

Biased Bi-Population Evolutionary Algorithm for Energy-Efficient
Fuzzy Flexible Job Shop Scheduling with Deteriorating Jobs

Libao Deng*, Yingjian Zhu, Yuanzhu Di, and Lili Zhang

Abstract: There are many studies about flexible job shop scheduling problem with fuzzy processing time and

deteriorating scheduling, but most scholars neglect the connection between them, which means the purpose of

both models is to simulate a more realistic factory environment. From this perspective, the solutions can be

more precise and practical if both issues are considered simultaneously. Therefore, the deterioration effect is

treated as a part of the fuzzy job shop scheduling problem in this paper, which means the linear increase of a

certain processing time is transformed into an internal linear shift of a triangle fuzzy processing time. Apart from

that, many other contributions can be stated as follows. A new algorithm called reinforcement learning based

biased bi-population evolutionary algorithm (RB2EA) is proposed, which utilizes Q-learning algorithm to adjust

the size of the two populations and the interaction frequency according to the quality of population. A local

enhancement method which combimes multiple local search stratgies is presented. An interaction mechanism

is designed to promote the convergence of the bi-population. Extensive experiments are designed to evaluate

the efficacy of RB2EA, and the conclusion can be drew that RB2EA is able to solve energy-efficient fuzzy

flexible job shop scheduling problem with deteriorating jobs (EFFJSPD) efficiently.

Key words: bi-population evolutionary algorithm; Q-learning algorithm; fuzzy; deteriorating effect; energy; flexible job

shop scheduling

1 Introduction

CO2

According to a 2019 report[1], in the previous five
years, emissions about energy consumption have
increased by 1.3% each year on average. Industrial
energy consumption and industrial processes account
for a sizable share of global greenhouse gas emissions.
For these reasons, energy efficiency in manufacturing

has drawn considerable interest. In the background of
green manufacturing, the field of job shop scheduling
needs to seek solutions to reduce energy consumption.
This provides various benefits for enterprises,
including cost reduction, enhanced resource utilization,
and promotion of sustainable development.

In recent years, the quantity of articles on energy
efficiency and sustainability in diverse manufacturing
systems, such as single machine[2, 3], two machines in
line[4, 5], parallel machines[6, 7], and flow shop[8−13], has
increased significantly. In particular, due to its
significance in manufacturing, assembly line
operations, maintenance and repair, etc., the flexible
job shop scheduling problem (FJSP) has drawn great
interest. In order to find conpromising solutions for
total costs of production, Moon and Park[14] proposed
mixed-integer programming and constraint
programming approaches. Instead of makespan, Lei
et al.[15] optimized total energy consumption and

 Libao Deng, Yingjian Zhu, and Yuanzhu Di are with the School

of Information Science and Engineering, Harbin Institute of
Technology, Weihai 264209, China. E-mail: denglibao_paper@
163.com; meetzyj@gmail.com; diyz1121491761@163.com.

 Lili Zhang is with the Department of Computer Science,
Maynooth University, Maynooth, W23 F2H6, Ireland, and also
with the School of Computing, Dublin City University, Dublin,
D09 V209, Ireland. E-mail: lili.zhang27@mail.dcu.ie.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Xinyu Li.
 Manuscript received: 2023-09-06; revised: 2023-10-17;

accepted: 2023-10-29

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 02/06 pp 15−32
Volume 4, Number 1, March 2024
DOI: 10 .23919 /CSMS.2023 .0021

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

workload balance simultaneously. In Ref. [16], the
number of machine turning on/offs was evaluated as a
goal to minimize. Luo et al.[17] investigated the effect
of various processing speeds on energy consumption in
a flexible job shop, finding that faster running speeds
consume more energy. A number of mixed-integer
linear programming models were presented by Meng
et al.[18] to optimize total energy consumption. In Ref.
[19], energy consumption consists of four components:
energy consumption when processing, standby energy
consumption, energy consumption for setup, and
energy consumption caused by transportation. Qin
et al.[20] proposed an improved iterative greedy (IG)
algorithm to optimize the energy consumption of job
sequence. Many algorithms were designed to solve
these energy-efficient scheduling problems. An
improved genetic algorithm was proposed by Dai
et al.[21] to solve the transportation constraints
scheduling problem. Pan et al.[22] proposed an
evolutionary algorithm with two populations, where the
quality of each population is used to adjust the
population size. Li et al.[23] adopted the idea of
evaluating the quantity of population, combining Q-
learning algorithm with multi-objective evolutionary
algorithm based on decomposition (MOEA/D) to
modify the number of neighborhood solutions
dynamically. In order to address the FJSP with type-2
fuzzy processing time efficiently, an improved artificial
immune system algorithm was presented by Li et al.[24]

Zhao et al.[25] proposed a population-based iterated
greedy algorithm to address distributed assembly no-
wait flow shop scheduling problem.

However, many uncertainties in production mean
that the current FJSP cannot meet the demand of the
modern market. Thus, many scholars turned their
attention to the FJSP with the fuzzy processing time
(FFJSP). Sun et al.[26] combined genetic algorithm
(GA) and particle swarm optimization (PSO) to
optimize the fuzzy makespan. A hyper-heuristic
approach based on backtracking search was presented
by Lin[27], which can solve FFJSP effectively. A
cooperated shuffled frog-leaping algorithm[28] was
presented for simultaneously optimizing fuzzy
makespan, fuzzy total energy consumption, and total
agreement index. To solve FFJSP, Ref. [29] combined
MOEA/D with a local searching strategy based on the
success and failure memories. In these studies, the
processing time is presented as a triangle fuzzy
number. In Ref. [30], a weighted distance based
approximation method was extended to schedule the

operation sequence in a flow shop environment,
utilizing interval-valued fuzzy sets in place of triangle
fuzzy numbers (TFNs). The processing time was
represented as type-2 fuzzy set in Ref. [31], thus
uncertainties and constraints in the real-world factories
can be more fully taken into account, which
compensates for the drawback of the conventional
fuzzy triangular number. Xi and Lei[32] investigated the
distributed two-stage hybrid flow shop scheduling
problem with fuzzy processing time in multiple
factories.

Considering some factors, e.g., production
interruptions, operator fatigue, and machine wear, the
operations take more time if they start processing later,
which is called deteriorating effect. Deteriorating
scheduling has attracted considerable attention recently
in various production environments, taking into
account the actual factory conditions. References
[33, 34] firstly built a deteriorating scheduling model
for the single machine scheduling problem, where the
processing time of operations was a linear increasing
function of their start time. Fu et al.[35] utilized bi-
population evolutionary algorithm to address the
stochastic hybrid flow shop problem with deteriorating
jobs. In Ref. [36], the deterioration effect of FJSP was
considered, which is solved with the modified animal
migration optimization algorithm. Actually, fuzzy FJSP
and the deterioration effect have some characteristics in
common, but few related literature try to connect them.

Recently, many researchers have proposed
reinforcement learning (RL) based approaches to
address scheduling problems due to its adaptability in
different environments and scalability for large-scale
problems. To address the dynamic job shop scheduling
problem, Wang[37] developed a weighted Q-learning
algorithm in combination with clustering and dynamic
search. In Ref. [38], the state was represented as multi-
channel images, and a deep convolutional neural
network was adopted due to its real-time reaction and
adaptation in various environment. An improved
pointer network was presented by Wang and Pan[39] for
the policy learning, in which the processing time of
each operation is selected as the state. Wang et al.[40]

selected the processing time matrix, the machine
assigned matrix, and the processing status of operations
matrix as the state and put them into neural network to
learn the policy. For addressing the energy-aware
distributed hybrid scheduling in flow shop, a
cooperative memetic algorithm with an RL-based

 16 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

policy agent was proposed by J. J. Wang and L.
Wang[41]. In Ref. [42], Q-learning is adopted to choose
a suitable heuristic strategy among predesigned
heuristic methods based on historical information
feedback. In Ref. [43], a bi-population cooperative
framework based on double Q-learning was designed
to further optimize distributed no-wait flow shop
scheduling problem. Li et al.[44] combined artificial bee
colony algorithm and Q-learning to solve the
permutation flow shop scheduling problem with
minimizing the makespan. A cooperative scatter search
with Q-learning mechanism (QCSS) was presented in
Ref. [45], which adopts Q-learning to balance the
exploration and exploitation capabilities. RL will also
be performed to improve algorithm’s performance in
this study.

Until now, most scholars have viewed FFJSP and
deteriorating scheduling as two separate fields and
ignored the connection between them. Actually, fuzzy
FJSP and the deterioration effect have some
characteristics in common, but few related literature try
to connect them. The original intention of both
problems is to simulate a more realistic factory
environment. FFJSP emphasizes that the processing
time can not be represented as a certain number due to
many uncertainties in production. If fuzzy numbers are
utilized to represent processing time while introducing
deterioration effect, a new mathematical model can be
established. Meanwhile, considering total energy
consumption as one objective can be in line with the
concept of green manufacturing. The model is called
energy-efficient fuzzy flexible job shop scheduling
problem with deteriorating jobs (EFFJSPD), which is
able to simulate a more realistic processing
environment. The scheduling scheme obtained by
solving this model will be more practical.

In this paper, EFFJSPD is proposed, and a new
algorithm called reinforcement learning based biased
bi-population evolutionary algorithm (RB2EA) is
presented to minimize makespan and total energy
consumption represented as TFN. The major
contributions are summed up in the following. Propose
a novel fuzzy FJSP model which is connected with
deteriorating effect (in Section 2). RB2EA (in Section
3) is presented to solve the EFFJSPD, which combines
Q-learning algorithm with bi-population evolutionary
algorithm. Q-learning is utilized to resize the
population size according to the quality of population.
Four heuristic strategies are designed to initialize the

population (in Section 3.1). A local search strategy (in
Section 3.3) based on the Q-learning and the
interaction mechanism (in Section 3.5) are proposed.

