
 

A Hybrid Algorithm Based on Comprehensive Search Mechanisms
for Job Shop Scheduling Problem

Lin Huang, Shikui Zhao*, and Yingjie Xiong

Abstract: The  research  on  complex  workshop  scheduling  methods  has  important  academic  significance  and

has  wide  applications  in  industrial  manufacturing.  Aiming  at  the  job  shop  scheduling  problem,  a  hybrid

algorithm  based  on  comprehensive  search  mechanisms  (HACSM)  is  proposed  to  optimize  the  maximum

completion time. HACSM combines three search methods with different optimization scales, including fireworks

algorithm (FW), extended Akers graphical method (LS1+_AKERS_EXT), and tabu search algorithm (TS). FW

realizes  global  search  through  information  interaction  and  resource  allocation,  ensuring  the  diversity  of  the

population. LS1+_AKERS_EXT realizes compound movement with Akers graphical method, so it has advanced

global and local search capabilities. In LS1+_AKERS_EXT, the shortest path is the core of the algorithm, which

directly affects the encoding and decoding of scheduling. In order to find the shortest path, an effective node

expansion method is designed to improve the node expansion efficiency. In the part of centralized search, TS

based on the neighborhood structure is used. Finally, the effectiveness and superiority of HACSM are verified

by testing the relevant instances in the literature.
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1    Introduction

As  a  decision-making  process  for  allocating  limited
resources  rationally,  production  scheduling  aims  to
optimize  key  objectives,  such  as  the  maximum
completion  time,  total  processing  cost,  and  total
machine load. In the current market environment, using
efficient  production  scheduling  technology  can  not
only  make  more  rapid  and  scientific  response
production emergencies, but also significantly improve
the  production  efficiency,  thereby  affecting  the
competitiveness  of  enterprises.  Job  shop  scheduling
problem (JSP) is the most basic and famous production
scheduling problem, which mainly shows two aspects.

Firstly,  JSP  describes  the  processing  sequence  and
machine  constraints  of  general  jobs  in  the
manufacturing  process.  Secondly,  a  series  of
scheduling  problems  have  been  extended  based  on  it,
such  as  distributed,  flexible,  assembly,  and  flow  shop
scheduling problems.

After  more  than  half  a  century  of  research,  scholars
have proposed large number of solution algorithms for
JSP,  which  can  be  categorized  into  exact  and
approximation  algorithms.  Exact  algorithms  are  also
called  complete  algorithms,  including  branch  and
bound  method  and  mathematical  programming
method[1, 2]. Due to its limitations, the exact algorithms
were  only  employed  to  solve  small-scale  problems.
Approximation  algorithms  include  constructive
algorithms[3] and  heuristic  algorithms.  Owing  to  the
unique advantages in solving JSP of heuristic algorithm
in solving the problem, scholars were attracted to study
it.  The  achievements  were  mainly  divided  into  three
categories.  The  first  is  swarm  intelligence  algorithms,
including genetic, artificial bee colony, ant colony, and
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particle  swarm[4, 5].  This  type  of  algorithm  typically
generates multiple individuals. During the optimization
process,  individuals  collaborate  with  each  other  and
have  strong  global  optimization  capabilities.  The
second  is  local  search  algorithm,  among  which  tabu
search  (TS)  algorithm  is  a  typical  representative.  TS
adopts  a  flexible  search  method  to  tabu  solutions  that
have  already  been  searched,  avoiding  getting  stuck  in
local optima[6−8]. The last is hybrid algorithm[9−11]. This
type  of  algorithm  can  usually  obtain  higher  quality
solutions  than  individual  algorithms,  thus  gaining
widespread attention.

Some  hybrid  algorithms  for  solving  JSP  since  2010
are  listed  in Table  1.  Scholars  have  tried  to  mix
different  types  of  search  strategies,  especially  those
with  complementary  advantages.  For  example,  Zhang
et  al.[41] used the simulated annealing formula to store
the  suboptimal  solution  in  the  elite  table  in  the  TS
search  process,  thereby  implementing  a  backtracking
search  function.  Gonçalves  and  Resende[23] extended
the  Akers  graphical  and  combined  it  with  genetic
algorithm  and  TS  to  refresh  the  record  of  57  optimal
solutions.  Peng  et  al.[27] mixed  path  reconnection  and
TS  to  solve  JSP  problems  and  improved  the  optimal
solutions of 49 benchmark examples. Zhao[38] studied a
decoding  method  based  on  non-delay  scheduling.
Subsequently,  he  proposed  forward  non-delay
scheduling conversion algorithms based on head length
and  backward  non-delay  scheduling  conversion
algorithms based on tail  length.  Xie et  al.[39] proposed
the  N8  neighborhood  structure,  which  combines
genetic  algorithm  with  TS-based  optimization  to
further  update  the  optimal  solutions  of  two  examples.
Yuan  et  al.[42] proposed  a  reinforcement  learning
framework  for  flexible  JSP.  The  new  framework  uses
lightweight multi-layer perceptrons as state embedding
networks  to  extract  state  information,  which  to  some
extent  reduces  the  computational  complexity  of  the
algorithm.  Gui  et  al.[43] investigated the  necessary and
sufficient conditions for feasible solutions to JSP local
search  problems.  Zhang  et  al.[44] proposed  a  multi-
agent  manufacturing  system  based  on  reinforcement
learning  for  dynamic  JSP.  The  system  efficiently
completes  personalized  orders  through  self-
organization  and  self-learning  strategies.  He  et  al.[45]

proposed a discrete multi-objective fireworks algorithm
(FW)  for  multi-objective  flow  shop  scheduling
problems. Pang et al.[46] proposed an improved FW for
the permutation flow shop scheduling problem and the
hybrid flow shop scheduling problem. They introduced
a  nonlinear  radius  in  FW to  avoid  resource  waste  and

designed a mixed mutation operator to improve search
ability.

The  design  of  hybrid  algorithms  generally  requires
achieving  a  balance  between  global  search  and
centralized  search.  If  the  algorithm  only  has  strong
centralized  search  ability  or  global  search  ability,  it  is
easy to fall into local optima or divergence. Currently,
TS  has  been  proven  to  have  strong  local  search
capabilities, but there are many options available in the
global  search  stage.  We  used  FW  and
LS1+_AKERS_EXT in the global search process.  The
two  algorithms  complement  each  other’s  advantages,

 

Table 1    Statistics of JSP hybrid algorithm since 2010.

