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Abstract: There are many studies about  flexible job shop scheduling problem with fuzzy processing time and

deteriorating scheduling, but most scholars neglect the connection between them, which means the purpose of

both  models  is  to  simulate  a  more  realistic  factory  environment.  From this  perspective,  the  solutions  can  be

more precise and practical if  both issues are considered simultaneously. Therefore, the deterioration effect is

treated as a part of the fuzzy job shop scheduling problem in this paper, which means the linear increase of a

certain processing time is transformed into an internal linear shift of a triangle fuzzy processing time. Apart from

that, many other contributions can be stated as follows. A new algorithm called reinforcement learning based

biased bi-population evolutionary algorithm (RB2EA) is proposed, which utilizes Q-learning algorithm to adjust

the  size  of  the  two  populations  and  the  interaction  frequency  according  to  the  quality  of  population.  A  local

enhancement method which combimes multiple local search stratgies is presented. An interaction mechanism

is designed to promote the convergence of the bi-population. Extensive experiments are designed to evaluate

the  efficacy  of  RB2EA,  and  the  conclusion  can  be  drew  that  RB2EA  is  able  to  solve  energy-efficient  fuzzy

flexible job shop scheduling problem with deteriorating jobs (EFFJSPD) efficiently.

Key words: bi-population  evolutionary  algorithm; Q-learning  algorithm; fuzzy; deteriorating  effect; energy; flexible  job

shop scheduling

1    Introduction

CO2

According  to  a  2019  report[1],  in  the  previous  five
years,  emissions  about  energy  consumption  have
increased  by  1.3% each  year  on  average.  Industrial
energy  consumption  and  industrial  processes  account
for a sizable share of global greenhouse gas emissions.
For  these  reasons,  energy  efficiency  in  manufacturing

has  drawn  considerable  interest.  In  the  background  of
green  manufacturing,  the  field  of  job  shop  scheduling
needs to seek solutions to reduce energy consumption.
This  provides  various  benefits  for  enterprises,
including cost reduction, enhanced resource utilization,
and promotion of sustainable development.

In  recent  years,  the  quantity  of  articles  on  energy
efficiency  and  sustainability  in  diverse  manufacturing
systems,  such  as  single  machine[2, 3],  two  machines  in
line[4, 5], parallel machines[6, 7], and flow shop[8−13], has
increased  significantly.  In  particular,  due  to  its
significance  in  manufacturing,  assembly  line
operations,  maintenance  and  repair,  etc.,  the  flexible
job  shop  scheduling  problem  (FJSP)  has  drawn  great
interest.  In  order  to  find  conpromising  solutions  for
total  costs  of  production,  Moon  and  Park[14] proposed
mixed-integer  programming  and  constraint
programming  approaches.  Instead  of  makespan,  Lei
et  al.[15] optimized  total  energy  consumption  and
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workload  balance  simultaneously.  In  Ref.  [16],  the
number of machine turning on/offs was evaluated as a
goal  to  minimize.  Luo  et  al.[17] investigated  the  effect
of various processing speeds on energy consumption in
a  flexible  job  shop,  finding  that  faster  running  speeds
consume  more  energy.  A  number  of  mixed-integer
linear  programming  models  were  presented  by  Meng
et  al.[18] to  optimize total  energy consumption.  In Ref.
[19], energy consumption consists of four components:
energy  consumption  when  processing,  standby  energy
consumption,  energy  consumption  for  setup,  and
energy  consumption  caused  by  transportation.  Qin
et  al.[20] proposed  an  improved  iterative  greedy  (IG)
algorithm  to  optimize  the  energy  consumption  of  job
sequence.  Many  algorithms  were  designed  to  solve
these  energy-efficient  scheduling  problems.  An
improved  genetic  algorithm  was  proposed  by  Dai
et  al.[21] to  solve  the  transportation  constraints
scheduling  problem.  Pan  et  al.[22] proposed  an
evolutionary algorithm with two populations, where the
quality  of  each  population  is  used  to  adjust  the
population  size.  Li  et  al.[23] adopted  the  idea  of
evaluating  the  quantity  of  population,  combining  Q-
learning  algorithm  with  multi-objective  evolutionary
algorithm  based  on  decomposition  (MOEA/D)  to
modify  the  number  of  neighborhood  solutions
dynamically.  In  order  to  address  the  FJSP with  type-2
fuzzy processing time efficiently, an improved artificial
immune system algorithm was presented by Li et al.[24]

Zhao  et  al.[25] proposed  a  population-based  iterated
greedy  algorithm  to  address  distributed  assembly  no-
wait flow shop scheduling problem.

However,  many  uncertainties  in  production  mean
that  the  current  FJSP  cannot  meet  the  demand  of  the
modern  market.  Thus,  many  scholars  turned  their
attention  to  the  FJSP  with  the  fuzzy  processing  time
(FFJSP).  Sun  et  al.[26] combined  genetic  algorithm
(GA)  and  particle  swarm  optimization  (PSO)  to
optimize  the  fuzzy  makespan.  A  hyper-heuristic
approach  based  on  backtracking  search  was  presented
by  Lin[27],  which  can  solve  FFJSP  effectively.  A
cooperated  shuffled  frog-leaping  algorithm[28] was
presented  for  simultaneously  optimizing  fuzzy
makespan,  fuzzy  total  energy  consumption,  and  total
agreement index. To solve FFJSP, Ref. [29] combined
MOEA/D with a local  searching strategy based on the
success  and  failure  memories.  In  these  studies,  the
processing  time  is  presented  as  a  triangle  fuzzy
number.  In  Ref.  [30],  a  weighted  distance  based
approximation  method  was  extended  to  schedule  the

operation  sequence  in  a  flow  shop  environment,
utilizing interval-valued fuzzy sets  in  place  of  triangle
fuzzy  numbers  (TFNs).  The  processing  time  was
represented  as  type-2  fuzzy  set  in  Ref.  [31],  thus
uncertainties and constraints in the real-world factories
can  be  more  fully  taken  into  account,  which
compensates  for  the  drawback  of  the  conventional
fuzzy triangular number. Xi and Lei[32] investigated the
distributed  two-stage  hybrid  flow  shop  scheduling
problem  with  fuzzy  processing  time  in  multiple
factories.

Considering  some  factors,  e.g.,  production
interruptions,  operator  fatigue,  and  machine  wear,  the
operations take more time if they start processing later,
which  is  called  deteriorating  effect.  Deteriorating
scheduling has attracted considerable attention recently
in  various  production  environments,  taking  into
account  the  actual  factory  conditions.  References
[33, 34]  firstly  built  a  deteriorating  scheduling  model
for  the  single  machine  scheduling  problem,  where  the
processing  time  of  operations  was  a  linear  increasing
function  of  their  start  time.  Fu  et  al.[35] utilized  bi-
population  evolutionary  algorithm  to  address  the
stochastic hybrid flow shop problem with deteriorating
jobs. In Ref. [36], the deterioration effect of FJSP was
considered,  which  is  solved  with  the  modified  animal
migration optimization algorithm. Actually, fuzzy FJSP
and the deterioration effect have some characteristics in
common, but few related literature try to connect them.

Recently,  many  researchers  have  proposed
reinforcement  learning  (RL)  based  approaches  to
address  scheduling  problems  due  to  its  adaptability  in
different  environments  and  scalability  for  large-scale
problems. To address the dynamic job shop scheduling
problem,  Wang[37] developed  a  weighted  Q-learning
algorithm in combination with clustering and dynamic
search. In Ref. [38], the state was represented as multi-
channel  images,  and  a  deep  convolutional  neural
network  was  adopted  due  to  its  real-time  reaction  and
adaptation  in  various  environment.  An  improved
pointer network was presented by Wang and Pan[39] for
the  policy  learning,  in  which  the  processing  time  of
each  operation  is  selected  as  the  state.  Wang  et  al.[40]

selected  the  processing  time  matrix,  the  machine
assigned matrix, and the processing status of operations
matrix as the state and put them into neural network to
learn  the  policy.  For  addressing  the  energy-aware
distributed  hybrid  scheduling  in  flow  shop,  a
cooperative  memetic  algorithm  with  an  RL-based
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policy  agent  was  proposed  by  J.  J.  Wang  and  L.
Wang[41]. In Ref. [42], Q-learning is adopted to choose
a  suitable  heuristic  strategy  among  predesigned
heuristic  methods  based  on  historical  information
feedback.  In  Ref.  [43],  a  bi-population  cooperative
framework  based  on  double  Q-learning  was  designed
to  further  optimize  distributed  no-wait  flow  shop
scheduling problem. Li et al.[44] combined artificial bee
colony  algorithm  and  Q-learning  to  solve  the
permutation  flow  shop  scheduling  problem  with
minimizing the makespan. A cooperative scatter search
with  Q-learning  mechanism  (QCSS)  was  presented  in
Ref.  [45],  which  adopts  Q-learning  to  balance  the
exploration  and  exploitation  capabilities.  RL  will  also
be  performed  to  improve  algorithm’s  performance  in
this study.