2 Problem Description

2.1 Fuzzy set

F̃ x

µF̃(x)

In 1965, Zadeh[46] invented fuzzy set theory as a
mathematical tool for describing uncertainty and
ambiguity in human reasoning. Fuzzy sets are a
mathematical representation of ambiguity and
uncertainty in a system. In contrast to traditional sets,
in which an element is either a member or not a
member, a fuzzy set allows an element to have a
membership degree between 0 and 1. This degree of
membership indicates the element’s level of similarity
to the set, which is defined as the membership function

. Fuzzy set can be defined as follows:
X x

X F X
If is a definite set and is a particular element of
, then a fuzzy set defined on can be written as a

collection of ordered pairs.

F̃ =
{(

x,µF̃(x)
)
, x ∈ X

}
, 0 ⩽ µF̃(x) ⩽ 1 (1)

a
b c (a,b,c)

The membership function of a triangle fuzzy number
is similar to the triangle, which has three parameters: ,

, and and can be represented as a triple . The
membership function can be formulated as follows:

µF̃(x) =



0, x ⩽ a;
x−a
b−a

, a < x ⩽ b;

c− x
c−b
, b < x < c;

0, x ⩾ c

(2)

2.2 Fuzzy operation

ũ = (u1,u2,u3) ṽ = (v1,v2,v3)

The completion of a total scheduling requires three
operations on processing time: addition, ranking, and
maximum. The addition operator is used to calculate
the ending time of an operation. Ranking and
maximum operators are performed to determine when
to start the process of an operation. Consequently, this
section will introduce these three TFN operators. For
two TFNs and :

(1) ũ+ t̃ = (u1+ v1,u2+ v2,u3+ v3) Addition operator: .
(2) Ranking operator:

f1(x̃) =
x1+2x2+ x3

4
f1(ũ) > f1(ṽ), ũ > ṽ

ũ < ṽ

(a) , if ;
otherwise, ;

f2(x̃) = x2 f1(ũ) = f1(ṽ) f2(ũ) > f2(ṽ), ũ >
ṽ ũ < ṽ

(b) , when , if
; otherwise, ;

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 17

f2(x̃) = x3− x1 f2(ũ) = f2(ṽ) f3(ũ) > f3(ṽ),
ũ > ṽ ũ < ṽ

(c) , when , if
; else, .

ũ > ṽ ũ∨ ṽ = ũ
ũ∨ ṽ = ṽ

(3) Maximum operator: if , then ,
otherwise, .

2.3 Fuzzy processing time considering
deteriorating effect

The deteriorating effect means that the operations take
more time when they are processed later. The
significance of studying fuzzy scheduling is to account
for all scheduling uncertainties, such as processing
equipment, environmental or human factors, etc., so
that the exact processing time cannot be determined. In
other words, the fuzzy scheduling itself takes the
influence of the deterioration effect on the makespan
into consideration, hence it is conceptually reasonable
to treat the deterioration effect as a part of the fuzzy
scheduling.

α

α

A parameter called deterioration coefficient is
usually set for each stage of each job in the
deteriorating scheduling[35]. The processing time of an
operation grows linearly as the start time is delayed,
and the speed of growth is just determined by . This
paper retains this linearity but transforms this linear
increase into an internal linear shift of the TFN.

t0

It is assumed that an operation can be processed on
M1, M2, and M3, and requires the same standard
processing time. As shown in Fig. 1, the variation of
the processing time in the normal deteriorating
scheduling is shown in the upper part, and the standard
processing time for this operation is a certain number

. As the start time is pushed back, the needed

t = 2
∆t1 = 1

t = 5
∆t2 = 2.5 ∆t2

∆t1

processing time for this operation increases. If the
operation starts at , the extended processing time
due to the deterioration effect is ; and if the
operation begins at , the additional processing time
is . It is obvious from the figure that is
greater than .

t̃0 = (0,0.5,4)

t = 3 t̃ = (3,3,3)

t̃1 = (0,1.5,4) 1.5
4.5−3 ∆t

∆t1 = 1.5−0.5 = 1
t = 7

3 10−7 ∆t2 = 3−1.5 = 1.5

However, this variation law is no longer applicable
when the operation’s processing time is a TFN. This is
due to the fact that processing time is represented as
fuzzy sets in fuzzy job scheduling, and this uncertainty
has already been accounted for. In other words, the
processing time represented by a TFN fluctuates within
a particular range, which includes processing time
extension due to deterioration effects. But the
deteriorating effect can also be reflected in fuzzy
scheduling, as depicted in Fig. 1’s lower portion. The
standard fuzzy time for an operation is ,
and the peak time in this TFN is 0.5, indicating that 0.5
is the most probable value for this operation’s
necessary time. As time goes by, let the operation starts
processing at (if expressed in TFN),
then the processing time of this operation becomes

, indicating that the peak time turns to
(calculated with). If means the shift of the
peak time of TFN processing time, .
If the operation begins at , then the peak time
shifts to (calculated by). .
This suggests that the peak time of the processing time,
expressed in TFN, generates a greater linear shift the
later the processing of the operation begins. This
variation reflects the fact that the presence of
deterioration effects increases the probability of the
operation requiring more processing time as the start
time becomes later and later.

2.4 Mathematical modeling of EFFJSPD

The notations used in this section are described as
Table 1.

xi jk =

1, if process oi j on machine k;
0, otherwise

(3)

yi jpqk =

1, if process oi j before opq on machine k;
0, otherwise

(4)
J = {J1,

J2, . . . , Jn} Ω = {M1,M2, . . . ,Mn}
Ji hi

oi j

Ωi j, Ωi j ⊂ Ω

EFFJSPD can be described as below.
 is the job set, and is the

machine set. Each job has a set of operations.
Operation can be processed on any machines in a
set . The processing time considered

M
ac

hi
ne

M
ac

hi
ne

M3

M2

M1

0 1 2 3 4 5 6

(a) Deterioration effect with certain processing time

(b) Deterioration effect with fuzzy processing time

7
t

8 9 10 11

0 1 2 3 4 5 6 7
t

t0
~

t1
~

t2
~

t0

t0

t0

Δt1

Δt1

Δt2

Δt2

8 9 10 11

M3

M2

M1

Fig. 1 Deterioration effect with fuzzy processing time.

 18 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

oi j Mk

p̃i jk = (p′1, p
′
2, p
′
3)

p̃i jk0 = (p1, p2, p3)

C̃max0 = (c1,c2,c3)
S̃ i j = (s1, s2, s3)

deteriorating effect of on machine is expressed
as , while the standard processing time
is . The completion time of all jobs is
also a TFN, represented as , and the
start time is . Moreover, the
deteriorating processing time can be obtained by the
following equations.

p′1 = p1 (5)

p′2 =
1
2
×

(
s1

c1
+

s3

c3

)
× (p3− p2)+ p2 (6)

p′3 = p3 (7)

C̃max

T̃EC

The EFFJSPD consists of two subproblems: machine
assignment and operation sequencing. Each operation
chooses a machine from the candidates. And another
one is to generate compromising scheduling for all
operations across total machines. The problem has two
targets to optimize, makespan and total energy
consumption . The formulations of the problem
model are shown below:

minimize f1 = C̃max (8)

minimize f2 = T̃EC (9)

s.t., S̃ i j+ xi jk × p̃i jk ⪯∆ C̃i j, i = 1,2, . . . ,n,
j = 1,2, . . . ,hi, k = 1,2, . . . ,m

(10)

C̃i j ⪯∆ S̃ i(j+1), i = 1,2, . . . ,n,
j = 1,2, . . . ,hi−1

(11)

C̃ihi ⪯∆ C̃max, i = 1,2, . . . ,n (12)

S̃ i j+ p̃i jk ⪯∆ S̃ pq+L(1− yi jpqk),
i = 1,2, . . . ,n, p = 1,2, . . . ,n, j = 1,2, . . . ,hi,
q = 1,2, . . . ,hp, k = 1,2, . . . ,m

(13)

C̃i j ⪯∆ S̃ i(j+1)+L(1− ypqi(j+1)k),
i = 1,2, . . . ,n, p = 1,2, . . . ,n, j = 1,2, . . . ,hi−1,
q = 1,2, . . . ,hp, k = 1,2, . . . ,m

(14)

mi j∑
k=1

xi jk = 1, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (15)

n∑
i=1

hi∑
j=1

yi jpqk = xpqk, k = 1,2, . . . ,m,

p = 1,2, . . . ,n, q = 1,2, . . . ,hp

(16)

n∑
p=1

hp∑
q=1

yi jpqk = xi jk, k = 1,2, . . . ,m,

i = 1,2, . . . ,n, j = 1,2, . . . ,hi (17)

{0,0,0} ⪯∆ S̃ i j, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (18)

{0,0,0} ⪯∆ C̃i j, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (19)

Formulas (10) and (11) restrict the order based on the
processing priority of each job. Formula (12) represents
a limitation on the job’s completion time, i.e., the
completion time of each job cannot exceed the
completion time of all jobs. Formulas (13) and (14) are
utilized to ensure that each machine can process no
more than one job at a time. Constrained by Formula
(15), each job’s operation can only be assigned to one
machine. Formulas (16) and (17) guarantee that the
operations on one machine are prioritized. Formula
(16) selects the front job, and Formula (17) picks the
next job. Formulas (18) and (19) restrict that the start
and finish time to positive value.

