

A Hybrid Algorithm Based on Comprehensive Search Mechanisms
for Job Shop Scheduling Problem

Lin Huang, Shikui Zhao*, and Yingjie Xiong

Abstract: The research on complex workshop scheduling methods has important academic significance and

has wide applications in industrial manufacturing. Aiming at the job shop scheduling problem, a hybrid

algorithm based on comprehensive search mechanisms (HACSM) is proposed to optimize the maximum

completion time. HACSM combines three search methods with different optimization scales, including fireworks

algorithm (FW), extended Akers graphical method (LS1+_AKERS_EXT), and tabu search algorithm (TS). FW

realizes global search through information interaction and resource allocation, ensuring the diversity of the

population. LS1+_AKERS_EXT realizes compound movement with Akers graphical method, so it has advanced

global and local search capabilities. In LS1+_AKERS_EXT, the shortest path is the core of the algorithm, which

directly affects the encoding and decoding of scheduling. In order to find the shortest path, an effective node

expansion method is designed to improve the node expansion efficiency. In the part of centralized search, TS

based on the neighborhood structure is used. Finally, the effectiveness and superiority of HACSM are verified

by testing the relevant instances in the literature.

Key words: job shop scheduling; fireworks algorithm; tabu search; Akers graphical; hybrid scheduling algorithms

1 Introduction

As a decision-making process for allocating limited
resources rationally, production scheduling aims to
optimize key objectives, such as the maximum
completion time, total processing cost, and total
machine load. In the current market environment, using
efficient production scheduling technology can not
only make more rapid and scientific response
production emergencies, but also significantly improve
the production efficiency, thereby affecting the
competitiveness of enterprises. Job shop scheduling
problem (JSP) is the most basic and famous production
scheduling problem, which mainly shows two aspects.

Firstly, JSP describes the processing sequence and
machine constraints of general jobs in the
manufacturing process. Secondly, a series of
scheduling problems have been extended based on it,
such as distributed, flexible, assembly, and flow shop
scheduling problems.

After more than half a century of research, scholars
have proposed large number of solution algorithms for
JSP, which can be categorized into exact and
approximation algorithms. Exact algorithms are also
called complete algorithms, including branch and
bound method and mathematical programming
method[1, 2]. Due to its limitations, the exact algorithms
were only employed to solve small-scale problems.
Approximation algorithms include constructive
algorithms[3] and heuristic algorithms. Owing to the
unique advantages in solving JSP of heuristic algorithm
in solving the problem, scholars were attracted to study
it. The achievements were mainly divided into three
categories. The first is swarm intelligence algorithms,
including genetic, artificial bee colony, ant colony, and

 Lin Huang, Shikui Zhao, and Yingjie Xiong are with the School

of Mechanical Engineering, University of Jinan, Jinan 250022,
China. E-mail: 670918850@qq.com; me_zhaosk@ujn.edu.cn;
907451779@qq.com.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Xinyu Li.
 Manuscript received: 2023-12-07; revised: 2024-02-20;

accepted: 2024-03-12

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 04/06 pp 50−66
Volume 4, Number 1, March 2024
DOI: 10 .23919 /CSMS.2024 .0001

© The author(s) 2024. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

particle swarm[4, 5]. This type of algorithm typically
generates multiple individuals. During the optimization
process, individuals collaborate with each other and
have strong global optimization capabilities. The
second is local search algorithm, among which tabu
search (TS) algorithm is a typical representative. TS
adopts a flexible search method to tabu solutions that
have already been searched, avoiding getting stuck in
local optima[6−8]. The last is hybrid algorithm[9−11]. This
type of algorithm can usually obtain higher quality
solutions than individual algorithms, thus gaining
widespread attention.

Some hybrid algorithms for solving JSP since 2010
are listed in Table 1. Scholars have tried to mix
different types of search strategies, especially those
with complementary advantages. For example, Zhang
et al.[41] used the simulated annealing formula to store
the suboptimal solution in the elite table in the TS
search process, thereby implementing a backtracking
search function. Gonçalves and Resende[23] extended
the Akers graphical and combined it with genetic
algorithm and TS to refresh the record of 57 optimal
solutions. Peng et al.[27] mixed path reconnection and
TS to solve JSP problems and improved the optimal
solutions of 49 benchmark examples. Zhao[38] studied a
decoding method based on non-delay scheduling.
Subsequently, he proposed forward non-delay
scheduling conversion algorithms based on head length
and backward non-delay scheduling conversion
algorithms based on tail length. Xie et al.[39] proposed
the N8 neighborhood structure, which combines
genetic algorithm with TS-based optimization to
further update the optimal solutions of two examples.
Yuan et al.[42] proposed a reinforcement learning
framework for flexible JSP. The new framework uses
lightweight multi-layer perceptrons as state embedding
networks to extract state information, which to some
extent reduces the computational complexity of the
algorithm. Gui et al.[43] investigated the necessary and
sufficient conditions for feasible solutions to JSP local
search problems. Zhang et al.[44] proposed a multi-
agent manufacturing system based on reinforcement
learning for dynamic JSP. The system efficiently
completes personalized orders through self-
organization and self-learning strategies. He et al.[45]

proposed a discrete multi-objective fireworks algorithm
(FW) for multi-objective flow shop scheduling
problems. Pang et al.[46] proposed an improved FW for
the permutation flow shop scheduling problem and the
hybrid flow shop scheduling problem. They introduced
a nonlinear radius in FW to avoid resource waste and

designed a mixed mutation operator to improve search
ability.

The design of hybrid algorithms generally requires
achieving a balance between global search and
centralized search. If the algorithm only has strong
centralized search ability or global search ability, it is
easy to fall into local optima or divergence. Currently,
TS has been proven to have strong local search
capabilities, but there are many options available in the
global search stage. We used FW and
LS1+_AKERS_EXT in the global search process. The
two algorithms complement each other’s advantages,

Table 1 Statistics of JSP hybrid algorithm since 2010.

Algorithm Author Year Reference
DDE Pan et al. 2010 [12]
IABC Yao et al. 2010 [13]
HPGA Yusof et al. 2011 [14]
HSS Sels et al. 2011 [15]
MA Gao et al. 2011 [16]

AISTS Zuo et al. 2012 [17]
HEA Qing-dao-er-ji and Wang 2012 [5]

DESG Wisittipanich and
Kachitvichyanukul 2012 [18]

TSPR Nasiri and Kianfar 2012 [9]
GES/TS Nasiri and Kianfar 2012 [10]

ABC Banharnsakun et al. 2012 [19]
DE-TS Ponsich and Coello 2013 [20]
ABC Zhang et al. 2013 [21]

GA/PR Spanos et al. 2014 [22]
BRKGA Gonçalves and Resende 2014 [23]
HBBO Wang and Duan 2014 [24]
GATS Meeran and Morshed 2014 [25]

CEBFO Zhao et al. 2014 [26]
TS/PR Peng et al. 2015 [27]
HPV Gao et al. 2015 [8]

aLSGA Asadzadeh 2015 [28]
HIMGA Kurdi 2015 [29]

NS-HDE/EDA Zhao et al. 2015 [30]
HPSOSA Toader 2015 [31]

HEA Cheng et al. 2016 [32]
GALS Zhao 2016 [33]
IEBO Nagata and Ono 2018 [34]

MAGATS Peng 2019 [35]
SSODM Zhou et al. 2021 [36]

WOA-LFDE Liu et al. 2020 [37]
PRTS Zhao 2021 [38]

MCDE/TS Mahmud et al. 2021 [11]
HA Xie et al. 2022 [39]

OGM/TS Huang et al. 2023 [40]

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 51

thereby enhancing the global search capability. In this
paper, we design a hybrid algorithm based on
comprehensive search mechanisms (HACSM) to solve
JSP. HACSM combines three algorithms, including
FW, LS1+_AKERS_EXT, and TS. FW achieves global
search through fireworks explosions and Gaussian
mutation, thereby ensuring population diversity. TS
combines the designed N7 neighborhood structure to
conduct centralized search to achieve the purpose of
enhanced search[47]. Although LS1+_AKERS_EXT
moves multiple jobs each time (means compound
move), it has global and local search capabilities with
the help of Akers graphical method. In
LS1+_AKERS_EXT, the optimization method of
scheduling is closely related to the path of Akers graph.
Therefore, high requirements need to be placed on path
length and calculation time[23]. Because
LS1+_AKERS_EXT is a new optimization method and
the path search is time-consuming, few scholars have
studied it. Aiming at solving the shortest path problem,
this paper designs an effective path search algorithm.
The algorithm first layers the obstacles in the Akers
graphical according to the machine. When a node is
expanded, the new node expansion method can avoid
some invalid child nodes, thereby achieving fast path
search.

