
 

Evolutionary Experience-Driven Particle Swarm
Optimization with Dynamic Searching
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Abstract: Particle  swarm  optimization  (PSO)  algorithms  have  been  successfully  used  for  various  complex

optimization  problems.  However,  balancing  the  diversity  and  convergence  is  still  a  problem  that  requires

continuous  research.  Therefore,  an  evolutionary  experience-driven  particle  swarm  optimization  with  dynamic

searching  (EEDSPSO)  is  proposed  in  this  paper.  For  purpose  of  extracting  the  effective  information  during

population  evolution,  an  adaptive  framework  of  evolutionary  experience  is  presented.  And  based  on  this

framework,  an  experience-based  neighborhood  topology  adjustment  (ENT)  is  used  to  control  the  size  of  the

neighborhood range, thereby effectively keeping the diversity of population. Meanwhile, experience-based elite

archive mechanism (EEA) adjusts the weights of elite particles in the late evolutionary stage, thus enhancing

the  convergence  of  the  algorithm.  In  addition,  a  Gaussian  crisscross  learning  strategy  (GCL)  adopts  cross-

learning  method  to  further  balance  the  diversity  and  convergence.  Finally,  extensive  experiments  use  the

CEC2013  and  CEC2017.  The  experiment  results  show  that  EEDSPSO  outperforms  current  excellent  PSO

variants.
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1    Introduction

Population  intelligence  algorithm[1] encompasses  a
class  of  heuristic  search  algorithms  characterized  by
their  capacity  to  optimize  complex  problems  without
an  excessive  reliance  on  algorithmic  organizational
information.  These  algorithms  exhibit  broad
applicability  in  the  realm  of  optimization  and
computation.  Among  many  population  intelligence
algorithms, particle swarm optimization[2, 3] has simple

form,  strong  robustness,  and  fast  convergence
compared with other population intelligence algorithms
(such as artificial bee colony algorithm[4, 5], differential
evolution  algorithm[6, 7],  etc.).  It  is  considered  as  an
excellent  candidate  algorithm  for  solving  many
practical  application  problems.  Therefore,  it  has  been
utilized  in  a  wide  variety  of  scientific  and  industrial
applications[8, 9].

Although  the  particle  swarm  optimization  (PSO)
algorithm  can  perform  excellently  in  solving  some
complex problems, it is also usually difficult to escape
from  the  local  optimum  trap,  which  causes  the
accuracy  of  the  solution  to  decrease.  Furthermore,
complex  optimization  problems  such  as  power
dispatching[10, 11] and  fault  diagnosis[12, 13] have  high
requirements  on  solution  effectiveness  of  algorithm.
For such problems,  although PSO algorithm possesses
a  high  speed  of  convergence,  it  is  very  challenging  to
locate a correct solution fast during a restricted time. In
fact,  the  essential  reason  for  this  problem  lies  in  the
difficult  balance  between  the  diversity  of  algorithms
and convergence.
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In  order  to  tackle  the  challenges  inherent  in  PSO
algorithms,  numerous  researchers  have  undertaken
efforts  to  enhance  the  performance  of  particle  swarm
optimization  primarily  by  focusing  on  three  key
aspects.

The  first  direction  is  the  parameter  setting
adjustment.  The  initial  PSO  algorithm  proposed  by
Eberhart  and  Kennedy[2] in  1995  did  not  have  inertia
weights. To enhance the performance of the algorithm,
Gao  et  al.[14] added  new  parameter  inertia  weights  to
the  initial  version  of  the  PSO  velocity  update
formulation  and  proposed  the  standard  particle  swarm
algorithm. Shi and Eberhart[15] verified the effect of the
variation  of  inertia  weights  on  the  performance  of  the
particle  swarm  algorithm  and  set  the  range  of  inertia
weights  within  the  interval  [0.4,  0.9]  to  enhance  the
performance  of  the  PSO  algorithm.  Li  and  Cheng[16]

presented  a  parameter  adjustment  method  based  on
particle  adaptation,  which  can  effectively  boost  the
convergence  speed  and  solution  quality  of  the
algorithm.  Karimi-Nasab  et  al.[17] improved  the  initial
version  of  the  PSO algorithm by  introducing  adaptive
parameters  to  improve the  efficiency and convergence
speed of the algorithm.

