
 

Estimation-Correction Modeling and Chaos Control of Fractional-
Order Memristor Load Buck-Boost Converter

Lin Wang, Cong Wang*, Hongli Zhang*, Ping Ma, and Shaohua Zhang

Abstract: A  fractional-order  memristor  load  Buck-Boost  converter  causes  periodic  system  oscillation,

electromagnetic  noise,  and other  phenomena due to  the frequent  switching of  the switch in  actual  operation,

which is detrimental to the stable operation of the power electronic converter. It is of great significance to the

study of the modeling method and chaos control strategy to suppress the nonlinear behavior of the Buck-Boost

converter  and  expand  the  safe  and  stable  operation  range  of  the  power  system.  An  estimation-correction

modeling  method  based  on  a  fractional  active  voltage-controlled  memristor  load  peak  current  Buck-Boost

converter  is  proposed.  The  discrete  numerical  solution  of  the  state  variables  in  the  continuous  mode  of  the

inductor  current  is  derived.  The  bursting  oscillation  phenomenon  when  the  system  introduces  external

excitation  is  analyzed.  Using  bifurcation,  Lyapunov  exponent,  and  phase  diagrams,  a  large  number  of

numerical  simulations  are  performed.  The  results  show  that  the  Buck-Boost  converter  is  chaotic  for  certain

selected  parameters,  which  is  the  prerequisite  for  the  introduction  of  the  controller.  Based  on  the  idea  of

parameter  perturbation  and  state  association,  a  three-dimensional  hybrid  control  strategy  for  a  fractional

memristor  Buck-Boost  converter  is  designed.  The  effectiveness  of  the  control  strategy  is  verified  by

simulations, and it is confirmed that the system is controlled in a stable periodic state when the external tunable

parameter s,  which  represents  the  coupling  strength  between  the  state  variables  in  the  system,  gradually

decreases  in  [−0.4,  0].  Compared  with  integer-order  controlled  systems,  the  stable  operating  range  of

fractional-order controlled systems is much larger.

Key words: fractional-order  memristor  Buck-Boost  converter; estimation-correction  algorithm; hybrid  control  strategy;

bursting oscillation

1    Introduction

Buck-Boost  converters,  as  crucial  research  subjects  in
integrated  power  electronics,  have  propelled  the  rapid
progress of electronic products and are widely used in
industrial  and  commercial  sectors,  such  as  electric

vehicles[1],  portable  electronic  devices[2],  and
photovoltaic  power  generation  systems[3, 4].  However,
the  Buck-Boost  converter  exhibits  strong  nonlinear
characteristics,  including  period-double  bifurcation,
boundary  collision  bifurcation,  and  chaos[5],  which
directly  impact  the  stable  operation  and  safe  and
reliable  performance  of  the  converter  system.
Currently,  by  conducting  research  on  various  DC-DC
converters  from  different  perspectives[6, 7],  productive
research  results  and  a  series  of  effective  control
methods  have  been  achieved[8–10].  Zheng  and  Peng[11]

employed passive delay feedback and improved sliding
mode  control  methods  for  a  voltage  control  Buck-
Boost  converter  operating  in  chaotic  bifurcation  and
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intermittent  modes  to  achieve  the  stable  operation  of
the  control  system  under  a  single-cycle  condition.
Wang  et  al.[12] utilized  the  perturbation  of  resonance
parameters to control the chaos of bidirectional DC-DC
converters, improving their stability in DC microgrids.
Zhang  et  al.[13] proposed  and  verified  a  fault-tolerant
sampling  data  controller  suitable  for  a  Buck  converter
that resolved the issue of power system instability.

Due  to  their  nonlinearity,  plasticity,  and  nonvolatile
nature,  memristors  have  been  used  to  develop  various
chaotic  oscillation  circuits[14],  and  neuromorphic
computing  circuits[15] have  been  developed  in  recent
years.  Additionally,  incorporating  a  memristor  load
into a Buck-Boost converter allows for no alteration of
the  bifurcation-to-chaos  path,  the  shifting  of  the
bifurcation  point  forward,  a  narrower  stable  operating
range,  and  an  improved  nonlinear  response.  Bao
et  al.[16] proposed  a  peak  current  mode  memory  Buck
converter  and  investigated  the  dynamic  characteristics
of  a  peak  current  mode  (PCM)  memory  Buck-Boost
converter,  revealing  the  dynamic  influence  of  the
memory  load  on  the  Buck-Boost  converter.  Currently,
research  on  combining  memristors  and  DC-DC
converters  has  extended  from  integers  to  fractional
orders.  Wu  et  al.[17] simulated  the  dynamics  of  a
fractional  memristor  Boost  converter  operating  in  the
inductor  current  discontinuous  mode  and  discovered
that  the  fractional-order  and  memory  load  circuit
system  could  expend  the  stable  working  range  of  the
Boost  converter.  Zhang  et  al.[9] used  time-delayed
feedback  control  to  suppress  the  bifurcation  and
chaotic  behavior  of  Boost  converters  in  PCM  with
memristor  loads  and  verified  the  effectiveness  of  the
control.  Yang  et  al.[18] suppressed  the  chaos  by
applying  a  small  disturbance  to  the  peak  current  of  a
switched-inductor Buck-Boost (SIBB) converter with a
memristor,  ensuring  the  normal  operation  of  the
converter.