The remaining parts are as follows. Section 2
provides an example of JSP. Section 3 introduces FW,
including encoding, decoding, fireworks explosion,
explosion spark, and Gaussian variation spark. Section
4 introduces LS1+_AKERS_EXT, including Akers
graphical method for two-job, LS1+_AKERS_EXT,
and path planning algorithm. Section 5 introduces the
hybrid algorithm. Section 6 gives the test results and
analysis of the algorithm. Section 7 is the conclusion of
the paper.

2 Problem Description

JSP can be defined as follows: n jobs are machined on
m machines, and each job consists of m consecutive
operations. The objective function of scheduling is to

S Pk

minimize the time required to process all jobs, denoted
as Cmax. The objective function of JSP is shown in Eq.
(1). Formula (2) provides a JSP mathematical model,
where o, Pk, , and Eh represent the total number of
operations, processing time, start time of the previous
operation, and the relationship between adjacent
processes on the machine, respectively. In Formula (2),
the first constraint indicates that the start time of all
operations is greater than or equal to 0. The second
constraint stipulates the precedence relations among the
operations of the same job. The third constraint
indicates that each machine can only process one job at
a time.

Cmax =min
(

n
maxCi

i=1

)
(1)

S k ⩾ 0, k = 1,2, ...,o;
S k −S Pk ⩾ PPk , k = 1,2, ...,o;
S i−S j ⩾ Pi−1 or S j−S i ⩾ Pi−1, (i, j) ∈ Eh,h ∈ m

(2)

In order to describe the JSP, a 4×4 JSP example is
constructed in this section (as shown in Table 2). The
following examples are all around it. Figure 1 shows
the scheduling Gantt chart with Cmax=21.

3 Fireworks Algorithm

In FW, each firework is considered as a solution.
Among all solutions, the solution with good fitness has
a small search radius and generates multiple
neighborhood solutions. The solution for poor fitness
values is exactly the opposite. The solution for poor
fitness is exactly the opposite. FW balances global and
local search by allocating resources and exchanging
information based on each firework’s fitness value.
Gaussian variation is used to ensure population
diversity during the search process. The steps are as
follows:

Step 1: Randomly generate X solutions (fireworks)
and calculate their fitness values.

Step 2: Calculate the search radius and number of
neighborhood solutions for each solution according to
the fitness value, and generate neighborhood solutions.

Table 2 Problem data for four-job, four-machine example.

Sequence
order No.

J1 J2 J3 J4

Machine Processing
time Machine Processing

time Machine Processing
time Machine Processing

time
1 M2 3 M1 2 M3 5 M1 2
2 M3 2 M2 3 M4 2 M4 4
3 M4 3 M4 4 M1 1 M3 2
4 M1 4 M3 2 M2 4 M2 3

 52 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

Step 3: Generate mutation solution using Gaussian
formula based on mutation probability.

Step 4: Check if the termination conditions are met.
If so, output the optimal value and stop the calculation.
Otherwise, execute Step 5.

Step 5: Based on the selection rules, identify a new
population and return to Step 2.

3.1 Fireworks explosion

The population size of FW is denoted as X, where the i-
th solutions are expressed as Xi and the fitness value is
fi. The neighborhood solutions are generated within the
explosion radius according to the fitness value of each
solution. Equations (3) and (4) represent the search
radius of Xi and the number of neighborhood solutions,
respectively. In order to ensure that the search radius of
each solution and the number of neighborhood
solutions generated are integers, Eqs. (3) and (4) shall
be rounded, respectively.

Ri = Rmax×
fi− fmin+ε

X∑
i=1

(fi− fmin)+ε

(3)

S i = Smax×
fmax− fi+ε

X∑
i=1

(fmax− fi)+ε

(4)

where Rmax is the maximum search radius, Smax is the
maximum number of neighborhood solutions, fmin and
fmax are the minimum and maximum fitness values,
respectively, and ε is a small quantity, which is used to
avoid the denominator being zero.

In order to allocate resources reasonably, solutions
with good fitness (poor fitness) should not generate too
many (too few) neighborhood solutions. Therefore, the
number of neighborhood solutions for Xi is limited by
Eq. (5), where round is the rounding function.
Generally, a = 0.1 and b = 0.3. At the same time, in
order to avoid the explosion radius with good fitness
value being 0, the radius of Xi is limited by Eq. (6).

S i =


round(a×Smax),S i ⩽ a×Smax;
round(b×Smax),S i ⩾ b×Smax;
S i,else

(5)

Ri =

1,Ri = 0;
Ri,else

(6)

3.2 Explosive spark and Gaussian variation spark

According to the search radius and the number of
neighborhood solutions calculated, Xi generates
neighborhood solutions within the radius Ri. The
process is following: Z positions are selected randomly
and each position z ∈ {1, 2, …, Z} is offset according
to Eq. (7) to obtain a new position Nz.

Nz = z+ randi[−Ri,Ri] (7)
where randi[−Ri, Ri] represents the uniformly
distributed integer in [−Ri, Ri].

To ensure diversity, Gaussian mutation is added to
the algorithm, as shown in Eq. (8), namely, all
solutions carry out additional Gaussian mutation with a
probability of 0.1.

Nz = round(z×G(1,1)) (8)
where G(1, 1) represents the Gaussian distribution
function with mean value and variance of 1.

If the new position generated by Eq. (7) or Eq. (8)
exceeds the moving range, it needs to be returned to the
search space according to the mapping rules. The
mapping rules are as shown in Eq. (9).

Nz = Nmin
z + mod (|Nz|,Nmax

z −Nmin
z) (9)

Nmax
z Nmin

zwhere and are the upper and lower bounds
of the value range of the z-th position of solutions,
respectively, and “mod” is the remainder function.

4 Search Algorithm Based on Akers
Diagram

4.1 Akers graphical method

Akers[48] first combined graphical methods with two-

1 2 3 4 5 6 7 8 9 10 11 120

J1

J2

J3

J4

J1-1-M2

13 14 15 16 17 18 19 20 21

J2-1-M1 J2-2-M2

J3-1-M3

J4-1-M1 J4-2-M4 J4-3-M3 J4-4-M2

J2-3-M4

J1-2-M3

J2-4-M3

J3-2-M4

J1-3-M4 J1-4-M1

J3-4-M2J3

Time
Fig. 1 Schedule Gantt chart (Cmax=21).

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 53

job JSP problems. Taking the jobs J1 and J2 in Table 2
as examples, Fig. 2 shows the two-job Akers graphical
method. The vertical axis and horizontal axis of the
coordinate system in Fig. 2 are composed of jobs J2
and J1, respectively. The obstacle diagram is composed
of obstacle blocks and paths, where M1 represents the
obstacle blocks generated by machine M1, the red path
is the shortest path. Below Fig. 2 are the corresponding
schedules obtained by path decoding. The rectangular
block in Fig. 2 is called an obstacle block, which
represents a machine conflict. It is generated by
overlapping areas projected horizontally and vertically
by processes of the same machine on two axes. The
Akers diagram transforms the scheduling problem into
solving the shortest path problem.

Gonçalves and Resende[23] expanded the number of
jobs on basis of the Akers two-job graphical method
and proposed LS1+_AKERS_EXT. The neighborhood
solutions were obtained by removing and adding some
jobs in the scheduling. The steps for LS1+_AKERS_
EXT are as follows:

Step 1: Input the scheduling data CurSch, and
remove some jobs from CurSch. Put them into the job
set Js{}, and move the remaining operations to the left
to generate scheduling PartSch.

Step 2: Place PartSch below the horizontal axis of
the Akers diagram. Take out a job from Js{} and put it

on the left side of the vertical axis. If the horizontal
axis operations and the vertical operations use the same
machine, a rectangular obstacle is generated in the
Akers diagram.

Step 3: According to the path rules, find the shortest
path L from the Akers diagram.

Step 4: The path L is encoded according to the order
in which it passes through the operations, and obtain
the new scheduling NewSch after decoding.

Step 5: If Js{} is empty, output NewSch and the
program ends. Otherwise, PartSch←NewSch, return to
Step 2.

Based on the above steps, take the scheduling in Fig.
1 as an example, we remove jobs J2 and J4 from the
scheduling and move the operations of the remaining
jobs to the left. Figure 3 shows the process of adding J2
back in the remaining operations. The vertical axis of
the coordinate system in Fig. 3 is composed of job J2,
and the horizontal axis is composed of the new
schedule obtained by left shift of remaining operations
in Fig. 1 after the jobs J2 and J4 are removed from Fig.
1. The corresponding schedule after decoding the
shortest path is shown at the bottom of Fig. 3. Then,
Fig. 4 shows the process of adding J4 back. The
vertical axis of the coordinate system in Fig. 4 is

1 2 3 4 5 6 7 80

M2

Schedule corresponding to L

F

J1

J2

S

1 2 3 4 5 6 7 8 9 10 11 120

J1

J2

9 10 11 12

J 2
-1

-M
1

J1-1-M2

J1-1-M2 J1-2-M3

J1-2-M3 J1-3-M4 J1-4-M1

J 2
-2

-M
2

J 2
-3

-M
4

J 2
-4

-M
3

13 14

M4

M1

M3 LV

LH

LH

L D

L D

L D

J1-3-M4 J1-4-M1

J2-1-M1 J2-3-M2 J2-3-M4 J2-4-M3

Time

Time

Fig. 2 Two-job Akers graphical method.