C̃max0

C̃max C̃max C̃1∨ C̃2∨ · · ·∨ C̃m

 is the completed time of all jobs using the
standard processing fuzzy time, whose primary effect is
to calculate . is defined as ,
which means the latest completion time of all machines

Table 1 Notations table.

Notation Description
n Number of jobs
m Number of machines
oi j j-th JiThe operation of job
mi j oi jNumber of machines of
hi JiNumber of operations of job

p̃i jk0 oi j kStandard fuzzy processing time of on machine

p̃i jk
oi j

k
Deteriorating fuzzy processing time of on

machine
xi jk Binary variable

yi jpqk Binary variable
S̃ i j j-th JiFuzzy start time of the operation of job

C̃i j
j-th

Ji
Fuzzy completion time of the operation of job

Ω Total machine set
Ωi j oi jSet of compatible machines for

T̃EC Total fuzzy energy consumption

C̃k k
Fuzzy completion time of the last operation on

machine

C̃max0
Standard fuzzy maximum completion time of all

jobs

C̃max
Deteriorating fuzzy maximum completion time of

all jobs

Ek
Energy consumption per unit time in processing

mode
S Ek Energy consumption per unit idle time

L A large number enough

⪯∆ max
(
s̃, t̃

)
= t̃ s̃ ⪯∆ t̃Ranking notation of TFN, if ,

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 19

C̃k = (Ck1,Ck2,Ck3)

ẼC1

ẼC2

is calculated by maximum operator (confer Section 2.2)
of all . The total energy consumption
(TEC) is divided into two parts, the energy
consumption when the machine is working and the
energy consumption of the idle time. The total
fuzzy energy consumption can be computed as follows:

T̃EC = ẼC1+ ẼC2 =

m∑
k=1

n∑
i=1

hi∑
j=1

p̃i jk xi jk×

Ek +

m∑
k=1

n∑
i=1

hi∑
j=1

SEk × (C̃k − p̃i jk xi jk) =

m∑
k=1

n∑
i=1

hi∑
j=1

p̃i jk xi jk × (Ek −SEk)+ C̃k ×SEk (20)

2.5 Illustrative example

Cmax0

To illustrate the problem, Fig. 2 presents an example
Gantt chart of an EFFJSPD problem. The two Gantt
charts represent one complete scheduling process, and

 is necessary to calculate the deteriorating

Cmax0

O1,3

O1,3 (4,6,9)
O1,3 (4,6,10)

O1,3 (4,6,10)
Cmax0

operation time, so should be calculated by a
fuzzy scheduling using the standard processing time.
For example, when determining the start time of ,
the time of the last process of Machine 3 selected by

 is , while the time of the last process of
 is . It can be determined through ranking

and maximum operator (confer Section 2.2). The
earliest processing time for should be . It
can be found from the first Gantt chart that the is
(7, 11, 17).

O3,2

(4,6,9) (4,6.4,9)
(3,4,6)

O3,2(
1,2+

1
2
×

(
3
7
+

6
17

)
× (3−2),3

)
(1,2.4,3)

O3,2 (3,4,6)+ (1,2.4,3) = (4,6.4,9)
(0,0,0)

The bottom half of the Fig. 2 shows the core part of
the EFFJSPD, which considers the effect of the
deterioration effect in fuzzy scheduling. For , its
completion time changes from to . The
start time of the job does not change, but by
Eq. (6), the new processing time of changes to

, that is, . Thus,

the ending time of is .
For all jobs whose start time is not , the
processing time will be impacted. By comparison, it

The delay caused
by the deteriorating

effect

M
ac

hi
ne

M3

O1,1

O1,1

O1,1

O1,1

O3,2

O3,1

O3,1

O3,1

O3,1

O3,2

O3,2

O1,3O1,2

O1,2

O1,2

O1,2

O2,2

O2,3

O2,3

O2,3

O1,3

O1,3

O2,3

O2,2

O2,2

O2,2

O2,1

O2,1

O2,1

O2,1

O3,3

O3,3

O3,3

O3,3

O3,2

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 5, 8)(2, 3, 5)

(2, 3, 5)

(4, 6, 9) (6, 9, 16)

(6, 10, 16)

(4, 6, 10)

(5, 8, 13)

(5, 8, 13)

(7, 11, 17)

(5, 8, 13)

(4, 6, 10)

(4, 6.4, 9)

(4, 6.8, 10)

(4, 6.8, 10)

(5, 9.4, 13)

(5, 9.4, 13)

(6, 12.1, 16)

(7, 13.1, 17)

(5, 9.4, 13)

(3, 5.3, 8)

(2, 3, 5)

(2, 3, 5)

(4, 6.8, 10)

(6, 11.5, 16)

(4, 6, 10)

(3, 4, 6)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

O1,3

M2

M1

M
ac

hi
ne

M3

M2

M1

Fig. 2 Example Gantt chart of EFFJSPD problem.

 20 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

can be intuitively found that the center of gravity of the
Gantt chart after taking into account the deterioration
effect is clearly shifted to the right, and the two dashed
lines represent the shift of makespan after taking into
account the deterioration effect. It is important to note
that for a complete EFFJSPD scheduling, the shapes of
two Gantt charts are not necessarily identical. The
reason for this is that the update for deteriorating
processing time may lead to a shift in the start time of
some operations.

3 RB2EA for EFFJSPD

Bi-population or multipopulation is a common
framework in metaheuristic algorithms, including
multi-objective evolutionry algorithms (such as the
traditional MOEA/D[47]), differential evolution
(DE)[48], and PSO[49]. Nevertheless, these multi-
population algorithms typically initialize two identical
or similar populations, most frequently by initializing a
huge population and then dividing it into many
subpopulations. This is analogous to having the search
algorithm’s beginning point at the same location, and
the likelihood of not searching for the global optimal
solution stays high despite the diverse search paths that
follow. In this paper, a biased bi-population is proposed
for the dual objective problem, where each population
has a certain preference for one objective problem,
while the overall framework is a multi-objective
genetic algorithm. This enables the bi-population to
search for the best solution along diverse paths from
different beginning points in the search space, thereby
broadening the search range and preventing it from
getting trapped in a local optimal solution. Figure 3
shows this idea. Two dashed circles represent initial
populations with preferences for makespan and TEC,

named populationM and populationT, respectively.
During the iteration, the two populations continuously
carry out population communication strategy, and
finally obtain a non-dominated solution set.
Furthermore, inspired by the bi-population
evolutionary algorithm with feedback (FBEA)[22], a
reinforcement learning based population size
adjustment mechanism is introduced to enable the dual
population to dynamically adjust the population size in
real time based on the population’s quality.

3.1 Initialization

To obtain a higher quality initial population, a
combination of the four initialization techniques will be
employed. Since RB2EA is a bi-population algorithm
with preference, such a preference should also be
reflected in the initialization algorithm. Two of these
methods are based on the fitness value, so they are
named fitness selection (FS).

Np

FS1 is detailed below. Firstly generate population
randomly, which contains individuals, and
determine the fitness of each individual. Choose the
best 5% of the makespan and the TEC separately as the
offspring.

FS2 and FS1 are comparable. FS2 selects the worst
5% of the makespan and the TEC separately and
reverses the operation sequence as the offspring, which
distinguishes it from FS1.

The other two heuristics are derived from FJSP,
which are global selection (GS) and local selection
(LS) strategies. GS and LS mainly consider the load
problem of machine selection, so that the workload of
each selected machine is balanced as much as possible,
and the utilization rate of the machine is fully
improved.

GS: Create an array of the same size as the size of
machine set to store the working time of each machine.
Choose at random a job from the job set to complete all
of its operations sequentially and update the array. For
each operation, the processing machine with the
shortest operating time in the array is chosen.

LS: The operation processes of LS and GS are nearly
identical, with the exception that LS selects jobs
sequentially, beginning with the first and ending with
the last.

populationM

Aiming to have the bi-population with an objective
value preference, a population allocation procedure
(allocating process) was created. The populations
formed by FS1 and FS2 based on makespan values are
assigned to , while those based on TEC

Makespan

TEC

Communication

PopulationM

PopulationT

Iterate

Final Pareto front

Fig. 3 Schematic diagram of RB2EA.

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 21

populationT

populationM populationT

Np

values are allocated to . The populations
generated using other initialization methods were
equally assigned to and . The
detailed steps for population initialization with totaly

 solutions are described in Algorithm 1.

3.2 Q-learning for population size adjustment

In this section, the population size adjusting
mechanism based on the Q-learning algorithm will be
described in detail. Watkins and Dayan[50] firstly
proposed Q-learning in 1992, which is a model-free
off-policy reinforcement learning algorithm. The
algorithm learns the optimal action-value function,
which reflects the highest expected reward for
choosing a certain action in a given state, and then
utilizes this policy to determine the best action to take
in each state.
3.2.1 State definition
Defining the state as quantity that reflects the current
bi-population quality allows higher quality population
to attain larger population sizes and increases the
likelihood to seek the global optimal solution. Two
metrics will be introduced to define the state.
δ

populationM

NND nM

populationM

 indicates the percentage of non-dominated
solutions of . A fast non-dominated sort is
performed on the current total population, and the
number of solutions in the non-dominated set obtained
is , where there are individuals belonging to

.

