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Abstract: Power grids, due to their lack of network redundancy and structural interdependence, are particularly

vulnerable to cascading failures, a phenomenon where a few failed nodes—having their loads exceeding their

capacities—can trigger a widespread collapse of all nodes. Here, we extend the cascading failure (Motter-Lai)

model  to  a  more  realistic  perspective,  where  each  node’s  load  capacity  is  determined  to  be  nonlinearly

correlated with the node’s centrality. Our analysis encompasses a range of synthetic networks featuring small-

world or scale-free properties, as well as real-world network configurations like the IEEE bus systems and the

US  power  grid.  We  find  that  fine-tuning  this  nonlinear  relationship  can  significantly  enhance  a  network’s

robustness against cascading failures when the network nodes are under attack. Additionally, the selection of

initial  nodes  and  the  attack  strategies  also  impact  overall  network  robustness.  Our  findings  offer  valuable

insights for improving the safety and resilience of power grids, bringing us closer to understanding cascading

failures in a more realistic context.
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1    Introduction
Cascading  failures  have  attracted  substantial  attention
recently  owing  to  their  tremendous  potential  for
harming  the  reliability  and  security  of  power
systems[1, 2].  An  instance  of  cascading  failures  took
place  in  2003  in  Manhattan,  New York,  USA.  As  the
first  significant  power  loss  occurred,  additional
significant  northeastern  United  States  cities
experienced cascading failures[3].

To analyze cascading failures of power grids, Motter

and  Lai  introduced  the “load  capacity” Motter-Lai
(ML)  model[1].  This  model,  which  is  based  on  the
dynamic  redistribution  of  network  traffic,  depicts
cascading  failure  by  assuming  a  linear  connection
between the load and capacity of nodes. Using the ML
model,  Li  et  al.[4] compared  the  effects  of  maximum
load attacks  and random attacks  on different  networks
using  the  ML  model,  showing  that  under  random
attacks,  most  links  and  nodes  fail  at  the  beginning  of
cascading failure.  Qi et  al.[5] established an interaction
model to examine the impact of interaction on the risk
of  cascading  failure.  Their  results  were  verified  using
simulation  data  generated  from  the  ORNL-PSerc-
Alaska (OPA) model on an IEEE 118 node system. An
essential technique for examining cascading failures in
complex  networks  is  the  load  capacity  model.
Researchers  have  studied  the  use  of  load  capacity
models  in  complex  network  cascading  failures
extensively during the last  several  decades.  According
to  research,  load  capacity  models  may  be  used  to
anticipate the resilience and stability of the network as
well  as  to  accurately  explain  the  failure  process  of
network  nodes[6–8].  Additionally,  to  better
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accommodate  various  network[9–11] kinds  and  failure
patterns,  researchers  have put  out  a  number of  revised
load capacity models[12, 13].

One  of  the  primary  failure  modes  for  networked
systems  is  now  cascading  failures[14].  For  example,  in
2003,  when  the  North  American  power  grid  failed,
communication  networks  and  control  centers  also
failed,  which  in  turn  hindered  decision  making  for
power  restoration.  This  example  further  highlights  the
importance  of  understanding  cascading  failures  in
complex  systems.  Cascading  failure  mechanisms  can
be  loosely  divided  into  two  categories:  structural  and
functional.  Structural  cascading  failures  consider
visible  or  direct  causal  relationships  between
component failures[15–19]. As cascading failures are tied
to  load  redistribution  caused  by  intial  failure,  nodes
with  larger  load capacities  are  normally  more  resilient
to  cascading  failures,  while  nodes  with  smaller  load
capacities  are  more  vulnerable[20].  Practically,  each
node  of  the  power  grid  can  have  a  different  load
capacity.  Therefore,  it  is  crucial  to  formulate  practical
models  that  explicitly  consider  the  variety  of  load
capacities  of  nodes.  For  example,  the  issue  of
redundant capacity, resulting from the varying strength
of network interaction, has been carefully considered in
real-world  networks  such  as  power  grids  and  traffic
networks[21].  In  Ref.  [22],  a  heuristic  algorithm  has
been  developed  to  identify  vulnerable  lines  in  power
grids, aiming to balance the accuracy and efficiency of
identification.  The  robustness  of  interdependent
networks  against  degree-based  deliberate  attacks  has
also been thoroughly investigated[23],  which has led to
the proposal of counter-attack procedures involving the
addition  of  links  to  improve  interdependent  network
connectivity.  As  a  subfield  of  dynamic  modeling  of
complex  systems,  research  on  cascading  failures  in
power  networks  might  be  considered[14].  In  this  field,
researchers use various methods to describe and predict
the  behavior  of  complex  systems,  such  as  network
science[24],  nonlinear  dynamics[25, 26],  and  stochastic
processes[27]. The specifics of the research problem will
determine the dynamic modeling techniques applied to
cascading failure analysis in power networks[18].