1 2 3 4 5 6 7 8
Time

Time

9 10 11 120 13 14

J 2
-4

-M
3

J 2
-3

-M
4

J 2
-2

-M
2

M1M1

S

F

Schedule corresponding to path

1 2 3 4 5 6 7 8 9 10 11 120

J1

J1

J3

J2

J3

13 14

J3-1-M3

15 16

Schedule after removing jobs J2 and J4 and applying a left shift

J2

J3-2-M4 J3-4-M2

J2-2-M2J2-1-M1

J1-1-M2 J1-2-M3 J1-3-M4

J3-4-M2J3-2-M4J3-1-M3

J1-1-M2 J1-2-M3 J1-3-M4 J1-4-M1

J3

J1-4-M1

J2-3-M4 J2-4-M3

J3

M2M2

M4 M4

M3M3

J 2
-1

-M
1

Fig. 3 Schedule after adding back job J2.

 54 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

composed of job J4, the horizontal axis is composed of
the scheduling below Fig. 3, and the scheduling
corresponding to the decoding of the shortest path is
shown below Fig. 4. It is worth noting that because the
processing scheduling corresponding to the multi-job
Akers diagram path will have operation delay, the
semi-active decoding is carried out according to the
sequence of the process of the path, the left shift of the
scheduling is omitted, and finally the Cmax is reduced
from 21 to 17 of the original scheduling.

In the process of optimizing the scheduling, if a large
number of jobs are deleted, the time cost of adding the
job will increase, and the essence of the original
encoding cannot be retained. If the number of jobs
removed is small, some important neighborhood

solutions may be omitted, so that the desired
optimization effect will not be obtained. Referring to
LS1+_AKERS_EXT method of removing two jobs at a
time, the job movement mode has been redesigned. The
algorithm ensures that all jobs are removed at least
once at the least cost, and produces a small number of
neighborhood solutions. The implementation is divided
into the following steps:

Step 1: All jobs in scheduling CurSch are randomly
grouped in pairs. Gs{} is the set of all groups. If the
total number of jobs is odd, one job is selected
randomly to combine with the remaining job.

Step 2: Take a set of jobs from Gs{} and remove
them from CurSch.

Step 3: Use the twice obstacle diagram to add the
removed jobs back and generate a new solution
NewSch. Store NewSch in the solution set SET{}.

Step 4: If Gs{} is empty, SET{} is output and the
algorithm ends; otherwise, return to Step 2.

4.2 Path search algorithm for Akers diagram

A path search algorithm is proposed by Brucker[49] for
two-job Akers graph. This algorithm utilizes the
interval of obstacles in the vertical direction to improve
searching efficiency (as shown in Fig. 5a). With the
proposal of LS1+_AKERS_EXT, the number of
obstacles in the horizontal direction is greatly
increased, leading to a high cost of the path search
algorithm proposed by Brucker[49]. After conducting
calculations, Gonçalves and Resende[23] found that the
time cost of LS1+_AKERS_EXT in the hybrid
algorithm (BRKGA) exceeds 90%. Additionally, they
pointed out that if a path contains horizontally left-
facing segments, that path is invalid (as shown in
Fig. 5b). u in Fig. 5 presents the parent node, NW and
SE are the northwest and Southeast corners of the
obstacle, respectively, and F is the end point. In Fig. 5a,
NW and SE are two child nodes obtained after u
expands, and the red solid line and dotted line are the
paths to the child nodes. The grey path in Fig. 5b

S

Schedule corresponding to path

F

1 2 3 4 5 6 7 8 9 10 11 120 13 14 15 16

1 2 3 4 5 6 7 8 9
Time

Time

10 11 120

J1

J2

J3

J1

J2

J4

J3

J4

J1-1-M2

13 14 15 16 17

J1-2-M3 J1-3-M4 J1-4-M1

J2-4-M3J2-3-M4

J3-4-M2

J3-4-M2J3-2-M4J3-1-M3

J2-1-M1 J2-2-M2 J2-3-M4 J2-4-M3

J1-4-M1J1-3-M4J1-2-M3

J 4
-1

-M
1

J 4
-2

-M
4

J 4
-3

-M
3

J 4
-4

-M
2

J1-1-M2

J3

M3

M2 M2 M2

M3 M3

M4 M4 M4

M1
M1M1

J4-4-M2J4-3-M3J4-2-M4J4-1-M1

J2-2-M2J2-1-M1

J3-1-M3 J3-2-M4 J3

Fig. 4 Schedule after adding back job J4.

M1

(a) Successors of node u

F

(b) Invalid path
u

u

NW

SE

u

Invalid path

SEM2

M2

M3

M3

Fig. 5 Traditional node extension method.

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 55

produces a horizontal left section, which is invalid.
In order to develop more effective algorithm, the

algorithm proposed by Brucker[49] is analyzed. During
the nodes extend progress, Brucker’s algorithm ends
current iteration when reaches an obstacle. However,
there are a large number of obstacles in the graph of
LS1+_AKERS_EXT algorithm. That increases the
number of iterative searches. To solve this problem, we
developed a new node expansion method. The new
node expansion method screens subsequent nodes
based on the distance between obstacles. If the distance
between obstacles increases, subsequent nodes will be
generated. As shown in Fig. 6, there are three obstacles
M3-1, M3-2, and M3-3. In Fig. 6a, a traditional node
expansion method was used for search, which
expanded a total of three times. In Fig. 6b, the new
node expansion method used the size of the gap
between obstacles to guide the search, and only
expanded once. Compared to the traditional method,
the new node expansion method reduced the number of
expansions. In order to filter out effective paths from
the graph, the Brucker’s node extension method needs
to search three times, while the new node extension
method only needs to search once. Due to the new node
expansion method utilizing the distance relationship
between obstacles to avoid some invalid nodes, the
efficiency of node expansion has been improved.
Taking Fig. 6a as an example, compared to child node
v2, the child node v1 is superior to v2 in both the
subsequent search range and the current optimal

distance. Therefore, v2 is referred to as an invalid child
node. Obviously, in the subsequent node expansion,
efforts should be made to avoid searching for invalid
child nodes. Finally, the new node expansion method is
integrated into the A* algorithm[50] to construct a
complete path search algorithm.

The design of the path search algorithm includes a
distance evaluation formula. In the algorithm proposed
in this paper, only the delay distance of the path is
calculated, and the diagonal distance is not calculated.
When a node is expanded, select the node with the best
evaluation value from the list to be expanded each
time. The expansion process iterates back and forth
until the node to be expanded reaches its endpoint, and
the algorithm stops and backtracks to the optimal path.
Table 3 presents the path search data.

5 Hybrid Algorithm

5.1 Algorithm framework

Figure 7 shows the flow chart of HACSM proposed in
this paper. HACSM is mainly divided into three
optimization stages: global search, local search, and
population update strategy. The global search adopts
FW and LS1+_AKERS_EXT, respectively, achieving
operation-level and job-level search. The centralized
search part is the main optimization phase to the
solution. The population update strategy ensures the
diversity of the population in each iterative search.

5.2 Encoding and decoding

HACSM uses operation-based coding method. It is
characterized in that any arrangement and combination
of strings can represent feasible scheduling. Taking
Fig. 1 as an example, the encoding is [1 2 4 3 4 2 2 3 4
1 4 3 2 1 3 1]. Each job sequence number appears four
times in the encoding. The number repeatedly for the k-
th time indicates the k-th operation of this job. The
semi-active decoding method is adopted, namely
scanning coding from left to right, and processing each

40 2 6 8
Horizontal distance between obstacles

Ve
rti

ca
l h

ei
gh

t o
f o

bs
ta

cl
es

Ve
rti

ca
l h

ei
gh

t o
f o

bs
ta

cl
es

Horizontal distance between obstacles

10 12 14

4

2

40 2 6 8 10 12 14

M3-1
4

2

(a) Brucker’s node extension method

(b) New node extension method

u

u

M3-2 M3-3

M3-1 M3-2 M3-3

w2w2w1

v1 v2 v3

v4 v5 v6

Fig. 6 Comparison of two node expansion methods.

Table 3 Node search dataset.

Number of iterations Parent node Child node Evaluation value

1 (0, 0)
(0, 2) 9
(4, 2) 7

2 (4, 2)
(5, 6) 11
(16, 6) 14

3 (0, 2) (4, 6) 9

4 (4, 6)
(5, 8) 13
(9, 8) 9

5 (9, 8) (16, 11) 9

 56 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

operation according to the earliest start time, as shown
in Fig. 8.