Algorithm Author Year Reference
DDE Pan et al. 2010 [12]
IABC Yao et al. 2010 [13]
HPGA Yusof et al. 2011 [14]
HSS Sels et al. 2011 [15]
MA Gao et al. 2011 [16]

AISTS Zuo et al. 2012 [17]
HEA Qing-dao-er-ji and Wang 2012 [5]

DESG Wisittipanich and
Kachitvichyanukul 2012 [18]

TSPR Nasiri and Kianfar 2012 [9]
GES/TS Nasiri and Kianfar 2012 [10]

ABC Banharnsakun et al. 2012 [19]
DE-TS Ponsich and Coello 2013 [20]
ABC Zhang et al. 2013 [21]

GA/PR Spanos et al. 2014 [22]
BRKGA Gonçalves and Resende 2014 [23]
HBBO Wang and Duan 2014 [24]
GATS Meeran and Morshed 2014 [25]

CEBFO Zhao et al. 2014 [26]
TS/PR Peng et al. 2015 [27]
HPV Gao et al. 2015 [8]

aLSGA Asadzadeh 2015 [28]
HIMGA Kurdi 2015 [29]

NS-HDE/EDA Zhao et al. 2015 [30]
HPSOSA Toader 2015 [31]

HEA Cheng et al. 2016 [32]
GALS Zhao 2016 [33]
IEBO Nagata and Ono 2018 [34]

MAGATS Peng 2019 [35]
SSODM Zhou et al. 2021 [36]

WOA-LFDE Liu et al. 2020 [37]
PRTS Zhao 2021 [38]

MCDE/TS Mahmud et al. 2021 [11]
HA Xie et al. 2022 [39]

OGM/TS Huang et al. 2023 [40]
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thereby enhancing the  global  search  capability.  In  this
paper,  we  design  a  hybrid  algorithm  based  on
comprehensive search mechanisms (HACSM) to solve
JSP.  HACSM  combines  three  algorithms,  including
FW, LS1+_AKERS_EXT, and TS. FW achieves global
search  through  fireworks  explosions  and  Gaussian
mutation,  thereby  ensuring  population  diversity.  TS
combines  the  designed  N7  neighborhood  structure  to
conduct  centralized  search  to  achieve  the  purpose  of
enhanced  search[47].  Although  LS1+_AKERS_EXT
moves  multiple  jobs  each  time  (means  compound
move),  it  has  global  and  local  search  capabilities  with
the  help  of  Akers  graphical  method.  In
LS1+_AKERS_EXT,  the  optimization  method  of
scheduling is closely related to the path of Akers graph.
Therefore, high requirements need to be placed on path
length  and  calculation  time[23].  Because
LS1+_AKERS_EXT is a new optimization method and
the  path  search  is  time-consuming,  few  scholars  have
studied it. Aiming at solving the shortest path problem,
this  paper  designs  an  effective  path  search  algorithm.
The  algorithm  first  layers  the  obstacles  in  the  Akers
graphical  according  to  the  machine.  When  a  node  is
expanded,  the  new  node  expansion  method  can  avoid
some  invalid  child  nodes,  thereby  achieving  fast  path
search.

The  remaining  parts  are  as  follows.  Section  2
provides an example of JSP. Section 3 introduces FW,
including  encoding,  decoding,  fireworks  explosion,
explosion spark, and Gaussian variation spark. Section
4  introduces  LS1+_AKERS_EXT,  including  Akers
graphical  method  for  two-job,  LS1+_AKERS_EXT,
and  path  planning  algorithm.  Section  5  introduces  the
hybrid  algorithm.  Section  6  gives  the  test  results  and
analysis of the algorithm. Section 7 is the conclusion of
the paper.

2    Problem Description

JSP can be defined as follows: n jobs are machined on
m machines,  and  each  job  consists  of m consecutive
operations.  The  objective  function  of  scheduling  is  to

S Pk

minimize the time required to process all jobs, denoted
as Cmax. The objective function of JSP is shown in Eq.
(1).  Formula  (2)  provides  a  JSP  mathematical  model,
where o, Pk, ,  and Eh represent the total number of
operations,  processing  time,  start  time  of  the  previous
operation,  and  the  relationship  between  adjacent
processes on the machine, respectively. In Formula (2),
the  first  constraint  indicates  that  the  start  time  of  all
operations  is  greater  than  or  equal  to  0.  The  second
constraint stipulates the precedence relations among the
operations  of  the  same  job.  The  third  constraint
indicates that each machine can only process one job at
a time.
 

Cmax =min
(

n
maxCi

i=1

)
(1)

 

S k ⩾ 0, k = 1,2, ...,o;
S k −S Pk ⩾ PPk , k = 1,2, ...,o;
S i−S j ⩾ Pi−1 or S j−S i ⩾ Pi−1, (i, j) ∈ Eh,h ∈ m

(2)

In  order  to  describe  the  JSP,  a  4×4  JSP  example  is
constructed  in  this  section  (as  shown in Table  2).  The
following  examples  are  all  around  it. Figure  1 shows
the scheduling Gantt chart with Cmax=21.

3    Fireworks Algorithm

In  FW,  each  firework  is  considered  as  a  solution.
Among all solutions, the solution with good fitness has
a  small  search  radius  and  generates  multiple
neighborhood  solutions.  The  solution  for  poor  fitness
values  is  exactly  the  opposite.  The  solution  for  poor
fitness is exactly the opposite. FW balances global and
local  search  by  allocating  resources  and  exchanging
information  based  on  each  firework’s  fitness  value.
Gaussian  variation  is  used  to  ensure  population
diversity  during  the  search  process.  The  steps  are  as
follows:

Step  1: Randomly  generate X solutions  (fireworks)
and calculate their fitness values.

Step  2: Calculate  the  search  radius  and  number  of
neighborhood  solutions  for  each  solution  according  to
the fitness value, and generate neighborhood solutions.

 

Table 2    Problem data for four-job, four-machine example.

Sequence
order No.