Fractional-order  physical  models  offer  a  more
accurate  representation  of  the  physical  properties  of
nonlinear  systems  compared  to  integer-order  physical
models[19, 20].  Therefore,  studying  the  mathematical
modeling  of  fractional-order  memristor  load  Buck-
Boost  converters  is  essential  in  promoting  the
application  and  extension  of  fractional-order  theory  in
DC-DC  converters.  The  numerical  simulation  method
and  analytical  modeling  method  commonly  used
analytical  approaches  for  nonlinear  systems[21, 22].
Yang  et  al.[23] studied  a  non-integer  order  flyback

converter,  modeled  the  state  space,  and  analyzed  the
converter  for  AC/DC, showing that  non-integer  orders
had  a  smaller  overshoot  compared  to  first-order
systems.  The  Bogacki-Shampine  method  and  the
estimation-correction  method[24] are  classical
algorithms  in  numerical  simulation  algorithms  that
solve  state  variables  based  on  the  characteristics  of
circuit  components.  Among  these  algorithms,  the
estimation-correction  algorithm[25] is  a  powerful
numerical  tool  for  studying  the  nonlinear  dynamic
behavior  of  a  converter  by  approximating  the  exact
solution  of  non-integer  order  transformer  state
variables in the time domain.

Nonlinear  phenomena such as  bifurcation and chaos
cause periodic oscillation, electromagnetic interference,
sudden  system  failure,  and  other  phenomena  that
impede  the  stable  operation  of  power  electronic
systems.  Consequently,  the  proficient  control  strategy
of  fractional-order  converters  commands  substantial
scholarly  attention.  Fractional  calculus  is  a  promising
tool for improving the accuracy of physical models and
controlling the dynamic behavior of nonlinear systems
closer to real-world values[26].  Xie et al.[27] proposed a
new  adaptive  sliding  mode  controller  that  combined
fractional  calculus  and  synchronous  control  to  enable
robustness,  a  small  steady-state  error,  and  a  fast
response  in  a  Buck-Boost  converter.  Mohadeszadeh
et  al.[28] developed  a  fractional  reset  controller  for
disturbance  elimination  and  stable  system  output  in
fractional  Buck  converter  simulations,  proving  the
applicability and effectiveness of the controller.

The  literature  analysis  indicates  that  recent  years
have seen in-depth research on modeling and analyzing
memory  load  converters.  However,  there  is  a  lack  of
research  on  dynamic  analysis  and  control  strategy
design  based  on  fractional-order  estimation-correction
modeling methods.  Thus,  this  paper proposes a hybrid
control  strategy  based  on  the  mathematical  model
constructed  through  the  estimation-correction
algorithm.  This  strategy  effectively  suppresses  the
chaos  phenomenon  of  the  Buck-Boost  second-order
current feedback converter with a fractional memristor
load  in  the  stable  cycle  operating  condition  by
combining state correlation and parameter perturbation.

The  main  contributions  of  this  study  can  be
summarized as follows:

(1)  The  estimation-correction  method  accurately
discretizes  and  numerically  solves  the  three-
dimensional  differential  equation  system  of  a
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fractional-order  memristor  converter,  allowing  for  the
accurate  modeling  and  direct  calculation  of  the
converter’s  inductor  current,  capacitor  voltage,  and
memristor capacitor voltage.

(2)  A  hybrid  control  strategy  is  implemented  to
couple  control  state  variables  by  adjusting  the
externally  adjustable  parameter s.  Additionally,  the
resulting  bifurcation  diagram  of  the  converter  output
voltage, the phase diagram of the inductor current and
capacitor  voltage,  and  the  time  domain  waveform  of
each  state  variable  are  analyzed  to  confirm  the
effectiveness  of  the  designed  three-dimensional  non-
integer order controller.

2    Fractional-Order Definition
mDαtThe  calculus fractions are defined as[29]

 

mDαt =


dα

dtα
, α > 0;

1, α = 0;w t

m
(dτ)−α, α < 0

(1)

α t mwhere  is  the  fractional-order,  and  and  are  the
upper and lower limits, respectively.

Caputo fractional-order definition:
 

C
mDαt f (t) =

1
Γ(n−α)

w t

m

f (n)(τ)
(t−τ)α−n + 1 dτ,

0 ⩽ n−1 < α ⩽ n
(2)

n α

Γ(·)
where  is  the  smallest  integer  greater  than  order ,
and  is gamma function, expressed as follows:
 

Γ(x) =
w ∞

0
tx−1e−tdt (3)

e−t twhere  is the exponential function for time .

α

The  Laplace  transform  of  the  Caputo  differential
operator of order  is
 

L
{
C
mDαt f (t)

}
= sαF(s)−

n−1∑
k=0

sk
[
dα−1−k f (t)

dtα−1−k

]
t=0

n−1 < α ⩽ n

, (4)

When the initial value of the system is set to zero, the
Laplace  transform  expression  for  the  fractional
derivative is simplified to
 

L
{
C
mDαt f (t)

}
= sαF(s) (5)

3    Estimation-Correction  Modeling  and
Dynamic Analysis

3.1    Fractional-order memristor model

In this paper, an active voltage-controlled memristor is

selected,  as  shown  in Fig.  1. Figure  1a displays  the
equivalent  circuit  of  the  fractional-order  memristor.
Figure 1b displays the model. In Fig. 2, the resistor R in
the Buck-Boost converter is replaced by the memristor
circuit model in Fig. 1b[30].