5.3 Global search design

The global search section adopts FW and
LS1+_AKERS_EXT. In FW, each solution allocates
resources based on the evaluation value, thereby
determining the number of neighborhood solutions and
the scope of operations search. In LS1+_AKERS_EXT,
the optimization of job-level is realized by moving and
adding jobs. The above two algorithms are large-scale
optimization method of scheduling problem. Parameter
Pc controls the weight of FW and LS1+_AKERS_EXT.
When Pc takes 1, HACSM becomes a hybrid algorithm
of FW and TS. When Pc takes 0, HACSM becomes a
hybrid algorithm of LS1+_AKERS_EXT and TS.
When Pc is between 0 and 1, HACSM becomes a
hybrid algorithm with comprehensive search
mechanisms.

5.4 Tabu search design

For the solutions obtained using the global search
strategy, the next step is to use TS based on the N7
neighborhood structure (N7/TS) for centralized
search[47] (as shown in Fig. 9). For the candidate
solutions generated by the neighborhood structure, the
approximate evaluation method is used for
evaluation[51]. The aspiration criterion solution with
better evaluation value is preferred, followed by the
non tabu solution with better evaluation value. The
function of the tabu list is to avoid repeating searches,
and we adopt the partial feature mechanism of the tabu
solution[47]. The length of the tabu list is usually related
to the size of the problem. The setting of N7/TS output
solution is as follows: If the solution is improved
during the iteration of the algorithm, the optimal
improved solution will be output. Otherwise, an
excellent solution is selected from the current

Randomly generate X initial solutions. Let “Maxiter”
be the maximum numberof iterations, iter=0.

iter>Maxiter?

rand (0,1)>Pc?

Step 1: Calculate the explosion radius
of each fireworks and the number of
sparks.

For each solution, LS1+_AKERS_EXT
is used to obtain the neighborhood
solution set.

Use N7/TS to improve solution

Select the next generation
according to the selection rules

ite
r=

ite
r+

1

Fireworks algorithm

Step 2: Generate explosive sparks and
Gaussian variation sparks.

LS1+_AKERS_EXT

Output optimization result.Yes

No

Yes
No

Initialization
parameters

Large
scale
search

Centralized
search

Selection strategy

Fig. 7 Flow chart of HACSM.

4 31 12 3 13 224 4 412 3

O1,1 O2,1 O4,1 O3,1 O4,2 O2,2 O2,3 O3,2 O4,3 O1,2 O4,4 O3,3 O2,4 O1,3 O3,4 O1,4

Fig. 8 Coding method.

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 57

neighborhood to output.

5.5 Population iteration and termination criteria

After each iteration, the new population will be
selected from the neighborhood solutions of both
global and local searches. Firstly, in the global search
phase, it is necessary to select an algorithm from FW
and LS1+_AKERS_EXT. If FW is chosen, it generates
neighborhood solutions through fireworks explosions
and Gaussian variation. Otherwise, LS1+_AKERS_EXT
conducts independent searches for each individual, and
the number of neighborhood solutions is related to the
number of jobs. Secondly, N7/TS is used for
centralized search on the neighborhood solutions
obtained from the global search process. The selection
strategy is to select the optimal individual from all
neighborhood solutions, and the remaining X − 1
individuals are selected through a roulette wheel
strategy.

There are three commonly used termination criteria
for algorithms: (1) given the maximum number of
iteration steps; (2) given the optimal solution or
estimated optimal solution of the example; and (3) the
maximum running time. HACSM uses termination
criterion (1).

5.6 Algorithm complexity analysis

From the optimization process of HACSM, it can be
seen that each iteration consists of three parts: global
search, local search, and population update. For global
search, use FW with Pc probability and
LS1+_AKERS_EXT with 1 − Pc probability. The
computational complexity of FW is O(1.1 × Pc × Smax),
where 1.1 is the neighborhood solution coefficient
generated by fireworks explosion and Gaussian
variation, and Smax represents the total number of
neighborhood solutions. The complexity of
LS1+_AKERS_EXT calculation is O((1 − Pc) × R ×
N × X), where O(·) represents the computational
complexity of a single path search for the obstacle map,
N represents the number of jobs in the example, and X
represents the population size. For local search, the
computational complexity is O(maxNIM + xNIM),
where maxNIM is the number of consecutive times the
optimal solution is not updated, and xNIM is the
additional number of searches after updating the
optimal solution. The computational complexity of
population update is O(X). The final total
computational complexity for each generation is
O[((1.1 × Pc × Smax) + (1 − Pc) × R × N × X) ×
(maxNIM + xNIM) + X], which can be simplified as

Input a current scheduling, store it as the current
seed and the best solution, maxNIM=set the maximum

number of iterations, NIM=1, clear the taboo list.

NIM>maxNIM?

Generate neighbors of the current seed solution by a
neighborhood structure.

The candidate solutions are evaluated by approximate
evaluation.

The “best” neighbor which is not tabu is selected
as new seed.

Update the tabu list, NIM=NIM+1.

Store the aspiration solution
as the new seed and the best

solution, NIM=0.

Output optimization result.

Does the aspiration
criterion satisfy?

Yes

Yes

No

No

Fig. 9 Flow chart of N7/TS.

 58 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

O[(Smax + r × N × X) × maxNIM], it can be seen that
the computational complexity of HACSM mainly
depends on population size, path search, number of
jobs, and local search times.

6 Experimental Test Result and Analysis

In this section, we tested the performance of HACSM.
The maximum number of iterations is 3000. The main
frequency of the tested computer CPU was 3.2 GHz,
and the memory was 16 GB. MATLAB (2020b)
programming was used for implementation.

6.1 Benchmark instance and algorithm

We tested HACSM using 60 JSP benchmark instances,
including FT06, 10, 20 (3 instances), LA01−40 (40
instances), ABZ07−09 (3 instances), YN01−04 (4
instances), and ORB01−10 (10 instances), with
problem sizes ranging from 6×6 to 20×20.

We will compare the test results with the best
algorithms in the literature, namely:

• HA (Xie et al.[39], 2022).
• PRTS (Zhao[38], 2021).
• BeFABC (Sharma et al.[7], 2018).
• TS/PR (Peng et al.[27], 2015).
• HIMGA (Kurdi[29], 2015).
• BRKGA (Gonçalves and Resende[23], 2014).
• TS/SA (Zhang et al.[41], 2008).

6.2 Selection of parameters

The HACSM algorithm consists of 7 basic parameters:
algorithm selection Pc, population size X, the maximum
explosion radius Rmax, neighborhood solution quantity
Smax, number of operations moves Z, tabu table length
L, and the maximum number of unimproved iterations
maxNIM. The values of L and maxNIM are referenced
in Ref. [17]. The values of the remaining five
parameters are determined using parameter testing.
Table 4 lists the reasonable range of values for five
parameters. An LA40 example with significant
difficulty in solving was selected from the LA dataset

to adjust the parameters. Each example runs
independently 10 times, with a maximum running time
of 5 min each time. Table 5 lists 27 different parameter
combinations. Figure 10 shows the trend of the impact
of these 5 parameters. From Fig. 10, it can be seen that
the optimal parameter combination is: Pc=0.5, X=5,
Rmax=30, Smax=25, and Z=0.6.

Table 4 Parameter value range.

Parameter
Value

Level 1 Level 2 Level 3
Pc 0.3 0.5 0.7
X 5 10 15

Rmax 20 30 40
Smax 15 20 25

Z 0.04 0.06 0.08

Table 5 Full factor test table and response values.

Experimental
combination No.

Parameter
Response valuePc X Rmax Smax Z

1 0.3 5 20 20 0.04 1228.8
2 0.3 5 20 20 0.06 1228.5
3 0.3 5 20 20 0.08 1229.2
4 0.3 10 30 25 0.04 1228.4
5 0.3 10 30 25 0.06 1228.7
6 0.3 10 30 25 0.08 1229.6
7 0.3 15 40 30 0.04 1229.1
8 0.3 15 40 30 0.06 1230.4
9 0.3 15 40 30 0.08 1230.3
10 0.5 5 30 30 0.04 1226.2
11 0.5 5 30 30 0.06 1225.6
12 0.5 5 30 30 0.08 1225.9
13 0.5 10 40 20 0.04 1227.5
14 0.5 10 40 20 0.06 1226.6
15 0.5 10 40 20 0.08 1227.7
16 0.5 15 20 25 0.04 1226.3
17 0.5 15 20 25 0.06 1227.4
18 0.5 15 20 25 0.08 1226.8
19 0.7 5 40 25 0.04 1227.7
20 0.7 5 40 25 0.06 1227.1
21 0.7 5 40 25 0.08 1227.4
22 0.7 10 20 30 0.04 1227.9
23 0.7 10 20 30 0.06 1228.4
24 0.7 10 20 30 0.08 1228.1
25 0.7 15 30 20 0.04 1229.1
26 0.7 15 30 20 0.06 1227.5
27 0.7 15 30 20 0.08 1228.9

1226

1227

1228

1229

Pc X Rmax Smax Z
0.3 0.5 0.7 5 10 15 20 30 40 20 25 30 0.4 0.6 0.8

M
ak

es
pa

n
(a

ve
ra

ge
 v

al
ue

)

Fig. 10 Influence of key parameter Pc on the performance
of HACSM.