J1 J2 J3 J4

Machine Processing
time Machine Processing

time Machine Processing
time Machine Processing

time
1 M2 3 M1 2 M3 5 M1 2
2 M3 2 M2 3 M4 2 M4 4
3 M4 3 M4 4 M1 1 M3 2
4 M1 4 M3 2 M2 4 M2 3
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Step  3: Generate  mutation  solution  using  Gaussian
formula based on mutation probability.

Step 4: Check if the termination conditions are met.
If so, output the optimal value and stop the calculation.
Otherwise, execute Step 5.

Step 5: Based on the selection rules,  identify a  new
population and return to Step 2.

3.1    Fireworks explosion

The population size of FW is denoted as X, where the i-
th solutions are expressed as Xi and the fitness value is
fi. The neighborhood solutions are generated within the
explosion radius according to the fitness value of each
solution.  Equations  (3)  and  (4)  represent  the  search
radius of Xi and the number of neighborhood solutions,
respectively. In order to ensure that the search radius of
each  solution  and  the  number  of  neighborhood
solutions generated are  integers,  Eqs.  (3)  and (4)  shall
be rounded, respectively.
 

Ri = Rmax×
fi− fmin+ε

X∑
i=1

( fi− fmin)+ε

(3)

 

S i = Smax×
fmax− fi+ε

X∑
i=1

( fmax− fi)+ε

(4)

where Rmax is  the  maximum search  radius, Smax is  the
maximum number  of  neighborhood solutions, fmin and
fmax are  the  minimum  and  maximum  fitness  values,
respectively, and ε is a small quantity, which is used to
avoid the denominator being zero.

In  order  to  allocate  resources  reasonably,  solutions
with good fitness (poor fitness) should not generate too
many (too few) neighborhood solutions. Therefore, the
number  of  neighborhood solutions  for Xi is  limited by
Eq.  (5),  where  round  is  the  rounding  function.
Generally, a =  0.1  and b =  0.3.  At  the  same  time,  in
order  to  avoid  the  explosion  radius  with  good  fitness
value being 0, the radius of Xi is limited by Eq. (6).

 

S i =


round(a×Smax),S i ⩽ a×Smax;
round(b×Smax),S i ⩾ b×Smax;
S i,else

(5)

 

Ri =

1,Ri = 0;
Ri,else

(6)

3.2    Explosive spark and Gaussian variation spark

According  to  the  search  radius  and  the  number  of
neighborhood  solutions  calculated, Xi generates
neighborhood  solutions  within  the  radius Ri.  The
process is following: Z positions are selected randomly
and each position z ∈ {1, 2, …, Z} is offset according
to Eq. (7) to obtain a new position Nz.
 

Nz = z+ randi[−Ri,Ri] (7)
where  randi[−Ri, Ri]  represents  the  uniformly
distributed integer in [−Ri, Ri].

To  ensure  diversity,  Gaussian  mutation  is  added  to
the  algorithm,  as  shown  in  Eq.  (8),  namely,  all
solutions carry out additional Gaussian mutation with a
probability of 0.1.
 

Nz = round(z×G(1,1)) (8)
where G(1,  1)  represents  the  Gaussian  distribution
function with mean value and variance of 1.

If  the  new  position  generated  by  Eq.  (7)  or  Eq.  (8)
exceeds the moving range, it needs to be returned to the
search  space  according  to  the  mapping  rules.  The
mapping rules are as shown in Eq. (9).
 

Nz = Nmin
z + mod (|Nz|,Nmax

z −Nmin
z ) (9)

Nmax
z Nmin

zwhere  and  are the upper and lower bounds
of  the  value  range  of  the z-th  position  of  solutions,
respectively, and “mod” is the remainder function.

4    Search  Algorithm  Based  on  Akers
Diagram

4.1    Akers graphical method

Akers[48] first  combined  graphical  methods  with  two-

 

1 2 3 4 5 6 7 8 9 10 11 120

J1

J2

J3

J4

J1-1-M2

13 14 15 16 17 18 19 20 21

J2-1-M1 J2-2-M2

J3-1-M3

J4-1-M1 J4-2-M4 J4-3-M3 J4-4-M2

J2-3-M4

J1-2-M3

J2-4-M3

J3-2-M4

J1-3-M4 J1-4-M1

J3-4-M2J3

Time 
Fig. 1    Schedule Gantt chart (Cmax=21).
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job JSP problems. Taking the jobs J1 and J2 in Table 2
as examples, Fig. 2 shows the two-job Akers graphical
method.  The  vertical  axis  and  horizontal  axis  of  the
coordinate  system  in Fig.  2 are  composed  of  jobs J2
and J1, respectively. The obstacle diagram is composed
of  obstacle  blocks  and  paths,  where M1 represents  the
obstacle blocks generated by machine M1, the red path
is the shortest path. Below Fig. 2 are the corresponding
schedules  obtained  by  path  decoding.  The  rectangular
block  in Fig.  2 is  called  an  obstacle  block,  which
represents  a  machine  conflict.  It  is  generated  by
overlapping areas  projected horizontally  and vertically
by  processes  of  the  same  machine  on  two  axes.  The
Akers diagram transforms the scheduling problem into
solving the shortest path problem.

Gonçalves  and  Resende[23] expanded  the  number  of
jobs  on  basis  of  the  Akers  two-job  graphical  method
and proposed LS1+_AKERS_EXT.  The neighborhood
solutions were obtained by removing and adding some
jobs  in  the  scheduling.  The  steps  for  LS1+_AKERS_
EXT are as follows:

Step  1: Input  the  scheduling  data  CurSch,  and
remove some jobs from CurSch. Put them into the job
set Js{}, and move the remaining operations to the left
to generate scheduling PartSch.

Step  2: Place  PartSch  below  the  horizontal  axis  of
the Akers diagram. Take out a job from Js{} and put it

on  the  left  side  of  the  vertical  axis.  If  the  horizontal
axis operations and the vertical operations use the same
machine,  a  rectangular  obstacle  is  generated  in  the
Akers diagram.

Step 3: According to the path rules, find the shortest
path L from the Akers diagram.

Step 4: The path L is encoded according to the order
in  which  it  passes  through  the  operations,  and  obtain
the new scheduling NewSch after decoding.

Step  5: If  Js{}  is  empty,  output  NewSch  and  the
program ends. Otherwise, PartSch←NewSch, return to
Step 2.