A  fractional  unified  mathematical  model  can  be
derived from the memristor circuit model:
 

dγv0

dtγ
=

Vm

R3Cq
0

− v0

R4Cq
0

,

im =W(v0)Vm =
1

R8

(
1− R7

R5
+

R7

R6
gv0

)
Vm,

W(v0) =
im
Vm
=

1
R8

(
1− R7

R5
+

R7

R6
gv0

) (6)

Vm = Asin(2π f )
f

A = 2 V f = 51 kHz γ

Vm− iL

Vm− iL

Given  a  sinusoidal  input  voltage ,
where A is the amplitude of the input voltage and  is
the  excitation  frequency.  If  the  excitation  amplitude

,  excitation  frequency ,  and  order 
of  0.50,  0.85,  0.90,  0.96,  and  1.00  are  entered,  the
comparison  curve  of  each  order  of  the
memristor is shown in Fig. 3a. Furthermore, the 
characteristic curve of the variable order memristor is a
narrow hysteresis  loop  with  an  oblique “8” shape  that
 

+

−

U1

U2

R1 R2

R3

R4

R5

R6U4 U3

v0

R7

R8

+

C0
γ

im

Vm

im

Vm W (vm)

Fractional-order
capacitor

(a) (b) 
Fig. 1    Equivalent  circuit  of  (a)  a  fractional-order
memristor and (b) its model.
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Fig. 2    Fractional-order peak current type memristor Buck-
Boost converter schematic.
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γ = 0.50

shrinks at the origin, and when the order of the system
decreases,  the  area  of  the  side  lobe  of  the  narrow
hysteresis  loop  changes  in  negative  correlation  to  the
order  and  then  gradually  shrinks  to  a  single-valued
function.  When ,  the  tight  hysteresis  loop
changes  from  two  and  four  quadrants  to  one  and  two
quadrants,  as  shown  in Fig.  3b.  Hence,  the  memristor
appears positive and passive. The size of the side lobe
area can reflect the strength of the memrization of each
array  of  memristors,  which  are  positively  correlated
with each other.

3, 6, 9, and 12 kHz
γ = 0.85 A = 2 V

f

Figure  3c shows  the  tight  hysteresis  loop  at  the
system  frequency  at  for  a  fixed
system order of  and an amplitude of .
It can be observed that with the continuous increase of
the system frequency , the area of the side lobe of the
narrow hysteresis loop gradually decreases and shrinks
to  a  straight  line  at  infinite  frequency,  which
corresponds  to  the  essential  characteristics  of
memristors.

γ = 0.96
f = 51 kHz A 3, 6, 9,
and 12 V

Figure  3d shows  the  shape  of  the  narrow  hysteresis
loop at the system order , excitation frequency

,  and  system  amplitude  at 
.  It  can  be  observed  that  the  area  of  the  tight

hysteresis  loop  of  the  system  is  positively  correlated
with  the  change in  the  amplitude  of  the  input  voltage,
but  its  oblique “8” shape  does  not  change  with  the
amplitude.

By  numerically  simulating  the  tight  hysteresis  loop
of the memristor using MATLAB, it is proved that the
fractional  voltage-controlled  memristor  satisfies  the
essential characteristics of the memristor element.

3.2    Estimation-correction  modeling  of  a
fractional-order  memristor  Buck-Boost
transformer

W(vm)

Figure  2 shows  the  system  circuit  diagram  of  the
system  in  peak  current  mode. Figure  2a shows  the
Buck-Boost  converter  model. Figure  2b shows  the
memristor  load  model.  The  circuit  model  of  the
fractional-order  memristor  Buck-Boost  converter  is
formed by replacing the pure resistance R in the Buck-
Boost converter with the memristor load model 
and  expanding  the  capacitance  and  inductance  in  the
circuit  to  the  fractional-order  based  on  the  theory  of
fractional calculus.

The  relationship  between  the  fractional  component
voltage and current is defined as[31]

 

i(t) =C
dβV(t)

dtβ
(7)

 

V(t) = L
dαi(t)
dtα

(8)

Ton

iL ⩾ Iref

Toff

As shown in Fig. 4, the peak current Iref is set, driven
by the first clock cycle T. Switch Q is off, the diode is
off,  and  the  mode  continues  for  time  interval ,
which  is  called  State  1.  When  the  inductor  current

, the switch Q is turned off and the diode is on,
and the mode continues at interval , which is called
State 2. Until the second clock goes up, the cycle ends,
and the cycles continue in turn.

When  the  system  is  operating  in  continuous  current
mode:

TonStatus 1: Switch Q is closed and diode D is off ( )
 

L
dαiL

dtα
= E,

C
dβvc

dtβ
=

1
R8

(
1− R7

R5
+

R7

R6
gv0

)
vc,

C0
dγv0

dtγ
= − vc

R3
− v0

R4

(9)

ToffStatus 2: Switch Q is open and diode D is on ( )
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Fig. 3    Numerical  simulation  of  a  fractional-order
memristor.

 

Iref

clock

id Ton Toff

id+1 iL

d

T d+1 2T
 
Fig. 4    Buck-Boost converter inductor current waveform in
peak current mode.
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L
dαiL

dtα
= −vc,

C
dβvc

dtβ
= iL +

1
R8

(
1− R7

R5
+

R7

R6
gv0

)
vc,

C0
dγv0

dtγ
= − vc

R3
− v0

R4

(10)

Depending  on  the  switching  conditions  of  the
converter, a unified mathematical model of the system
can be created during the cycle:
 

dαiL

dtα
= Q

E
L
− (1−Q)

vc

L
,

dβvc

dtβ
= (1−Q)

iL

C
+

1
CR8

(
1− R7

R5
+

R7

R6
gv0

)
vc,

dγv0

dtγ
= − vc

C0R3
− v0

C0R4

(11)

Dq
*y(x) = f (x,y(x))

y(u)(0) = y(u)0 , u = 0,1, ...,m−1

By  combining  the q-order  differential  equation
 defined  by  Caputo  with  the  initial

condition  and  its
discretization,  a  model  for  estimating  and  correcting
the fractional calculus equation is obtained:
 

yr (td+1) =
[q]−1∑
u=0

tu
d+1

u!
y(u)

0 +
rq

Γ(q+2)
f
(
td + 1,y

p
r (td + 1)

)
+

rq

Γ(q+2)

d∑
j=0

a j,d+1 f
(
t j,yr

(
t j
))

(12)

The correction factor is given below:
 

a j,d + 1 =


dq+1− (d−q)(d+1)q, j = 0;