Until  now,  most  scholars  have  viewed  FFJSP  and
deteriorating  scheduling  as  two  separate  fields  and
ignored  the  connection  between  them.  Actually,  fuzzy
FJSP  and  the  deterioration  effect  have  some
characteristics in common, but few related literature try
to  connect  them.  The  original  intention  of  both
problems  is  to  simulate  a  more  realistic  factory
environment.  FFJSP  emphasizes  that  the  processing
time can not be represented as a certain number due to
many uncertainties in production. If fuzzy numbers are
utilized to represent processing time while introducing
deterioration effect,  a  new mathematical  model can be
established.  Meanwhile,  considering  total  energy
consumption  as  one  objective  can  be  in  line  with  the
concept  of  green  manufacturing.  The  model  is  called
energy-efficient  fuzzy  flexible  job  shop  scheduling
problem  with  deteriorating  jobs  (EFFJSPD),  which  is
able  to  simulate  a  more  realistic  processing
environment.  The  scheduling  scheme  obtained  by
solving this model will be more practical.

In  this  paper,  EFFJSPD  is  proposed,  and  a  new
algorithm  called  reinforcement  learning  based  biased
bi-population  evolutionary  algorithm  (RB2EA)  is
presented  to  minimize  makespan  and  total  energy
consumption  represented  as  TFN.  The  major
contributions are summed up in the following. Propose
a  novel  fuzzy  FJSP  model  which  is  connected  with
deteriorating  effect  (in  Section  2).  RB2EA  (in  Section
3) is presented to solve the EFFJSPD, which combines
Q-learning  algorithm  with  bi-population  evolutionary
algorithm.  Q-learning  is  utilized  to  resize  the
population size according to the quality  of  population.
Four  heuristic  strategies  are  designed  to  initialize  the

population (in Section 3.1). A local search strategy (in
Section  3.3)  based  on  the  Q-learning  and  the
interaction mechanism (in Section 3.5) are proposed.

2    Problem Description

2.1    Fuzzy set

F̃ x

µF̃(x)

In  1965,  Zadeh[46] invented  fuzzy  set  theory  as  a
mathematical  tool  for  describing  uncertainty  and
ambiguity  in  human  reasoning.  Fuzzy  sets  are  a
mathematical  representation  of  ambiguity  and
uncertainty  in  a  system.  In  contrast  to  traditional  sets,
in  which  an  element  is  either  a  member  or  not  a
member,  a  fuzzy set  allows an element  to  have a
membership  degree  between  0  and  1.  This  degree  of
membership  indicates  the  element’s  level  of  similarity
to the set, which is defined as the membership function

. Fuzzy set can be defined as follows:
X x

X F X
If  is a definite set and  is a particular element of
, then a fuzzy set  defined on  can be written as a

collection of ordered pairs.
 

F̃ =
{(

x,µF̃(x)
)
, x ∈ X

}
, 0 ⩽ µF̃(x) ⩽ 1 (1)

a
b c (a,b,c)

The membership function of a triangle fuzzy number
is similar to the triangle, which has three parameters: ,

, and  and can be represented as a triple . The
membership function can be formulated as follows:
 

µF̃(x) =



0, x ⩽ a;
x−a
b−a

, a < x ⩽ b;

c− x
c−b
, b < x < c;

0, x ⩾ c

(2)

2.2    Fuzzy operation

ũ = (u1,u2,u3) ṽ = (v1,v2,v3)

The  completion  of  a  total  scheduling  requires  three
operations  on  processing  time:  addition,  ranking,  and
maximum.  The  addition  operator  is  used  to  calculate
the  ending  time  of  an  operation.  Ranking  and
maximum operators  are  performed  to  determine  when
to start the process of an operation. Consequently, this
section  will  introduce  these  three  TFN  operators.  For
two TFNs  and :

(1) ũ+ t̃ = (u1+ v1,u2+ v2,u3+ v3) Addition operator: .
(2) Ranking operator:

f1(x̃) =
x1+2x2+ x3

4
f1(ũ) > f1(ṽ), ũ > ṽ

ũ < ṽ

(a) ,  if ;
otherwise, ;

f2(x̃) = x2 f1(ũ) = f1(ṽ) f2(ũ) > f2(ṽ), ũ >
ṽ ũ < ṽ

(b) , when , if 
; otherwise, ;
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f2(x̃) = x3− x1 f2(ũ) = f2(ṽ) f3(ũ) > f3(ṽ),
ũ > ṽ ũ < ṽ

(c) , when , if 
; else, .

ũ > ṽ ũ∨ ṽ = ũ
ũ∨ ṽ = ṽ

(3)  Maximum  operator:  if ,  then ,
otherwise, .

2.3    Fuzzy  processing  time  considering
deteriorating effect

The deteriorating effect means that the operations take
more  time  when  they  are  processed  later.  The
significance of studying fuzzy scheduling is to account
for  all  scheduling  uncertainties,  such  as  processing
equipment,  environmental  or  human  factors,  etc.,  so
that the exact processing time cannot be determined. In
other  words,  the  fuzzy  scheduling  itself  takes  the
influence  of  the  deterioration  effect  on  the  makespan
into  consideration,  hence  it  is  conceptually  reasonable
to  treat  the  deterioration  effect  as  a  part  of  the  fuzzy
scheduling.

α

α

A  parameter  called  deterioration  coefficient  is
usually  set  for  each  stage  of  each  job  in  the
deteriorating scheduling[35].  The processing time of  an
operation  grows  linearly  as  the  start  time  is  delayed,
and the speed of growth is  just  determined by .  This
paper  retains  this  linearity  but  transforms  this  linear
increase into an internal linear shift of the TFN.

t0

It  is  assumed that  an  operation  can  be  processed  on
M1, M2,  and M3,  and  requires  the  same  standard
processing  time.  As  shown  in Fig.  1,  the  variation  of
the  processing  time  in  the  normal  deteriorating
scheduling is shown in the upper part, and the standard
processing  time  for  this  operation  is  a  certain  number

.  As  the  start  time  is  pushed  back,  the  needed

t = 2
∆t1 = 1

t = 5
∆t2 = 2.5 ∆t2

∆t1

processing  time  for  this  operation  increases.  If  the
operation  starts  at ,  the  extended  processing  time
due  to  the  deterioration  effect  is ;  and  if  the
operation begins at , the additional processing time
is .  It  is  obvious  from  the  figure  that  is
greater than .

t̃0 = (0,0.5,4)

t = 3 t̃ = (3,3,3)

t̃1 = (0,1.5,4) 1.5
4.5−3 ∆t

∆t1 = 1.5−0.5 = 1
t = 7

3 10−7 ∆t2 = 3−1.5 = 1.5

However,  this  variation  law  is  no  longer  applicable
when the operation’s processing time is a TFN. This is
due  to  the  fact  that  processing  time  is  represented  as
fuzzy sets in fuzzy job scheduling, and this uncertainty
has  already  been  accounted  for.  In  other  words,  the
processing time represented by a TFN fluctuates within
a  particular  range,  which  includes  processing  time
extension  due  to  deterioration  effects.  But  the
deteriorating  effect  can  also  be  reflected  in  fuzzy
scheduling,  as  depicted  in Fig.  1’s  lower  portion.  The
standard  fuzzy  time  for  an  operation  is ,
and the peak time in this TFN is 0.5, indicating that 0.5
is  the  most  probable  value  for  this  operation’s
necessary time. As time goes by, let the operation starts
processing  at  (  if  expressed  in  TFN),
then  the  processing  time  of  this  operation  becomes

, indicating that the peak time turns to 
(calculated  with ).  If  means  the  shift  of  the
peak  time  of  TFN  processing  time, .
If  the  operation  begins  at ,  then  the  peak  time
shifts  to  (calculated  by ). .
This suggests that the peak time of the processing time,
expressed  in  TFN,  generates  a  greater  linear  shift  the
later  the  processing  of  the  operation  begins.  This
variation  reflects  the  fact  that  the  presence  of
deterioration  effects  increases  the  probability  of  the
operation  requiring  more  processing  time  as  the  start
time becomes later and later.

