GPS coordinates, speed and acceleration information,
density of vehicles, collision data, and data regarding
other infractions, which can be used to train driving
behavior. The CARLA simulator also provides server-
client environment simulation and a functional interface
between the world and an agent. The server performs
the simulation and renders the scenarios, and the client
implements interactions between the server and agent
via socket communication.

In our data generation research, we chose Town01
and Town02 in the CARLA simulator as the scenes.
In total, the CarlaSim dataset comprises 15 000 image-
point pairs, which are used to simulate real-world traffic
scenarios as shown in Fig. 1. In comparison with the
mainstream autonomous-driving dataset, i.e., KITTI,
our CarlaSim dataset has approximately 18 624 cars
and 6872 pedestrians, which is less than the KITTI
benchmark. We note that the KITTI data were acquired
from busy traffic scenarios in urban environments,
whereas our CarlaSim dataset was generated from a
suburban environment, in which the distribution of
objects is relatively sparse and simple. Furthermore,
the instances generated in the CarlaSim dataset have
smaller object sizes and scales, which make them harder
to detect. The sparsity and variety of the CarlaSim
dataset make it useful for perception model validation in
autonomous-driving research.

Fig. 1 Generated samples in the CarlaSim dataset. Noted that images in the left and right columns are generated from Town01

and Town02 scenes in the CARLA simulator, respectively.
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3.2 MSFP

Based on the AVOD[30] model, we designed an MSFP
network for camera-LiDAR object detection. Figure 2
shows the overall model architecture, which mainly
comprises camera and LiDAR streams, feature fusion
module, and Region Proposal Network (RPN).

3.2.1 Camera and LiDAR streams
Camera and LiDAR streams are used for processing
image and point-cloud data, respectively. Prior to feature
extraction, we perform preprocessing operations on the
point cloud. Specifically, the point cloud is projected
to six-channel Bird’s-Eye View (BEV) maps from a
voxel grid representation at 0.1 m resolution and is then
cropped at [–40 m, 40 m]�[0 m, 70 m] to points within
the camera’s field of view. The first five channel BEV
maps are encoded using the maximum heights of points
in each grid cell, and the remaining BEV map contains
density information of the points in each cell.

Next, we adopt the same feature extractors for the
image and point-cloud data, which have an encoder-
decoder architecture for aggregating multiscale feature
representations. The encoder has four VGG[32]-style
convolutional layers, with half the number of channels.
Taking an M �N �D image from the BEV map as
example, the size of outputting feature map is eight-
time lower than that of input in the encoder. For the
decoder, we developed a bottom-up architecture[33] that
hierarchically upsamples the feature map to the original
input size. The decoder takes the output of the encoder
as an input and generates a newM �N �D feature map
via convolutional-transpose and feature-concatenation
operations. The final feature map has high resolution and
representational power and is shared by the subsequent
RPN.

3.2.2 Feature fusion module
To combine the multimodal feature representations, we
introduce a feature fusion module that performs crop
and resize operations to calibrate and fuse intermediate
feature maps. Given an anchor box in 3D, we adopt
a 1 � 1 convolution for processing the image and
point feature maps, which significantly reduces the
dimensionality and computational cost. To some extent,
the 1 � 1 convolution also learns to select discriminative
features that contribute significantly to the generation
of region proposals. Subsequently, regions of interest
are obtained by projecting the anchor onto the image
and BEV feature maps. Then, corresponding regions are
adopted for extracting feature-map crops from each view.
The bilinear method is then used to resize feature vectors
of equal length, and the cropped feature map follows the
aspect ratio of the projected anchor box and provides a
more reliable feature-crop result.

3.2.3 RPN
The RPN consumes the fused feature map and
generates 3D region proposals for object detection.
Similar to the 2D object detector[34, 35], we introduce
the RPN architecture to regress the differences
between the anchor and ground-truth boxes.
These anchor boxes are parameterized as their
center points .xa; ya; za; la; wa; ha; �a/, and the
corresponding ground-truth points are denoted as
.xg ; yg ; zg ; lg ; wg ; hg ; �g/, where .x�; y�; z�/ is the
centroid coordinates of bounding boxes in 3D space,
.l�; w�; h�/ defines the size of the box, and �� is
the yaw angle along the z-axis. As mentioned above,
the output feature crops are equal-size vectors from
both streams, whose element-wise means are fused.
We used a fully connected layer with 256 channels

Fig. 2 Architecture of MSFP model. It is noted that the capital “F” denotes element-wise fusion operation between image and
point feature maps.
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for performing the 3D bounding-box regression and
obtaining the objectness score. The coordinates of
the box are regressed by computing the difference,
�r D .�x;�y;�z;�l;�w;�h;��/, between the
anchor and ground-truth boxes, as demonstrated in the
following:

�x D
xg � xa

da
; �y D

yg � ya

da
; �z D

zg � za

da
;

�l D log
�
lg

la

�
; �w D log.

wg

wa
/;�h D log

�
hg

ha

�
;

�� D �g � �a (1)
The objectness score prediction distinguishes the output
belonging to the targeted object or background. We use
Non-Maximum Suppression (NMS) method to filter out
redundant proposals and select the top 1024 proposals
during model training and inference.