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 59

6.3 Evaluation of the hybrid strategy

This section selects four different scale examples to test
the various components of the algorithm. These four
test cases are FT10, LA29, LA40, and YN04, with
problem sizes of 10 × 10, 20 × 10, 15 × 15, and 20 ×
15. Next, we will analyze the FW,
LS1+_AKERS_EXT, TS, and HACSM algorithms on
these four examples. Table 6 presents the comparison
results of all algorithms after 10 runs. Figure 11 shows
the box plots of the optimal solutions obtained from 10
runs of four algorithms. From the above data, it can be
seen that FW has a fast convergence speed, but the
solution quality is poor. As the number of jobs
increases, the solution time increases and the solution
quality is better than FW. TS outperforms the first two
in terms of solving quality. HACSM is a hybrid of
three algorithms, with solution quality and stability far
exceeding the components, while verifying the
effectiveness of the hybrid strategy.

6.4 Algorithm test and analysis

The test results of HACSM and the other four
algorithms on the LA benchmark instances are
compared in Table 7. The algorithm performance is
analyzed from the perspective of average relative
deviation MRE. The MRE obtained by HACSM is
0.002, while the values of HIMGA, BRKGA, TSPR,
and HA are 0.006, 0.002, 0.002, and 0.002,
respectively. Therefore, in terms of obtaining the
optimal solution, HACSM is better than HIMGA, equal
to BRKGA, TSPR, and HA. Especially, optimal values
obtained by HACSM are the same as those obtained by
BRKGA, TSPR, and HA, which prove the
effectiveness of HACSM. Except for instance LA29,
the lower bound (LB) value of the remaining instances
has been obtained. The Gantt chart of the scheduling
result of the instance LA29 obtained by HACSM is
shown in Fig. 12.

The test results of HACSM and other three

Table 6 Test results of four algorithms on different scale examples.

Problem
FW LS1+_AKERS_EXT TS HACSM

Cmax AVG CPU Cmax AVG CPU Cmax AVG CPU Cmax AVG CPU
FT10 978 985.4 3.2 950 963.2 10.6 930 933.6 76.4 930 931.6 56.1
LA29 1232 1243.2 25.6 1190 1200.1 54.1 1164 1170.3 189.7 1152 1156.4 167.4
LA40 1290 1305.5 27.8 1245 1254.7 43.2 1225 1230 256.4 1222 1225.7 217.5
YN04 745 757.6 40.2 712 719.2 80.6 684 689.6 294.1 679 681.2 115.12

920

940

960

D
is

tri
bu

tio
n

of
 o

pt
im

al
so

lu
tio

ns

D
is

tri
bu

tio
n

of
 o

pt
im

al
so

lu
tio

ns

D
is

tri
bu

tio
n

of
 o

pt
im

al
so

lu
tio

ns

D
is

tri
bu

tio
n

of
 o

pt
im

al
so

lu
tio

ns

980

1000

FW TS HACSM

1150

1210

1240

1270

FW TS HACSM

1220

1250

1280

1310

1340

LS1+_
AKERS_EXT

LS1+_
AKERS_EXT

LS1+_
AKERS_EXT

LS1+_
AKERS_EXT

FW TS HACSM
680

700

720

740

760

FW TS HACSM

1180

(a) FT10 (b) LA29

(c) LA40 (d) YN04
Fig. 11 Box plots of best fitness for FT10, LA29, LA40, and YN04 instances.

 60 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

algorithms on FT and ORB benchmark instances are
compared in Table 8. The MRE of all algorithms is 0,
which shows that HACSM achieves the same solution
results as GES, BRKGA, and TSPR.

Table 9 shows the test results of HACSM and other
three algorithms on ABZ and YN benchmark instances.
The instances in Table 9 are those with great difficulty.
So far, except for example ABZ06, the lower bound

Table 7 Test results of LA instances compared with other algorithms.

Problem n×m LB
HACSM HIMGA BRKGA TSPR HA

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE Cmax RE
LA01 10×5 666 666 0.14 666 0 666 0 666 0 666 0 666 0
LA02 10×5 655 655 0.63 655 0 655 0 655 0 655 0 655 0
LA03 10×5 597 597 0.45 597 0 597 0 597 0 597 0 597 0
LA04 10×5 590 590 1.33 590 0 590 0 590 0 590 0 590 0
LA05 10×5 593 593 1.68 593 0 593 0 593 0 593 0 593 0
LA06 15×5 926 926 0.69 926 0 926 0 926 0 926 0 926 0
LA07 15×5 890 890 0.88 890 0 890 0 890 0 890 0 890 0
LA08 15×5 863 863 0.44 863 0 863 0 863 0 863 0 863 0
LA09 15×5 951 951 1.34 951 0 951 0 951 0 951 0 951 0
LA10 15×5 958 958 1.13 958 0 958 0 958 0 958 0 958 0
LA11 20×5 1222 1222 0.85 1222 0 1222 0 1222 0 1222 0 1222 0
LA12 20×5 1039 1039 0.74 1039 0 1039 0 1039 0 1039 0 1039 0
LA13 20×5 1150 1150 0.86 1150 0 1150 0 1150 0 1150 0 1150 0
LA14 20×5 1292 1292 0.66 1292 0 1292 0 1292 0 1292 0 1292 0
LA15 20×5 1207 1207 1.16 1207 0 1207 0 1207 0 1207 0 1207 0
LA16 10×10 945 945 27.10 945 0 945 0 945 0 945 0 945 0
LA17 10×10 784 784 1.79 784 0 784 0 784 0 784 0 784 0
LA18 10×10 848 848 4.66 848 0 848 0 848 0 848 0 848 0
LA19 10×10 842 842 23.30 842 0 842 0 842 0 842 0 842 0
LA20 10×10 902 902.5 44.13 902 0 902 0 902 0 902 0 902 0
LA21 15×10 1046 1046 56.61 1046 0 1046 0 1046 0 1046 0 1046 0
LA22 15×10 927 927 38.60 927 0 927 0 927 0 927 0 927 0
LA23 15×10 1032 1032 9.63 1032 0 1032 0 1032 0 1032 0 1032 0
LA24 15×10 935 936.3 77.80 935 0 935 0 935 0 935 0 935 0
LA25 15×10 977 977 23.50 977 0 977 0 977 0 977 0 977 0
LA26 20×10 1218 1218 24.69 1218 0 1218 0 1218 0 1218 0 1218 0
LA27 20×10 1235 1236.4 68.10 1235 0 1235 0 1235 0 1235 0 1235 0
LA28 20×10 1216 1216 47.12 1216 0 1216 0 1216 0 1216 0 1216 0
LA29 20×10 1152 1156.4 167.40 1153 0.09 1153 0.09 1153 0.09 1156 0.34 1153 0.09
LA30 20×10 1355 1355 8.63 1355 0 1355 0 1355 0 1355 0 1355 0
LA31 30×10 1784 1784 6.31 1784 0 1784 0 1784 0 1784 0 1784 0
LA32 30×10 1850 1850 7.47 1850 0 1850 0 1850 0 1850 0 1850 0
LA33 30×10 1719 1719 5.39 1719 0 1719 0 1719 0 1719 0 1719 0
LA34 30×10 1721 1721 6.25 1721 0 1721 0 1721 0 1721 0 1721 0
LA35 30×10 1888 1888 7.48 1888 0 1888 0 1888 0 1888 0 1888 0
LA36 15×15 1268 1269.2 97.30 1268 0 1268 0 1268 0 1268 0 1268 0
LA37 15×15 1397 1398.5 86.50 1397 0 1397 0 1397 0 1397 0 1397 0
LA38 15×15 1196 1197.6 94.10 1196 0 1196 0 1196 0 1196 0 1196 0
LA39 15×15 1233 1235.2 116.40 1233 0 1233 0 1233 0 1233 0 1233 0
LA40 15×15 1222 1225.7 217.50 1222 0 1224 0.16 1222 0 1224 0.16 1222 0
MRE − − − − − 0.002 − 0.006 − 0.002 − 0.012 − 0.002

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 61

values of others had not been obtained, and algorithm
still needs to be improved. It can be seen from Table 9
that the MRE value of HACSM is 3.83, while HIMGA,

TS/SA, and BeFABC are 4.68, 3.83, and 4.20,
respectively. Therefore, the performance of HACSM to
find the optimal solution is better than HIMGA and