Based on the above steps, take the scheduling in Fig.
1 as  an  example,  we  remove  jobs J2 and J4 from  the
scheduling  and  move  the  operations  of  the  remaining
jobs to the left. Figure 3 shows the process of adding J2
back  in  the  remaining  operations.  The  vertical  axis  of
the coordinate system in Fig. 3 is composed of job J2,
and  the  horizontal  axis  is  composed  of  the  new
schedule obtained by left shift of remaining operations
in Fig. 1 after the jobs J2 and J4 are removed from Fig.
1.  The  corresponding  schedule  after  decoding  the
shortest  path  is  shown  at  the  bottom  of Fig.  3.  Then,
Fig.  4 shows  the  process  of  adding J4 back.  The
vertical  axis  of  the  coordinate  system  in Fig.  4 is
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Fig. 2    Two-job Akers graphical method.
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Fig. 3    Schedule after adding back job J2.
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composed of job J4, the horizontal axis is composed of
the  scheduling  below Fig.  3,  and  the  scheduling
corresponding  to  the  decoding  of  the  shortest  path  is
shown below Fig. 4. It is worth noting that because the
processing  scheduling  corresponding  to  the  multi-job
Akers  diagram  path  will  have  operation  delay,  the
semi-active  decoding  is  carried  out  according  to  the
sequence of the process of the path, the left shift of the
scheduling  is  omitted,  and  finally  the Cmax is  reduced
from 21 to 17 of the original scheduling.

In the process of optimizing the scheduling, if a large
number of jobs are deleted, the time cost of adding the
job  will  increase,  and  the  essence  of  the  original
encoding  cannot  be  retained.  If  the  number  of  jobs
removed  is  small,  some  important  neighborhood

solutions  may  be  omitted,  so  that  the  desired
optimization  effect  will  not  be  obtained.  Referring  to
LS1+_AKERS_EXT method of removing two jobs at a
time, the job movement mode has been redesigned. The
algorithm  ensures  that  all  jobs  are  removed  at  least
once at the least cost, and produces a small number of
neighborhood solutions. The implementation is divided
into the following steps:

Step 1: All jobs in scheduling CurSch are randomly
grouped  in  pairs.  Gs{}  is  the  set  of  all  groups.  If  the
total  number  of  jobs  is  odd,  one  job  is  selected
randomly to combine with the remaining job.

Step  2: Take  a  set  of  jobs  from  Gs{}  and  remove
them from CurSch.

Step  3: Use  the  twice  obstacle  diagram  to  add  the
removed  jobs  back  and  generate  a  new  solution
NewSch. Store NewSch in the solution set SET{}.

Step  4: If  Gs{}  is  empty,  SET{}  is  output  and  the
algorithm ends; otherwise, return to Step 2.

4.2    Path search algorithm for Akers diagram

A path search algorithm is proposed by Brucker[49] for
two-job  Akers  graph.  This  algorithm  utilizes  the
interval of obstacles in the vertical direction to improve
searching  efficiency  (as  shown  in Fig.  5a).  With  the
proposal  of  LS1+_AKERS_EXT,  the  number  of
obstacles  in  the  horizontal  direction  is  greatly
increased,  leading  to  a  high  cost  of  the  path  search
algorithm  proposed  by  Brucker[49].  After  conducting
calculations,  Gonçalves and Resende[23] found that  the
time  cost  of  LS1+_AKERS_EXT  in  the  hybrid
algorithm  (BRKGA)  exceeds  90%.  Additionally,  they
pointed  out  that  if  a  path  contains  horizontally  left-
facing  segments,  that  path  is  invalid  (as  shown  in
Fig. 5b). u in Fig. 5 presents the parent node, NW and
SE  are  the  northwest  and  Southeast  corners  of  the
obstacle, respectively, and F is the end point. In Fig. 5a,
NW  and  SE  are  two  child  nodes  obtained  after u
expands,  and the  red  solid  line  and dotted  line  are  the
paths  to  the  child  nodes.  The  grey  path  in Fig.  5b
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produces a horizontal left section, which is invalid.
In  order  to  develop  more  effective  algorithm,  the

algorithm proposed by Brucker[49] is  analyzed.  During
the  nodes  extend  progress,  Brucker’s  algorithm  ends
current  iteration  when  reaches  an  obstacle.  However,
there  are  a  large  number  of  obstacles  in  the  graph  of
LS1+_AKERS_EXT  algorithm.  That  increases  the
number of iterative searches. To solve this problem, we
developed  a  new  node  expansion  method.  The  new
node  expansion  method  screens  subsequent  nodes
based on the distance between obstacles. If the distance
between obstacles  increases,  subsequent  nodes  will  be
generated. As shown in Fig. 6, there are three obstacles
M3-1, M3-2,  and M3-3.  In Fig.  6a,  a  traditional  node
expansion  method  was  used  for  search,  which
expanded  a  total  of  three  times.  In Fig.  6b,  the  new
node  expansion  method  used  the  size  of  the  gap
between  obstacles  to  guide  the  search,  and  only
expanded  once.  Compared  to  the  traditional  method,
the new node expansion method reduced the number of
expansions.  In  order  to  filter  out  effective  paths  from
the graph, the Brucker’s node extension method needs
to  search  three  times,  while  the  new  node  extension
method only needs to search once. Due to the new node
expansion  method  utilizing  the  distance  relationship
between  obstacles  to  avoid  some  invalid  nodes,  the
efficiency  of  node  expansion  has  been  improved.
Taking Fig. 6a as an example, compared to child node
v2,  the  child  node v1 is  superior  to v2 in  both  the
subsequent  search  range  and  the  current  optimal

distance. Therefore, v2 is referred to as an invalid child
node.  Obviously,  in  the  subsequent  node  expansion,
efforts  should  be  made  to  avoid  searching  for  invalid
child nodes. Finally, the new node expansion method is
integrated  into  the  A* algorithm[50] to  construct  a
complete path search algorithm.

The  design  of  the  path  search  algorithm  includes  a
distance evaluation formula. In the algorithm proposed
in  this  paper,  only  the  delay  distance  of  the  path  is
calculated,  and the diagonal  distance is  not  calculated.
When a node is expanded, select the node with the best
evaluation  value  from  the  list  to  be  expanded  each
time.  The  expansion  process  iterates  back  and  forth
until the node to be expanded reaches its endpoint, and
the algorithm stops and backtracks to the optimal path.
Table 3 presents the path search data.