δ =
nM

NND
(21)

η populationM dvM

populationM dvT

populationT

 indicates relative diversity of . is
the diversity metric of , and is that of

. Metric dv (diversity) is proposed in Ref.
[51], but there are some differences. dv can be
calculated by Eq. (23),

η =
dvM

dvM+dvT
(22)

dv =

N−1∑
i=1

|di− d̄|

(NND−1)d̄
(23)

di

d̄
di NND

δ η

where is the Euclid distance between two adjacent
Pareto front (PF) points. represents the mean value of

. is the number of solutions in the set of non-
dominated. The greater the dv, the better the diversity.
To sum up, the metrics and of the bi-population are
chosen as the state of the Q-learning state.
3.2.2 Action definition

freq

0.2×Np

freq

× × NM

NT populationM populationT

The first action is to adjust the size of the two
populations, and the second action is to modify the
parameter . The resizing process is the size of one
population plus 5 and the other one minus 5. It is worth
mentioning that the minimum size of each population is
limited to . Another process is increasing or
decreasing , which is an important parameter in
Section 3.3. Table 2 gives a Q-table example in
15 8 2 instance after 200 iterations, where and

 are the size of and ,
respectively.
3.2.3 Reward definition

dmt = 1
dmt = 0

If the mean value of the total population’s fitness
dominates that of previous iteration, let ,
otherwise, let . Based on the illustration above,
the strategy utilizing Q-learning method to adjust
population size, namely Q-APS, is proposed. The
whole steps of Q-APS are stated in Algorithm 2.

∆dv = dvi−dvi−1 (24)

Algorithm 1　Initialize population
Np input :
populationM populationT output: and

Np1 Random generate a population, size ;
P1 (0.1Np)2 Utilize FS1 to generate offspring , size ;
P2 (0.1Np)3 Employ FS2 to generate offspring , size ;
P3 (0.2Np)4 Perform GS to generate offspring , size ;
P4 (0.2Np)5 Execute LS to generate offspring , size ;

P5 (0.4Np)6 Randomly generate offspring , size ;
populationM

populationT

7 Perform allocating process to obtain and
;

Table 2 Q-table after 200 iterations.

Condition
Reward

NM = NM +5
NT = NT −5

freq = freq−1

NM = NM −5
NT = NT +5

freq = freq−1

NM = NM +5
NT = NT −5

freq = freq+1

NM = NM −5
NT = NT +5

freq = freq+1
δ < 0.5, η < 0.5 0 2.2138 0 0.6
δ ⩾ 0.5, η < 0.5 14.1579 0 3.5754 1.8354
δ < 0.5, η ⩾ 0.5 0 2.8156 0.8556 0
δ ⩾ 0.5, η ⩾ 0.5 15.4823 1.5651 16.0873 1.5998

 22 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

Reward =


10, ∆dv ⩾ 0, dmt = 1;
6, ∆dv < 0, dmt = 1;
4, ∆dv ⩾ 0, dmt = 0;
0, ∆dv < 0, dmt = 0

(25)

3.3 Local enhancement based on Q-learning

freq
As stated in Section 3.2, the Q-APS will modify the
parameter , which determines the frequency of the
local enhancement. The operation sequence (OS) has
two techniques for local searching.

LS1: Swap the position of last operation with
random another operation.

LS2: Insert the position of last operation in front of
random another operation.

populationM populationT

In order to maintain the preference of the two
populations, and take different
local search methods, respectively, for machine
assignment (MS).

populationMFor :
oi oiLS3: Find the last finished operation and move

to another machine whose processing time is the
shortest.

oi, jLS4: Choose one operation randomly and move
it to another machine whose processing time is the
shortest.

populationTFor :
oi oiLS3: Find the last finished operation and move

to another machine with minimum energy consumption

(simple processing is the processing time multiplied by
the energy consumption factor per unit time of the
machine in working condition).

oi, jLS4: Randomly select an operation and move it
to another machine with minimum operation time.

xi

xi

xi N

T = 10

The neighborhood selection mechanism explains
how to select optimal solution from neighborhood
solutions. For each non-dominated solution ,
compare it with each neighborhood solution in turn. If
the dominance relationship exists, the non-dominated
solution becomes . Otherwise, the solution with the
shortest makespan is selected in populationM, and the
solution with less TEC is in populationT.
represents the size of non-dominated solution set and
the neighborhood size . The biased local search
adopting Q-learning algorithm (Q-BLS) is stated as
Algorithm 3.

3.4 Genetic operation in RB2EA

populationM populationT

The genetic operations at the heart of genetic
algorithms allow populations to evolve more efficiently
and search for the global optimal solution more easily.
The algorithm is shown in Algorithm 4, in which
genetic operations are carried out on two populations,

 and . Perform crossover and
mutation on each individual in each population, merge
the old and new individuals into a new population, and
then choose the best individuals from the new
population using tournament selection.

Unlike previous tournament selection operations, the
novel binary tournament means that different selection

Algorithm 2　Q-APS
input : greedy factor ε, learning rate α, discount factor

γ, and population
output: Q table

1 Q table ← 0, St ← 1;
2 Calculate zmeani and dvi of the total population;
3 while the stopping criterion is not satisfied do
4 if rand < ε then
5 Select the max Q(state, Ai) action

At, i= 1, 2, 3, 4
6 else
7 Randomly select an action At

8 end
9 Execute the action At for new population size and

freq;
10 Perform evolutionary algorithm (EA) to evolve population

and get the PF;
11 zmeani−1 = zmeani, dvi−1 = dvi, then get the

reward R;
12 Caculate the new state St+1;
13 Q(St, At) =

Q(St, At)+α[R+γmax(Q(St+1, At)−Q(St, At)]
14 end

Algorithm 3　Q-BLS
input : N, T, freq, and gen
output: enhanced solution

1 if mod(gen, freq)=0 then
2 for i ≤N do
3 for j ≤T do
4 if rand1 < 0.5 then
5 Perform LS1 for xi and generate yj;
6 else
7 Execute LS2 for xi and generate yj;
8 end
9 if rand2 < 0.5 then

10 Perform LS3 for yj;
11 else
12 Execute LS4 for yj;
13 end
14 end
15 end
16 Perform neighborhood selection mechanism;
17 end

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 23

populationM

populationM
populationT

mechanisms were applied to the two different
populations. For , two individuals are
selected at a time from the merged population, and if a
dominance relationship exists between them, the non-
dominated solution is chosen. If not, the solution with
the shortest makespan is selected. This procedure is
repeated until the total number of selected individuals
equals to the original population size. With

, the selection mechanism is nearly
identical, with the exception that smaller TEC
individual will be selected in the absence of a
dominance relationship.

Precedence operation crossover (POX)[52] is selected
as the crossover operation of OS, and a uniform
crossover (UX) technique is performed on the MS.
Three mutation methods are used for OS, and two
mutation techniques are designed for MS.

OS1: Swap the order of two operations in OS
randomly.

OS2: Choose two operations randomly and put the
latter in front of the location of the other one in OS
string.

OS3: Reverse the operation sequence between
random two locations in OS string.

MS1: Randomly select one tenth of all operations
and assign them to the machine with the shortest
processing time.

MS2: Randomly select one tenth of all operations
and assign them to the machine which consumes
minimum energy.

It is worth mentioning that in RB2EA the mutation
rate and the crossover rate are adaptively modified by

δ ηtwo parameters and , which are used to determine
the state. The process of mutation and crossover are
shown in Algorithm 5 in detail.

3.5 Interaction mechanism

The preference of the two populations is always
presented in RB2EA, ensuring that the search routes of
the two populations in the search space are distinct.
However, this may lead to a weak convergence of the
algorithm as a whole. To tackle this issue and
maximize the benefits of the bi-population algorithm, a
communication mechanism between the two
populations is designed.

β

The interaction mechanism can be understood simply
as the exchange of individuals with features in two
populations. The feature is reflected in RB2EA as
preferences for two objective values, so the interaction
mechanism is essentially the replication of individuals
with one high objective value from one population to
another. This exchange cannot occur too regularly,
otherwise each subpopulation will be unable to
converge as it continues to receive more individuals.
Consequently, the algorithm is allowed to run a fixed
number of times before allowing the two populations to
perform the interaction mechanism at the optimal time,
which is determined by the parameter . The detailed
operation of this mechanism is shown in Algorithm 6.

3.6 Framework of RB2EA

The whole framework of RB2EA is displayed in
Algorithm 7, in which the stopping criterion is the
predefined maximum iterations. It is important to
emphasize that the Q-BLS and iteraction mechanism
will only be performed when meeting their own
condition (confer Sections 3.3 and 3.5). Firstly, the

Algorithm 4　Genetic operation
input: populationM and populationT

output: populationM and populationT

1 for i ≤ NM do
2 Perform crossover and mutation for xi and xi+1 in

populationM;
3 Get new yi and yi+1;
4 i = i + 2;
5 end
6 Combining x and y into a new population;
7 Execute novel binary tournament for populationM;
8 for i ≤ NT do
9 Perform crossover and mutation for xi and xi+1 in

populationT;
10 Get new yi and yi+1;
11 i = i + 2;
12 end
13 Combining x and y into a new population;
14 Execute novel binary tournament for populationT;

Algorithm 5　Mutation and crossover strategy
input : δ, η, x, and y
output: x′ and y′

1 if x, y ∈ populationM then
2 rate = 0.5(1−δ) + 0.5η
3 else
4 rate = 0.5(1−η) + 0.5δ
5 end
6 if rand < rate then
7 POX and UX methods are performed;
8 Pick an OS mutation strategy for x and y separately

with roulette algorithm;
9 Select an MS mutation method for x and y separately

with roulette algorithm;
10 end

 24 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

populationM populationT

freq
populationM populationT

population′M population′T

populationM

populationT

heuristic methods are adopted to obtain the initial
 and . Then some parameters

need to be configured, such as the initial state and Q-
learning parameters. Next, apply Q-learning to choose
the action and resize the bi-population and change the

. Moreover, execute genetic operators for
 and to get the new
 and , respectively. Mix the old

and new populations and perform the novel binary
tournament algorithm to get the offspring
and . Furthermore, if the condition is met,
the Q-BLS and the interaction mechanism for the
population will be adopted. Finally, it is necessary to
update the Q-table. If the terminating condition is not
met, back to Line 4 and continue iterating.