(d− j+2)q+ (d− j)q+1−2(d− j+1)q+1,

1 ⩽ j ⩽ d;
1, j = d+1

(13)

m = [q] y(u)
0where  and  are  known  initial  values.  The

system parameters are set as indicated in Table 1.
The  fractional-order  estimation-correction  model  of

the  Buck-Boost  converter  with  the  memristor  load  at
continuous conduction mode (CCM) with the switching
period T can be obtained as follows:

 

id+1 = i0+
rα

Γ(α+2)

(
Q

E
L
− (1−Q)

vcp
d+1

L

)
+

rα

Γ(α+2)

d∑
i=0

aαi,d+1

(
Q

E
L
− (1−Q)

vi
c

L

)
,

vd+1
c = v0

c +
rβ

Γ(β+2)

(
(1−Q)

ip
d+1

C
+

1
CR8

(
1− R7

R5
+

R7

R6
gv0

p
d+1

)
vc

p
d+1

)
+

rβ

Γ(β+2)

d∑
i=0

aβi,d+1

(
(1−Q)

ii
C
+

1
CR8

(
1− R7

R5
+

R7

R6
gvi

0

)
vi

c

)
,

vd+1
0 = v0

0+
rγ

Γ(γ+2)

(
−

vcp
d+1

C0R3
−

v0p
d+1

C0R4

)
+

rγ

Γ(γ+2)

d∑
i=0

aγi,d+1

− vi
c

C0R3
−

vi
0

C0R4



(14)

i0 v0
c v0

0

aαi,d+1 aβi,d+1 aγi,d+1

ip
d+1 vc

p
d+1 v0

p
d+1

where , ,  and  are  the  initial  values  of  the
inductor  current,  capacitor  voltage,  and  memristor
capacitor voltage, respectively. , ,  and 
are  the  correction  factors  of  the  inductor  current,
capacitor  voltage,  and  memristor  capacitor  voltage,
respectively. , ,  and  are  approximate
estimates  of  the  initial  values  of  the  inductor  current,
capacitor  voltage,  and  memristor  capacitor  voltage,
respectively.

According  to  Eq.  (13),  the  expression  for  the
correction coefficient for each state variable in Eq. (14)
can be written as
 

aαi,d+1 =


dα+1− (d−α)(d+1)α, i = 0;

(d− i+2)α+ (d− i)α+1−
2(d− i+1)α+1, 1 ⩽ i ⩽ d;
1, i = d+1;

aβi,d+1 =


dβ+1− (d−β)(d+1)β, i = 0;

(d− i+2)β+ (d− i)β+1−
2(d− i+1)β+1, 1 ⩽ i ⩽ d;
1, i = d+1;

aγi,d+1 =


dγ+1− (d−γ)(d+1)γ, i = 0;

(d− i+2)γ + (d− i)γ+1−
2(d− i+1)γ+1, 1 ⩽ i ⩽ d;
1, i = d+1

(15)

Approximate estimate of the initial value of the state
variable is as follows:

 

t=td+1Table 1    Time system parameter setting ( ).
Parameter Parameter value

Converter inductor current iLr(td+1) = id+1
An approximate estimate of the initial value

of the inductor current ip
Lr(td+1) = ip

d+1

Converter capacitor voltage vcr(td+1) = vcd+1
An approximate estimate of the initial value

of the capacitor voltage vp
cr(td+1) = vc

p
d+1

Memristor capacitor voltage v0r(td+1) = v0d+1
An approximate estimate of the initial value

of the capacitor voltage vp
0r(td+1) = v0

p
d+1

  Lin Wang et al.:   Estimation-Correction Modeling and Chaos Control of Fractional-Order Memristor Load … 71

 



 

yp
r (td + 1) =

[q]−1∑
u=0

tu
d + 1
u!

y(u)
0 +

1
Γ(q)

d∑
j=0

b j,d + 1 f
(
t j,yr

(
t j
))
(16)

b j,d + 1 =
rq

q ((d+1− j)q− (d− j)q)where  is the estimated
coefficient.

From Eq. (16), the initial estimate of the stress can be
derived as follows:
 

ip
d+1 = i0+

1
Γ(α)

d∑
i=0

bαi,d+1
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ii
C
+

1
CR8

(
1− R7

R5
+

R7

R6
gvi

0

)
vi

c

)
,

v0p
d+1
= v0

0+
1
Γ(γ)

bγi,d+1

− vi
c

C0R3
−

vi
0

C0R4



(17)

4    Dynamic  Analysis  of  Fractional-Order
Memristor Buck-Boost Converter

4.1    Bifurcation analysis

To  study  the  dynamic  characteristics  of  a  fractional-
order  Buck-Boost  converter  with  a  memristor  load
before  regulation,  we  select  the  0.9-order  that
maximizes  the  fractional-order  characteristics,  while
ensuring  that  the  system  operates  in  the  inductor-
current continuous mode. The following parameters are
selected in Table 2.

x = iL y = vc z = v0 t = R8Cτ τT = T (R8C)−1

a = R8CL−1 b = R8 c =
R7

R6
d =

R7

R5
−1 m =

R8C
R3C0

The  dimensionless  treatment  of  Eqs.  (9)  and  (10)  is
, , , , ,

, , , , , and

p =
R8C
R4C0

Vm = −vc

E = 2 V a = b = c = g = 1
d = 0.2 m = 0.25 p = 0.96

,  where .  From  the  component
parameters  in Table  2,  the  dimensionless  parameter
values  can  be  calculated: , ,

, , and .
The available Status 1 is

 
ẋ = aE,

ẏ = (cgx3−d)x2,

ż = −mx2− px3

(18)

Status 2:
 

ẋ = −ax2,

ẏ = bx1+ (cgx3−d)x2,

ż = −mx2− px3

(19)

However, because the switch is constantly switched,
the circuit  may operate in a periodic state or a chaotic
state.