2.4    Mathematical modeling of EFFJSPD

The  notations  used  in  this  section  are  described  as
Table 1.
 

xi jk =

1, if process oi j on machine k;
0, otherwise

(3)

 

yi jpqk =

1, if process oi j before opq on machine k;
0, otherwise

(4)
J = {J1,

J2, . . . , Jn} Ω = {M1,M2, . . . ,Mn}
Ji hi

oi j

Ωi j, Ωi j ⊂ Ω

EFFJSPD  can  be  described  as  below. 
 is the job set, and  is the

machine  set.  Each  job  has  a  set  of  operations.
Operation  can  be  processed  on  any  machines  in  a
set .  The  processing  time  considered
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Fig. 1    Deterioration effect with fuzzy processing time.
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oi j Mk

p̃i jk = (p′1, p
′
2, p
′
3)

p̃i jk0 = (p1, p2, p3)

C̃max0 = (c1,c2,c3)
S̃ i j = (s1, s2, s3)

deteriorating effect of  on machine  is  expressed
as , while the standard processing time
is . The completion time of all jobs is
also  a  TFN,  represented  as ,  and  the
start  time  is .  Moreover,  the
deteriorating  processing  time  can  be  obtained  by  the
following equations.
 

p′1 = p1 (5)
 

p′2 =
1
2
×

(
s1

c1
+

s3

c3

)
× (p3− p2)+ p2 (6)

 

p′3 = p3 (7)

C̃max

T̃EC

The EFFJSPD consists of two subproblems: machine
assignment  and  operation  sequencing.  Each  operation
chooses  a  machine  from  the  candidates.  And  another
one  is  to  generate  compromising  scheduling  for  all
operations across total machines. The problem has two
targets  to  optimize,  makespan  and  total  energy
consumption .  The  formulations  of  the  problem
model are shown below:

 

minimize f1 = C̃max (8)
 

minimize f2 = T̃EC (9)
 

s.t., S̃ i j+ xi jk × p̃i jk ⪯∆ C̃i j, i = 1,2, . . . ,n,
j = 1,2, . . . ,hi, k = 1,2, . . . ,m

(10)

 

C̃i j ⪯∆ S̃ i( j+1), i = 1,2, . . . ,n,
j = 1,2, . . . ,hi−1

(11)

 

C̃ihi ⪯∆ C̃max, i = 1,2, . . . ,n (12)
 

S̃ i j+ p̃i jk ⪯∆ S̃ pq+L(1− yi jpqk),
i = 1,2, . . . ,n, p = 1,2, . . . ,n, j = 1,2, . . . ,hi,
q = 1,2, . . . ,hp, k = 1,2, . . . ,m

(13)

 

C̃i j ⪯∆ S̃ i( j+1)+L(1− ypqi( j+1)k),
i = 1,2, . . . ,n, p = 1,2, . . . ,n, j = 1,2, . . . ,hi−1,
q = 1,2, . . . ,hp, k = 1,2, . . . ,m

(14)

 

mi j∑
k=1

xi jk = 1, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (15)

 

n∑
i=1

hi∑
j=1

yi jpqk = xpqk, k = 1,2, . . . ,m,

p = 1,2, . . . ,n, q = 1,2, . . . ,hp

(16)

 

n∑
p=1

hp∑
q=1

yi jpqk = xi jk, k = 1,2, . . . ,m,

i = 1,2, . . . ,n, j = 1,2, . . . ,hi (17)
 

{0,0,0} ⪯∆ S̃ i j, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (18)
 

{0,0,0} ⪯∆ C̃i j, i = 1,2, . . . ,n, j = 1,2, . . . ,hi (19)

Formulas (10) and (11) restrict the order based on the
processing priority of each job. Formula (12) represents
a  limitation  on  the  job’s  completion  time,  i.e.,  the
completion  time  of  each  job  cannot  exceed  the
completion time of all jobs. Formulas (13) and (14) are
utilized  to  ensure  that  each  machine  can  process  no
more  than  one  job  at  a  time.  Constrained  by  Formula
(15),  each job’s operation can only be assigned to one
machine.  Formulas  (16)  and  (17)  guarantee  that  the
operations  on  one  machine  are  prioritized.  Formula
(16)  selects  the  front  job,  and  Formula  (17)  picks  the
next  job.  Formulas  (18)  and  (19)  restrict  that  the  start
and finish time to positive value.

C̃max0

C̃max C̃max C̃1∨ C̃2∨ · · ·∨ C̃m

 is  the  completed  time  of  all  jobs  using  the
standard processing fuzzy time, whose primary effect is
to calculate .  is defined as ,
which means the latest completion time of all machines

 

Table 1    Notations table.

Notation Description
n Number of jobs
m Number of machines
oi j j-th JiThe  operation of job 
mi j oi jNumber of machines of 
hi JiNumber of operations of job 

p̃i jk0 oi j kStandard fuzzy processing time of  on machine 

p̃i jk
oi j

k
Deteriorating fuzzy processing time of  on

machine 
xi jk Binary variable

yi jpqk Binary variable
S̃ i j j-th JiFuzzy start time of the  operation of job 

C̃i j
j-th

Ji
Fuzzy completion time of the  operation of job

Ω Total machine set
Ωi j oi jSet of compatible machines for 

T̃EC Total fuzzy energy consumption

C̃k k
Fuzzy completion time of the last operation on

machine 

C̃max0
Standard fuzzy maximum completion time of all

jobs

C̃max
Deteriorating fuzzy maximum completion time of

all jobs

Ek
Energy consumption per unit time in processing

mode
S Ek Energy consumption per unit idle time

L A large number enough

⪯∆ max
(
s̃, t̃

)
= t̃ s̃ ⪯∆ t̃Ranking notation of TFN, if , 
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C̃k = (Ck1,Ck2,Ck3)

ẼC1

ẼC2

is calculated by maximum operator (confer Section 2.2)
of all . The total energy consumption
(TEC)  is  divided  into  two  parts,  the  energy
consumption  when the machine is working and the
energy  consumption  of  the  idle  time.  The  total
fuzzy energy consumption can be computed as follows:
 

T̃EC = ẼC1+ ẼC2 =

m∑
k=1

n∑
i=1

hi∑
j=1

p̃i jk xi jk×

Ek +

m∑
k=1

n∑
i=1

hi∑
j=1

SEk × (C̃k − p̃i jk xi jk) =

m∑
k=1

n∑
i=1

hi∑
j=1

p̃i jk xi jk × (Ek −SEk)+ C̃k ×SEk (20)

2.5    Illustrative example

Cmax0

To  illustrate  the  problem, Fig.  2 presents  an  example
Gantt  chart  of  an  EFFJSPD  problem.  The  two  Gantt
charts  represent  one  complete  scheduling  process,  and

 is  necessary  to  calculate  the  deteriorating

Cmax0

O1,3

O1,3 (4,6,9)
O1,3 (4,6,10)

O1,3 (4,6,10)
Cmax0

operation  time,  so  should  be  calculated  by  a
fuzzy  scheduling  using  the  standard  processing  time.
For  example,  when determining the start  time of ,
the  time  of  the  last  process  of  Machine  3  selected  by

 is ,  while  the  time  of  the  last  process  of
 is .  It  can be determined through ranking

and  maximum  operator  (confer  Section  2.2).  The
earliest  processing time for  should be .  It
can be found from the first Gantt chart that the  is
(7, 11, 17).