The  article  thoroughly  investigates  the  impact  of
crucial  parameters  on  cascading  failures  and  validates
their  effectiveness  through  simulation.  The  findings
show  that  this  approach  may  successfully  evaluate
cascading failures  in  a  variety  of  networks,  promoting
the secure operation and increased resilience of  power
grids  against  catastrophic  events.  The  main  highlights

of this article are as follows:
● Proposing  a  node  threshold  calculation

framework  based  on  nonlinear  load  capacity: Our
contribution  lies  in  proposing  a  model  based  on
nonlinear  load  capacity,  which  is  the  fundamental
framework  for  calculating  node  thresholds  and
promoting cascading failures simulation.

● Observations  from  extensive  model  analysis:
Through  meticulous  analysis  of  the  model,  notable
observations  emerge.  Particularly,  downstream  nodes
exhibit  susceptibility  when  confronted  with  attack
nodes,  signifying  a  cascading  effect.  For  directed
networks,  the  determination  of  the  network  load
capacity  parameter  hinges  on  the  maximum  value
among  downstream  nodes’ load  capacity  parameters.
Conversely, within undirected networks, the paramount
parameter  value  arises  as  the  highest  among  the  load
capacity parameters of neighboring nodes.

● Enhancing  resilience  through  tolerance
parameter  improvement: A  significant  outcome  of
our  study  underscores  that  the  enhancement  of
tolerance  parameters  directly  correlates  with  the
bolstering of resilience across all network types.

● Unveiling  threats  to  network  robustness: We
compare  random  and  target  attacks  and  analyze  the
impact of initial failure nodes. By analyzing the attacks
in  the  network,  we  can  identify  potential  targets  that
targeted  attacks  exploit,  thus  posing  a  major  threat  to
the overall security of the network.

● Guiding  predictive  accuracy  via  a  proposed
general strategy: The strategic approach we introduce,
grounded  in  the  load  capacity  model,  emerges  as  a
valuable  tool  for  an  analysis  of  cascading  failures,
thereby offering substantial guidance.

2    Methodology

2.1    Network model and network centrality
2.1.1    Network model

GA  complex  network, ,  can  be  defined  as  a  graph  or
graph-like  structure  that  represents  the  constituent
elements  of  a  complex  system  as  nodes  and  the
pairwise relationships between them as links[28]. In this
work,  we  demonstrate  the  proposed  method  on  three
synthetic complex network models:

(1) An Erdos-Renyi network (ER)[29].
(2) A Watts-Strogatz network (WS)[30].
(3) A Barabsi-Albert network (BA)[31].
The  small-world  property  usually  reflects  the  fact

that the characteristic path length between points in the
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network  is  small,  like  that  of  an  ER  network,  but  the
clustering  coefficient  of  a  WS  network  is  substantial,
similar  to that  of  a  regular  network (such as a lattice).
The scale-free feature, on the other hand, the scale-free
characteristic  demonstrates  that  the  distribution  of
nodes’ degree values follows a power law, with a small
number  of  nodes  in  the  network  having  large  degree
values  and  the  majority  of  nodes  having  tiny  degree
values.  Real-world networks often exhibit  small-world
and  scale-free  features.  Furthermore,  for  comparison,
we  employed  the  network  structure  of  the  US  power
system. Table 1 displays the specifics of this network.
2.1.2    Network centrality
The  importance  of  the  nodes  can  be  measured  by  the
centrality  of  the  network[18, 32].  Here,  we  adopt  three
centrality measures:

(1) Degree centrality[33, 34].
(2) Betweenness centrality[35].
(3) Closeness centrality[36].
Their formulas are
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number  of  nodes  in  the  network.  indicates  the
number  of  the  shortest  paths  passing  through  node ,

 indicates  the  total  number  of  the  shortest  paths
between  and ,  and  is  the  geodesic  distance
between  nodes  and .  The  three  network  centrality
measures’ detailed explanations are shown in Table 2.