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10 20,9

20,10

19,9

19,10

20,1

20,2

20,3

20,4

20,6

20,7

18,9

18,1019,1

19,2

19,3

19,4

19,5

19,8 20,5

20,8

17,7

17,8

17,9

17,10

18,1

18,2

18,3

18,4

18,5

18,6

16,8

16,9

16,10

17,1

17,2

17,3

17,4

17,5

17,618,8

15,10

16,1

16,2

16,3

16,4

16,5

16,6

18,7

19,6

19,7 14,10

15,1

15,2

15,3

15,4

15,5

15,6

15,7

15,9

16,7

13,8

13,9

13,10

14,1

14,2

14,3

14,4

14,5

14,6

14,7

12,8

12,9

12,10

13,1

13,2

13,3

13,4

13,7

14,8

15,8

12,1

12,2

12,3

12,4

12,5

12,6

13,5

13,6

14,9

10,10

11,1

11,2

11,3

11,4

11,5

11,6

11,7

11,8

11,9

10,1

10,2

10,3

10,4

10,5

10,6

12,7

9,3

9,4

9,5

9,6

9,7

9,8

8,4

8,5

8,6

8,7

8,8

8,9

9,9

9,10

10,7

10,8

7,7

7,8

7,9

7,10

8,1

8,2

8,3

8,1010,9

11,10

6,7

6,8

6,9

6,107,1

7,2

7,3

7,4

7,5

7,6

5,7

5,8

5,9

5,10

6,1

6,2

6,3

6,4

6,5

6,6

4,5

4,6

4,7

4,8

4,9

4,10

5,3

5,4

5,5

5,6

3,9

3,10

4,1

4,2

4,3

4,4

5,1

5,2

9,1

9,2

2,7

2,8

2,9

2,10

3,1

3,2

3,5

3,6

3,7

3,8

1,9

1,10

2,1

2,2

2,3

2,4

2,5

2,63,3

3,4

1153

1,1

1,2

1,3

1,4

1,5

1,6

1,7

1,8

900 950 1000 1050 1100 1150600 650 700 750 800 850300 350 400 450 500 550
Time

50 100 150 200 250

Fig. 12 Gantt charts of LA29 instances obtained by HACSM (Cmax=1153).

Table 8 Test results of FT and ORB instances compared with other algorithms.

Problem n×m LB
HACSM GES BRKGA TSPR

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE
FT06 6×6 55 55.0 0.10 55 0 55 0 55 0 55 0
FT10 10×10 930 931.3 56.51 930 0 930 0 930 0 930 0
FT20 20×5 1165 1165.0 18.33 1165 0 1165 0 1165 0 1165 0

ORB01 10×10 1059 1059.0 26.30 1059 0 1059 0 1059 0 1059 0
ORB02 10×10 888 888.0 46.51 888 0 888 0 888 0 888 0
ORB03 10×10 1005 1007.5 76.54 1005 0 1005 0 1005 0 1005 0
ORB04 10×10 1005 1005.6 68.66 1005 0 1005 0 1005 0 1005 0
ORB05 10×10 887 887.3 45.11 887 0 887 0 887 0 887 0
ORB06 10×10 1010 1010.0 16.70 1010 0 1010 0 1010 0 1010 0
ORB07 10×10 397 397.0 14.91 397 0 397 0 397 0 397 0
ORB08 10×10 899 901.2 45.50 899 0 899 0 899 0 899 0
ORB09 10×10 934 934.0 13.20 934 0 934 0 934 0 934 0
ORB10 10×10 944 944.0 3.77 944 0 944 0 944 0 944 0
MRE − − − − − 0 − 0 − 0 − 0

Table 9 Test results of ABZ and YN instances compared with other algorithms.

Problem n×m UB (LB)
HACSM HIMGA TS/SA BeFABC

AVG CPU Cmax RE Cmax RE Cmax RE Cmax RE
ABZ07 20×15 656 (656) 661.5 463.60 658 0.30 662 0.91 658 0.30 659 0.46
ABZ08 20×15 648 (645) 670.3 161.55 669 3.72 676 4.81 669 3.72 670 3.88
ABZ09 20×15 678 (661) 681.2 115.12 678 2.72 688 4.08 678 2.57 682 3.18
YN01 20×20 884 (826) 888.7 214.54 884 7.02 893 8.11 884 7.02 890 7.75
YN02 20×20 904 (861) 908.1 246.15 907 5.34 913 6.04 907 5.34 911 5.81
YN03 20×20 892 (827) 895.6 317.68 892 7.86 900 8.83 892 7.86 896 8.34
YN04 20×20 967 (918) 910.3 321.66 969 5.56 977 6.43 969 5.56 971 5.77
MRE − − − − − 3.83 − 4.68 − 3.83 − 4.20

Note: UB is upper bound.

 62 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

BeFABC, equal to TS/SA, which verifies the
effectiveness of HACSM. Figure 13 shows the Gantt
chart of ABZ08 and YN04 instances scheduling results
obtained by HACSM.

7 Conclusion

This paper proposes a hybrid algorithm HACSM to
solve the maximum completion time of minimizing
JSP. HACSM was tested using 60 benchmark instances

and compared with 7 comparison algorithms, and the
test results verified its effectiveness. The HACSM
algorithm obtained 52 optimal solutions out of 60
benchmark examples, with an optimal solution rate of
87% and a total relative deviation value of 1.3. When
the TS does not improve the optimal solution under a
certain number of iterations, the code is adjusted by
using FW and LS1+_AKERS_EXT. At the same time,
the three algorithms cooperate with each other, which