O3,2

(4,6,9) (4,6.4,9)
(3,4,6)

O3,2(
1,2+

1
2
×

(
3
7
+

6
17

)
× (3−2),3

)
(1,2.4,3)

O3,2 (3,4,6)+ (1,2.4,3) = (4,6.4,9)
(0,0,0)

The bottom half of the Fig. 2 shows the core part of
the  EFFJSPD,  which  considers  the  effect  of  the
deterioration  effect  in  fuzzy  scheduling.  For ,  its
completion time changes from  to . The
start  time  of  the  job  does  not  change,  but  by
Eq.  (6),  the  new  processing  time  of  changes  to

,  that  is, .  Thus,

the ending time of  is .
For  all  jobs  whose  start  time  is  not ,  the
processing  time  will  be  impacted.  By  comparison,  it
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M
ac

hi
ne

M3

O1,1

O1,1

O1,1

O1,1

O3,2

O3,1

O3,1

O3,1

O3,1

O3,2

O3,2

O1,3O1,2

O1,2

O1,2

O1,2

O2,2

O2,3

O2,3

O2,3

O1,3

O1,3

O2,3

O2,2

O2,2

O2,2

O2,1

O2,1

O2,1

O2,1

O3,3

O3,3

O3,3

O3,3

O3,2

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 4, 6)

(3, 5, 8)(2, 3, 5)

(2, 3, 5)

(4, 6, 9) (6, 9, 16)

(6, 10, 16)

(4, 6, 10)

(5, 8, 13)

(5, 8, 13)

(7, 11, 17)

(5, 8, 13)

(4, 6, 10)

(4, 6.4, 9)

(4, 6.8, 10)

(4, 6.8, 10)

(5, 9.4, 13)

(5, 9.4, 13)

(6, 12.1, 16)

(7, 13.1, 17)

(5, 9.4, 13)

(3, 5.3, 8)

(2, 3, 5)

(2, 3, 5)

(4, 6.8, 10)

(6, 11.5, 16)

(4, 6, 10)

(3, 4, 6)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

O1,3

M2

M1

M
ac

hi
ne

M3

M2

M1

 
Fig. 2    Example Gantt chart of EFFJSPD problem.
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can be intuitively found that the center of gravity of the
Gantt  chart  after  taking  into  account  the  deterioration
effect is clearly shifted to the right, and the two dashed
lines  represent  the  shift  of  makespan  after  taking  into
account the deterioration effect.  It  is  important to note
that for a complete EFFJSPD scheduling, the shapes of
two  Gantt  charts  are  not  necessarily  identical.  The
reason  for  this  is  that  the  update  for  deteriorating
processing time may lead to a shift in the start time of
some operations.

3    RB2EA for EFFJSPD

Bi-population  or  multipopulation  is  a  common
framework  in  metaheuristic  algorithms,  including
multi-objective  evolutionry  algorithms  (such  as  the
traditional  MOEA/D[47]),  differential  evolution
(DE)[48],  and  PSO[49].  Nevertheless,  these  multi-
population  algorithms  typically  initialize  two  identical
or similar populations, most frequently by initializing a
huge  population  and  then  dividing  it  into  many
subpopulations. This is analogous to having the search
algorithm’s  beginning  point  at  the  same  location,  and
the  likelihood  of  not  searching  for  the  global  optimal
solution stays high despite the diverse search paths that
follow. In this paper, a biased bi-population is proposed
for  the dual  objective problem, where each population
has  a  certain  preference  for  one  objective  problem,
while  the  overall  framework  is  a  multi-objective
genetic  algorithm.  This  enables  the  bi-population  to
search  for  the  best  solution  along  diverse  paths  from
different  beginning points  in  the search space,  thereby
broadening  the  search  range  and  preventing  it  from
getting  trapped  in  a  local  optimal  solution. Figure  3
shows  this  idea.  Two  dashed  circles  represent  initial
populations  with  preferences  for  makespan  and  TEC,

named  populationM and  populationT,  respectively.
During  the  iteration,  the  two populations  continuously
carry  out  population  communication  strategy,  and
finally  obtain  a  non-dominated  solution  set.
Furthermore,  inspired  by  the  bi-population
evolutionary  algorithm  with  feedback  (FBEA)[22],  a
reinforcement  learning  based  population  size
adjustment mechanism is introduced to enable the dual
population to dynamically adjust the population size in
real time based on the population’s quality.

3.1    Initialization

To  obtain  a  higher  quality  initial  population,  a
combination of the four initialization techniques will be
employed.  Since  RB2EA  is  a  bi-population  algorithm
with  preference,  such  a  preference  should  also  be
reflected  in  the  initialization  algorithm.  Two  of  these
methods  are  based  on  the  fitness  value,  so  they  are
named fitness selection (FS).

Np

FS1  is  detailed  below.  Firstly  generate  population
randomly,  which  contains  individuals,  and
determine  the  fitness  of  each  individual.  Choose  the
best 5% of the makespan and the TEC separately as the
offspring.

FS2  and  FS1  are  comparable.  FS2  selects  the  worst
5% of  the  makespan  and  the  TEC  separately  and
reverses the operation sequence as the offspring, which
distinguishes it from FS1.

The  other  two  heuristics  are  derived  from  FJSP,
which  are  global  selection  (GS)  and  local  selection
(LS)  strategies.  GS  and  LS  mainly  consider  the  load
problem of machine selection,  so that  the workload of
each selected machine is balanced as much as possible,
and  the  utilization  rate  of  the  machine  is  fully
improved.

GS: Create  an  array  of  the  same  size  as  the  size  of
machine set to store the working time of each machine.
Choose at random a job from the job set to complete all
of its operations sequentially and update the array. For
each  operation,  the  processing  machine  with  the
shortest operating time in the array is chosen.

LS: The operation processes of LS and GS are nearly
identical,  with  the  exception  that  LS  selects  jobs
sequentially,  beginning  with  the  first  and  ending  with
the last.

populationM

Aiming  to  have  the  bi-population  with  an  objective
value  preference,  a  population  allocation  procedure
(allocating  process)  was  created.  The  populations
formed by FS1 and FS2 based on makespan values are
assigned  to ,  while  those  based  on  TEC

 

Makespan

TEC

Communication

PopulationM

PopulationT

Iterate

Final Pareto front

 
Fig. 3    Schematic diagram of RB2EA.
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populationT

populationM populationT

Np

values  are  allocated  to .  The  populations
generated  using  other  initialization  methods  were
equally  assigned  to  and .  The
detailed  steps  for  population  initialization  with  totaly

 solutions are described in Algorithm 1.

3.2    Q-learning for population size adjustment

In  this  section,  the  population  size  adjusting
mechanism based  on  the  Q-learning  algorithm will  be
described  in  detail.  Watkins  and  Dayan[50] firstly
proposed  Q-learning  in  1992,  which  is  a  model-free
off-policy  reinforcement  learning  algorithm.  The
algorithm  learns  the  optimal  action-value  function,
which  reflects  the  highest  expected  reward  for
choosing  a  certain  action  in  a  given  state,  and  then
utilizes this policy to determine the best action to take
in each state.
3.2.1    State definition
Defining  the  state  as  quantity  that  reflects  the  current
bi-population  quality  allows  higher  quality  population
to  attain  larger  population  sizes  and  increases  the
likelihood  to  seek  the  global  optimal  solution.  Two
metrics will be introduced to define the state.
δ

populationM

NND nM

populationM

 indicates  the  percentage  of  non-dominated
solutions of .  A fast  non-dominated sort  is
performed  on  the  current  total  population,  and  the
number of solutions in the non-dominated set obtained
is ,  where  there  are  individuals  belonging  to

.

 

δ =
nM

NND
(21)

η populationM dvM

populationM dvT

populationT

 indicates  relative  diversity  of .  is
the  diversity  metric  of ,  and  is  that  of

.  Metric  dv  (diversity)  is  proposed  in  Ref.
[51],  but  there  are  some  differences.  dv  can  be
calculated by Eq. (23),
 

η =
dvM

dvM+dvT
(22)

 

dv =

N−1∑
i=1

|di− d̄|

(NND−1)d̄
(23)

di

d̄
di NND

δ η

where  is  the  Euclid  distance  between  two  adjacent
Pareto front (PF) points.  represents the mean value of

.  is  the  number  of  solutions  in  the  set  of  non-
dominated. The greater the dv, the better the diversity.
To sum up, the metrics  and  of the bi-population are
chosen as the state of the Q-learning state.
3.2.2    Action definition

freq

0.2×Np

freq

× × NM

NT populationM populationT

The  first  action  is  to  adjust  the  size  of  the  two
populations,  and  the  second  action  is  to  modify  the
parameter .  The resizing process is the size of one
population plus 5 and the other one minus 5. It is worth
mentioning that the minimum size of each population is
limited  to .  Another  process  is  increasing  or
decreasing ,  which  is  an  important  parameter  in
Section  3.3. Table  2 gives  a  Q-table  example  in
15 8 2  instance  after  200  iterations,  where  and

 are  the  size  of  and ,
respectively.
3.2.3    Reward definition

dmt = 1
dmt = 0

If  the  mean  value  of  the  total  population’s  fitness
dominates  that  of  previous  iteration,  let ,
otherwise, let . Based on the illustration above,
the  strategy  utilizing  Q-learning  method  to  adjust
population  size,  namely  Q-APS,  is  proposed.  The
whole steps of Q-APS are stated in Algorithm 2.
 