The  second  direction  is  the  neighborhood  topology.
The topology of a particle swarm establishes a measure
of  how  well  its  members  are  connected  to  other
members.  It  basically  describes  the  subset  of  particles
with  which  a  particle  can  exchange  information[18].
Kennedy  et  al.[19] were  the  first  to  put  the  global
topology,  which  is  the  definition  of  the  neighborhood
of  a  particle  in  the  PSO  algorithm  as  the  rest  of  the
particles  except  itself.  The  global  topology  is  not  the
definition  of  the  local  topology  as  the  two  particles
closest to itself[19]. With these two proposed topologies,
researchers have found that PSO algorithm with a good
topology outperforms the standard PSO algorithm. Shi
et  al.[20] proposed  a  hybrid  cellular  automata
mechanism,  which  used  three  different  lattice
structures  as  neighborhoods  to  allow  particles  to
interact  within  the  swarm.  Many  topologies  of  PSO
have  been  proposed  by  researchers,  and  some  of  the
superior  PSO  topologies  are  random  topology,  von
Neumann topology, star topology, and ring topology.

The  third  direction  is  the  combination  of  other
algorithmic  strategies.  This  direction mainly  combines
the  inherent  social  and  cooperative  features  of  the
algorithms  with  other  optimization  strategies.  This
optimization  strategies  originate  from  different
evolutionary  paradigms,  but  all  aim  at  achieving

intelligent  exploration  development.  This  helps  to
compensate  for  weaknesses  in  the  PSO  algorithm  and
can  be  used  to  guide  the  algorithm  in  purposeful
search.  Shi  et  al.[21] proposed  the  idea  of  exchanging
the  most  suitable  particles  between  genetic  algorithm
(GA) and PSO, running both algorithms in parallel at a
fixed  number  of  iterations.  In  the  work  of  the  hybrid
PSO-GA  based  evolutionary  algorithm,  a  two-stage
mechanism is used for the evolutionary strategy of the
particles,  where  the  PSO  algorithm  is  responsible  for
the evolutionary process, while diversity is maintained
by  using  a  GA.  The  authors  used  this  approach  to
optimize  three  unconstrained  and  three  constrained
problems with good results[22].

For the three aspects of PSO algorithm improvement,
parameter  settings  are  basic  and  very  important.  Only
suitable  parameter  values  can  correctly  guide  the
topology  of  the  population  and  achieve  better
performance.  Topology  is  the  core  framework  of  the
algorithm,  and  excellent  neighborhood  topology  can
design excellent algorithms. Algorithm hybridization is
a popular direction, learning the excellent strategies of
other  algorithms  and  further  enhancing  the
performance of algorithms on the basis of the original.
With  the  above  introduction,  the  use  of  parameter
setting,  neighborhood  topology,  and  algorithm
hybridization  can  increase  the  diversity  and
convergence  of  PSO  algorithms.  However,  facing
increasingly  complex  problems,  it  is  extremely
necessary  to  further  improve  the  performance  of  the
algorithm.  In  this  paper,  an  evolutionary  experience-
driven  particle  swarm  optimization  with  dynamic
searching  (EEDSPSO)  is  introduced.  EEDSPSO  uses
an  evolutionary  experience-driven  framework  to
adaptively  update  the  neighborhood  structure  of
particles  as  well  as  the  archive  content.  Thus,  more
suitable  particles  are  selected  to  guide  the  population
update.  In  addition,  a  Gaussian  crisscross  learning
strategy  is  employed  to  adjust,  and  the  weight  of
different  search  methods  is  adjusted  throughout
evolutionary  progress  to  balance  the  algorithm’s
performance requirements at different stages. The main
research can be concluded in the following.

(1)  Evolutionary  experience  is  introduced  as  a  new
driving framework to efficiently utilize the population’s
empirical information in the evolutionary process.

(2) Rationalize the use of evolutionary experience to
update  the  neighborhood  structure  of  particles  as  well
as the adjustment of the archive content, so as to guide
the population to search for more suitable localizations.
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(3)  A  Gaussian  crisscross  learning  strategy  is
proposed  to  keep  a  better  balance  of  diversity  and
convergence.