For  the  selected  parameters, Fig.  5 shows  the
bifurcation  diagram  of  the  capacitor  voltage  of  the
converter  with  the  reference  current,  the  three-
dimensional  phase  diagram,  and  the  Poincaré  cross-
sectional  view.  If  the  reference  current  of  5  A  is
chosen,  the  three-dimensional  phase diagram is  nested
with infinite self-similar structures, and in the y-z plane
of x=−5,  it  can  be  observed  that  the  Poincaré  cross-
section  diagram  consists  of  innumerable  points  at  this
time.

Dc

W (v0)

Dc

Since  the  irregular  change  of  the  duty  cycle  in
each  switching  cycle  causes  the  converter  to  become
unstable  and  enter  a  chaotic  state,  it  can  better  reflect
the  essential  characteristics  of  the  nonlinear
phenomenon  of  the  converter.  Usually,  when  the
voltage  across  the  memristor  load  consists  of  a
chaotic signal and a periodic signal, the corresponding
switching duty cycle consists of a chaotic signal and a
periodic signal. When the reference currents Iref are 5 A
and 1 A, the duty cycle plots of the converter for each
switching cycle are shown in Fig. 6. The unordered and
equal duty cycles  in Fig. 6 further illustrate in fact
that  when Iref = 5 A and 1 A,  the transformer operates
in chaotic and periodic states.

Therefore,  it  can  be  determined  that  when  the
selected  parameter  value  and  reference  current  in
Table  2 are  both  5  A,  the  system is  in  a  chaotic  state,
and the chaos control is meaningful.

4.2    Bursting oscillation analysis

When  the  slow-changing  parameter  frequency  in  the
Buck-Boost  converter  with  memristor  load is  an order
of  magnitude  different  from  the  natural  frequency  of

 

Table 2    System element parameters.
Parameter Signification Value

E Input voltage 2 V
L Inductance 0.05 mH
C Capacitance 47 μF

Iref Reference current 5 A
g Multiply gain 1

C0 Memristor capacitors 10 nF
α,β,γ System order 0.9 (adjustable)

R1 Resistance 10 kΩ
R2 Resistance 1 kΩ
R3 Resistance 40 kΩ
R4 Resistance 10 kΩ
R5 Resistance 8.3 kΩ

R6 R7, Resistance 10 kΩ
R8 Resistance 1Ω
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the system, the bursting oscillation behavior that is not
conducive to  the stable  operation of  the power system
is  generated.  Introducing  the  external  excitation  into
the  equation  of  state  of  the  transformer,  the
corresponding  three-dimensional  dynamic  model  is
obtained as follows:
 

ẋ = au1+ω1,

ẏ = u2x+ (−d+ cgz)y,
ż = −myω2−nz

(20)

ω1 = A1 cos(ω1t)
ω2 = A2 cos(ω2t)

The  external  periodic  excitation  is
selected,  the  parameter  excitation  is

Ai ωi

(u1,u2) (E,0)
(u1,u2)

(−y,b)
0 < ωi ⩽ 1

the slow variable,  is the excitation amplitude, and 
is  the  excitation  frequency,  where i =  1,  2.  When  the
value of  is , the system works in Status 1,
as shown in Eq. (18), and when the value of  is

,  the  system works  in  Status  2,  as  shown in  Eq.
(19).  At ,  the  frequency  of  the  system
operating in external excitation Status 2 has an order of
magnitude  difference  from  the  parameters  in  the
reaction, resulting in a two-timescale coupling system.

ω1 ω2

The  fixed  parameters  are a=1, b=1, c=1, d=0.03,
m=0.25, n=0.96, =0.015,  and =0.01.  The  initial
value  of  the  system  is  [0.1  0.1  0.1],  the  excitation
amplitude A=0.1,  and  the  periodic  bursting  oscillation
mode  and  dynamic  behavior  evolution  law  of  the  fast
on-cell system (Eq. (20)) are analyzed.

As  shown  in Fig.  7,  the  three-dimensional  phase
diagram  and  (y,  z)  planar  phase  diagram  of  a  Buck-
Boost converter with the memristor load are shown. It
can be seen from Fig. 7 that when the converter works
in the cluster oscillation mode of the excited state,  the
three state variables of the system are unstable, causing
the system to switch back and forth between the three
vortex  oscillating  attractor  SPs.  The  process  of
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switching  a  state  variable  from  a  silent  state  to  an
excited  state  is  represented  as  SP,  and  the  transition
process from one excited state to another is denoted as
QS.

Figure 8 shows the time series  of  the state  variables
in  the  system.  The  timing  diagram  of  the  three  state
variables of the system (Eq. (20)) is shown in Fig. 8a,
and  the  whole  system  has  typical  bursting  oscillation
behavior. As shown in Fig. 8b, based on the time series
diagram  of  the  system  state  variable z,  it  can  be  seen
that  the z time series  represents  the transition between
the excited SP and silent QS and exhibits periodicity.

ω-zAs shown in Fig.  9,  the  plane conversion phase
diagram  is  selected,  the E point  is  selected  as  the
starting point  of  the  system motion track,  and a  stable
limit ring appears in the direction given by arrow A, so
the system has  a  small  oscillation and is  in  an excited
state. The system converges to a silent state at point F
and transitions from point F to point G, and the system
again oscillates slightly until point H. For the transition
from  point H to  point I,  the  system  enters  the  third
excited state, gradually converges in the direction of C
to D, and transitions from point J to point E.