4 Numerical Result and Comparison

4.1 Experiment setting

EFFJSPD is actually an updated FFJSP, therefore we

× ×

× × × ×

can utilize fuzzy FJSP instances or generate instances
based on the standard dataset. However, these instances
lack energy consumption parameters, therefore they
can be extended by adding energy consumption
information E and SE as proposed in Ref. [22].
Particularly for typical instances, the determined
certain processing time needs to be fuzzified. In the
end, we selected 22 instances from Brandimarte[53],
Saidi-Mehrabad and Fattahi[54], and Behnke and
Geiger[55] at various scales. The instance format is
j m n, where j represents the size of job set, m means
the size of machine set, and n is the average number of
machines per operation. The smallest instance size is
3 5 2, while the highest is 20 20 6. The above
instances are utilized to evaluate the efficacy of the
proposed RB2EA for solving EFFJSPD.

MAXGEN =
0.1× j×m×n

size = ⌈8× log10(j×m×n)⌉×10

All algorithms are performed using MATLAB2021b
and executed on a computer with a 12th Generation
Intel Core i7-12700K, 3.61 GHz, 32 GB RAM, and
Windows 10 operating system. To compare fairly, the
algorithm testing termination criterion is set to the
maximum number of iterations,

. MAXGEN is 10 specifically for small-
scale instances. The population size is also a crucial
instance scalability parameter, thus we set

.

4.2 Parameter setting

β

α γ

ε

RB2EA includes four key parameters: (1) the ratio used
to choose when to interact with another population ;
(2) the learning rate ; (3) the discount factor ; and
(4) the greedy factor . The Taguchi method[56] of
design-of-experiments is employed to explore the
effect of parameter settings on the performance of
RB2EA and to determine the best combination for these
parameters. Four levels are set for each parameter, as
shown in Table 3.

α β γ ε

With this method, only 16 combinations instead of
256 need to be tested, which are included in an
orthogonal array. To guarantee fairness, each instance
generates a test instance to perform the experiment.
The RB2EA with each combination (, , ,) on each

Algorithm 6　Interaction mechanism
input : β, g, MAXGEN, populationM, and populationT

output: populationM and populationT

1 if g = β×MAXGEN then
2 find x1 with the worst TEC in populationM;
3 find x2 with the best TEC in populationT;
4 x1 ← x2;
5 find x3 with the worst makespan in populationT;
6 find x4 with the best makespan in populationM;
7 x3 ← x4;
8 end

Algorithm 7　RB2EA
input: population size N, greedy factor ε, learning rate

α, and discount factor γ
output: non-dominated solutions

1 Initialize the populations populationM and populationT

sizing N
2 ;

2 Initialize all variables and parameters for algorithm;
3 while the stopping criterion is not satisfied do
4 Apply Q-learning to resize the bi-population and

modify f req;
5 Execute genetic operators in populationM and

populationT separately and obtain new populations
population′M and population′T;

6 Update populations according to the new size with the
novel tournament method;

7 Perform Q-BLS algorithm;
8 Employ interaction mechanism;
9 Update population state and Q-table;

10 end
11 Calculate the non-dominated solution set;

Table 3 Parameters in different levels.

Level
Parameter

β α γ ε
1 0.70 0.10 0.80 0.70
2 0.75 0.15 0.85 0.75
3 0.80 0.20 0.90 0.80
4 0.85 0.25 0.95 0.85

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 25

test instance runs 10 times independently and records
the hypervolume (HV)[57] value every time. HV is
calculated by Eq. (26).

HV(Pref ,r) =
Pref∪

x∈Pref

v(x,r) (26)

where Pref is the reference point corresponding to the
real Pareto front.

r
For calculating HV value, the x must be normalized

by establishing a reference point . It is important to
note that all instances of x should be normalized using
the same reference point, which is the worst object
value multiplied by 2 in the original population. The
algorithm performs better in diversity and convergence
with a bigger HV value. In Table 4, the HV values and
orthogonal array are listed. In addition, the HVs and
significance rank of each parameter are presented in
Table 5, where Delta represents the biggest gap
between its average HVs at different levels. Moreover,
a small Delta value suggests that the performance
sensitivity of the parameter is low. It is evident from

γ

ε α

β

β

α γ ε

the data that the discount factor is the most sensitive
to performance. and are ranked the second and
third, respectively. The ratio used to choose when to
interact with another population is the last.
According to the mean HV values, the ideal
combination for parameter selection should be =0.75,

=0.2, =0.85, and =0.85.

4.3 Effect of algorithm designs

1

2 3 4

1

2

3

4

C

Next, the efficacy of the RB2EA’s special designs in
resolving EFFJSPD is evaluated, including heuristic
initialization, population adjusting dynamically method
with reinforcement learning, local intensification, and
bi-population communication mechanism. RB2EA ,
RB2EA , RB2EA , and RB2EA represent four
algorithms that lack a method each. RB2EA initializes
the population at random, RB2EA lacks population
adjusting dynamically with reinforcement learning,
RB2EA does not process the local search technique
for enhancement, and RB2EA has no interaction
between the two populations. Each of these four
algorithms is compared against the whole RB2EA to
determine the effect of each technique on the overall
performance. The metric is adopted to compare the
non-dominated object set obtained by different
algorithms to show the performance of the algorithm.

C (A,B) =
|{g ∈ B : ∃h ∈ A,h ≻ g}|

|B| (27)

where A and B are non-dominated solution sets, and g
is a solution in the non-dominated solution set.

C (A,B)

C

p

C1 C2

p

Clearly, the greater value indicates a superior
Pareto front Algorithm 1 obtains. To eliminate
randomness, 10 test fuzzy instances are created from
each instance and executed 10 times in each test
instance, with the final metric result presented in
Table 6. To determine whether the difference between
the RB2EA and other algorithms is statistically
significant, Table 6 also includes the values of
pairwise comparisons with a 95% confidence level. It
is evident that is greater than in all instances and
that is generally always less than 0.05. From these
results, it can be concluded that the four techniques
help RB2EA in determining the optimal Pareto front.

4.4 Comparison with other algorithms

Although EFFJSPD is a novel problem that has
received little attention, the algorithms developed for
EFFJSP can be generalized to solve it as well. In order
to demonstrate the RB2EA’s superiority in solving

Table 4 Orthogonal array and HV values.

Experiment No.
Factor level

HV
β α γ ε

1 1 1 1 1 0.631 205 5
2 1 2 2 2 0.628 482 8
3 1 3 3 3 0.627 707 3
4 1 4 4 4 0.627 290 5
5 2 1 2 3 0.628 778 8
6 2 2 1 4 0.631 223 9
7 2 3 4 1 0.626 560 6
8 2 4 3 2 0.628 589 2
9 3 1 3 4 0.627 454 2
10 3 2 4 3 0.628 272 6
11 3 3 1 2 0.628 114 0
12 3 4 2 1 0.629 891 8
13 4 1 4 2 0.626 158 7
14 4 2 3 1 0.626 647 8
15 4 3 2 4 0.632 412 5
16 4 4 1 3 0.627 570 7

Table 5 Influence and rank of each parameter.

Level β α γ ε

1 0.628 671 5 0.628 399 3 0.629 528 5 0.628 576 4
2 0.628 788 1 0.628 656 8 0.629 891 5 0.627 836 2
3 0.628 433 1 0.628 698 6 0.627 599 6 0.628 082 4
4 0.628 197 4 0.628 335 5 0.627 070 6 0.629 595 3

Delta 0.000 590 7 0.000 363 1 0.002 820 9 0.001 759 1
Rank 4 3 1 2

 26 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

C

EFFJSPD, four algorithms have been chosen for
comparison with it, including non-dominated sorting
genetic algorithm II (NSGA-II)[51], MOEA/D[47],
FBEA[22], and MOEA/D based on reinforcement
learning (RMOEA/D)[23]. All of these algorithms
utilize the same encoding and decoding methods and
stopping criterion to assure fairness. In addition, each
initial instance generates 10 fuzzy instances, and each
fuzzy instance runs 10 times. Apart from metric,
inverted generational distance (IGD)[58] is selected to
compare the performance of these algorithms, which
can be calculated by Eq. (28).

IGD
(
P,P∗

)
=

∑
x∈P∗

min
y∈P

dis(x,y)

|P∗| (28)

P
P∗

(0,1), (0,0.5), (0,0), (0.5,0), and (0,1)
C

where is the object value set obtained by the
algorithm, and represents the ideal Pareto front,
which does not exist in EFFJSPD. dis(x, y) denotes the
Euclidean distance between solution x and solution y.
Thus, are set as the
approximate PF. The average metric and IGD values
of instances in different scales are listed in Tables 7

and 8.
C1 C2

p
C1 C2

According to Table 7, is greater than in all
instances, and is always less than 0.05, which means

 and are significantly different at the 95%
confidence level.

In Table 8, FBEA and RMOEA/D are generally less
than NSGA-II and RMOEA/D. That is because NSGA-
II and MOEA/D are algorithms proposed for multi-
objective optimization theory but not practical
problems. Although the same encoding and decoding
strategies are adopted, they also lack heuristic
initialization methods, problem-specific genetic
operators, local enhancement strategies, etc. So the
performance of NSGA-II and MOEA/D is worse than
FBEA and RMOEA/D, which are designed to solve
practical scheduling problem.