The  remainder  of  this  paper  is  presented  in  the
following.  Section  2  describes  related  work  for
proposed algorithm. Section 3 elaborates  the proposed
algorithm through framework and strategies. Section 4
demonstrates  EEDSPSO’s  effectiveness  and  high
performance through experiments.  And finally Section
5 concludes the work and looks to the future.

2    Related Work

2.1    Traditional PSO
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In the traditional PSO algorithm, each particle denotes
the  corresponding  problem’s  solution.  During  the
algorithm’s  search  process,  the  particle  adjusts  its
motion  direction  and  step  size  through  the  velocity
term, so as to achieve the purpose of searching for the
optimal  solution.  In  each  iteration,  the  position  vector
of  the  particle  is ,  and  the
corresponding  velocity  vector  is .
In  addition,  are  particle ’s
historical  optimal  value.  are
population’s  historical  optimal  value,  where 
represents  the  problem’s  dimension.  The  traditional
PSO is given as follows:
 

vi(t) =ω · vi(t−1)+ c1 · r1 · (Pbi− xi(t−1))+
c2 · r2 · (G− xi(t−1)) (1)

 

xi(t) = xi(t−1)+ vi(t−1) (2)

ω

r1 r2

c1 c2

where  is  used  to  change  the  previous  generation
velocity’s  weight,  called  the  inertia  weight. t is  the
current number of iterations.  and  are the random
numbers generated in the interval [0, 1].  and  are
acceleration  coefficients  adjusting  for  individual
cognitive and social cognitive weights, respectively.

2.2    Neighborhood topology

In  the  iterative  process  of  populations,  the
neighborhood  topology  plays  an  extremely  important
tool  to  facilitate  the  exchange  of  information  between
populations. Only a proper neighborhood topology can
guide particles to perform a correct search in the space.
Recently,  numerous  scholars  have  studied  this  issue.
Qu  et  al.[23] introduced  a  distance-based  dynamic
neighborhood  topology.  The  algorithm’s  fine  search
capability  is  enhanced  by  dynamically  changing  the
neighborhood size using distance as  an indicator.  This

neighborhood topology can be calculated as follows:
 

Vd
i (t) = ω ·

(
Vd

i (t−1)+φ
(
Pd

i −Xd
i (t−1)

))
(3)

 

Pi =

∑nsize
j=1 (φ j ·nbest j)/nsize

φ
(4)

φ j φwhere  and  are distributed random numbers. nbestj
is  the j-th  nearest  neighborhood  to  the i-th  particle’s
pbest.  nsize is  the neighborhood size.  This  is  a  classic
neighborhood  topology.  This  neighborhood  topology
makes  full  use  of  neighborhood  information  and
increases  the  algorithm’s  ability  for  local  search  and
fine-tuning.  Since  then,  more  researchers  have
proposed  more  excellent  neighborhood  topologies.
Wang  et  al.[24] presented  a  dynamic  tournament
topology  method  and  achieved  good  performance  in
artificial neural networks’ optimization. The fuzzy rule
based  neighborhood  method  proposed  by  He  et  al.[25]

used fuzzy rules and individual distribution to generate
subpopulations  and  achieved  good  results  in  solving
nonlinear  systems  of  equations.  Li  et  al.[26] used  a
complex network topology based on fitness distance to
effectively  balance  algorithm’s  diversity  and
convergence.  Zhang  et  al.[27] used  the  Voronoi-based
neighborhood  concept  and  eliminated  the  need  for
additional  parameters  for  the  algorithm  by  increasing
the computational complexity. Li et al.[28] introduced a
differential  evolution  algorithm  based  on  the
neighborhood strategy, used the fitness distance to base
the  problem  difficulty,  and  achieved  excellent  results
on  a  single-objective  problem.  Because  the
neighborhood  topology  method  has  a  decisive
influence  on  the  search  direction  and  search  effort  of
the  particles,  the  continued  exploration  of  the
neighborhood topology method is extremely necessary.