5    Hybrid Algorithm

5.1    Algorithm framework

Figure 7 shows the flow chart of HACSM proposed in
this  paper.  HACSM  is  mainly  divided  into  three
optimization  stages:  global  search,  local  search,  and
population  update  strategy.  The  global  search  adopts
FW  and  LS1+_AKERS_EXT,  respectively,  achieving
operation-level  and  job-level  search.  The  centralized
search  part  is  the  main  optimization  phase  to  the
solution.  The  population  update  strategy  ensures  the
diversity of the population in each iterative search.

5.2    Encoding and decoding

HACSM  uses  operation-based  coding  method.  It  is
characterized in that any arrangement and combination
of  strings  can  represent  feasible  scheduling.  Taking
Fig. 1 as an example, the encoding is [1 2 4 3 4 2 2 3 4
1 4 3 2 1 3 1]. Each job sequence number appears four
times in the encoding. The number repeatedly for the k-
th  time  indicates  the k-th  operation  of  this  job.  The
semi-active  decoding  method  is  adopted,  namely
scanning coding from left to right, and processing each
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Table 3    Node search dataset.

Number of iterations Parent node Child node Evaluation value

1 (0, 0)
(0, 2) 9
(4, 2) 7

2 (4, 2)
(5, 6) 11
(16, 6) 14

3 (0, 2) (4, 6) 9

4 (4, 6)
(5, 8) 13
(9, 8) 9

5 (9, 8) (16, 11) 9
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operation according to the earliest start time, as shown
in Fig. 8.

5.3    Global search design

The  global  search  section  adopts  FW  and
LS1+_AKERS_EXT.  In  FW,  each  solution  allocates
resources  based  on  the  evaluation  value,  thereby
determining the number of neighborhood solutions and
the scope of operations search. In LS1+_AKERS_EXT,
the optimization of job-level is realized by moving and
adding jobs.  The above two algorithms are large-scale
optimization method of scheduling problem. Parameter
Pc controls the weight of FW and LS1+_AKERS_EXT.
When Pc takes 1, HACSM becomes a hybrid algorithm
of  FW and TS.  When Pc takes  0,  HACSM becomes a
hybrid  algorithm  of  LS1+_AKERS_EXT  and  TS.
When Pc is  between  0  and  1,  HACSM  becomes  a
hybrid  algorithm  with  comprehensive  search
mechanisms.

5.4    Tabu search design

For  the  solutions  obtained  using  the  global  search
strategy,  the  next  step  is  to  use  TS  based  on  the  N7
neighborhood  structure  (N7/TS)  for  centralized
search[47] (as  shown  in Fig.  9).  For  the  candidate
solutions generated by the neighborhood structure,  the
approximate  evaluation  method  is  used  for
evaluation[51].  The  aspiration  criterion  solution  with
better  evaluation  value  is  preferred,  followed  by  the
non  tabu  solution  with  better  evaluation  value.  The
function of the tabu list is to avoid repeating searches,
and we adopt the partial feature mechanism of the tabu
solution[47]. The length of the tabu list is usually related
to the size of the problem. The setting of N7/TS output
solution  is  as  follows:  If  the  solution  is  improved
during  the  iteration  of  the  algorithm,  the  optimal
improved  solution  will  be  output.  Otherwise,  an
excellent  solution  is  selected  from  the  current
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Fig. 7    Flow chart of HACSM.
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neighborhood to output.

5.5    Population iteration and termination criteria

After  each  iteration,  the  new  population  will  be
selected  from  the  neighborhood  solutions  of  both
global  and  local  searches.  Firstly,  in  the  global  search
phase,  it  is  necessary  to  select  an  algorithm  from  FW
and LS1+_AKERS_EXT. If FW is chosen, it generates
neighborhood  solutions  through  fireworks  explosions
and Gaussian variation. Otherwise, LS1+_AKERS_EXT
conducts independent searches for each individual, and
the number of neighborhood solutions is related to the
number  of  jobs.  Secondly,  N7/TS  is  used  for
centralized  search  on  the  neighborhood  solutions
obtained from the global search process. The selection
strategy  is  to  select  the  optimal  individual  from  all
neighborhood  solutions,  and  the  remaining X − 1
individuals  are  selected  through  a  roulette  wheel
strategy.

There  are  three  commonly  used  termination  criteria
for  algorithms:  (1)  given  the  maximum  number  of
iteration  steps;  (2)  given  the  optimal  solution  or
estimated optimal solution of the example; and (3) the
maximum  running  time.  HACSM  uses  termination
criterion (1).

5.6    Algorithm complexity analysis

From  the  optimization  process  of  HACSM,  it  can  be
seen  that  each  iteration  consists  of  three  parts:  global
search, local search, and population update. For global
search,  use  FW  with Pc probability  and
LS1+_AKERS_EXT  with  1 − Pc probability.  The
computational complexity of FW is O(1.1 × Pc × Smax),
where  1.1  is  the  neighborhood  solution  coefficient
generated  by  fireworks  explosion  and  Gaussian
variation,  and Smax represents  the  total  number  of
neighborhood  solutions.  The  complexity  of
LS1+_AKERS_EXT  calculation  is O((1 − Pc)  × R ×
N × X),  where O(·)  represents  the  computational
complexity of a single path search for the obstacle map,
N represents the number of jobs in the example, and X
represents  the  population  size.  For  local  search,  the
computational  complexity  is O(maxNIM  +  xNIM),
where maxNIM is the number of consecutive times the
optimal  solution  is  not  updated,  and  xNIM  is  the
additional  number  of  searches  after  updating  the
optimal  solution.  The  computational  complexity  of
population  update  is O(X).  The  final  total
computational  complexity  for  each  generation  is
O[((1.1  × Pc × Smax)  +  (1 − Pc)  × R × N × X)  ×
(maxNIM  +  xNIM)  + X],  which  can  be  simplified  as
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Fig. 9    Flow chart of N7/TS.
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O[(Smax + r × N × X)  ×  maxNIM],  it  can be seen that
the  computational  complexity  of  HACSM  mainly
depends  on  population  size,  path  search,  number  of
jobs, and local search times.