4 Experiment

In this section, we conducted case studies to test
the model perception performance using the real-
world and simulated datasets. Then, we performed a
comprehensive analysis of the results to determine the
effectiveness of the CarlaSim dataset and MSFP model.

4.1 Training details

We adopted the KITTI and CarlaSim datasets for model
training and evaluation. The KITTI dataset, which is a
widely used autonomous-driving benchmark, contains
7481 training samples and 7518 test samples. We
assigned 3712 samples for training and 3769 samples
for validation, as commonly done in the work[28]. We
then randomly halved the CarlaSim dataset for model
training and validation. For evaluation, we considered
three difficulty levels (i.e., easy, moderate, and difficult),
as proposed by KITTI, and simultaneously computed
the Average Precision (AP) values for the car and
pedestrian classes. Specifically, AP3D denotes the mean
3D detection precision value of all classes, and APBEV
denotes the average precision value of all classes in the
BEV. To ensure a fair comparison, we used 40 recall
points instead of 11, as demonstrated in the study of
Ref. [12], and we set the Intersection-of-Uion (IoU)
threshold to 0.7 and 0.5 for the car and pedestrian classes,
respectively.

We trained the MSFP model for 120 000 epochs
using the ADAM[36] optimizer with an initial learning
rate of 0.0001, which decays exponentially every
30 000 iterations with a decay factor of 0.8. We used
the cosine annealing strategy to realize more stable
training and smooth optimization. Considering the
difference in modality between a camera image and
a LiDAR point, it is difficult to guarantee correct
correspondence between a pixel and a point after spatial
augmentation transformation. Therefore, we performed
no data augmentation during model training and tested
the perception performance from scratch.

For the model training loss, we employ multi-task
loss function, that comprises of Smooth-L1 loss for
3D bounding-box regression and cross-entropy loss for
objectness score prediction, respectively. The respective
equations are shown in the following:

L D Lreg C Lcls (2)

Lreg D
1

Npos

X
i

smoothL1
.r;�r/ (3)

Lcls D
1

Nbox

X
i

�˛.1 � pi /
 log.pi / (4)

where Lreg and Lcls are box regression and classification
loss, respeclively, Npos is the number of positive boxes,
Nbox is the total number of boxes, pi denotes the
objectness score for the i-th box, and hyperparameter
˛ D 0:25 and  D 2.

4.2 Experimental results

First, we considered the performance of the MSFP
model on the KITTI benchmark. As shown in Table 1,
the MSFP model achieved outstanding performance
on AP3D and APBEV metrics. Specifically, the car
AP3D values are 83:48%, 73:91%, and 67:88% at
the easy, moderate, and difficult levels, respectively,
and the corresponding car APBEV values are 89:30%,
86:25%, and 78:58%, respectively. For the pedestrian
class, the AP3D values are 41:04%, 37:11%, and
32:02%, respectively, and the APBEV values are
44:16%, 39:57%, and 38:13% at the easy, moderate,
and difficult levels, respectively. These results indicate
that the MSFP model can consistently perceive objects
accurately. With respect to the running speed, we

Table 1 Performance evaluation results of MSFP model trained and validated both on KITTI dataset.

Class
AP3D.%/ APBEV .%/ Inference time (ms)

Easy Moderate Hard Easy Moderate Hard
Car 83:48 73:91 67:88 89:30 86:25 78:58 117

Pedestrian 41:04 37:11 32:02 44:16 39:57 38:13 122



Chunmian Lin et al.: 3D Environmental Perception Modeling in the Simulated Autonomous-Driving Systems 51

tested the inference time, starting from when the sample
data were fed into the model until the detection result
was generated, and then took the average time of all
the validation samples. It took 117 ms to detect the
car and 122 ms to detect the pedestrian in the scene,
which demonstrates the efficiency of the perception
performance of the proposed model.