2.3    Archive mechanism

The  archival  mechanism  has  garnered  considerable
scrutiny  as  an  ancillary  strategy  for  enhancing
optimization  algorithms.  Lin  et  al.[29] undertook  a
comprehensive  examination  by  integrating
collaborative  archives  with  learning  probabilities.  The
integration  of  collaborative  archives  furnishes
populations with more auspicious information, thereby
facilitating  their  application  in  the  realm  of  optimal
radar system design[29]. This archive mechanism can be
calculated as follows:
 

archd
β = rd · archd

β +
(
1− rd

)
·pbestdi (5)

rd βwhere  is  a  random  number.  is  the  index  of  the
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archd
β d-th

β

worst  archive  particle  to  be  updated.  is  the 
dimension  of  the -th  archive  particle.  This  archive
mechanism  is  an  excellent  method.  This  method  uses
archives  to  gather  useful  information  that  leads
populations  to  evolve  better.  There  are  more  excellent
algorithms  that  use  the  archive  mechanisms.  A  three-
archive  strategy  (stored  elites,  profiteers,  and
outstanding  exemplars)  was  proposed  by  Xia  et  al.[30]

with  excellent  performance  in  different  optimization
functions.  Wei  et  al.[31] archived  elite  particles  for
generating  new  solutions  different  from  the  current
population  and  guiding  the  population  to  explore  in
more promising directions. Pan et al.[32] stored particles
satisfying the accuracy requirements in the archive and
randomly  initialized  the  surrounding  particles.  The
effect  is  to  prevent  the  population  from being  trapped
in  local  optima  and  increase  the  population’s
diversity[32]. Tao et al.[33] used an archival strategy with
an  exploratory  function  and  an  integrated  learning
approach  to  generate  samples  and  prevent  the
population  from  converging  prematurely.  External
archiving is  worth further investigation as an effective
method  to  increase  the  algorithm’s  diversity  and
convergence.

3    Proposed EEDSPSO

3.1    Motivation

PSO has  been well  developed recently  as  an  excellent
method  for  solving  complex  problem  models.
Especially,  the  improvement  based  on  the
neighborhood  topology  has  received  wide  attention.
For  traditional  neighborhood  topology,  fixed  or
dynamic topologies  based on distance and the  number
of  stops  are  often  used.  These  structural  approaches
tend  to  ignore  the  favorable  information  during  the
evolution  of  particles.  Populations  have  different  need
for diversity and convergence in different evolutionary
periods.  Neighborhood  structures  with  larger  ranges
tend to accelerate the convergence of populations,  and
those with smaller ranges tend to increase the diversity
of  populations.  So,  it  is  extremely  necessary  for  the
adjustment  of  the  neighborhood  structure.  Intuitively,
particles  with  the  above-mentioned  neighborhood
topology cannot select the right particles for learning in
the evolutionary process. Thus, it is hard to balance the
population’s  diversity  and  convergence,  leading  to  the
population trapped in local optimum.

In  response  to  the  above  analysis,  breaking  the
traditional  method  of  dynamically  adjusting  the

topology based on distance or the number of stagnation
generations,  a  new  evolutionary  experience  based
driving framework is used. The neighborhood structure
of the population and the particles in the elite archive is
dynamically  updated.  It  is  combined  with  a  Gaussian
crisscross  learning  strategy,  thus  meeting  the  needs  of
the population at different evolutionary stages.

3.2    Framework of EEDSPSO

In  this  section,  two  strategies  driven  by  evolutionary
experience  and a  Gaussian  crisscross  learning strategy
are  combined.  Neighborhood  techniques  and  archival
strategies  utilize  evolutionary  experience  to  construct
the  main  framework  of  the  algorithm.  Then,  the
particles adaptively form their own neighborhoods, and
the  experience-based  elite  archive  mechanism  is  used
to  guide  the  population  update.  Finally,  a  Gaussian
crisscross  learning  strategy  further  balances  the
diversity  and  convergence  of  the  algorithm.  A
transformation  strategy  is  used  to  transform  between
the evolutionary experience-driven adaptive framework
and the Gaussian crisscross learning strategy.