In  this  research,  we  create  three  complex  network
models,  namely  ER,  WS,  and  BA  networks,  each  of
which  contains  5000  nodes  as  detailed  in Table  1.  To
further elucidate the distinctions in statistical properties
of  those  networks,  we  conduct  a  comparative  analysis
of  the  degree  centrality,  betweenness  centrality,  and
clustering  coefficient  centrality  across  four  networks,
as  depicted  in Fig.  1.  As  can  be  observed,  in
exceptional  cases,  networks  may  have  a  power-law
distribution, signaling the presence of strongly coupled
nodes or hubs. The centrality distribution indicates the
relevance  of  the  nodes  in  permitting  communication
and information transmission between the other nodes.
Nodes  with  greater  centrality  of  betweenness  serve
crucial  roles  in  preserving  efficient  routes  and  are
critical for network stability.

2.2    Load capacity model

A  mathematical  model  for  calculating  a  network’s
capacity for carrying load is known as the load capacity
model.  A  network  may  crash  if  its  load  capacity  is
surpassed,  which  causes  the  network  to  become
overloaded. The load capacity model is commonly used

 

Table 1    Average centrality of each network.

Network N V ⟨K⟩ ⟨B⟩ ⟨C⟩
BA 5000 10 025 4.0 8612.3 4.58×10−5

WS 5000 10 000 4.0 43 305.2 1.12×10−5

ER 5000 6222 2.5 16 158.4 1.70×10−5

US 4941 6594 2.7 44 433.3 1.09×10−5

N V
⟨K⟩ ⟨B⟩

⟨C⟩

Note:  denotes the number of nodes,  denotes the number of
connected links,  denotes the average degree,  denotes
the average betweenness, and  denotes the average closeness.

 

Table 2    Network centrality detailed explanations.

Symbol Equation Description

DCi (1)
It is a widely used node centrality metric in
network research, depending on the node’s
degree.

BCi (2)
Based on a node’s connectivity with other
nodes in the network, it is a measure of the
node’s value.

CCi (3)
Determine the significance of each node in
the network by measuring its distance from
other nodes.

 

5000

4000

3000
400

200

0
0 10 20

2000

1000

0
0 50 100

Degree

Degree

N
um

be
r

N
um

be
r

N
um

be
r

N
um

be
r

N
um

be
r

(a) Degree distribution (b) Betweenness distribution (c)  Clustering coefficient distribution

BA
WS
ER
US

150 200

5000

4000

3000

400

200

0
1 2 3

2000

1000

0
0 1 2

Betweenness (×106)

Betweenness (×105)

BA
WS
ER
US

3

1000

800

600

400

200

0
0 2 4
Clustering coefficient (×10−5)

BA
WS
ER
US

6

 
Fig. 1    Distributions of degree, betweeness, and clustering coefficient of four networks.
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in the study of power grids, transportation systems, and
other  infrastructure networks to predict  the probability
of  failure  or  overload  under  different  load  conditions.
In our research,  we propose a framework using a load
capacity  model  for  calculating  the  threshold  value  of
each node in the grid and use it to model the cascading
failure  event.  By  contrasting  the  performance  of
different models, we intend to demonstrate the efficacy
of  the  load  capacity  model  in  correctly  predicting
cascading failures.
2.2.1    Initial load
The  cascading  failure  model  allocates  the  initial  load
based  on  the  importance  of  the  node,  typically  using
the  degree  or  the  betweenness  approach[37, 38].  In  a
network  composed  of  a  set  of  nodes,  it  is  possible  to
define  the  initial  load  based  on  the  centrality  of  the
complex network. For example, suppose that all nodes
transmit the same data on the shortest path. In this case,
the  initial  load  of  each  node  can  be  represented  by  its
betweenness centrality, and the initial load of the node
is considered to be closely related to the degree of the
node.  Assuming  that  all  nodes  will  transmit  the  same
amount  of  data  on  the  shortest  path,  the  betweenness
centrality  can  be  used  to  represent  the  initial  load  of
each  node.  This  can  help  to  understand  the  impact  of
different load conditions on the network and predict the
likelihood  of  overload  or  failure.  The  initial  load  can
then be expressed by the intermediate centrality, which
is given by
 

L1i =
∑
s,i,t

ni
st

gst
(4)

Alternatively,  the  initial  load  of  each  node  can  also
be considered closely related to the degree of the node.
This  approach  allows  for  a  more  accurate
representation of the load capacity of each node in the
network, as nodes with higher centrality and degree are
likely to have a higher initial load due to their increased
connectivity and importance within the network.
 