∆dv = dvi−dvi−1 (24)
 

 

Algorithm 1　Initialize population
Np   input : 
populationM populationT   output:  and 

Np1 Random generate a population, size ;
P1 (0.1Np)2 Utilize FS1 to generate offspring , size ;
P2 (0.1Np)3 Employ FS2 to generate offspring , size ;
P3 (0.2Np)4 Perform GS to generate offspring , size ;
P4 (0.2Np)5 Execute LS to generate offspring , size ;

P5 (0.4Np)6 Randomly generate offspring , size ;
populationM

populationT

7 Perform allocating process to obtain  and
;

 

Table 2    Q-table after 200 iterations.

Condition
Reward

NM = NM +5
NT = NT −5

freq = freq−1

NM = NM −5
NT = NT +5

freq = freq−1

NM = NM +5
NT = NT −5

freq = freq+1

NM = NM −5
NT = NT +5

freq = freq+1
δ < 0.5, η < 0.5 0 2.2138 0 0.6
δ ⩾ 0.5, η < 0.5 14.1579 0 3.5754 1.8354
δ < 0.5, η ⩾ 0.5 0 2.8156 0.8556 0
δ ⩾ 0.5, η ⩾ 0.5 15.4823 1.5651 16.0873 1.5998
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Reward =


10, ∆dv ⩾ 0, dmt = 1;
6, ∆dv < 0, dmt = 1;
4, ∆dv ⩾ 0, dmt = 0;
0, ∆dv < 0, dmt = 0

(25)

3.3    Local enhancement based on Q-learning

freq
As  stated  in  Section  3.2,  the  Q-APS  will  modify  the
parameter ,  which determines the frequency of the
local  enhancement.  The  operation  sequence  (OS)  has
two techniques for local searching.

LS1: Swap  the  position  of  last  operation  with
random another operation.

LS2: Insert  the  position of  last  operation in  front  of
random another operation.

populationM populationT

In  order  to  maintain  the  preference  of  the  two
populations,  and  take different
local  search  methods,  respectively,  for  machine
assignment (MS).

populationMFor :
oi oiLS3: Find the last finished operation  and move 

to  another  machine  whose  processing  time  is  the
shortest.

oi, jLS4: Choose one operation  randomly and move
it  to  another  machine  whose  processing  time  is  the
shortest.

populationTFor :
oi oiLS3: Find the last finished operation  and move 

to another machine with minimum energy consumption

(simple processing is the processing time multiplied by
the  energy  consumption  factor  per  unit  time  of  the
machine in working condition).

oi, jLS4: Randomly select  an operation  and move it
to another machine with minimum operation time.

xi

xi

xi N

T = 10

The  neighborhood  selection  mechanism  explains
how  to  select  optimal  solution  from  neighborhood
solutions.  For  each  non-dominated  solution ,
compare it  with each neighborhood solution in turn. If
the  dominance  relationship  exists,  the  non-dominated
solution  becomes .  Otherwise,  the  solution  with  the
shortest  makespan  is  selected  in  populationM,  and  the
solution  with  less  TEC  is  in  populationT. 
represents  the  size  of  non-dominated  solution  set  and
the neighborhood size .  The biased local  search
adopting  Q-learning  algorithm  (Q-BLS)  is  stated  as
Algorithm 3.

3.4    Genetic operation in RB2EA

populationM populationT

The  genetic  operations  at  the  heart  of  genetic
algorithms allow populations to evolve more efficiently
and search for the global optimal solution more easily.
The  algorithm  is  shown  in  Algorithm  4,  in  which
genetic  operations  are  carried  out  on  two  populations,

 and .  Perform  crossover  and
mutation on each individual in each population, merge
the old and new individuals into a new population, and
then  choose  the  best  individuals  from  the  new
population using tournament selection.

Unlike previous tournament selection operations, the
novel binary tournament means that different selection

 

Algorithm 2　Q-APS
input : greedy factor ε, learning rate α, discount factor

γ, and population
output: Q table

1 Q table ← 0, St ← 1;
2 Calculate zmeani and dvi of the total population;
3 while the stopping criterion is not satisfied do
4 if rand < ε then
5 Select the max Q(state, Ai) action

At, i= 1, 2, 3, 4
6 else
7 Randomly select an action At

8 end
9 Execute the action At for new population size and

freq;
10 Perform evolutionary algorithm (EA) to evolve population

and get the PF;
11 zmeani−1 = zmeani, dvi−1 = dvi, then get the

reward R;
12 Caculate the new state St+1;
13 Q(St, At) =

Q(St, At)+α[R+γmax(Q(St+1, At)−Q(St, At)]
14 end
 

 

Algorithm 3　Q-BLS
input : N, T, freq, and gen
output: enhanced solution

1 if mod(gen, freq)=0 then
2 for i ≤N do
3 for j ≤T do
4 if rand1 < 0.5 then
5 Perform LS1 for xi and generate yj;
6 else
7 Execute LS2 for xi and generate yj;
8 end
9 if rand2 < 0.5 then

10 Perform LS3 for yj;
11 else
12 Execute LS4 for yj;
13 end
14 end
15 end
16 Perform neighborhood selection mechanism;
17 end
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populationM

populationM
populationT

mechanisms  were  applied  to  the  two  different
populations.  For ,  two  individuals  are
selected at a time from the merged population, and if a
dominance  relationship  exists  between  them,  the  non-
dominated solution is  chosen.  If  not,  the solution with
the  shortest  makespan  is  selected.  This  procedure  is
repeated  until  the  total  number  of  selected  individuals
equals to the original  population size. With

,  the  selection  mechanism  is  nearly
identical,  with  the  exception  that  smaller  TEC
individual  will  be  selected  in  the  absence  of  a
dominance relationship.

Precedence operation crossover (POX)[52] is selected
as  the  crossover  operation  of  OS,  and  a  uniform
crossover  (UX)  technique  is  performed  on  the  MS.
Three  mutation  methods  are  used  for  OS,  and  two
mutation techniques are designed for MS.

OS1: Swap  the  order  of  two  operations  in  OS
randomly.

OS2: Choose  two  operations  randomly  and  put  the
latter  in  front  of  the  location  of  the  other  one  in  OS
string.

OS3: Reverse  the  operation  sequence  between
random two locations in OS string.

MS1: Randomly  select  one  tenth  of  all  operations
and  assign  them  to  the  machine  with  the  shortest
processing time.

MS2: Randomly  select  one  tenth  of  all  operations
and  assign  them  to  the  machine  which  consumes
minimum energy.

It  is  worth  mentioning  that  in  RB2EA  the  mutation
rate  and the  crossover  rate  are  adaptively  modified  by

δ ηtwo  parameters  and ,  which  are  used  to  determine
the  state.  The  process  of  mutation  and  crossover  are
shown in Algorithm 5 in detail.

3.5    Interaction mechanism

The  preference  of  the  two  populations  is  always
presented in RB2EA, ensuring that the search routes of
the  two  populations  in  the  search  space  are  distinct.
However,  this  may lead to  a  weak convergence of  the
algorithm  as  a  whole.  To  tackle  this  issue  and
maximize the benefits of the bi-population algorithm, a
communication  mechanism  between  the  two
populations is designed.

β

The interaction mechanism can be understood simply
as  the  exchange  of  individuals  with  features  in  two
populations.  The  feature  is  reflected  in  RB2EA  as
preferences for two objective values, so the interaction
mechanism is  essentially  the  replication  of  individuals
with  one  high  objective  value  from  one  population  to
another.  This  exchange  cannot  occur  too  regularly,
otherwise  each  subpopulation  will  be  unable  to
converge  as  it  continues  to  receive  more  individuals.
Consequently,  the  algorithm  is  allowed  to  run  a  fixed
number of times before allowing the two populations to
perform the interaction mechanism at the optimal time,
which  is  determined  by  the  parameter .  The  detailed
operation of this mechanism is shown in Algorithm 6.