The  main  framework  of  EEDSPSO  is  shown  in
Algorithm 1. From Lines 1−4, the algorithm focuses on
the  setting  of  relevant  parameters,  such  as  population
size, neighborhood size, and archive content.

time

time

From  Lines  5−11,  the  particles  are  dynamically
updated  using  the  transformation  parameter  to
select  different  population  evolution  methods.  The
transformation  parameter  can  be  described  as
follows:
 

time = cos(1/2 · fes/FES+π/5) (6)

fes
FES

time

where  is  current  number  of  function  evaluations.
 is  the  maximum  number  of  function  evaluations.

The size of the transformation parameter  changes
with  the  evaluation  of  the  population.  From  Lines
12−18,  the  neighborhood  size  and  archive  content  are
dynamically  updated  by  evolutionary  experience.  And
the algorithm updates the position and fitness value of
the particles. The algorithm ends with the output of the
global optimal value.

3.3    Evolutionary  experience-driven  adaptive
search structure

It is known from Section 3.1 that for many changes in
the  neighborhood  structure,  dynamic  improvements
based  on  distance  and  the  number  of  stops  are  often
used.  Specifically,  the  corresponding  particles  are
selected  for  learning  in  a  population  of  particles  that
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are  close  to  each  other  relative  to  themselves.  Or  the
topology  of  the  population  is  dynamically  updated
when  the  population  reaches  a  certain  number  of
stagnation  generations.  And  above  dynamic  changes
usually  ignore  the  degree  of  progress  in  each
evolutionary  process,  namely,  the  evolutionary
experience of the population.

t
t+1

t+1
X1

X4

X4

An  example  of  an  evolutionary  experience-driven
structure is shown in Fig. 1 for a better understanding.
As shown in Fig.  1,  there are a total  of  4 particles X1,
X2, X3,  and X4.  The  fitness  values  of  each  particle  are
{5, 9, 10, and 15} after the  iteration, which becomes
{4, 6, 8, and 11} after  iteration. In this paper, the
algorithm  considers  the  minimum  value  optimization
problem.  The  difference  in  fitness  at  each  iteration  is
the  degree  of  evolution  of  the  particle.  The  degree  of
evolution  of  the  four  particles  in Fig.  1 after  the 
iteration is {1, 3, 2, 4}. Although ’s fitness value is
better, ’s evolutionary degree of the particle with the
worst  fitness  value  is  better.  It  means  has  a  better
evolutionary experience.

3.3.1    Experience-based  neighborhood  topology
adjustment

An important concept, namely evolutionary experience,
is  introduced in  the  above paper.  The improvement  of
algorithms  using  evolutionary  experience  is  a  novel
attempt.  In  this  section,  experience-based
neighborhood  topology  adjustment  and  Cauchy
mutation are introduced in detail.

The  neighborhood  topology’s  importance  is
specifically  shown  by  the  number  of  neighborhood
particles  that  has  a  serious  impact  on  the  algorithm’s
diversity and convergence. Figure 2 shows the different
states  of  the  population  after  iteration  with  different
numbers  of  neighborhood  particles.  Red  particles
represent  the  historical  optimal  positions  with  better
fitness  values  in  that  neighborhood  range,  and  the
yellow  particles  represent  the  particles  to  be  evolved,
where the yellow particles learn from the red particles.
From Fig. 2a, it can be observed that when the number
of  particles  in  the  neighborhood  is  small,  a  relatively
large number of red examples will  be generated. Then
the population will converge to different regions in the
search  space,  so  that  the  diversity  of  the  population  is
better maintained. On the contrary, it can be seen from
Fig.  2b  that  the  population  possesses  better
convergence when the number of neighboring particles
is  higher.  And  the  requirements  of  diversity  and
convergence  of  populations  are  different  at  different
times  of  evolution.  So,  it  is  extremely  important  to

 

Algorithm 1　Proposed EEDSPSO
Ns FES

[xd
min, x

d
max]

[vd
min,v

d
max] Nh

Ea PB

Input: Control parameters:  (swarm size),  (maximum
number of function evaluations), (position
　 boundary), (velocity boundary), (the
　 neighborhood size), (the elite archive), and (personal
　 historical best position)
Output: Optimal value
1: Initialize the swarm;

fes = 1,2,3, ...,FES2: for  do
PBn → Nh3:　　   the best particle in ;
PBarch → Ne4:　　   the random particle in ;

i = 1; i < Ns; i++5:　　for  do
rand(1) < time6: 　　　if  (calculate by Eq. (6)) then