FBEA adjusts the size of the two populations based
on a quality feedback mechanism, while RB2EA
utillizes Q-learning algorithm instead. The two
populations in FBEA take into account all the
optimization objectives simultaneously, while the two
populations in RB2EA have special preference for
certain optimization objectives, ensuring the diversity

CTable 6 Average of RB2EA and four variants on metric .

(j,m,n) 1RB2EA vs. RB2EA 2RB2EA vs. RB2EA 3RB2EA vs. RB2EA 4RB2EA vs. RB2EA
C1 C2 p C1 C2 p C1 C2 p C1 C2 p

(3, 5, 2) 0.94 0.64 0.00 0.89 0.56 0.02 0.89 0.59 0.00 0.87 0.59 0.00
(4, 5, 1.7) 0.92 0.68 0.00 0.93 0.62 0.00 0.94 0.63 0.00 0.95 0.57 0.00
(5, 6, 2.2) 0.68 0.20 0.00 0.74 0.19 0.00 0.74 0.16 0.00 0.69 0.19 0.00
(8, 7, 2.6) 0.71 0.14 0.00 0.65 0.20 0.00 0.67 0.21 0.02 0.64 0.23 0.00
(9, 8, 2.4) 0.70 0.20 0.00 0.75 0.12 0.00 0.70 0.18 0.00 0.75 0.15 0.00
(10, 6, 2) 0.72 0.11 0.00 0.63 0.18 0.00 0.59 0.08 0.00 0.70 0.17 0.00

(10, 6, 3.5) 0.65 0.24 0.00 0.63 0.26 0.02 0.63 0.25 0.02 0.65 0.26 0.02
(15, 8, 2) 0.83 0.05 0.00 0.72 0.11 0.00 0.67 0.02 0.00 0.81 0.09 0.00
(15, 8, 3) 0.71 0.11 0.00 0.72 0.13 0.00 0.64 0.10 0.00 0.72 0.14 0.00

(15, 4, 1.5) 0.61 0.17 0.00 0.68 0.16 0.00 0.68 0.14 0.00 0.66 0.17 0.00
(10, 10, 3) 0.79 0.09 0.00 0.74 0.13 0.00 0.75 0.12 0.00 0.75 0.11 0.00
(20, 5, 3) 0.75 0.16 0.00 0.76 0.15 0.00 0.75 0.16 0.00 0.72 0.21 0.00

(20, 10, 1.5) 0.79 0.12 0.00 0.71 0.13 0.00 0.81 0.11 0.00 0.82 0.12 0.00
(20, 10, 3) 0.78 0.18 0.00 0.60 0.23 0.00 0.67 0.21 0.00 0.79 0.12 0.00
(20, 15, 3) 0.50 0.28 0.02 0.54 0.18 0.00 0.57 0.26 0.02 0.58 0.29 0.00
(30, 5, 1.5) 0.77 0.12 0.00 0.74 0.15 0.00 0.74 0.16 0.00 0.78 0.12 0.00
(30, 10, 1.5) 0.66 0.19 0.00 0.62 0.19 0.00 0.71 0.16 0.00 0.75 0.15 0.00
(30, 10, 3.4) 0.73 0.19 0.00 0.77 0.16 0.00 0.71 0.17 0.00 0.78 0.12 0.00
(30, 15, 1.6) 0.60 0.28 0.00 0.63 0.24 0.00 0.65 0.20 0.00 0.68 0.20 0.00
(30, 15, 3) 0.80 0.13 0.00 0.69 0.13 0.00 0.64 0.13 0.00 0.76 0.14 0.00
(10, 20, 6) 0.63 0.19 0.00 0.67 0.21 0.00 0.53 0.24 0.02 0.69 0.20 0.00
(20, 20, 6) 0.68 0.22 0.02 0.68 0.18 0.00 0.46 0.18 0.00 0.72 0.19 0.00

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 27

CTable 7 Average of RB2EA and four other algorithms on metric .

(j,m,n)
RB2EA vs. NSGA-II RB2EA vs. MOEA/D RB2EA vs. FBEA RB2EA vs. MOEA/D
C1 C2 p C1 C2 p C1 C2 p C1 C2 p

(3, 5, 2) 0.94 0.50 0.00 0.78 0.16 0.02 0.91 0.66 0.00 0.78 0.23 0.00
(4, 5, 1.7) 0.99 0.43 0.00 0.82 0.45 0.02 0.96 0.73 0.00 0.81 0.47 0.02
(5, 6, 2.2) 0.82 0.06 0.00 0.90 0.04 0.00 0.72 0.19 0.00 0.84 0.06 0.00
(8, 7, 2.6) 0.98 0.00 0.00 0.95 0.01 0.00 0.68 0.16 0.00 0.91 0.01 0.00
(9, 8, 2.4) 1.00 0.00 0.00 0.61 0.18 0.00 0.56 0.22 0.00 0.62 0.17 0.00
(10, 6, 2) 1.00 0.00 0.00 0.61 0.06 0.00 0.89 0.00 0.00 0.74 0.03 0.00

(10, 6, 3.5) 1.00 0.00 0.00 0.88 0.01 0.00 0.78 0.08 0.00 0.86 0.02 0.00
(15, 8, 2) 1.00 0.00 0.00 0.65 0.06 0.02 0.86 0.02 0.00 0.80 0.06 0.02
(15, 8, 3) 1.00 0.00 0.00 0.56 0.03 0.02 0.83 0.05 0.00 0.67 0.01 0.00

(15, 4, 1.5) 0.98 0.01 0.00 0.92 0.00 0.00 0.74 0.11 0.00 0.90 0.00 0.00
(10, 10, 3) 1.00 0.00 0.00 0.72 0.00 0.00 0.92 0.03 0.00 0.78 0.00 0.00
(20, 5, 3) 1.00 0.00 0.00 0.73 0.07 0.00 0.83 0.07 0.00 0.55 0.16 0.02

(20, 10, 1.5) 1.00 0.00 0.00 0.73 0.02 0.00 0.76 0.08 0.00 0.72 0.06 0.00
(20, 10, 3) 1.00 0.00 0.00 0.42 0.03 0.00 0.78 0.07 0.00 0.50 0.04 0.00
(20, 15, 3) 1.00 0.00 0.00 0.72 0.07 0.00 0.78 0.08 0.00 0.76 0.04 0.00
(30, 5, 1.5) 1.00 0.00 0.00 0.81 0.05 0.00 0.73 0.12 0.00 0.73 0.10 0.02
(30, 10, 1.5) 1.00 0.00 0.00 0.54 0.05 0.02 0.71 0.14 0.00 0.77 0.03 0.00
(30, 10, 3.4) 1.00 0.00 0.00 0.70 0.00 0.00 0.84 0.04 0.00 0.84 0.00 0.00
(30, 15, 1.6) 1.00 0.00 0.00 0.83 0.03 0.00 0.88 0.04 0.00 0.85 0.04 0.00
(30, 15, 3) 1.00 0.00 0.00 0.44 0.08 0.00 0.91 0.01 0.00 0.58 0.10 0.00
(10, 20, 6) 1.00 0.00 0.00 0.66 0.20 0.00 0.88 0.00 0.00 0.71 0.18 0.00
(20, 20, 6) 1.00 0.00 0.00 0.70 0.19 0.02 0.84 0.02 0.00 0.68 0.19 0.02

Table 8 IGD metric of all algorithms.

(j,m,n)
IGD

RB2EA NSGA-II MOEA/D FBEA RMOEA/D
(3, 5, 2) 0.4638 0.4780 0.4759 0.4640 0.4632

(4, 5, 1.7) 0.4755 0.4926 0.4829 0.4859 0.4800
(5, 6, 2.2) 0.4799 0.5024 0.5050 0.4944 0.4952
(8, 7, 2.6) 0.4263 0.4591 0.4411 0.4412 0.4398
(9, 8, 2.4) 0.5035 0.5213 0.5109 0.5073 0.5102
(10, 6, 2) 0.5089 0.5215 0.5172 0.5104 0.5149

(10, 6, 3.5) 0.4557 0.4941 0.4866 0.4696 0.4548
(15, 8, 2) 0.5068 0.5382 0.5241 0.5214 0.5240
(15, 8, 3) 0.5211 0.5384 0.5369 0.5331 0.5290

(15, 4, 1.5) 0.5377 0.5537 0.5445 0.5334 0.5382
(10, 10, 3) 0.5076 0.5240 0.5231 0.5180 0.5178
(20, 5, 3) 0.4791 0.5006 0.5099 0.4980 0.4938

(20, 10, 1.5) 0.5502 0.5522 0.5527 0.5520 0.5515
(20, 10, 3) 0.5177 0.5473 0.5313 0.5242 0.5212
(20, 15, 3) 0.5133 0.5312 0.5191 0.5181 0.5128
(30, 5, 1.5) 0.5189 0.5433 0.5200 0.5254 0.5196
(30, 10, 1.5) 0.5084 0.5359 0.5313 0.5263 0.5166
(30, 10, 3.4) 0.4960 0.5272 0.5297 0.5156 0.5195
(30, 15, 1.6) 0.5312 0.5420 0.5337 0.5345 0.5325
(30, 15, 3) 0.5117 0.5274 0.5274 0.5214 0.5232
(10, 20, 6) 0.4494 0.4779 0.4672 0.4620 0.4575
(20, 20, 6) 0.5005 0.5228 0.5210 0.5030 0.5007

 28 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

of the entire population. It also helps RB2EA develop a
larger search space compared to FBEA. The
optimization objectives chosen in RMOEA/D are
makespan and total workload but do not include TEC.
So strategies designed for TEC are missing in
RMOEA/D, which results in a poor performance in
EFFJSPD. In addition, compared with the dual
population algorithm proposed in this article, it is more
limited in search space and has weak convergence. It
can be also concluded that the IGD of RB2EA is
smaller than FBEA and RMOEA/D in Table 8, which
validates the previous analysis.