3.6    Framework of RB2EA

The  whole  framework  of  RB2EA  is  displayed  in
Algorithm  7,  in  which  the  stopping  criterion  is  the
predefined  maximum  iterations.  It  is  important  to
emphasize  that  the  Q-BLS  and  iteraction  mechanism
will  only  be  performed  when  meeting  their  own
condition  (confer  Sections  3.3  and  3.5).  Firstly,  the

 

Algorithm 4　Genetic operation
input: populationM and populationT

output: populationM and populationT

1 for i ≤ NM do
2 Perform crossover and mutation for xi and xi+1 in

populationM;
3 Get new yi and yi+1;
4 i = i + 2;
5 end
6 Combining x and y into a new population;
7 Execute novel binary tournament for populationM;
8 for i ≤ NT do
9 Perform crossover and mutation for xi and xi+1 in

populationT;
10 Get new yi and yi+1;
11 i = i + 2;
12 end
13 Combining x and y into a new population;
14 Execute novel binary tournament for populationT;
 

 

Algorithm 5　Mutation and crossover strategy
input : δ, η, x, and y
output: x′ and y′

1 if x, y ∈ populationM then
2 rate = 0.5(1−δ) + 0.5η
3 else
4 rate = 0.5(1−η) + 0.5δ
5 end
6 if rand < rate then
7 POX and UX methods are performed;
8 Pick an OS mutation strategy for x and y separately

with roulette algorithm;
9 Select an MS mutation method for x and y separately

with roulette algorithm;
10 end
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populationM populationT

freq
populationM populationT

population′M population′T

populationM

populationT

heuristic  methods  are  adopted  to  obtain  the  initial
 and .  Then  some  parameters

need  to  be  configured,  such  as  the  initial  state  and  Q-
learning parameters.  Next,  apply  Q-learning to  choose
the action and resize  the bi-population and change the

.  Moreover,  execute  genetic  operators  for
 and  to  get  the  new
 and , respectively. Mix the old

and  new  populations  and  perform  the  novel  binary
tournament  algorithm to  get  the  offspring 
and .  Furthermore,  if  the  condition  is  met,
the  Q-BLS  and  the  interaction  mechanism  for  the
population  will  be  adopted.  Finally,  it  is  necessary  to
update  the  Q-table.  If  the  terminating  condition  is  not
met, back to Line 4 and continue iterating.

4    Numerical Result and Comparison

4.1    Experiment setting

EFFJSPD  is  actually  an  updated  FFJSP,  therefore  we

× ×

× × × ×

can  utilize  fuzzy  FJSP  instances  or  generate  instances
based on the standard dataset. However, these instances
lack  energy  consumption  parameters,  therefore  they
can  be  extended  by  adding  energy  consumption
information E and  SE  as  proposed  in  Ref.  [22].
Particularly  for  typical  instances,  the  determined
certain  processing  time  needs  to  be  fuzzified.  In  the
end,  we  selected  22  instances  from  Brandimarte[53],
Saidi-Mehrabad  and  Fattahi[54],  and  Behnke  and
Geiger[55] at  various  scales.  The  instance  format  is
j m n, where j represents the size of job set, m means
the size of machine set, and n is the average number of
machines  per  operation.  The  smallest  instance  size  is
3 5 2,  while  the  highest  is  20 20 6.  The  above
instances  are  utilized  to  evaluate  the  efficacy  of  the
proposed RB2EA for solving EFFJSPD.

MAXGEN =
0.1× j×m×n

size = ⌈8× log10( j×m×n)⌉×10

All algorithms are performed using MATLAB2021b
and  executed  on  a  computer  with  a  12th  Generation
Intel  Core  i7-12700K,  3.61  GHz,  32  GB  RAM,  and
Windows 10  operating  system.  To compare  fairly,  the
algorithm  testing  termination  criterion  is  set  to  the
maximum  number  of  iterations, 

.  MAXGEN  is  10  specifically  for  small-
scale  instances.  The  population  size  is  also  a  crucial
instance  scalability  parameter,  thus  we  set

.

4.2    Parameter setting

β

α γ

ε

RB2EA includes four key parameters: (1) the ratio used
to  choose  when  to  interact  with  another  population ;
(2)  the  learning  rate ;  (3)  the  discount  factor ;  and
(4)  the  greedy  factor .  The  Taguchi  method[56] of
design-of-experiments  is  employed  to  explore  the
effect  of  parameter  settings  on  the  performance  of
RB2EA and to determine the best combination for these
parameters.  Four  levels  are  set  for  each  parameter,  as
shown in Table 3.

α β γ ε

With  this  method,  only  16  combinations  instead  of
256  need  to  be  tested,  which  are  included  in  an
orthogonal  array.  To  guarantee  fairness,  each  instance
generates  a  test  instance  to  perform  the  experiment.
The RB2EA with each combination ( , , , ) on each

 

Algorithm 6　Interaction mechanism
input : β, g, MAXGEN, populationM, and populationT

output: populationM and populationT

1 if g = β×MAXGEN then
2 find x1 with the worst TEC in populationM;
3 find x2 with the best TEC in populationT;
4 x1 ← x2;
5 find x3 with the worst makespan in populationT;
6 find x4 with the best makespan in populationM;
7 x3 ← x4;
8 end
 
 

Algorithm 7　RB2EA
input: population size N, greedy factor ε, learning rate

α, and discount factor γ
output: non-dominated solutions

1 Initialize the populations populationM and populationT

sizing N
2 ;

2 Initialize all variables and parameters for algorithm;
3 while the stopping criterion is not satisfied do
4 Apply Q-learning to resize the bi-population and

modify f req;
5 Execute genetic operators in populationM and

populationT separately and obtain new populations
population′M and population′T;

6 Update populations according to the new size with the
novel tournament method;

7 Perform Q-BLS algorithm;
8 Employ interaction mechanism;
9 Update population state and Q-table;

10 end
11 Calculate the non-dominated solution set;
 

 

Table 3    Parameters in different levels.

Level
Parameter

β α γ ε
1 0.70 0.10 0.80 0.70
2 0.75 0.15 0.85 0.75
3 0.80 0.20 0.90 0.80
4 0.85 0.25 0.95 0.85
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test  instance  runs  10  times  independently  and  records
the  hypervolume  (HV)[57] value  every  time.  HV  is
calculated by Eq. (26).
 

HV(Pref ,r) =
Pref∪

x∈Pref

v(x,r) (26)

where Pref is  the  reference  point  corresponding  to  the
real Pareto front.

r
For calculating HV value,  the x must  be  normalized

by  establishing  a  reference  point .  It  is  important  to
note that all instances of x should be normalized using
the  same  reference  point,  which  is  the  worst  object
value  multiplied  by  2  in  the  original  population.  The
algorithm performs better in diversity and convergence
with a bigger HV value. In Table 4, the HV values and
orthogonal  array  are  listed.  In  addition,  the  HVs  and
significance  rank  of  each  parameter  are  presented  in
Table  5,  where  Delta  represents  the  biggest  gap
between its average HVs at different levels. Moreover,
a  small  Delta  value  suggests  that  the  performance
sensitivity  of  the  parameter  is  low.  It  is  evident  from

γ

ε α

β

β

α γ ε

the data that the discount factor  is the most sensitive
to  performance.  and  are  ranked  the  second  and
third,  respectively.  The  ratio  used  to  choose  when  to
interact  with  another  population  is  the  last.
According  to  the  mean  HV  values,  the  ideal
combination for parameter selection should be =0.75,

=0.2, =0.85, and =0.85.

4.3    Effect of algorithm designs

1

2 3 4

1

2

3

4

C

Next,  the  efficacy  of  the  RB2EA’s  special  designs  in
resolving  EFFJSPD  is  evaluated,  including  heuristic
initialization, population adjusting dynamically method
with  reinforcement  learning,  local  intensification,  and
bi-population  communication  mechanism.  RB2EA ,
RB2EA ,  RB2EA ,  and  RB2EA  represent  four
algorithms that lack a method each. RB2EA  initializes
the  population  at  random,  RB2EA  lacks  population
adjusting  dynamically  with  reinforcement  learning,
RB2EA  does  not  process  the  local  search  technique
for  enhancement,  and  RB2EA  has  no  interaction
between  the  two  populations.  Each  of  these  four
algorithms  is  compared  against  the  whole  RB2EA  to
determine  the  effect  of  each  technique  on  the  overall
performance.  The  metric  is  adopted  to  compare  the
non-dominated  object  set  obtained  by  different
algorithms to show the performance of the algorithm.
 