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

50 100 150 200 250 300 350
Time

Time

400 450 500 550 600 650

669

1,13

1,14

1,15

2,14

1,1

1,2

1,3

1,4

1,5

1,6

2,1

2,2

2,9

2,10

3,15

4,8

2,3

2,4

2,5

2,6

2,7

2,8

3,6

4,75,3

5,6

1,7

1,8

1,9

1,10

1,11

1,12

2,11

2,12

2,13

4,15

4,1

4,2

4,3

4,4

4,5

4,6

5,1

5,2

5,4

5,5

3,1

3,2

3,3

3,4

3,5

6,4

6,5

6,137,10

7,11

5,7

5,8

5,9

5,10

5,11

5,12

6,12

8,12

13,9

13,10

4,9

4,10

4,11

4,12

4,13

4,14

14,9

15,9

16,87,3

7,4

7,5

7,6

7,7

7,8

7,9

6,6

6,7

6,8

6,9

6,10

6,2

6,3

3,9

3,7

3,8

8,1

8,2

8,3

8,4

8,59,5

6,15

7,1

7,2

6,11

15,8

5,14

5,15

6,1

16,11

3,10

3,11

3,12

3,13

3,14

5,13

8,13

16,12

2,15

10,3

10,4

10,5

10,6

10,7

10,8

10,9

9,6

9,7

9,8

9,9

9,10

9,11

11,13

12,7

13,814,8

9,4

9,12

11,14

8,6

8,7

8,8

8,9 10,15

11,1

11,2

11,3

11,4

11,5

11,6

9,1510,1

10,2

8,14

8,15

9,1

9,2

9,3

10,11

12,15

8,10

8,11

9,14

10,10

7,12

7,13

7,14

11,7

11,8

11,9

11,10

11,11

11,1212,6

12,8

12,10

13,7

13,15

14,1

14,2

14,3

14,4

14,5

13,1

13,2

13,3

13,4

13,5

13,6

14,6

14,7

15,1

19,5

11,15

12,1

12,2

12,3

12,4

12,5

12,9

12,11

14,12

14,13

14,14

14,15

15,10

15,11

15,12

15,13

13,11

13,12

13,13

13,14

12,14

10,12

10,13

10,14

12,13

7,15

6,14

15,5

15,6

15,7

16,6

17,819,10

19,11

14,10

14,11

12,12

9,13

18,13

16,13

16,14

16,1517,1

17,2

17,3

17,4

17,5

17,6

17,7

15,14

15,15

16,1

16,2

16,3

16,4

16,5

16,7

16,9

16,10

15,2

15,3

15,4

20,1

20,2

20,3

20,4

20,5

20,6

18,14

18,15

19,1

19,2

19,3

19,4

19,6

19,7

19,8

19,9

18,1

18,2

18,4

18,5

18,6

18,8

18,10

17,9

20,13

20,14

20,15

20,7

20,8

20,9

20,10

20,11

20,1219,12

19,13

19,14

19,15

17,15

18,3

18,7

17,10

17,11

17,12

17,13

17,1418,9

18,11

18,12

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

M16

M17

M18

M19

M20

50 100 150 200 250 300 350 400 450 850 900 950

969

1,19

1,203,15

3,19

750

7,18

2,17

2,18

2,19

2,20

3,17

6,18

12,17

12,18

1,13

1,14

1,15

1,16

1,17

1,3

1,4

1,5

1,6

2,1

2,2

2,3

2,4

800500 550 600 650 700

1,7

1,8

1,9

1,10

1,11

1,12

2,11

2,12

2,13

2,14

2,5

2,6

2,7

2,8

2,9

2,10

3,7

3,8

4,14

6,10

11,12

18,12

3,1

3,2

3,3

3,4

3,5

3,613,9

13,10

13,11

16,4

1,1

1,2 16,5

16,6

16,7

16,8

15,6

5,194,7

4,9

4,11

4,12

6,6

6,7

6,8

6,9

6,13

6,15

6,16

6,17

7,17

8,15

5,16

5,18

4,13

5,7

3,10

3,11

3,13

5,10

5,11

7,1

7,2

7,3

7,4

7,5

7,6

7,7

7,14

7,15

4,1

4,2

4,3

4,4

6,14 8,14

4,16

3,12

6,2

6,3

6,4

6,5

5,12

5,14

5,15

7,20

8,2

8,3

8,4

8,5

8,6

8,7

8,8

7,8

7,9

7,10

7,11

7,13

8,9

8,10

6,20

3,20

6,12

7,16

5,17

5,13 9,194,203,9

10,5

10,7

8,19

8,20

9,1

9,2

9,3

9,4

9,11

7,19

7,12

5,206,1

8,13

9,18

12,15

4,17

4,18

4,19

5,1

5,2

5,3

5,4

5,5

12,2

12,3

12,4

10,20

11,1

11,2

11,3

11,4

11,5

11,6

10,9

10,10

10,11

10,12

10,13

11,10

11,11

13,12

13,13

9,20

10,1

10,2

10,3

10,4

8,1

4,5

4,6

12,20

13,1

13,2

13,3

13,4

13,5

13,6

13,7

13,8

12,9

12,10

12,11

12,12

12,13

12,14

13,15

13,17

13,19

14,12

11,20

12,1

10,18

10,14

10,159,12

14,1

14,2

14,3

14,4

14,5

14,6

14,7

14,8

14,912,5

12,6

12,7

9,5

9,6

9,7

9,8

9,9

10,6

11,7

11,8

13,20

12,8

12,16

11,13

11,14

11,15

11,16

11,17

13,16

13,18

14,10

5,6

16,16

16,10

15,12

15,13

15,14

15,15

16,18

20,15

20,16 14,19

14,20

12,19

10,17

10,16

9,14

9,15

9,16

9,17

11,18

11,19

8,16

8,17

8,11

8,12

3,14

5,9

16,1

16,2

16,3

16,17

16,19

17,1615,10

15,1

15,2

15,3

15,4

15,5

13,14

2,15

2,16

3,16

16,14

16,15

15,8

14,14

14,15

14,16

14,17

14,18

9,10

4,15

5,86,11

17,4

17,5

17,6

15,19

15,20

10,19

8,18

3,18

6,19

14,13 15,16

11,9

4,8

1,18

15,17

15,18

16,9

15,11

17,7

17,8

17,9

16,11

16,12

16,134,10

18,3

18,4

17,10

9,1314,11

15,9

15,710,8

20,10

18,5

18,6

18,7

18,8

17,17

17,18

17,19

18,9

18,10

18,11

19,15

17,11

17,12

17,13

17,14

17,15

19,12 18,15

19,14

19,7

19,8

19,16

20,12

20,13

20,14

16,20

18,20

19,1

19,2

19,3

19,4

19,11

19,13

18,13

18,14

18,16

18,17

19,17

20,20

19,20

19,9

19,10

20,9

18,18

18,19

19,18

20,11

17,20

18,1

18,2

17,1

17,2

17,3

20,17

20,18

20,19

19,19

20,1

20,2

20,3

20,4

20,5

20,6

20,7

20,8

19,5

19,6

(a) ABZ08 (Cmax=669)

(b) YN04 (Cmax=969)
Fig. 13 Gantt charts of ABZ08 and YN04 instances obtained by HACSM.

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 63

can effectively avoid falling into local optimization.
The fireworks algorithm and other algorithms are

mixed to solve JSP, and some parameters of the
algorithm are given. In LS1+_AKERS_EXT, we
designed a new method to find the shortest path in
Akers graph. When searching the path, the parent node
expands in layers, and multiple child nodes can be
expanded at the same time, which improves the
efficiency of node expansion. The HACSM algorithm
can be used in discrete manufacturing environments
with multiple varieties and small batches. For example,
enterprises with such needs can use it to develop
workshop scheduling algorithms.

In the future research, the algorithm proposed in this
paper can be regarded as an effective algorithm
framework. In the links of global search and local
centralized search, other algorithms with excellent
performance can be employed, such as variable
neighborhood search algorithm, simulated annealing
algorithm, ant colony algorithm, and so on. In addition,
we also need to adjust some details of the algorithm.
For example, in the process of solution optimization,
algorithm in this paper only aims at a single individual
optimization and ignores the interaction between
different individuals.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (NSFC) (Nos. 52275490
and 51775240).

References

 P. Brucker, B. Jurisch, and B. Sievers, A branch and
bound algorithm for the job-shop scheduling problem,
Discrete Appl. Math., vol. 49, no. 1, pp. 107–127, 1994.

[1]

 W. Y. Ku and J. C. Beck, Mixed Integer Programming
models for job shop scheduling: A computational analysis,
Comput. Oper. Res., vol. 73, pp. 165–173, 2016.

[2]

 S. Dauzere-Peres and J. B. Lasserre, A modified shifting
bottleneck procedure for job-shop scheduling, Int. J. Prod.
Res., vol. 31, no. 4, pp. 923–932, 1993.

[3]

 F. D. Croce, R. Tadei, and G. Volta, A genetic algorithm
for the job shop problem, Comput. Oper. Res., vol. 22, no.
1, pp. 15–24, 1995.

[4]

 R. Qing-dao-er-ji and Y. Wang, A new hybrid genetic
algorithm for job shop scheduling problem, Comput. Oper.
Res., vol. 39, no. 10, pp. 2291–2299, 2012.

[5]

 L. Asadzadeh, A parallel artificial bee colony algorithm
for the job shop scheduling problem with a dynamic
migration strategy, Comput. Ind. Eng., vol. 102, no. C, pp.
359–367, 2016.

[6]

 N. Sharma, H. Sharma, and A. Sharma, Beer froth
artificial bee colony algorithm for job-shop scheduling
problem, Appl. Soft Comput., vol. 68, no. C, pp. 507–524,
2018.

[7]

 L. Gao, X. Li, X. Wen, C. Lu, and F. Wen, A hybrid
algorithm based on a new neighborhood structure
evaluation method for job shop scheduling problem,
Comput. Ind. Eng., vol. 88, pp. 417–429, 2015.

[8]

 M. M. Nasiri and F. Kianfar, A guided tabu search/path
relinking algorithm for the job shop problem, Int. J. Adv.
Manuf. Technol., vol. 58, no. 9, pp. 1105–1113, 2012.

[9]

 M. M. Nasiri and F. Kianfar, A GES/TS algorithm for the
job shop scheduling, Comput. Ind. Eng., vol. 62, no. 4, pp.
946–952, 2012.

[10]

 S. Mahmud, A. Abbasi, R. K. Chakrabortty, and M. J.
Ryan, Multi-operator communication based differential
evolution with sequential Tabu Search approach for job
shop scheduling problems, Appl. Soft Comput., vol. 108, p.
107470, 2021.

[11]

 Q. Pan, L. Wang, L. Gao, and H. Sang, Differential
evolution algorithm based on blocks on critical path for
job shop scheduling problems, J. Mech. Eng., vol. 46, no.
22, pp. 182–188, 2010.

[12]

 B. Z. Yao, C. Y. Yang, J. J. Hu, G. D. Yin, and B. Yu, An
improved artificial bee colony algorithm for job shop
problem, Appl. Mech. Mater., vols. 26–28, pp. 657–660,
2010.

[13]

 R. Yusof, M. Khalid, G. T. Hui, S. M. Yusof, and M. F.
Othman, Solving job shop scheduling problem using a
hybrid parallel micro genetic algorithm, Appl. Soft
Comput., vol. 11, no. 8, pp. 5782–5792, 2011.

[14]

 V. Sels, K. Craeymeersch, and M. Vanhoucke, A hybrid
single and dual population search procedure for the job
shop scheduling problem, Eur. J. Oper. Res., vol. 215, no.
3, pp. 512–523, 2011.

[15]

 L. Gao, G. Zhang, L. Zhang, and X. Li, An efficient
memetic algorithm for solving the job shop scheduling
problem, Comput. Ind. Eng., vol. 60, no. 4, pp. 699–705,
2011.

[16]

 X. Zuo, C. Wang, and W. Tan, Two heads are better than
one: An AIS- and TS-based hybrid strategy for job shop
scheduling problems, Int. J. Adv. Manuf. Technol., vol. 63,
no. 1, pp. 155–168, 2012.