L2i = DCi× (N −1) = ki (5)
L1i

L2i

Note that in this article  is used in the analysis of
the toy network and IEEE power network while  is
used in complex network models.
2.2.2    Maximum capacity
The  maximum  capacity,  sometimes  referred  to  as  the
load-carrying capacity,  is  the greatest  load that  a  node
in  a  network  can  support  before  being  overwhelmed.
This  capacity  is  an  important  factor  in  understanding
the  reliability  and  resilience  of  a  network,  as  it

determines the ability of the node to withstand different
load conditions and continue to function properly. It is
generally  accepted that  a  node’s  maximum capacity  is
linearly  related  to  its  initial  load[1].  However,  in  this
study,  we  also  consider  nonlinear  factors  that  can  be
considered  using  the  following  potential  relationships
among  the  maximum  carrying  capacity  as  well  as  the
beginning load:
 

C = (1+α) Lβ (6)
α

β

L C

C L C1

C2

C3 C5

β

C1 C5

C3

L

where  the  tolerance  parameter  and  the  nonlinear
parameter  determine  the  capacity.  Note  that  as  the
initial  load  increases,  the  capacity  must  also
increase. We picked five alternative connections, which
are stated in Table 3. As an example between a node’s
maximum  capacity  ( )  and  beginning  load  ( ), 
represents the initial linear model, and  signifies the
nonlinear  model  after  load  logarithmic  reduction.

−  denote  the  nonlinear  load  capacity  models
scaled  through  varying  values.  The  initial  load  and
maximum  load  curves  for −  are  depicted  in
Fig.  2.  Among  the  five  curves,  the  blue  curve  ( )
exhibits the most rapid increase with the increase in the
initial load .

2.3    Cascading failure model

Cascading  failures  occur  when  the  breakdown  of  a
 

Table 3    Different load-capacity relationships (Eq. (6)).

Curvilinear Equation Relationship
C1 C = 1.3L Linear relationship

C2 C = 1.3L1.2 log L
Nonlinear relationship with a

logarithmic correction
C3 C = 1.3L1.7 Superlinear relationship
C4 C = 1.3L1.2 (Less-)superlinear relationship
C5 C = 1.3L0.5 Sublinear relationship
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Fig. 2    Different  load-capacity  relationships,  as  defined  in
Table 3.
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single part causes a chain reaction that may lead to the
collapse  of  the  whole  system.  These  sorts  of
breakdowns  are  typically  found  in  power  grids  and
transportation  networks[39].  Cascading  failure  models
may  be  graph-based[40] or  network  flow  models[5].  In
this  research,  cascading  failures  are  represented  using
the  flow-based  network  model.  In  this  approach,  the
load  distribution  of  the  failing  node  is  defined  by  the
load  percentage  of  its  nearby  nodes.  For  example,  if
node  fails, the capacity given to its neighboring node
 would  be  calculated  as  Eq.  (7).  After  the  failure  of

node ,  its  load  will  be  moved  to  the  nearby  working
nodes. If  the load moved to nearby node  exceeds its
capacity,  node  will  also  fail.  Consequently,  the
burden  of  node  will  be  further  spread  to  its  nearby
operable nodes, possibly commencing a cascade failure
process.  In  this  procedure,  the  load  transmitted  from
node  to node , indicated by , can be computed as
 

∆i j = L j ·
Li∑

m∈Γ j

Lm

(7)

Γ j j
Lm

where  represents the set of neighbors of node , and
 is the load of one of the neighbors.

The network robustness index is used to evaluate the
capacity of the network to withstand cascading failures.
When  the  network  achieves  a  stable  state,  it  is
measured  by  the  fraction  of  failing  nodes.  As  such,  a
lower index indicates a higher level of robustness.
 

I =
F
N

(8)

N
F
where  is  the  overall  number  of  network  nodes,  and

 denotes  the  number  of  failing  nodes.  The  range  of
this  index  is  from  0  to  1,  where  0  indicates  no  node
failures,  and 1 indicates the fail  of  every nodes in this
networks.