C (A,B) =
|{g ∈ B : ∃h ∈ A,h ≻ g}|

|B| (27)

where A and B are non-dominated solution sets,  and g
is a solution in the non-dominated solution set.

C (A,B)

C

p

C1 C2

p

Clearly, the greater  value indicates a superior
Pareto  front  Algorithm  1  obtains.  To  eliminate
randomness,  10  test  fuzzy  instances  are  created  from
each  instance  and  executed  10  times  in  each  test
instance,  with  the  final  metric  result  presented  in
Table 6.  To determine whether the difference between
the  RB2EA  and  other  algorithms  is  statistically
significant, Table  6 also  includes  the  values  of
pairwise  comparisons  with  a  95% confidence  level.  It
is evident that  is greater than  in all instances and
that  is  generally  always  less  than  0.05.  From  these
results,  it  can  be  concluded  that  the  four  techniques
help RB2EA in determining the optimal Pareto front.

4.4    Comparison with other algorithms

Although  EFFJSPD  is  a  novel  problem  that  has
received  little  attention,  the  algorithms  developed  for
EFFJSP can be generalized to solve it as well. In order
to  demonstrate  the  RB2EA’s  superiority  in  solving

 

Table 4    Orthogonal array and HV values.

Experiment No.
Factor level

HV
β α γ ε

1 1 1 1 1 0.631 205 5
2 1 2 2 2 0.628 482 8
3 1 3 3 3 0.627 707 3
4 1 4 4 4 0.627 290 5
5 2 1 2 3 0.628 778 8
6 2 2 1 4 0.631 223 9
7 2 3 4 1 0.626 560 6
8 2 4 3 2 0.628 589 2
9 3 1 3 4 0.627 454 2
10 3 2 4 3 0.628 272 6
11 3 3 1 2 0.628 114 0
12 3 4 2 1 0.629 891 8
13 4 1 4 2 0.626 158 7
14 4 2 3 1 0.626 647 8
15 4 3 2 4 0.632 412 5
16 4 4 1 3 0.627 570 7

 

Table 5    Influence and rank of each parameter.

Level β α γ ε

1 0.628 671 5 0.628 399 3 0.629 528 5 0.628 576 4
2 0.628 788 1 0.628 656 8 0.629 891 5 0.627 836 2
3 0.628 433 1 0.628 698 6 0.627 599 6 0.628 082 4
4 0.628 197 4 0.628 335 5 0.627 070 6 0.629 595 3

Delta 0.000 590 7 0.000 363 1 0.002 820 9 0.001 759 1
Rank 4 3 1 2
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EFFJSPD,  four  algorithms  have  been  chosen  for
comparison  with  it,  including  non-dominated  sorting
genetic  algorithm  II  (NSGA-II)[51],  MOEA/D[47],
FBEA[22],  and  MOEA/D  based  on  reinforcement
learning  (RMOEA/D)[23].  All  of  these  algorithms
utilize  the  same  encoding  and  decoding  methods  and
stopping  criterion  to  assure  fairness.  In  addition,  each
initial  instance  generates  10  fuzzy  instances,  and  each
fuzzy  instance  runs  10  times.  Apart  from  metric,
inverted  generational  distance  (IGD)[58] is  selected  to
compare  the  performance  of  these  algorithms,  which
can be calculated by Eq. (28).
 

IGD
(
P,P∗

)
=

∑
x∈P∗

min
y∈P

dis(x,y)

|P∗| (28)

P
P∗

(0,1), (0,0.5), (0,0), (0.5,0), and (0,1)
C

where  is  the  object  value  set  obtained  by  the
algorithm,  and  represents  the  ideal  Pareto  front,
which does not exist in EFFJSPD. dis(x, y) denotes the
Euclidean  distance  between  solution x and  solution y.
Thus,  are set as the
approximate PF. The average  metric and IGD values
of  instances  in  different  scales  are  listed  in Tables  7

and 8.
C1 C2

p
C1 C2

According  to Table  7,  is  greater  than  in  all
instances, and  is always less than 0.05, which means

 and  are  significantly  different  at  the  95%
confidence level.

In Table 8, FBEA and RMOEA/D are generally less
than NSGA-II and RMOEA/D. That is because NSGA-
II  and  MOEA/D  are  algorithms  proposed  for  multi-
objective  optimization  theory  but  not  practical
problems.  Although  the  same  encoding  and  decoding
strategies  are  adopted,  they  also  lack  heuristic
initialization  methods,  problem-specific  genetic
operators,  local  enhancement  strategies,  etc.  So  the
performance  of  NSGA-II  and  MOEA/D is  worse  than
FBEA  and  RMOEA/D,  which  are  designed  to  solve
practical scheduling problem.

FBEA adjusts  the  size  of  the  two populations  based
on  a  quality  feedback  mechanism,  while  RB2EA
utillizes  Q-learning  algorithm  instead.  The  two
populations  in  FBEA  take  into  account  all  the
optimization  objectives  simultaneously,  while  the  two
populations  in  RB2EA  have  special  preference  for
certain  optimization  objectives,  ensuring  the  diversity

 

CTable 6    Average of RB2EA and four variants on metric .

( j,m,n) 1RB2EA vs. RB2EA 2RB2EA vs. RB2EA 3RB2EA vs. RB2EA 4RB2EA vs. RB2EA
C1 C2 p C1 C2 p C1 C2 p C1 C2 p

(3, 5, 2) 0.94 0.64 0.00 0.89 0.56 0.02 0.89 0.59 0.00 0.87 0.59 0.00
(4, 5, 1.7) 0.92 0.68 0.00 0.93 0.62 0.00 0.94 0.63 0.00 0.95 0.57 0.00
(5, 6, 2.2) 0.68 0.20 0.00 0.74 0.19 0.00 0.74 0.16 0.00 0.69 0.19 0.00
(8, 7, 2.6) 0.71 0.14 0.00 0.65 0.20 0.00 0.67 0.21 0.02 0.64 0.23 0.00
(9, 8, 2.4) 0.70 0.20 0.00 0.75 0.12 0.00 0.70 0.18 0.00 0.75 0.15 0.00
(10, 6, 2) 0.72 0.11 0.00 0.63 0.18 0.00 0.59 0.08 0.00 0.70 0.17 0.00

(10, 6, 3.5) 0.65 0.24 0.00 0.63 0.26 0.02 0.63 0.25 0.02 0.65 0.26 0.02
(15, 8, 2) 0.83 0.05 0.00 0.72 0.11 0.00 0.67 0.02 0.00 0.81 0.09 0.00
(15, 8, 3) 0.71 0.11 0.00 0.72 0.13 0.00 0.64 0.10 0.00 0.72 0.14 0.00

(15, 4, 1.5) 0.61 0.17 0.00 0.68 0.16 0.00 0.68 0.14 0.00 0.66 0.17 0.00
(10, 10, 3) 0.79 0.09 0.00 0.74 0.13 0.00 0.75 0.12 0.00 0.75 0.11 0.00
(20, 5, 3) 0.75 0.16 0.00 0.76 0.15 0.00 0.75 0.16 0.00 0.72 0.21 0.00

(20, 10, 1.5) 0.79 0.12 0.00 0.71 0.13 0.00 0.81 0.11 0.00 0.82 0.12 0.00
(20, 10, 3) 0.78 0.18 0.00 0.60 0.23 0.00 0.67 0.21 0.00 0.79 0.12 0.00
(20, 15, 3) 0.50 0.28 0.02 0.54 0.18 0.00 0.57 0.26 0.02 0.58 0.29 0.00
(30, 5, 1.5) 0.77 0.12 0.00 0.74 0.15 0.00 0.74 0.16 0.00 0.78 0.12 0.00
(30, 10, 1.5) 0.66 0.19 0.00 0.62 0.19 0.00 0.71 0.16 0.00 0.75 0.15 0.00
(30, 10, 3.4) 0.73 0.19 0.00 0.77 0.16 0.00 0.71 0.17 0.00 0.78 0.12 0.00
(30, 15, 1.6) 0.60 0.28 0.00 0.63 0.24 0.00 0.65 0.20 0.00 0.68 0.20 0.00
(30, 15, 3) 0.80 0.13 0.00 0.69 0.13 0.00 0.64 0.13 0.00 0.76 0.14 0.00
(10, 20, 6) 0.63 0.19 0.00 0.67 0.21 0.00 0.53 0.24 0.02 0.69 0.20 0.00
(20, 20, 6) 0.68 0.22 0.02 0.68 0.18 0.00 0.46 0.18 0.00 0.72 0.19 0.00
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CTable 7    Average of RB2EA and four other algorithms on metric .