× × × ×

The comparison of the average IGD values listed in
Table 8 cannot reveal the obvious difference, so the
box-plot of IGD in two instances is shown in Fig. 4,
which indicates that RB2EA solves the problem more
effectively than the other four algorithms. Figure 5
shows the approximate Pareto front by all algorithms
when solving instance 20 15 3 and 30 10 3, where

the solutions obtained by RB2EA have a better
performance than other algorithms.

5 Conclusion and Future Work

Few studies have investigated the energy-efficient
flexible job shop scheduling problem with fuzzy
processing time in combination with deteriorating
effect. In this study, the deterioration effect is treated as
a part of the fuzzy scheduling. As for the processing
time, the linear increase of a certain number is
transformed into an internal linear shift of a TFN.
Fuzzy makespan and fuzzy total energy consumption
are chosen as the two optimization objectives. Besides,
a new algorithm RB2EA is presented, which combines
the bi-population evolutionary algorithm and Q-
learning algorithm. Four heuristics are proposed to
produce the initial population. A local search strategy
based on the Q-learning and the interaction mechanism
is proposed. In the experiments, RB2EA is compared to

0.70

0.75

0.65

IG
D

0.60

0.55

RB2EA NSGA-II MOEA/D
(a) j×m×n=15×8×3

FBEARMOEA/D

0.70

0.65

IG
D 0.60

0.55

0.50

RB2EA NSGA-II MOEA/D
(b) j×m×n=20×10×3

FBEA RMOEA/D

× × × ×Fig. 4 IGD in instance 15 8 3 and 20 10 3.

2.5

2.4

2.3

2.2

TE
C

 (×
10

4)

2.1

2.0

260 280 300
Makespan

(a) j×m×n=20×15×3

320

RB2EA
MOEA/D
RMOEA/D
NSGA-II
FBEA

340 360

4.6

4.4

4.0

4.2

3.8TE
C

 (×
10

4)

3.6

3.4

550 600 650 700
Makespan

(b) j×m×n=30×10×3

750

RB2EA
MOEA/D
RMOEA/D
NSGA-II
FBEA

800 850 900

× × × ×Fig. 5 Approximate Pareto front in instance 20 15 3 and 30 10 3.

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 29

other four algorithms to evalute its efficacy. RB2EA is
able to solve EFFJSPD efficiently.

Several main future surveys are summarized in the
following:

(1) Distributed hybrid flow shop scheduling with
fuzzy processing time and deteriorating effect will be
investigated.

(2) We will try to adopt the type-2 fuzzy processing
time and combine it with deteriorating effect.

(3) The deep reinforcement learning technique will
be another direction.

References

 IRENA, Global energy transformation: A roadmap to
2050, https://www.h2knowledgecentre.com/content/
researchpaper1605, 2019.

[1]

 S. Wang, M. Liu, F. Chu, and C. Chu, Bi-objective
optimization of a single machine batch scheduling
problem with energy cost consideration, J. Clean. Prod.,
vol. 137, pp. 1205–1215, 2016.

[2]

 S. Zhang, A. Che, X. Wu, and C. Chu, Improved mixed-
integer linear programming model and heuristics for bi-
objective single-machine batch scheduling with energy
cost consideration, Eng. Optim., vol. 50, no. 8, pp.
1380–1394, 2018.

[3]

 S. Assia, I. E. Abbassi, A. E. Barkany, M. Darcherif, and
A. E. Biyaali, Green scheduling of jobs and flexible
periods of maintenance in a two-machine flowshop to
minimize makespan, a measure of service level and total
energy consumption, Adv. Oper. Res., vol. 2020, pp. 1–9,
2020.

[4]

 K. Fang, W. Luo, and A. Che, Speed scaling in two-
machine lot-streaming flow shops with consistent sublots,
J. Oper. Res. Soc., vol. 72, no. 11, pp. 2429–2441, 2021.

[5]

 L. P. Cota, V. N. Coelho, F. G. Guimarães, and M. J. F.
Souza, Bi-criteria formulation for green scheduling with
unrelated parallel machines with sequence-dependent
setup times, Int. Trans. Oper. Res., vol. 28, no. 2, pp.
996–1017, 2021.

[6]

 H. Zhang, Y. Wu, R. Pan, and G. Xu, Two-stage parallel
speed-scaling machine scheduling under time-of-use
tariffs, J. Intell. Manuf., vol. 32, no. 1, pp. 91–112, 2021.

[7]

 F. Zhao, X. He, and L. Wang, A two-stage cooperative
evolutionary algorithm with problem-specific knowledge
for energy-efficient scheduling of no-wait flow-shop
problem, IEEE Trans. Cybern., vol. 51, no. 11, pp.
5291–5303, 2021.

[8]

 F. Zhao, R. Ma, and L. Wang, A self-learning discrete jaya
algorithm for multiobjective energy-efficient distributed
no-idle flow-shop scheduling problem in heterogeneous
factory system, IEEE Trans. Cybern., vol. 52, no. 12, pp.
12675–12686, 2022.

[9]

 H. X. Qin, Y. Y. Han, B. Zhang, L. L. Meng, Y. P. Liu, Q.
K. Pan, and D. W. Gong, An improved iterated greedy

[10]

algorithm for the energy-efficient blocking hybrid flow
shop scheduling problem, Swarm Evol. Comput., vol. 69,
p. 100992, 2022.
 A. Goli, A. Ala, and M. Hajiaghaei-Keshteli, Efficient
multi-objective meta-heuristic algorithms for energy-
aware non-permutation flow-shop scheduling problem,
Expert Syst. Appl., vol. 213, p. 119077, 2023.

[11]

 X. Wu, Z. Cao, and S. Wu, Real-time hybrid flow shop
scheduling approach in smart manufacturing environment,
Complex System Modeling and Simulation, vol. 1, no. 4,
pp. 335–350, 2021.

[12]

 F. Zhao, B. Zhu, and L. Wang, An estimation of
distribution algorithm-based hyper-heuristic for the
distributed assembly mixed no-idle permutation flowshop
scheduling problem, IEEE Trans. Syst. Man Cybern, Syst.,
vol. 53, no. 9, pp. 5626–5637, 2023.

[13]

 J. Y. Moon and J. Park, Smart production scheduling with
time-dependent and machine-dependent electricity cost by
considering distributed energy resources and energy
storage, Int. J. Prod. Res., vol. 52, no. 13, pp. 3922–3939,
2014.

[14]

 D. Lei, Y. Zheng, and X. Guo, A shuffled frog-leaping
algorithm for flexible job shop scheduling with the
consideration of energy consumption, Int. J. Prod. Res.,
vol. 55, no. 11, pp. 3126–3140, 2017.

[15]

 X. Wu and Y. Sun, A green scheduling algorithm for
flexible job shop with energy-saving measures, J. Clean.
Prod., vol. 172, pp. 3249–3264, 2018.

[16]

 S. Luo, L. Zhang, and Y. Fan, Energy-efficient scheduling
for multi-objective flexible job shops with variable
processing speeds by grey wolf optimization, J. Clean.
Prod., vol. 234, pp. 1365–1384, 2019.

[17]

 L. Meng, C. Zhang, X. Shao, and Y. Ren, MILP models
for energy-aware flexible job shop scheduling problem, J.
Clean. Prod., vol. 210, pp. 710–723, 2019.

[18]

 M. Li and D. Lei, An imperialist competitive algorithm
with feedback for energy-efficient flexible job shop
scheduling with transportation and sequence-dependent
setup times, Eng. Appl. Artif. Intell., vol. 103, p. 104307,
2021.

[19]

 H. Qin, Y. Han, Q. Chen, L. Wang, Y. Wang, J. Li, and Y.
Liu, Energy-efficient iterative greedy algorithm for the
distributed hybrid flow shop scheduling with blocking
constraints, IEEE Trans. Emerg. Top. Comput. Intell., vol.
7, no. 5, pp. 1442–1457, 2023.

[20]

 M. Dai, D. Tang, A. Giret, and M. A. Salido, Multi-
objective optimization for energy-efficient flexible job
shop scheduling problem with transportation constraints,
Robot. Comput. Integr. Manuf., vol. 59, pp. 143–157,
2019.

[21]

 Z. Pan, D. Lei, and L. Wang, A bi-population evolutionary
algorithm with feedback for energy-efficient fuzzy flexible
job shop scheduling, IEEE Trans. Syst. Man Cybern, Syst.,
vol. 52, no. 8, pp. 5295–5307, 2022.

[22]

 R. Li, W. Gong, and C. Lu, A reinforcement learning
based RMOEA/D for bi-objective fuzzy flexible job shop

[23]

 30 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

scheduling, Expert Syst. Appl., vol. 203, p. 117380, 2022.
 J. Q. Li, Z. M. Liu, C. Li, and Z. X. Zheng, Improved
artificial immune system algorithm for type-2 fuzzy
flexible job shop scheduling problem, IEEE Trans. Fuzzy
Syst., vol. 29, no. 11, p. 3234–3248, 2021.