According  to  the  switching  characteristics  of  the

memristor  converter,  the  external  joint  excitation  is
added  to  working  State  2  of  the  system,  and  by
combining  the  equilibrium  curve  and  the  transition
phase  diagram  of  the  fast  on-cell  system,  it  is  found
that the whole cycle cluster oscillation involves a three-
Hopf  bifurcation  of  the  fast  on-cell  system,  and  the
bistability  of  the  equilibrium  point  of  the  stable  limit
ring  is  the  key  factor  leading  to  the  mutual
transformation  of  the  system  rails  between  the  silent
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state and the excited state.
To  verify  the  correctness  of  the  above  theoretical

analysis,  we  used  MATLAB/Simulink  to  build  the
circuit and verify the behavior of the system. Figure 10
shows the circuit model.

Figure 11 shows the time series plot of the three state
variables  of  the  system.  We  can  see  that Fig.  11 is  in
agreement  with Fig.  8a,  which verifies  the  correctness
of the theoretical analysis.

5    Chaos  Suppression  for  the  Hybrid
Control Strategy

5.1    Fractional-order mixed control method

Fractional-order three-dimensional chaotic system[32] is
as follows:
 

dαx1

dtα
= f1(x1, x2, x3, t),

dβx2

dtβ
= f2(x1, x2, x3, t),

dγx3

dtγ
= f3(x1, x2, x3, t)

(21)

x1 x2 x3 iL

vc

v0

where , , and  represent the inductor current ,
the  capacitor  voltage ,  and  the  memristor  capacitor
voltage , respectively.

x̂1 x̂2 x̂3

x1 x2 x3

The new state variables , , and  are introduced,
and their relationship with , , and  are expressed
as follows:

 
x̂1 = (1− s)x1+ s(x2+ x3),
x̂2 = (1− s)x2+ s(x1+ x3),
x̂3 = (1− s)x3+ s(x1+ x2)

(22)

s(x2+ x3) s(x1+ x3)
s(x1+ x2)

x1 x2 x3

x̂1 x̂2 x̂3

The  externally  adjustable  parameter s represents  the
strength  of  coupling  between  the  state  variables.  The
value  range  is  0–1,  and , ,  and

 represent  the  feedback  of  the  system  state.
When s=0,  there  is  no  coupling  relationship  between
the state variables. Replacing , , and  in Eq. (21)
with  the  new  variables , ,  and  gives  the
following controllable system:
 

dαx1

dtα
= f1(x̂1, x̂2, x̂3, t),

dβx2

dtβ
= f2(x̂1, x̂2, x̂3, t),

dγx3

dtγ
= f3(x̂1, x̂2, x̂3, t)

(23)

E1(x1, x2, x3) E1(x̂1, x̂2, x̂3)Let  and  be  the  correlation
of the three state variables before and after the coupling
of  the  fractional-order  memristor  load  converter
system, then:
 

E1(x̂1, x̂2, x̂3) = E1{[(1− s)x1+ s(x2+ x3)]×
[(1− s)x2+ s(x1+ x3)]× [(1− s)x3+ s(x1+ x2)]} =
s2(1− s)[x3

1 + x3
2 + x3

3 + x2
1(x2+ x3)+ x2

2(x1+ x3)+

x2
3(x1+ x2)+3x1x2x3]+ s(1− s)2[x2

1(x2+ x3)+

x2
2(x1+ x3)+ x2

3(x1+ x2)]+ (1− s)3x1x2x3+

s3(x1+ x2)(x2+ x3)(x1+ x3) (24)
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Fig. 10    Circuits simulated by Simulink.
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According to the ternary fundamental inequality:
a,b,c ∈ R a3+b3+ c3 ⩾ 3abc

a = b = c
If ,  then  if,  and  only  if,

 is equal.
Thus,

 

s2(1− s)(x3
1 + x3

2 + x3
3) < 3s2(1− s)x1x2x3, s < 0 (25)

From Eqs. (24) and (25), the following can be seen:
 

E1(x̂1, x̂2, x̂3) < E1(x1, x2, x3), s < 0 (26)

Therefore,  the  coupling  strength s has  practical
physical meaning.

5.2    Fractional-order Buck-Boost converter hybrid
control design with memristor load

Design of a three-dimensional hybrid control system:
 

dαx1

dtα
= f̂1(x̂1, x̂2, x̂3, t) = (1− s) f1(x̂1, x̂2, x̂3, t)+

s[ f2(x̂1, x̂2, x̂3, t)+ f3(x̂1, x̂2, x̂3, t)],

dβx2

dtβ
= f̂2(x̂1, x̂2, x̂3, t) = (1− s) f2(x̂1, x̂2, x̂3, t)+

s f3(x̂1, x̂2, x̂3, t),
dγx3

dtγ
= f̂3(x̂1, x̂2, x̂3, t) = (1− s) f3(x̂1, x̂2, x̂3, t)

(27)

From Eq. (27), Status 1:
 

dαx1

dtα
= f̂1(x̂1, x̂2, x̂3, t) =

(1− s)aE+ s{[cgx̂3−d]x̂2+ [−mx̂2− px̂3]} =
(1− s)aE+ cgs(1− s)x2

2 + cgs3x2
1+

cgs2(2− s)x1x2+ cgs2x2x3+ cgs3x1x3−
s2(m+ p)x1+ms(1− s)x2+ ps(1−2s)x2−ms2x3,

 

dβx2

dtβ
= f̂2(x̂1, x̂2, x̂3, t) =

(1− s)[cgx̂3−d]x̂2+ s[−mx̂2− px̂3] =

cg(1− s)3x2x3+ cgs(1− s)2(x1x3+ x2
3)−

cgs(1−s)2(x1x2+x2
2)+cgs2(1−s)(x1+x2)(x1+x3)−

[d(1− s)+ms][(1− s)x2+ s(x1+ x3)]−
ps[(1− s)x3+ s(x1+ x2)],

dγx3

dtγ
= f̂3(x̂1, x̂2, x̂3, t) = (1− s)[−mx̂2− px̂3] =

(p−m)s(1− s)x1+ [ps[(1− s)−m(1− s)2]x2−
[ms[(1− s)+ p(1− s)2]x3

(28)
Similarly, from Eq. (27), Status 2:

 

dαx1

dtα
= f̂1(x̂1, x̂2, x̂3, t) =

−(1−s)ax̂2+s{[bx̂1+(cgx̂3−d)x̂2]+(−mx̂2−px̂3)}=
−a(1− s)2x2−as(1− s)(x1+ x3)+bs(1− s)x1+

bs2(x2+ x3)− cgs(1− s)x3− (cg+ p)s2(x1+ x2)+

(d−m)s(1− s)x2+ (d−m)s2(x1+ x3)− ps(1− s)x3,

dβx2

dtβ
= f̂2(x̂1, x̂2, x̂3, t) =

(1− s)[bx̂1+ (cgx̂3−d)x̂2]+ s(−mx̂2− px̂3) =
b(1− s)[(1− s)x1+ s(x2+ x3)]+
cg(1−s)[(1−s)x3+s(x1+x2)][(1−s)x2+s(x1+x3)]−
d[(1− s)x2+ s(x1+x3)]−ms[(1−s)x2+ s(x1+ x3)]−
ps[(1− s)x3+ s(x1+ x2)],

dγx3

dtγ
= f̂3(x̂1, x̂2, x̂3, t) =

(1− s)(−mx̂2− px̂3) =
(p−m)s(1− s)x1+

[ps(1−s)−m(1−s)2]x2− [ms(1−s)+p(1−s)2]x3
(29)

6    System Simulation and Result Analysis

E = 2 V a = b = c = g = 1 d = 0.2
m = 0.25 p = 0.96

Based on the three-dimensional equation of state where
the  mixing control  is  applied,  the  following parameter
values  are  selected: , , ,

,  and .  These  values  are  instituted  to
design the control effect of the control strategy.

Figure  12 shows  a  bifurcation  plot  of  the  inductor
voltage  of  the  converter  as  a  function  of  the  coupling
strength s after hybrid control of the whole, fractional-
order and memristor load, and resistive load converter.

From Fig.  12a,  it  can  be  seen  that  the  external
adjustable  coupling  control  parameter s of  the
memristor  system  has  different  ranges  of  stability  for
the  controlled  system at  orders  0.9  and  1.0.  When  the
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Fig. 11    Time series plot of state variables under Simulink.
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order of the system is 0.9, s controls the stability of the
chaotic  state  of  the  system  in  the  interval  of  [–0.4,
–0.29].  Furthermore, s stabilizes  the  system  in  the
range  [–0.29, –0.26].  When the  order  of  the  system is
1.0, s stabilizes  the  chaotic  state  of  the  system  in  the
interval  of  [–0.4, –0.33]  to  the  periodic  state,  and s
stabilizes the system in the interval of [–0.33, –0.28] to
a  double-cycle  state.  Comprehensively  comparing  the
control performance of the 0.9-order and integer-order,
the  fractional-order  system  has  a  wider  stabilizing
cycle-one  operating  region,  which  further  shows  that
the  fractional-order  system  is  more  accurate  than  the
integer-order system.

Similar to Fig. 12a, the system with a purely resistive
load shown in Fig. 12b has different ranges of stability
for 1.0 and 0.9 order of the system under the control of
the  external  adjustable  coupling  control  parameter s.
When  the  order  of  the  system  is  0.9, s controls  the
stability  of  the  chaotic  state  of  the  system  in  the
interval  of  [–0.4, –0.26]  in  the  periodic  state,  and s
stabilizes  the  system  in  the  interval  [–0.26, –0.24]  to
the double-cycle state. When the order of the system is
1.0, s stabilizes  the  chaotic  state  of  the  system  in  the
interval  of  [–0.4, –0.3]  to  the  periodic  state,  and s

stabilizes  the  system  in  the  range  [–0.3, –0.24].
Comprehensively  comparing  the  stabilization  range  of
the  0.9-order  and  1.0-order  control  systems,  the
fractional-order system is stabilized over a wider range
of period one operation, which reveals the dynamics of
the system more accurately.

To  investigate  the  effect  of  memristive  and  purely
resistive  loads  on  the  stability  intervals  of  the  system,
we  select  a  fractional-order  system  for  analysis.
Comparing  the  orange  fractional-order  bifurcation
curves  in Fig.  12,  it  can  be  seen  that  the  memristive
load curve is more stable than the purely resistive load
curve  in  the  period  one  range  and  has  the  effect  of
expanding the stability range by a small margin.

As  can  be  seen  from Fig.  13,  the  controlled
Lyapunov index indicates that the system is in a steady
state  when  the  index  is  less  than  zero  and  that  the
system  is  in  a  chaotic  state  when  the  index  is  greater
than zero.  A comprehensive comparison of the integer
and  fractional  Lyapunov  exponent  (LE)  curves  of
Fig. 13 shows that when the order is 0.9, the system has
higher accuracy than the integer-order, and the control
effect is more stable. Regardless of the resistive load or
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memory  load  of  the  system,  the  designed  three-
dimensional  hybrid  control  strategy  can  control  the
system chaos phenomenon in a stable periodic state.

When  the  following  parameters  are  chosen  for  the
fractional Buck-Boost converter with a memristor load,
the  system  exhibits  chaotic  properties.  Its  nonlinear
properties  gradually  decrease  with  the  coupling
strength s in  the  range  of  interval  [–0.4,  0],  so  the
system is controlled in a stable periodic state.

iL vc

v0

iL

Figures  14a–14c are  time  series  plots  of  the  three-
state variables inductor current , capacitor voltage ,
and  memristor  capacitor  voltage  of  the  0.9  order
converter  controlled  at  period  1  when s = −0.4,
respectively. Figure  14d shows  the  system  phase
diagram  of  the  two  state  variables  of  the  inductor
current  and  capacitor  voltage,  which  has  a  closed  and
irregular periodic orbit  when the inductor current  is
not zero over time, that is, when the circuit operates in
CCM mode.