6    Experimental Test Result and Analysis

In this section, we tested the performance of HACSM.
The maximum number of iterations is 3000. The main
frequency  of  the  tested  computer  CPU  was  3.2  GHz,
and  the  memory  was  16  GB.  MATLAB  (2020b)
programming was used for implementation.

6.1    Benchmark instance and algorithm

We tested HACSM using 60 JSP benchmark instances,
including  FT06,  10,  20  (3  instances),  LA01−40  (40
instances),  ABZ07−09  (3  instances),  YN01−04  (4
instances),  and  ORB01−10  (10  instances),  with
problem sizes ranging from 6×6 to 20×20.

We  will  compare  the  test  results  with  the  best
algorithms in the literature, namely:

• HA (Xie et al.[39], 2022).
• PRTS (Zhao[38], 2021).
• BeFABC (Sharma et al.[7], 2018).
• TS/PR (Peng et al.[27], 2015).
• HIMGA (Kurdi[29], 2015).
• BRKGA (Gonçalves and Resende[23], 2014).
• TS/SA (Zhang et al.[41], 2008).

6.2    Selection of parameters

The HACSM algorithm consists of 7 basic parameters:
algorithm selection Pc, population size X, the maximum
explosion  radius Rmax,  neighborhood  solution  quantity
Smax,  number of  operations moves Z,  tabu table length
L,  and the maximum number of unimproved iterations
maxNIM. The values of L and maxNIM are referenced
in  Ref.  [17].  The  values  of  the  remaining  five
parameters  are  determined  using  parameter  testing.
Table  4 lists  the  reasonable  range  of  values  for  five
parameters.  An  LA40  example  with  significant
difficulty  in  solving was  selected  from the  LA dataset

to  adjust  the  parameters.  Each  example  runs
independently 10 times, with a maximum running time
of 5 min each time. Table 5 lists 27 different parameter
combinations. Figure 10 shows the trend of the impact
of these 5 parameters. From Fig. 10, it can be seen that
the  optimal  parameter  combination  is: Pc=0.5, X=5,
Rmax=30, Smax=25, and Z=0.6.

 

Table 4    Parameter value range.

Parameter
Value

Level 1 Level 2 Level 3
Pc 0.3 0.5 0.7
X 5 10 15

Rmax 20 30 40
Smax 15 20 25

Z 0.04 0.06 0.08

 

Table 5    Full factor test table and response values.

Experimental
combination No.

Parameter
Response valuePc X Rmax Smax Z

1 0.3 5 20 20 0.04 1228.8
2 0.3 5 20 20 0.06 1228.5
3 0.3 5 20 20 0.08 1229.2
4 0.3 10 30 25 0.04 1228.4
5 0.3 10 30 25 0.06 1228.7
6 0.3 10 30 25 0.08 1229.6
7 0.3 15 40 30 0.04 1229.1
8 0.3 15 40 30 0.06 1230.4
9 0.3 15 40 30 0.08 1230.3
10 0.5 5 30 30 0.04 1226.2
11 0.5 5 30 30 0.06 1225.6
12 0.5 5 30 30 0.08 1225.9
13 0.5 10 40 20 0.04 1227.5
14 0.5 10 40 20 0.06 1226.6
15 0.5 10 40 20 0.08 1227.7
16 0.5 15 20 25 0.04 1226.3
17 0.5 15 20 25 0.06 1227.4
18 0.5 15 20 25 0.08 1226.8
19 0.7 5 40 25 0.04 1227.7
20 0.7 5 40 25 0.06 1227.1
21 0.7 5 40 25 0.08 1227.4
22 0.7 10 20 30 0.04 1227.9
23 0.7 10 20 30 0.06 1228.4
24 0.7 10 20 30 0.08 1228.1
25 0.7 15 30 20 0.04 1229.1
26 0.7 15 30 20 0.06 1227.5
27 0.7 15 30 20 0.08 1228.9
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Fig. 10    Influence  of  key  parameter Pc on  the  performance
of HACSM.
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6.3    Evaluation of the hybrid strategy

This section selects four different scale examples to test
the  various  components  of  the  algorithm.  These  four
test  cases  are  FT10,  LA29,  LA40,  and  YN04,  with
problem sizes of 10 × 10,  20 × 10,  15 × 15,  and 20 ×
15.  Next,  we  will  analyze  the  FW,
LS1+_AKERS_EXT,  TS,  and  HACSM  algorithms  on
these  four  examples. Table  6 presents  the  comparison
results of all algorithms after 10 runs. Figure 11 shows
the box plots of the optimal solutions obtained from 10
runs of four algorithms. From the above data, it can be
seen  that  FW  has  a  fast  convergence  speed,  but  the
solution  quality  is  poor.  As  the  number  of  jobs
increases,  the  solution  time  increases  and  the  solution
quality is better than FW. TS outperforms the first two
in  terms  of  solving  quality.  HACSM  is  a  hybrid  of
three algorithms, with solution quality and stability far
exceeding  the  components,  while  verifying  the
effectiveness of the hybrid strategy.

6.4    Algorithm test and analysis

The  test  results  of  HACSM  and  the  other  four
algorithms  on  the  LA  benchmark  instances  are
compared  in Table  7.  The  algorithm  performance  is
analyzed  from  the  perspective  of  average  relative
deviation  MRE.  The  MRE  obtained  by  HACSM  is
0.002,  while  the  values  of  HIMGA,  BRKGA,  TSPR,
and  HA  are  0.006,  0.002,  0.002,  and  0.002,
respectively.  Therefore,  in  terms  of  obtaining  the
optimal solution, HACSM is better than HIMGA, equal
to BRKGA, TSPR, and HA. Especially, optimal values
obtained by HACSM are the same as those obtained by
BRKGA,  TSPR,  and  HA,  which  prove  the
effectiveness  of  HACSM.  Except  for  instance  LA29,
the lower bound (LB) value of the remaining instances
has  been  obtained.  The  Gantt  chart  of  the  scheduling
result  of  the  instance  LA29  obtained  by  HACSM  is
shown in Fig. 12.

The  test  results  of  HACSM  and  other  three
 

Table 6    Test results of four algorithms on different scale examples.