2.4    Theoretical analysis

α

β

G = (V,E,W)
Q(w)

wi j i j

Our theoretical  analysis  aims to  determine  how  and
 affect  the cascading failure.  When one parameter  is

fixed,  it  is  important  to  determine  how  the  other
parameters  should  be  adjusted  to  curb  cascading
failures.  Consider  a  weighted  graph  (network)
represented as . The primary characteristic
of  this  network  is  its  weight  distribution ,  which
represents  the  probability  of  a  specific  edge  having  a
weight of w. We can use Eq. (9) to calculate the weight

 between node  and node :
 

wi j = (kik j)θ (9)

θ θ

θ

 can take any real values, but  = 1 is assumed here
because according to Refs. [40, 41],  = 1 leads to the
highest robustness of various networks.

L j+∆i j >C j j
The node load is transferred to the neighboring node.

When , the neighbor  will also fail, and its
load  will  be  further  distributed  to  the  neighbor,  which
can cause the neighbor to fail.  Therefore, according to
Formula  (10),  we  can  calculate  the  case  when  node j
does not fail.
 

L j×


Li∑

a∈Γ j

La

+1

 ⩽ (1+α)×Lβj (10)

The threshold for the happening of failure is given by
 

L j ×


Li∑

a∈Γ j

La

+1

 = (1+α) Lβj (11)

α β

α β

α∗

α∗

When  and  increase  at  the  same  time,  the
robustness of the network is enhanced, as indicated by
the increase in  the value on the right  side of  Eq.  (11).
However,  when  and  increase  unevenly,  the
conclusion  may vary.  It  is  possible  to  define  a  critical
parameter value  that renders the network invalid, as
suggested  by  Eq.  (11).  If  the  value  of  the  stanza
parameter  is lower than this critical value, the node
fails.

i j

i j
i

When  considering  a  weighted  network,  the  load
distribution should take into account the weights of the
links.  In  the  case  of  multiple  nodes  connected  to  a
single node, the load transfer from node  to node  can
be  determined  considering  the  ratio  of  the  weights  of
the links between  and  to the sum of the weights of
all the links between node  and its neighboring nodes.
We define this ratio as the link compactness, which can
be represented as follows:
 

ci j =
wi j∑

m,n

wmn

(12)

Using Eq. (12), we can derive Eq. (13) based on Eq.
(11).
 

ci j× k j


ki∑

a∈Γ j

ka

+1

 = k j
β (α∗+1

)
(13)

β

α

α

When  increases,  to  maintain  the  validity  of  Eq.
(13),  the  corresponding  should  be  reduced  to
maintain  a  critical  state.  If  does  not  change,  there
will  be  fewer  nodes  in  the  vulnerable  stage,  and  the
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β

robustness  of  network  as  a  whole  will  continue  to
improve with the increase of parameter .

β α

α

α∗

α∗

The existence of a threshold may also be referred to
as the critical condition, which reflects the least cost to
the network. However, it is vital to remember that each
node  has  a  separate  threshold.  If  the  overall  resilience
of the network is evaluated, the threshold should be the
greatest value of all nodes. If the robustness of a certain
node  is  evaluated,  then  the  threshold  of  that  node
should  be  utilized.  For  a  fixed  network,  the 
threshold is  not fixed. As a result,  the value of  may
be  changed  to  affect  the  network’s  resilience.  The
highest value of  for each node can be considered as
the  network’s  overall ,  as  shown  in  the  following
formula:
 

α∗ =max
i∈N
α∗i (14)

α β

β∗

β∗

β∗

Similarly, with a fixed  network, the threshold for 
is not fixed. Therefore, we may adjust the value of ,
and  the  overall  for  all  nodes  can  be  defined  as  the
greatest  value  of  for  each  node,  as  indicated  in  the
following formula:
 

β∗ =max
i∈N
β∗i (15)

3    Numerical Analysis

3.1    Toy network

LS1 LS2

I
CF NA

We construct a toy network with 25 nodes and 30 links,
as  shown  in Fig.  3.  We  apply  the  cascading  failure
approach  outlined  in Algorithm  1 to  simulate  the
cascading failure on the toy network. We initialize the
matrices  and  to store the node states, and the
variable  represents the proportion of failed nodes. We
calculate  the  variable  using  Eq.  (16),  where 
denotes the number of initially attacked nodes.

For  comparison,  we  select  Nodes  11  and  17.  By

utilizing  the  model  specified  in  Eq.  (6)  and  following
the  principle  of  isolating  a  single  variable,  we  fix  the
parameter values and employ the robustness parameter
to analyze the network’s robustness.
 