Figure  15 shows  the  time  domain  curve  and  phase
diagram of each state variable when the system order is
0.9 and the externally adjustable parameter s = −0.285.
As can be seen from the diagram, the system is steered
from the original chaotic state to a stable multiperiodic
state.

iL

Figure  16 shows  the  time  domain  curve  and  phase
diagram of each state variable when the system order is
0.9 and the external tunable parameter s = −0.1. In the
time  domain  waveform  of  the  inductor  current ,  the
length  of  time  between  two  adjacent  minimums  is  a
switching  cycle,  and  the  switching  period  (or  duty
cycle) changes are chaotic. As can be seen from Fig. 16,

the system is in a chaotic state.
Similar  with  the  fractional-order  control,  integer-

order systems can achieve stability control of each state
variable  separately  for  a  certain  control  strength s.
Figure  17 shows  the  time  domain  curve  and  phase
diagram of each state variable when the system order is
1  and  the  external  tunable  parameter  is s = −0.38.  As
can be seen from Fig. 17, the system is steered from the
original chaotic state to a stable periodic state.

Figure  18 shows  the  time  domain  curve  and  phase
diagram of each state variable when the system order is
1 and the external tunable parameter s = −0.3. It can be
seen  from Fig.  18 that  when  the  control  parameter s
changes,  the  system motion  changes  from period T to
period 2T, its oscillation period doubles, and the system
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Fig. 14     Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.4 and q = 0.9, Cycle 1 state).
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Fig. 15    Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.285 and q = 0.9, Cycle 2 state).
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Fig. 16    Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.1 and q = 0.9, chaotic state).
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changes  from  the  initial  chaotic  periodic  state  to  the
doubled period state.

iL

Figure  19 shows  the  time  domain  curve  and  phase
diagram of each state variable when the system order is
1.0  and  the  externally  adjustable  parameter s = −0.1.
As can be seen from Fig. 19, the system is in a chaotic
state.  There  are  countless  different  periodic  orbitals  in
the  system,  and  its  topology  is  transitive.  As  can  be
seen from Fig.  19d,  when the  circuit  produces  chaotic
oscillations,  the  inductor  current  is  always  greater
than zero, and the circuit operates in CCM mode.

It can be seen from the above control results that for
both  the  fractional  and  integer-order  memristor  load
Buck-Boost converter, the method only needs to adjust
an  externally  adjustable  parameter s to  control  the

Period  1,  Cycle  2  track,  and  chaotic  state  of  the
converter in any state, which has the characteristics of a
simple  control  structure,  strong  adaptability,  and  good
control  effect.  This  provides  a  new  method  for  the
chaotic  control  of  the  fractional-order  memristor  load
converter.

7    Conclusion

In  this  study,  a  hybrid  control  strategy  based  on  the
fractional-order  estimation-correction  method  is
proposed to control the chaotic phenomenon of a three-
dimensional  fractional-order  Buck-Boost  converter
operating in continuous mode with an inductor current
in a  stable periodic state.  The following findings were
revealed.

(1) According to the operating principle of the Buck-
Boost  converter,  the  one-cycle  mathematical  model  of
the  system  is  established.  The  estimation-correction
model  has the advantages of  accurate  modeling,  quick
calculation, and no limitation from the sequence. Using
the  estimation  coefficient,  correction  coefficient  and
initial  value  estimation  expression,  the  accurate
inductor  current,  and  capacitor  voltage  of  the
fractional-order  memristor  load  converter  can  be
calculated  directly  to  better  analyze  the  dynamic
characteristics of the fractional-order system.

(2) To verify the effectiveness of the designed chaos
control  method,  first,  by  analyzing  the  bifurcation
diagram,  LE,  and  the  Poincare  cross-section  of  the
system when the section x = −5 for certain parameters,
it  is  verified that  the system is in a chaotic state when
the  reference  current  is Iref =  5  A.  According  to  the
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Fig. 17    Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.38 and q = 1.0, Cycle 1 state).
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Fig. 18    Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.3 and q = 1.0, Cycle 2 state).
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Fig. 19    Time  domain  curve  and  phase  diagram  of  each
state variable (s = −0.1 and q = 1.0, chaotic state).
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switching  characteristics  of  the  memristor  converter,
the  external  joint  excitation  is  introduced  to  working
State  2  for  the  system  and  combined  with  the  time
series  and  transition  phase  diagram  of  the  fast
subsystem.  It  is  found  that  the  system  has  a  bursting
oscillation phenomenon of three-Hopf bifurcation.

s ∈ [−0.4,0]

(3)  Based on the  idea  of  parameter  perturbation and
state  association,  a  three-dimensional  hybrid  control
strategy for the fractional-order memristor Buck-Boost
converter is designed for which the control intensity is
related  only  to  the  value  of  the  external  adjustable
parameter s,  which  represents  the  coupling  intensity
between  the  state  variables.  It  is  demonstrated  that  at

,  as s decreases,  the  originally  chaotic
system  can  be  controlled  in  a  stable  periodic  state.
Compared  with  fractional  and  integer-order  control
systems,  the  controlled  system  has  a  larger  stability
interval and a more accurate description of the physical
properties of the system when the order is at 0.9 order.

This  is  further  evidence  of  not  only  the  rationality
and  workability  of  the  estimation-correction  method
modeling  but  also  the  effectiveness  of  the  three-
dimensional  mixture  control  developed.  This  method
has a certain theoretical guiding value for the parameter
optimization and controller design of the converter.
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