[17]

 W. Wisittipanich and V. Kachitvichyanukul, Two
enhanced differential evolution algorithms for job shop
scheduling problems, Int. J. Prod. Res., vol. 50, no. 10, pp.
2757–2773, 2012.

[18]

 A. Banharnsakun, B. Sirinaovakul, and T. Achalakul, Job
shop scheduling with the best-so-far ABC, Eng. Appl.
Artif. Intell., vol. 25, no. 3, pp. 583–593, 2012.

[19]

 A. Ponsich and C. A. C. Coello, A hybrid differential
evolution—Tabu search algorithm for the solution of job-
shop scheduling problems, Appl. Soft Comput., vol. 13, no.
1, pp. 462–474, 2013.

[20]

 R. Zhang, S. Song, and C. Wu, A hybrid artificial bee
colony algorithm for the job shop scheduling problem, Int.

[21]

 64 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

J. Prod. Econ., vol. 141, no. 1, pp. 167–178, 2013.
 A. C. Spanos, S. T. Ponis, I. P. Tatsiopoulos, I. T.
Christou, and E. Rokou, A new hybrid parallel genetic
algorithm for the job-shop scheduling problem, Int. Trans.
Oper. Res., vol. 21, no. 3, pp. 479–499, 2014.

[22]

 J. F. Gonçalves and M. G. C. Resende, An extended Akers
graphical method with a biased random-key genetic
algorithm for job-shop scheduling, Int. Trans. Oper. Res.,
vol. 21, no. 2, pp. 215–246, 2014.

[23]

 X. Wang and H. Duan, A hybrid biogeography-based
optimization algorithm for job shop scheduling problem,
Comput. Ind. Eng., vol. 73, pp. 96–114, 2014.

[24]

 S. Meeran and M. S. Morshed, Evaluation of a hybrid
genetic tabu search framework on job shop scheduling
benchmark problems, Int. J. Prod. Res., vol. 52, no. 19,
pp. 5780–5798, 2014.

[25]

 F. Zhao, X. Jiang, C. Zhang, and J. Wang, A chemotaxis-
enhanced bacterial foraging algorithm and its application
in job shop scheduling problem, Int. J. Comput. Integr.
Manuf., vol. 28, no. 10, pp. 1106–1121, 2014.

[26]

 B. Peng, Z. Lü, and T. C. E. Cheng, A tabu search/path
relinking algorithm to solve the job shop scheduling
problem, Comput. Oper. Res., vol. 53, pp. 154–164, 2015.

[27]

 L. Asadzadeh, A local search genetic algorithm for the job
shop scheduling problem with intelligent agents, Comput.
Ind. Eng., vol. 85, no. C, pp. 376–383, 2015.

[28]

 M. Kurdi, A new hybrid island model genetic algorithm
for job shop scheduling problem, Comput. Ind. Eng., vol.
88, no. C, pp. 273–283, 2015.

[29]

 F. Zhao, Z. Shao, J. Wang, and C. Zhang, A hybrid
differential evolution and estimation of distribution
algorithm based on neighbourhood search for job shop
scheduling problems, Int. J. Prod. Res., vol. 54, no. 4, pp.
1039–1060, 2015.

[30]

 F. A. Toader, A hybrid algorithm for job shop scheduling
problem, Stud. Inform. Contr., vol. 24, no. 2, pp. 171–180,
2015.

[31]

 T. C. E. Cheng, B. Peng, and Z. Lü, A hybrid evolutionary
algorithm to solve the job shop scheduling problem, Ann.
Oper. Res., vol. 242, no. 2, pp. 223–237, 2016.

[32]

 S. Zhao, A hybrid algorithm with a new neighborhood
structure for the job shop scheduling problem, J. Mech.
Eng., vol. 52, no. 9, pp. 141–150, 2016.

[33]

 Y. Nagata and I. Ono, A guided local search with iterative
ejections of bottleneck operations for the job shop
scheduling problem, Comput. Oper. Res., vol. 90, no. C,
pp. 60–71, 2018.

[34]

 C. Peng, G. Wu, T. W. Liao, and H. Wang, Research on
multi-agent genetic algorithm based on tabu search for the
job shop scheduling problem, PLoS One, vol. 14, no. 9, p.
e0223182, 2019.

[35]

 G. Zhou, Y. Zhou, and R. Zhao, Hybrid social spider
optimization algorithm with differential mutation operator
for the job-shop scheduling problem, J. Ind. Manag.
Optim., vol. 17, no. 2, pp. 533–548, 2021.

[36]

 M. Liu, X. Yao, and Y. Li, Hybrid whale optimization[37]

algorithm enhanced with Lévy flight and differential
evolution for job shop scheduling problems, Appl. Soft
Comput., vol. 87, p. 105954, 2020.
 S. K. Zhao, Research on path relinking based on non-delay
scheduling and backtracking tabu search algorithm of job
shop scheduling problem, J. Mech. Eng., vol. 57, no. 14,
pp. 291–303, 2021.

[38]

 J. Xie, X. Li, L. Gao, and L. Gui, A hybrid algorithm with
a new neighborhood structure for job shop scheduling
problems, Comput. Ind. Eng., vol. 169, p. 108205, 2022.

[39]

 L. Huang, S. K. Zhao, and S. Huang, Hybrid algorithm
based on obstacle graph model and tabu search for job
shop scheduling problem, J. Mech. Eng., vol. 59, no. 16,
pp. 435–444, 2023.

[40]

 C. Y. Zhang, P. Li, Y. Rao, and Z. Guan, A very fast
TS/SA algorithm for the job shop scheduling problem,
Comput. Oper. Res., vol. 35, no. 1, pp. 282–294, 2008.

[41]

 E. Yuan, L. Wang, S. Cheng, S. Song, W. Fan, and Y. Li,
Solving flexible job shop scheduling problems via deep
reinforcement learning, Expert Syst. Appl., vol. 245, p.
123019, 2024.

[42]

 L. Gui, X. Li, L. Gao, and C. Wang, Necessary and
sufficient conditions for feasible neighbourhood solutions
in the local search of the job-shop scheduling problem,
Chin. J. Mech. Eng., vol. 36, no. 1, p. 87, 2023.

[43]

 Y. Zhang, H. Zhu, D. Tang, T. Zhou, and Y. Gui,
Dynamic job shop scheduling based on deep
reinforcement learning for multi-agent manufacturing
systems, Robot. Comput. Integr. Manuf., vol. 78, p.
102412, 2022.

[44]

 L. He, W. Li, Y. Zhang, and Y. Cao, A discrete multi-
objective fireworks algorithm for flowshop scheduling
with sequence-dependent setup times, Swarm and
Evolutionary Computation, vol. 51, p. 100575, 2019.

[45]

 X. Pang, H. Xue, M. L. Tseng, M. K. Lim, and K. Liu,
Hybrid flow shop scheduling problems using improved
fireworks algorithm for permutation, Appl. Sci., vol. 10,
no. 3, p. 1174, 2020.

[46]

 C. Zhang, P. Li, Z. Guan, and Y. Rao, A tabu search
algorithm with a new neighborhood structure for the job
shop scheduling problem, Comput. Oper. Res., vol. 34, no.
11, pp. 3229–3242, 2007.

[47]

 S. B. Akers, A graphical approach to production
scheduling problems, Oper. Res., vol. 4, no. 2, pp. 244–
245, 1956.

[48]

 P. Brucker, An efficient algorithm for the job-shop
problem with two jobs, Computing, vol. 40, no. 4, pp.
353–359, 1988.

[49]

 P. E. Hart, N. J. Nilsson, and B. Raphael, A formal basis
for the heuristic determination of minimum cost paths,
IEEE Trans. Syst. Sci. Cybern., vol. 4, no. 2, pp. 100–107,
1968.

[50]

 E. Balas and A. Vazacopoulos, Guided local search with
shifting bottleneck for job shop scheduling, Manag. Sci.,
vol. 44, no. 2, pp. 262–275, 1998.

[51]

 Lin Huang et al.: A Hybrid Algorithm Based on Comprehensive Search Mechanisms for Job Shop Scheduling Problem 65

Lin Huang received the MS degree from
University of Jinan, China in 2023. He is
currently pursuing the PhD degree at
Nanjing University of Aeronautics and
Astronautics, China. His research focuses
on workshop production systems and
intelligent optimization algorithms.

Shikui Zhao received the PhD degree in
mechanical engineering from Zhejiang
University, China in 2013. He is an
associate professor at the School of
Mechanical Engineering, University of
Jinan, China. His current research focuses
on workshop production scheduling and
intelligent optimization algorithm.

Yingjie Xiong is currently pursuing the
master degree at University of Jinan,
China. His current research focuses on
workshop production scheduling and
intelligent optimization algorithm.

 66 Complex System Modeling and Simulation, March 2024, 4(1): 50−66