CF =
NA

F ×N
(16)

α

β

α CF

To investigate the impact of parameter  on network
robustness,  we  fix  the  value  of  at  1.2. Figure  4
presents the simulation results of the attack at nodes 11
and 17, with  varying within a certain range. The 
parameter,  which  shows  a  similar  pattern  for  both
nodes,  measures  the  impact  of  the  first  attack  node
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Fig. 3    Network topology with 25 nodes and 30 links.

 

Algorithm 1　Cascading failure simulation based on degree
centrality

LS1 LS2 I CF　Initialize lists  and , variables  and .
LS1　Append initial fail node to list .

LS1　while  is not empty do
LS1　　for each node in  do

　　　for each neighbor of node do
>　　　　if increased load + initial load of neighbor  capacity

　of neighbor then
　　　　　if state of neighbor is “S” then
　　　　　　Change state of neighbor to “F”.

LS1　　　　　　Append neighbor to list .
　　　　　end if
　　　　end if
　　　end for

CF　　　Update value of variable .
I　　　Update value of variable .

LS2　　　Append node to list .
LS1　　　Remove node from list .

　　end for
　end while
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α

α

I

upon the network’s overall robustness. As the tolerance
parameter  for  the  network  increases,  the  network’s
robustness  improves.  However,  there  is  a  distinction
between  Node  11  and  Node  17.  Node  11  remains
relatively  stable  when  is  set  to  0.2,  while  Node  17
requires a value of 0.4 to maintain stability. This trend
is also evident in the  parameter, which represents the
proportion  of  node  failures.  Both  parameters  mutually
support the observed trend.

β

β

β

CF

β

β

We also investigate the impact of the parameter  on
network robustness while keeping its value fixed at 0.2.
The simulated results of the attack on Nodes 11 and 17
are  shown  in Fig.  5.  It  shows  that  as  the  network
nonlinear parameter  increases,  the network capacity
steadily  improves.  When  reaches  1.2,  the  network
already  exhibits  relatively  good  robustness.  The 
parameter  effectively  captures  the  changes  in  network
robustness  associated  with  different  values  of ,
reflecting  the  increasing  trend  of  network  robustness
with varying .

β

The  visualization  results  of  the  impact  of  parameter
 on the network robustness, specifically for attacks on

Node 11,  are  depicted in Fig.  6.  The graph provides a
clear  visualization  of  node  failures,  where  red

represents  failed  nodes  and  green  represents  surviving
nodes. When attacking Node 11, it is evident that Node
10  is  highly  vulnerable.  This  vulnerability  arises
because  the  network  is  directed,  and  Node  10  is  the
only  downstream  node  of  Node  11.  Consequently,
when  Node  11  is  attacked,  Node  10  exhibits  a
relatively  vulnerable  aspect.  It  is  worth  noting  that
improving  the  overall  robustness  of  the  network  also
contributes  to  protecting  Node  10.  However,  focusing
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Fig. 6    Cascading failure visualization with initial attack at Node 11.
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specifically  on  protecting  Node  10  can  significantly
reduce costs and enhance efficiency. However,  attacks
are  often  unpredictable,  and  network  topologies  are
subject  to  continuous  change.  In  practice,  protecting  a
single  node  can  be  challenging.  However,  modeling
cascading  failures  based  on  centrality  indicators  of
nodes  proves  to  be  effective  in  addressing  such
concerns.

β∗ β∗

β∗

β∗

β∗

β∗

β∗

From the visualization results  in Fig.  6,  we can also
verify  the  correctness  of  Eqs.  (14)  and  (15).  Node  10
has a  value of  1.7,  while Node 9 has a  value of
1.2.  As  this  network  is  directed,  Node  10  is  the  only
downstream  node  of  Node  11,  so  it  is  expected  that
Node 10 has a larger  value than Node 9. Generally,
for  directed  networks,  the  value  of  the  network  is
the  maximum  value  of  all  downstream  nodes’ 
values,  while  for  undirected  networks,  the  value  of
the  network  is  the  maximum  value  of  all  neighboring
nodes’  values.

3.2    IEEE power networks

G N
K

Next,  we  conduct  numerical  analysis  using  the  IEEE
24, 30, 118, and 300 bus systems (Fig. 7). Each power
grid  can  be  modeled  as  a  directed  graph  with 
nodes (substations) and  links (transmission lines).