Problem
FW LS1+_AKERS_EXT TS HACSM

Cmax AVG CPU Cmax AVG CPU Cmax AVG CPU Cmax AVG CPU
FT10 978 985.4 3.2 950 963.2 10.6 930 933.6 76.4 930 931.6 56.1
LA29 1232 1243.2 25.6 1190 1200.1 54.1 1164 1170.3 189.7 1152 1156.4 167.4
LA40 1290 1305.5 27.8 1245 1254.7 43.2 1225 1230 256.4 1222 1225.7 217.5
YN04 745 757.6 40.2 712 719.2 80.6 684 689.6 294.1 679 681.2 115.12
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algorithms  on  FT  and  ORB  benchmark  instances  are
compared in Table 8. The MRE of all  algorithms is 0,
which shows that  HACSM achieves the same solution
results as GES, BRKGA, and TSPR.

Table 9 shows the test  results  of  HACSM and other
three algorithms on ABZ and YN benchmark instances.
The instances in Table 9 are those with great difficulty.
So  far,  except  for  example  ABZ06,  the  lower  bound

 

Table 7    Test results of LA instances compared with other algorithms.

Problem n×m LB
HACSM HIMGA BRKGA TSPR HA

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE Cmax RE
LA01 10×5 666 666 0.14 666 0 666 0 666 0 666 0 666 0
LA02 10×5 655 655 0.63 655 0 655 0 655 0 655 0 655 0
LA03 10×5 597 597 0.45 597 0 597 0 597 0 597 0 597 0
LA04 10×5 590 590 1.33 590 0 590 0 590 0 590 0 590 0
LA05 10×5 593 593 1.68 593 0 593 0 593 0 593 0 593 0
LA06 15×5 926 926 0.69 926 0 926 0 926 0 926 0 926 0
LA07 15×5 890 890 0.88 890 0 890 0 890 0 890 0 890 0
LA08 15×5 863 863 0.44 863 0 863 0 863 0 863 0 863 0
LA09 15×5 951 951 1.34 951 0 951 0 951 0 951 0 951 0
LA10 15×5 958 958 1.13 958 0 958 0 958 0 958 0 958 0
LA11 20×5 1222 1222 0.85 1222 0 1222 0 1222 0 1222 0 1222 0
LA12 20×5 1039 1039 0.74 1039 0 1039 0 1039 0 1039 0 1039 0
LA13 20×5 1150 1150 0.86 1150 0 1150 0 1150 0 1150 0 1150 0
LA14 20×5 1292 1292 0.66 1292 0 1292 0 1292 0 1292 0 1292 0
LA15 20×5 1207 1207 1.16 1207 0 1207 0 1207 0 1207 0 1207 0
LA16 10×10 945 945 27.10 945 0 945 0 945 0 945 0 945 0
LA17 10×10 784 784 1.79 784 0 784 0 784 0 784 0 784 0
LA18 10×10 848 848 4.66 848 0 848 0 848 0 848 0 848 0
LA19 10×10 842 842 23.30 842 0 842 0 842 0 842 0 842 0
LA20 10×10 902 902.5 44.13 902 0 902 0 902 0 902 0 902 0
LA21 15×10 1046 1046 56.61 1046 0 1046 0 1046 0 1046 0 1046 0
LA22 15×10 927 927 38.60 927 0 927 0 927 0 927 0 927 0
LA23 15×10 1032 1032 9.63 1032 0 1032 0 1032 0 1032 0 1032 0
LA24 15×10 935 936.3 77.80 935 0 935 0 935 0 935 0 935 0
LA25 15×10 977 977 23.50 977 0 977 0 977 0 977 0 977 0
LA26 20×10 1218 1218 24.69 1218 0 1218 0 1218 0 1218 0 1218 0
LA27 20×10 1235 1236.4 68.10 1235 0 1235 0 1235 0 1235 0 1235 0
LA28 20×10 1216 1216 47.12 1216 0 1216 0 1216 0 1216 0 1216 0
LA29 20×10 1152 1156.4 167.40 1153 0.09 1153 0.09 1153 0.09 1156 0.34 1153 0.09
LA30 20×10 1355 1355 8.63 1355 0 1355 0 1355 0 1355 0 1355 0
LA31 30×10 1784 1784 6.31 1784 0 1784 0 1784 0 1784 0 1784 0
LA32 30×10 1850 1850 7.47 1850 0 1850 0 1850 0 1850 0 1850 0
LA33 30×10 1719 1719 5.39 1719 0 1719 0 1719 0 1719 0 1719 0
LA34 30×10 1721 1721 6.25 1721 0 1721 0 1721 0 1721 0 1721 0
LA35 30×10 1888 1888 7.48 1888 0 1888 0 1888 0 1888 0 1888 0
LA36 15×15 1268 1269.2 97.30 1268 0 1268 0 1268 0 1268 0 1268 0
LA37 15×15 1397 1398.5 86.50 1397 0 1397 0 1397 0 1397 0 1397 0
LA38 15×15 1196 1197.6 94.10 1196 0 1196 0 1196 0 1196 0 1196 0
LA39 15×15 1233 1235.2 116.40 1233 0 1233 0 1233 0 1233 0 1233 0
LA40 15×15 1222 1225.7 217.50 1222 0 1224 0.16 1222 0 1224 0.16 1222 0
MRE − − − − − 0.002 − 0.006 − 0.002 − 0.012 − 0.002
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values  of  others  had  not  been  obtained,  and  algorithm
still needs to be improved. It can be seen from Table 9
that the MRE value of HACSM is 3.83, while HIMGA,

TS/SA,  and  BeFABC  are  4.68,  3.83,  and  4.20,
respectively. Therefore, the performance of HACSM to
find  the  optimal  solution  is  better  than  HIMGA  and

 