[24]

 F. Zhao, Z. Xu, L. Wang, N. Zhu, T. Xu, and J. Jonrinaldi,
A population-based iterated greedy algorithm for
distributed assembly no-wait flow-shop scheduling
problem, IEEE Trans. Ind. Inf., vol. 19, no. 5, pp.
6692–6705, 2023.

[25]

 L. Sun, L. Lin, M. Gen, and H. Li, A hybrid cooperative
coevolution algorithm for fuzzy flexible job shop
scheduling, IEEE Trans. Fuzzy Syst., vol. 27, no. 5, pp.
1008–1022, 2019.

[26]

 J. Lin, Backtracking search based hyper-heuristic for the
flexible job-shop scheduling problem with fuzzy
processing time, Eng. Appl. Artif. Intell., vol. 77, pp.
186–196, 2019.

[27]

 J. Cai and D. Lei, A cooperated shuffled frog-leaping
algorithm for distributed energy-efficient hybrid flow shop
scheduling with fuzzy processing time, Complex Intell.
Syst., vol. 7, no. 5, pp. 2235–2253, 2021.

[28]

 R. Li, W. Gong, and C. Lu, Self-adaptive multi-objective
evolutionary algorithm for flexible job shop scheduling
with fuzzy processing time, Comput. Ind. Eng., vol. 168,
p. 108099, 2022.

[29]

 Y. Dorfeshan, R. Tavakkoli-Moghaddam, S. M. Mousavi,
and B. Vahedi-Nouri, A new weighted distance-based
approximation methodology for flow shop scheduling
group decisions under the interval-valued fuzzy processing
time, Appl. Soft Comput., vol. 91, p. 106248, 2020.

[30]

 R. Li, W. Gong, C. Lu, and L. Wang, A learning-based
memetic algorithm for energy-efficient flexible job-shop
scheduling with type-2 fuzzy processing time, IEEE
Trans. Evol. Computat., vol. 27, no. 3, pp. 610–620, 2023.

[31]

 B. Xi and D. Lei, Q-learning-based teaching-learning
optimization for distributed two-stage hybrid flow shop
scheduling with fuzzy processing time, Complex System
Modeling and Simulation, vol. 2, no. 2, pp. 113–129,
2022.

[32]

 J. N. D. Gupta and S. K. Gupta, Single facility scheduling
with nonlinear processing times, Comput. Ind. Eng., vol.
14, no. 4, pp. 387–393, 1988.

[33]

 S. Browne and U. Yechiali, Scheduling deteriorating jobs
on a single processor, Oper. Res., vol. 38, no. 3, pp.
495–498, 1990.

[34]

 Y. Fu, M. Zhou, X. Guo, and L. Qi, Scheduling dual-
objective stochastic hybrid flow shop with deteriorating
jobs via bi-population evolutionary algorithm, IEEE
Trans. Syst. Man Cybern, Syst., vol. 50, no. 12, pp.
5037–5048, 2020.

[35]

 T. Jiang, H. Zhu, L. Liu, and Q. Gong, Energy-conscious
flexible job shop scheduling problem considering
transportation time and deterioration effect
simultaneously, Sustain. Comput. Inform. Syst., vol. 35, p.
100680, 2022.

[36]

 Y. F. Wang, Adaptive job shop scheduling strategy based
on weighted Q-learning algorithm, J. Intell. Manuf., vol.
31, no. 2, pp. 417–432, 2020.

[37]

 B. A. Han and J. J. Yang, Research on adaptive job shop
scheduling problems based on dueling double DQN, IEEE
Access, vol. 8, pp. 186474–186495, 2020.

[38]

 L. Wang and Z. Pan, Scheduling optimization for flow-
shop based on deep reinforcement learning and iterative
greedy method, Control and Decision, vol. 36, no. 11, pp.
2609–2617, 2021.

[39]

 L. Wang, X. Hu, Y. Wang, S. Xu, S. Ma, K. Yang, Z. Liu,
and W. Wang, Dynamic job-shop scheduling in smart
manufacturing using deep reinforcement learning,
Comput. Netw., vol. 190, p. 107969, 2021.

[40]

 J. J. Wang and L. Wang, A cooperative memetic algorithm
with learning-based agent for energy-aware distributed
hybrid flow-shop scheduling, IEEE Trans. Evol.
Computat., vol. 26, no. 3, pp. 461–475, 2022.

[41]

 F. Zhao, S. Di, and L. Wang, A hyperheuristic with Q-
learning for the multiobjective energy-efficient distributed
blocking flow shop scheduling problem, IEEE Trans.
Cybern., vol. 53, no. 5, pp. 3337–3350, 2023.

[42]

 F. Zhao, T. Jiang, and L. Wang, A reinforcement learning
driven cooperative meta-heuristic algorithm for energy-
efficient distributed no-wait flow-shop scheduling with
sequence-dependent setup time, IEEE Trans. Ind. Inf., vol.
19, no. 7, pp. 8427–8440, 2023.

[43]

 H. Li, K. Gao, P. Y. Duan, J. Q. Li, and L. Zhang, An
improved artificial bee colony algorithm with Q-learning
for solving permutation flow-shop scheduling problems,
IEEE Trans. Syst. Man Cybern, Syst., vol. 53, no. 5, pp.
2684–2693, 2023.

[44]

 F. Zhao, G. Zhou, and L. Wang, A cooperative scatter
search with reinforcement learning mechanism for the
distributed permutation flowshop scheduling problem with
sequence-dependent setup times, IEEE Trans. Syst. Man
Cybern. Syst., vol. 53, no. 8, pp. 4899–4911, 2023.

[45]

 L. A. Zadeh, Fuzzy sets, Inf. Contr., vol. 8, no. 3, pp.
338–353, 1965.

[46]

 Q. Zhang and H. Li, MOEA/D: A multiobjective
evolutionary algorithm based on decomposition, IEEE
Trans. Evol. Computat., vol. 11, no. 6, pp. 712–731, 2007.

[47]

 R. Storn and K. Price, Differential evolution—A simple
and efficient heuristic for global optimization over
continuous spaces, J. Glob. Optim., vol. 11, no. 4, pp.
341–359, 1997.

[48]

 R. Liu, J. Li, J. Fan, C. Mu, and L. Jiao, A coevolutionary
technique based on multi-swarm particle swarm
optimization for dynamic multi-objective optimization,
Eur. J. Oper. Res., vol. 261, no. 3, pp. 1028–1051, 2017.

[49]

 C. J. C. H. Watkins and P. Dayan, Technical note: Q-
learning, Mach. Learn., vol. 8, nos. 3&4, pp. 279–292,
1992.

[50]

 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast
and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Trans. Evol. Computat., vol. 6, no. 2, pp. 182–197,

[51]

 Libao Deng et al.: Biased Bi-Population Evolutionary Algorithm for Energy-Efficient Fuzzy Flexible Job Shop … 31

2002.
 K. M. Lee, T. Yamakawa, and K. M. Lee, A genetic
algorithm for general machine scheduling problems, in
Proc. 1998 2nd Int. Conf. Knowledge-Based Intelligent
Electronic Systems, Proc. KES’98 (Cat. No. 98EX111),
Adelaide, Australia, 1998, pp. 60–66.

[52]

 P. Brandimarte, Routing and scheduling in a flexible job
shop by tabu search, Ann. Oper. Res., vol. 41, no. 3, pp.
157–183, 1993.

[53]

 M. Saidi-Mehrabad and P. Fattahi, Flexible job shop
scheduling with tabu search algorithms, Int. J. Adv. Manuf.
Technol., vol. 32, nos. 5&6, pp. 563–570, 2007.

[54]

 D. Behnke and M. J. Geiger, Test instances for the[55]

flexible job shop scheduling problem with work centers,
https://openhsu.ub.hsu-hh.de/handle/10.24405/436, 2012.
 D. C. Montgomery, R. H. Myers, W. H. Carter, and G. G.
Vining, The hierarchy principle in designed industrial
experiments, Qual. Reliab. Engng. Int., vol. 21, no. 2, pp.
197–201, 2005.

[56]

 L. While, P. Hingston, L. Barone, and S. Huband, A faster
algorithm for calculating hypervolume, IEEE Trans. Evol.
Computat., vol. 10, no. 1, pp. 29–38, 2006.

[57]

 C. A. Coello and N. C. Cortés, Solving multiobjective
optimization problems using an artificial immune system,
Genet. Program. Evolvable Mach., vol. 6, no. 2, pp.
163–190, 2005.

[58]

Libao Deng received the BSc, MSc, and
PhD degrees from Harbin Institute of
Technology, Harbin, China in 2004, 2007,
and 2012, respectively. He is currently a
professor at the School of Information
Science and Engineering, Harbin Institute
of Technology, Weihai, China. His
research interests are in computational

intelligence and optimal scheduling.

Yingjian Zhu is currently pursuing the
BSc degree at Harbin Institute of
Technology, Weihai, China. His main
research interest includes flexible job shop
scheduling with intelligent optimization.

Yuanzhu Di received the BSc and MSc
degrees from Harbin Institute of
Technology, Weihai, China in 2021 and
2023, respectively. She is currently
pursuing the PhD degree at Harbin
Institute of Technology, Weihai, China.
Her main research directions include the
distributed and green scheduling with

computational intelligence.

Lili Zhang received the bachelor and
master degrees in instrumental science and
technology from Harbin Institute of
Technology, China in 2017 and 2019,
respectively, and the PhD degree in
computer science f'rom Dublin City
University, Ireland in 2022. Now she is a
postdoctoral researcher at Dublin City

University, Ireland and a lecturer at Maynooth University,
Ireland. Her research area involves intelligent computing and
computational psychiatry.

 32 Complex System Modeling and Simulation, March 2024, 4(1): 15−32