In order to consider the impact of equipment outages
on  static  security  and  develop  expected  adjustment
plans  for  operational  modes,  power  flow  calculations
are  also  taken  into  account  in  the  power  grid.  When
considering  power  flow  calculations,  the  steps  for

cascading failures are as shown in Fig. 8.
The  power  flow[42, 43] equations  are  represented  as

follows:
 

Pi = Re
[
ViI∗i
]
= Re

Vi
N∑

j=1
Y∗i jV

∗
j

,
Qi = Im

[
ViI∗i
]
= Im

Vi
N∑

j=1
Y∗i jV

∗
j


(17)

Vi i I∗i
i Y∗i j

i j Re
Im

where  represents  the  voltage  of  node  and 
represents  the  current  of  node .  represents  the
admittance  of  the  link  from  node  to  node . 
represents  the  real  part,  and  represents  the
imaginary part.

Using the proposed cascading failure algorithm, one
can  assess  the  connectivity  and  stability  of  the  IEEE
power networks after node failures, which can support
the  identification  of  vulnerabilities  and  the
enhancement  of  network’s  robustness.  The  robustness
metrics  after  cascading  failures  are  depicted  in Fig.  9.
From Fig. 9, it is evident that the robustness metrics of
these  IEEE  power  grids  decrease  after  cascading
failures,  indicating  a  certain  impact  on  the  grid’s
robustness. However, when comparing across different
IEEE  power  networks,  it  can  be  observed  that  the
cascading  failures  have  the  smallest  impact  on  the
IEEE 300 bus system.

3.3    US power grid

Now we extend our simulations to an actual large-scale
system,  which  is  the  US  power  grid  (Fig.  10).  The
formula for  calculating the initial  load is  given by Eq.
(4),  which differs  from the approaches used in the toy
network  and  the  IEEE  power  networks.  Due  to  the
random  initialization  of  failed  nodes,  the  simulations
are  run  20  times  to  obtain  the  average  values  of
interest.

α

α

First, consider the effect of  tolerance values on the
US power grid  and the ER,  WS, and BA networks on
robustness. We find that, under random attacks, the ER
and  BA networks  are  more  robust  than  the  US  power
grid,  while  the  WS  network  is  worse  (Fig.  11).  The
difference between their dependence on  suggests that
the  US  power  grid  cannot  simply  be  modeled  as  a
synthetic  network  of  one  type  but  rather  a  mixture  of
network models with complex network properties such
as randomness, small-worldness, and scale-freeness.

α

β

β

Next,  fixing ,  we  investigate  how  different  values
of  affect the robustness (Fig. 12). We find that as the
value  of  increases,  the  invulnerability  index  of  the
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Fig. 7    IEEE 24, 30, 118, and 300 bus systems.
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Fig. 8    Steps for cascading failures.
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network  expands  as  the  value  increases,  which  shows
that  the  network  is  becoming  more  resilient  to
cascading failures. It explains that the higher the value
of β,  the  higher  the  maximal  capacity  of  the  nodes  in
the  network,  i.e.,  the  more  burden  they  can  bear.
Therefore,  the  network  becomes  more  resistant  to
cascading  failures.  However,  observe  that  if  the  value
of β is  too  large,  the  maximal  capacity  of  the  nodes
may become too high and thus become wasteful. As the
cost  of  the  network  increases,  it  becomes  challenging
to compare the disparities between different networks.

We  also  study  the  resilience  of  the  network  to
various  sorts  of  attacks  (random  attacks  and  targeted

α

β

attacks)  and  the  influence  of  the  initial  number  of
assaulted  nodes  on  cascade  failures.  for  the
simulation is set at 0.3, and  is 1.2. Results are given
in Fig.  13.  The  results  disclose  that  intentional  attack
patterns  have  a  considerable  impact  on  the
vulnerability  of  the  network,  whereas  random  attacks
are  comparatively  less  effective.  However,  as  the
number  of  initially  assaulted  nodes  increases,  the
network’s  resistance  against  random  attacks
diminishes.  This  is  attributed  to  the  increased
occurrence  of  network  failures  triggered  by  the
increased number of initially assaulted nodes. Different
networks exhibit varying performance against different
attack  strategies.  For  instance,  the  BA  network  is
highly vulnerable to targeted attacks, as disabling only
10 nodes can lead to network failure. However, the ER
network demonstrates relative robustness. However, as
the number of attacked nodes increases, most nodes in
the  network  still  experience  failures.  Furthermore,
intentional  attacks  consistently  demonstrate  a  more
significant  impact,  regardless  of  the  initial  number  of
nodes.  Following  cascading  failures,  the  network
experiences  substantial  disruptions  in  connectivity,
leading to a notable decline in overall robustness.