( j,m,n)
RB2EA vs. NSGA-II RB2EA vs. MOEA/D RB2EA vs. FBEA RB2EA vs. MOEA/D
C1 C2 p C1 C2 p C1 C2 p C1 C2 p

(3, 5, 2) 0.94 0.50 0.00 0.78 0.16 0.02 0.91 0.66 0.00 0.78 0.23 0.00
(4, 5, 1.7) 0.99 0.43 0.00 0.82 0.45 0.02 0.96 0.73 0.00 0.81 0.47 0.02
(5, 6, 2.2) 0.82 0.06 0.00 0.90 0.04 0.00 0.72 0.19 0.00 0.84 0.06 0.00
(8, 7, 2.6) 0.98 0.00 0.00 0.95 0.01 0.00 0.68 0.16 0.00 0.91 0.01 0.00
(9, 8, 2.4) 1.00 0.00 0.00 0.61 0.18 0.00 0.56 0.22 0.00 0.62 0.17 0.00
(10, 6, 2) 1.00 0.00 0.00 0.61 0.06 0.00 0.89 0.00 0.00 0.74 0.03 0.00

(10, 6, 3.5) 1.00 0.00 0.00 0.88 0.01 0.00 0.78 0.08 0.00 0.86 0.02 0.00
(15, 8, 2) 1.00 0.00 0.00 0.65 0.06 0.02 0.86 0.02 0.00 0.80 0.06 0.02
(15, 8, 3) 1.00 0.00 0.00 0.56 0.03 0.02 0.83 0.05 0.00 0.67 0.01 0.00

(15, 4, 1.5) 0.98 0.01 0.00 0.92 0.00 0.00 0.74 0.11 0.00 0.90 0.00 0.00
(10, 10, 3) 1.00 0.00 0.00 0.72 0.00 0.00 0.92 0.03 0.00 0.78 0.00 0.00
(20, 5, 3) 1.00 0.00 0.00 0.73 0.07 0.00 0.83 0.07 0.00 0.55 0.16 0.02

(20, 10, 1.5) 1.00 0.00 0.00 0.73 0.02 0.00 0.76 0.08 0.00 0.72 0.06 0.00
(20, 10, 3) 1.00 0.00 0.00 0.42 0.03 0.00 0.78 0.07 0.00 0.50 0.04 0.00
(20, 15, 3) 1.00 0.00 0.00 0.72 0.07 0.00 0.78 0.08 0.00 0.76 0.04 0.00
(30, 5, 1.5) 1.00 0.00 0.00 0.81 0.05 0.00 0.73 0.12 0.00 0.73 0.10 0.02
(30, 10, 1.5) 1.00 0.00 0.00 0.54 0.05 0.02 0.71 0.14 0.00 0.77 0.03 0.00
(30, 10, 3.4) 1.00 0.00 0.00 0.70 0.00 0.00 0.84 0.04 0.00 0.84 0.00 0.00
(30, 15, 1.6) 1.00 0.00 0.00 0.83 0.03 0.00 0.88 0.04 0.00 0.85 0.04 0.00
(30, 15, 3) 1.00 0.00 0.00 0.44 0.08 0.00 0.91 0.01 0.00 0.58 0.10 0.00
(10, 20, 6) 1.00 0.00 0.00 0.66 0.20 0.00 0.88 0.00 0.00 0.71 0.18 0.00
(20, 20, 6) 1.00 0.00 0.00 0.70 0.19 0.02 0.84 0.02 0.00 0.68 0.19 0.02

 

Table 8    IGD metric of all algorithms.

( j,m,n)
IGD

RB2EA NSGA-II MOEA/D FBEA RMOEA/D
(3, 5, 2) 0.4638 0.4780 0.4759 0.4640 0.4632

(4, 5, 1.7) 0.4755 0.4926 0.4829 0.4859 0.4800
(5, 6, 2.2) 0.4799 0.5024 0.5050 0.4944 0.4952
(8, 7, 2.6) 0.4263 0.4591 0.4411 0.4412 0.4398
(9, 8, 2.4) 0.5035 0.5213 0.5109 0.5073 0.5102
(10, 6, 2) 0.5089 0.5215 0.5172 0.5104 0.5149

(10, 6, 3.5) 0.4557 0.4941 0.4866 0.4696 0.4548
(15, 8, 2) 0.5068 0.5382 0.5241 0.5214 0.5240
(15, 8, 3) 0.5211 0.5384 0.5369 0.5331 0.5290

(15, 4, 1.5) 0.5377 0.5537 0.5445 0.5334 0.5382
(10, 10, 3) 0.5076 0.5240 0.5231 0.5180 0.5178
(20, 5, 3) 0.4791 0.5006 0.5099 0.4980 0.4938

(20, 10, 1.5) 0.5502 0.5522 0.5527 0.5520 0.5515
(20, 10, 3) 0.5177 0.5473 0.5313 0.5242 0.5212
(20, 15, 3) 0.5133 0.5312 0.5191 0.5181 0.5128
(30, 5, 1.5) 0.5189 0.5433 0.5200 0.5254 0.5196
(30, 10, 1.5) 0.5084 0.5359 0.5313 0.5263 0.5166
(30, 10, 3.4) 0.4960 0.5272 0.5297 0.5156 0.5195
(30, 15, 1.6) 0.5312 0.5420 0.5337 0.5345 0.5325
(30, 15, 3) 0.5117 0.5274 0.5274 0.5214 0.5232
(10, 20, 6) 0.4494 0.4779 0.4672 0.4620 0.4575
(20, 20, 6) 0.5005 0.5228 0.5210 0.5030 0.5007
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of the entire population. It also helps RB2EA develop a
larger  search  space  compared  to  FBEA.  The
optimization  objectives  chosen  in  RMOEA/D  are
makespan and total  workload but do not include TEC.
So  strategies  designed  for  TEC  are  missing  in
RMOEA/D,  which  results  in  a  poor  performance  in
EFFJSPD.  In  addition,  compared  with  the  dual
population algorithm proposed in this article, it is more
limited  in  search  space  and  has  weak  convergence.  It
can  be  also  concluded  that  the  IGD  of  RB2EA  is
smaller  than FBEA and RMOEA/D in Table  8,  which
validates the previous analysis.

× × × ×

The comparison of  the  average IGD values  listed  in
Table  8 cannot  reveal  the  obvious  difference,  so  the
box-plot  of  IGD  in  two  instances  is  shown  in Fig.  4,
which  indicates  that  RB2EA  solves  the  problem  more
effectively  than  the  other  four  algorithms. Figure  5
shows  the  approximate  Pareto  front  by  all  algorithms
when solving instance 20 15 3 and 30 10 3, where

the  solutions  obtained  by  RB2EA  have  a  better
performance than other algorithms.

5    Conclusion and Future Work

Few  studies  have  investigated  the  energy-efficient
flexible  job  shop  scheduling  problem  with  fuzzy
processing  time  in  combination  with  deteriorating
effect. In this study, the deterioration effect is treated as
a  part  of  the  fuzzy  scheduling.  As  for  the  processing
time,  the  linear  increase  of  a  certain  number  is
transformed  into  an  internal  linear  shift  of  a  TFN.
Fuzzy  makespan  and  fuzzy  total  energy  consumption
are chosen as the two optimization objectives. Besides,
a new algorithm RB2EA is presented, which combines
the  bi-population  evolutionary  algorithm  and  Q-
learning  algorithm.  Four  heuristics  are  proposed  to
produce  the  initial  population.  A  local  search  strategy
based on the Q-learning and the interaction mechanism
is proposed. In the experiments, RB2EA is compared to
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other four algorithms to evalute its efficacy. RB2EA is
able to solve EFFJSPD efficiently.

Several  main  future  surveys  are  summarized  in  the
following:

(1)  Distributed  hybrid  flow  shop  scheduling  with
fuzzy  processing  time  and  deteriorating  effect  will  be
investigated.

(2) We will try to adopt the type-2 fuzzy processing
time and combine it with deteriorating effect.

(3)  The  deep  reinforcement  learning  technique  will
be another direction.
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