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10 20,9

20,10

19,9

19,10

20,1

20,2

20,3

20,4

20,6

20,7

18,9

18,1019,1

19,2

19,3

19,4

19,5

19,8 20,5

20,8

17,7

17,8

17,9

17,10

18,1

18,2

18,3

18,4

18,5

18,6

16,8

16,9

16,10

17,1

17,2

17,3

17,4

17,5

17,618,8

15,10

16,1

16,2

16,3

16,4

16,5

16,6

18,7

19,6

19,7 14,10

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,9

16,7

13,8

13,9

13,10

14,1

14,2

14,3

14,4

14,5

14,6

14,7

12,8

12,9

12,10

13,1

13,2

13,3

13,4

13,7

14,8

15,8

12,1

12,2

12,3

12,4

12,5

12,6

13,5

13,6

14,9

10,10

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8

11,9

10,1

10,2

10,3

10,4

10,5

10,6

12,7

9,3

9,4

9,5

9,6

9,7

9,8

8,4

8,5

8,6

8,7

8,8

8,9

9,9

9,10

10,7

10,8

7,7

7,8

7,9

7,10

8,1

8,2

8,3

8,1010,9

11,10

6,7

6,8

6,9

6,107,1

7,2

7,3

7,4

7,5

7,6

5,7

5,8

5,9

5,10

6,1

6,2

6,3

6,4

6,5

6,6

4,5

4,6

4,7

4,8

4,9

4,10

5,3

5,4

5,5

5,6

3,9

3,10

4,1

4,2

4,3

4,4

5,1

5,2

9,1

9,2

2,7

2,8

2,9

2,10

3,1

3,2

3,5

3,6

3,7

3,8

1,9

1,10

2,1

2,2

2,3

2,4

2,5

2,63,3

3,4

1153

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

900 950 1000 1050 1100 1150600 650 700 750 800 850300 350 400 450 500 550
Time

50 100 150 200 250

 
Fig. 12    Gantt charts of LA29 instances obtained by HACSM (Cmax=1153).

 

Table 8    Test results of FT and ORB instances compared with other algorithms.

Problem n×m LB
HACSM GES BRKGA TSPR

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE
FT06 6×6 55 55.0 0.10 55 0 55 0 55 0 55 0
FT10 10×10 930 931.3 56.51 930 0 930 0 930 0 930 0
FT20 20×5 1165 1165.0 18.33 1165 0 1165 0 1165 0 1165 0

ORB01 10×10 1059 1059.0 26.30 1059 0 1059 0 1059 0 1059 0
ORB02 10×10 888 888.0 46.51 888 0 888 0 888 0 888 0
ORB03 10×10 1005 1007.5 76.54 1005 0 1005 0 1005 0 1005 0
ORB04 10×10 1005 1005.6 68.66 1005 0 1005 0 1005 0 1005 0
ORB05 10×10 887 887.3 45.11 887 0 887 0 887 0 887 0
ORB06 10×10 1010 1010.0 16.70 1010 0 1010 0 1010 0 1010 0
ORB07 10×10 397 397.0 14.91 397 0 397 0 397 0 397 0
ORB08 10×10 899 901.2 45.50 899 0 899 0 899 0 899 0
ORB09 10×10 934 934.0 13.20 934 0 934 0 934 0 934 0
ORB10 10×10 944 944.0 3.77 944 0 944 0 944 0 944 0
MRE − − − − − 0 − 0 − 0 − 0

 

Table 9    Test results of ABZ and YN instances compared with other algorithms.

Problem n×m UB (LB)
HACSM HIMGA TS/SA BeFABC

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE
ABZ07 20×15 656 (656) 661.5 463.60 658 0.30 662 0.91 658 0.30 659 0.46
ABZ08 20×15 648 (645) 670.3 161.55 669 3.72 676 4.81 669 3.72 670 3.88
ABZ09 20×15 678 (661) 681.2 115.12 678 2.72 688 4.08 678 2.57 682 3.18
YN01 20×20 884 (826) 888.7 214.54 884 7.02 893 8.11 884 7.02 890 7.75
YN02 20×20 904 (861) 908.1 246.15 907 5.34 913 6.04 907 5.34 911 5.81
YN03 20×20 892 (827) 895.6 317.68 892 7.86 900 8.83 892 7.86 896 8.34
YN04 20×20 967 (918) 910.3 321.66 969 5.56 977 6.43 969 5.56 971 5.77
MRE − − − − − 3.83 − 4.68 − 3.83 − 4.20

Note: UB is upper bound.
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BeFABC,  equal  to  TS/SA,  which  verifies  the
effectiveness  of  HACSM. Figure  13 shows  the  Gantt
chart of ABZ08 and YN04 instances scheduling results
obtained by HACSM.

7    Conclusion

This  paper  proposes  a  hybrid  algorithm  HACSM  to
solve  the  maximum  completion  time  of  minimizing
JSP. HACSM was tested using 60 benchmark instances

and  compared  with  7  comparison  algorithms,  and  the
test  results  verified  its  effectiveness.  The  HACSM
algorithm  obtained  52  optimal  solutions  out  of  60
benchmark  examples,  with  an  optimal  solution  rate  of
87% and  a  total  relative  deviation  value  of  1.3.  When
the  TS  does  not  improve  the  optimal  solution  under  a
certain  number  of  iterations,  the  code  is  adjusted  by
using FW and LS1+_AKERS_EXT. At the same time,
the  three  algorithms  cooperate  with  each  other,  which
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Fig. 13    Gantt charts of ABZ08 and YN04 instances obtained by HACSM.
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can effectively avoid falling into local optimization.
The  fireworks  algorithm  and  other  algorithms  are

mixed  to  solve  JSP,  and  some  parameters  of  the
algorithm  are  given.  In  LS1+_AKERS_EXT,  we
designed  a  new  method  to  find  the  shortest  path  in
Akers graph. When searching the path, the parent node
expands  in  layers,  and  multiple  child  nodes  can  be
expanded  at  the  same  time,  which  improves  the
efficiency  of  node  expansion.  The  HACSM  algorithm
can  be  used  in  discrete  manufacturing  environments
with multiple varieties and small batches. For example,
enterprises  with  such  needs  can  use  it  to  develop
workshop scheduling algorithms.

In the future research, the algorithm proposed in this
paper  can  be  regarded  as  an  effective  algorithm
framework.  In  the  links  of  global  search  and  local
centralized  search,  other  algorithms  with  excellent
performance  can  be  employed,  such  as  variable
neighborhood  search  algorithm,  simulated  annealing
algorithm, ant colony algorithm, and so on. In addition,
we  also  need  to  adjust  some  details  of  the  algorithm.
For  example,  in  the  process  of  solution  optimization,
algorithm in this paper only aims at a single individual
optimization  and  ignores  the  interaction  between
different individuals.
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