To  comprehend  the  dynamic  nature  of  cascading
failures  in  the  context  of  random and targeted attacks,
we analyze the  average number  of  unsuccessful  nodes
at  each  time  step  for  distinct  networks  (Fig.  14).  It  is
evident  that  cascading  failures  occur  quite  swiftly.
Under  targeted  attacks,  the  US  power  grid  exhibits  a
lower  number  of  initial  node  failures  compared  to  the
WS and BA networks. This discrepancy arises from the
lack of hubs in the US power grid, which are abundant
in  the  WS  and  BA  networks.  Additionally,  the  BA
network experiences a higher number of failed nodes in
the  first  step,  followed  by  a  lower  rate  of  failures  in
subsequent  steps.  Furthermore,  in  the  case  of  random
attacks, we observe that the WS network demonstrates
a considerable number of failed nodes during the initial
stages of cascading failures, with a progressive increase
in  the  number  of  failed  nodes  in  subsequent  phases.
Overall,  these  various  networks  showcase  distinct
characteristics  regarding  the  quantity  of  failed  nodes
and the velocity of cascading failures.

4    Discussion and Conclusion

We offer a way to compute the threshold based on the
load  capacity  of  each  node  and  use  this  approach  to
mimic  the  cascading  failure  process.  To  highlight  the
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Fig. 11    Network robustness under random attacks.
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contribution  of  this  article  to  the  cascading  failure  of
power  networks  and  showcase  the  advantages  and
characteristics  of  the  proposed  model,  a  comparison
will be made with the article published the state-of-the-
art  progress  made  by  Li  et  al.[8] in  2022.  The
comparison  analysis  will  cover  the  highlights  of  the
articles,  the  scope  of  theoretical  research,  the
discussion  of  the  load  capacity  model,  and  the
discussion  of  the  application  of  the  cascading  failure
model to the network. The specific comparison will be
presented in Table 4.

Through  a  comparative  research  on  numerous

networks,  we  show the  usefulness  of  our  technique  in
assessing  the  resilience  of  distinct  network
architectures.  The  suggested  load  capacity  based
technique  allows  us  to  explore  the  dynamic  and
evolutionary  patterns  of  cascading  failures  within
power  networks.  Based  on  the  examination  of  the
cascading  process  and  resilience  measures  of  diverse
networks, we make the following findings:

(1)
α

 The robustness of all networks is improved when
the  tolerance  parameter  is  increased,  except  for  the
WS network, which has the worst robustness.

(2) Targeted  attacks  based  on  load  can  significantly
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Fig. 13    Impact of different attacks and numbers of initial attacked nodes on network robustness.
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Fig. 14    Average number of cascading failure nodes per step under random attacks and targeted attacks.
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impact  the  robustness  of  the  network.  When  attacking
BA,  WS,  and  US  networks,  attacking  a  small  number
of  nodes  can  also  significantly  affect  network
robustness,  which  reminds  us  to  pay  attention  to  the
identification and protection of key nodes

(3) Adding early nodes decreases the strength of the
network  against  random  assaults.  Regardless  of  the
number  of  starting  nodes,  purposeful  assaults  may
severely  impair  the  connection  of  the  network  and
diminish its robustness.

(4) In  general,  the  US  network  has  fewer  failure
nodes compared to the small-world network. In the first
stage, there are fewer failure nodes overall, but it takes
longer  for  a  failure  to  complete  than  in  the  BA
network.

(5) β

β

 Adjusting  the  value  of  can  improve  the
invulnerability index of the network and make it  more
resistant to cascading failures, but care must be taken to
avoid making the value of  too large.

Our  findings,  such  as  the  relative  significance  of
downstream  nodes  in  directed  networks  and  the
relatively  robust  nature  of  weighted  power  networks,
can  be  used  to  support  the  mitigation  of  cascading
failures  and  ensure  secure  operations  in  power  grids.
Furthermore, the results of this study can be leveraged
to enhance the resilience and resistance of power grids
against disasters.

Future  studies  can  focus  on  the  extension  of

nonlinear  load  capacity  models  to  more  complex
network  structures  and  real-world  network  scenarios.
Furthermore,  a  better  understanding  of  the  variations
among  different  nonlinear  models  can  be  achieved
through  further  investigations,  providing  more  robust
evidence.
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