Next, we trained and tested the MSFP network using
the CarlaSim dataset to evaluate its performance in
the simulated environment. As shown in Table 2, the
MSFP model still demonstrates excellent detection
performance on both classes, even though it was trained
using only simulated data, yielding car AP3D values
of 81:76%, 72:54%, and 67:25%; car APBEV values
of 88:63%, 85:14%, and 77:69%; pedestrian AP3D

values of 40:12%, 35:98%, and 31:20%; and pedestrian
APBEV values of 43:09%, 38:33%, and 36:87% at the
easy, moderate, and difficult levels, respectively. The
inference time required to detect objects was 119 ms
for the car and 121 ms for the pedestrian. The AP
values obtained by the MSFP model trained using the
CarlaSim dataset were slightly lower than those obtained
by the MSFP model trained using the KITTI dataset,
but the inference time was similar for the two datasets,
thus confirming the accurate and efficient perception
performance of the proposed model on the simulated
dataset.

Last, to explore the generalizability of the MSFP
model from simulated to real-world scenes, we trained
the MSFP model on the CarlaSim dataset and used the
KITTI sample for validation. For a fair comparison, we
randomly selected the same number of samples from the
training split of the CarlaSim dataset for model training
and then validated the model performance on the KITTI
validation split, as presented in Table 3. Quantitatively,
the model achieved carAP3D values of 83:32%, 73:81%,
and 68:06%; car APBEV values of 89:29%, 86:13%, and
78:66%; pedestrian AP3D values of 41:25%, 37:07%,

and 32:14%; and pedestrian APBEV values of 44:28%,
40:22%, and 37:99% at the easy, moderate, and difficult
levels, respectively. A comparison of the MSFP model
performance results which are obtained when trained
and validated using the KITTI dataset shows that they
are comparable or even slightly more accurate in the
car and pedestrian classes, indicating that our MSFP
model can generalize well from the unreal to real-
world scenes. Compared to the MSFP model trained and
evaluated using the CarlaSim dataset, it obtained better
perception performance at all three levels of difficulty.
To some extent, these results indicate that the simulated
CarlaSim data can be substituted for real-world data
in autonomous-driving simulation tests, thereby greatly
reducing the data-acquisition cost.

For better visualization, Fig. 3 lists several perception
results obtained using our MSFP model on the CarlaSim
dataset, where we can clearly see that the MSFP model
can perceive object localizations and distinguish object
classes accurately, even under different weather or
lighting conditions.

5 Conclusion

In this study, we investigated the 3D environmental
perception ability of a simulated autonomous-driving
system. Using the CARLA simulator, we generated
unreal traffic scenarios to obtain the CarlaSim dataset,
which contains 15 000 camera-LiDAR samples with
annotations and calibration matrices. We then developed
an MFSP model for object detection in the scene. We
performed a wide variety of experiments on the KITTI
and CarlaSim datasets; the results demonstrated the
effectiveness and efficiency of the CarlaSim dataset and
the outstanding perception performance of the MSFP
model. The good generalizability of the MSFP model
from simulated to real-world data demonstrates that
autonomous-driving simulation research can greatly
reduce the data-acquisition cost and promote the use

Table 2 Performance evaluation results of MSFP model trained and validated both on CarlaSim dataset.

Class
AP3D.%/ APBEV .%/ Inference time (ms)

Easy Moderate Hard Easy Moderate Hard
Car 81:76 72:54 67:25 88:63 85:14 77:69 119

Pedestrian 40:12 35:98 31:20 43:09 38:33 36:87 121

Table 3 Performance evaluation results of MSFP model trained on CarSim and validated on KITTI dataset.

Class
AP3D.%/ APBEV .%/ Inference time (ms)

Easy Moderate Hard Easy Moderate Hard
Car 83:32 73:81 68:06 89:29 86:13 78:66 117

Pedestrian 41:25 37:07 32:14 44:28 40:22 37:99 119
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Fig. 3 Visualization results achieved by MSFP model on CarlaSim dataset.

of autonomous-driving system testing.
In the future, three main ideas are worthy of deeper

exploration. First, we are interested in obtaining more
data from rare scenes, the quality of which must be
quantitatively measured to evaluate their effect on model
performance. Second, a powerful perception model
should be developed, especially one that is capable of
multimodal fusion. The development of ways to fully
exploit multiple feature maps to obtain complementary
information is also highly desirable. Finally, to ensure
the integrity of autonomous-driving systems, it is
becoming increasingly important to develop methods for
harmonizing different modules to enable functionality
testing and system validation from simulated to real-
world environments, which is a long-term goal of
autonomous driving.
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