7: 　　　　Update the particles velocity using Eq. (8);
8: 　　　else
9: 　　　　Update the particles velocity using Eqs. (11) and
　(12);
10: 　　　end if
11:　　end for

PB12:　　Update  and evolutionary experience;

Nh
13:　　Select progressive particles to update the neighborhood
　 ;

PB14:　　Sort  according to the evolutionary experience;
Ea15:　　Update the elite archive ;

16:　　Calculate the particles’ position using Eq. (2);
17: end for
18: return global optimal value;
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Fig. 1    Evolutionary experience-driven schematic.
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Fig. 2    Small and large number of neighborhoods.
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control  the  range  size  of  the  neighborhood  reasonably
well.

H

H

Nh

H
PBn

Based  on  the  above  analysis,  an  evolutionary
experience-driven framework is used to control the size
of  the  neighborhood  range.  Firstly,  the  difference  is
made between the before and after fitness values of the
particles  after  each  iteration.  Then  the  values  of  the
neighborhood range before each iteration are taken for
each  particle  whose  difference  value  is  greater  than  0
(i.e.,  the  particle  whose  fitness  value  becomes  better).
The  squared  average  of  these  values  ( )  is  the  base
value of the neighborhood size for the next population
iteration  based  on  evolutionary  experience.  The
squared  average  is  used  instead  of  the  arithmetic
average mainly to prevent the effect of extreme values.
Finally, in order to allow for a more varied selection of
particles,  the  base  value  for  each  particle  is  treated
using  a  Cauchy  distribution  that  takes  a  wide
distribution  of  values.  In  each  loop  iteration,  the
neighborhood  size  of  each  individual  is  generated
independently  according  to  the  Cauchy  distribution
with position parameter  and scale parameter 1. And
the  particle  with  the  best  fitness  value  in  the
neighborhood range is selected according to the current
neighborhood size. The neighborhood size is defined as
follows:
 

Nh = Cauchy(H,1) (7)

H

H

where  is  the  squared  average  of  the  neighborhood
sizes  of  particles  whose  fitness  values  have  become
better in the previous generation. The initial value of 
is 5, and then it is updated at the end of each iteration.
3.3.2    Experience-based elite archive mechanism
The  necessity  of  using  evolutionary  experience  to
dynamically  update  the  neighborhood  range  is
described above. For this part it is called the individual
cognitive part. The other part, the social cognitive part,
is  also  extremely  important.  It  often  plays  the  role  of
leading  the  population  to  convergence.  For  the
traditional social  cognitive part,  the global optimum is
used  to  guide  learning.  This  tends  to  make  the
population  converge  faster  and  fall  into  local  optima.
From the above introduction to the archive mechanism,
it  can  be  seen  that  an  appropriate  archive  mechanism
can  collect  and  store  some  excellent  information  in
the  population  and  then  guide  the  population  to
evolve  in  a  better  direction.  Therefore,  an  experience-
based elite archive mechanism is used. The experience-
based  evolutionary  framework  can  be  described  as
follows:

 

vi (t) =c1 · rand(1,D) · (PBn− xi (t−1))+
c2 · rand(1,D) · (PBarch− xi (t−1))

(8)

 

c1 = 2 · (1− fes/FES) (9)
 

c2 = 2−0.5 · c1 (10)

PBn

PBarch

PBarch

where  is  the  historical  optimum  with  the  best
fitness value selected from the neighborhood based on
the  experience-based  neighborhood  topology
adjustment.  is  the  guide  particle  selected  based
on  the  experience-based  elite  archive  mechanism.
Firstly, the size of the elite archive is determined, here
it  is  set  to  15.  Next,  the  particles  with  better  fitness
values  in  the  previous  generation  are  sorted  according
to  the  evolutionary  degree.  The  top  15  particles  are
selected and stored in the Ne archive, and a particle is
randomly selected from the archive as a guide particle
( ).  If  no  15  particles  became  better  in  the
previous  generation  update,  then  the  top  10  historical
best  values  with  better  fitness  values  are  selected  and
deposited in the archive.

c1

c2

c1

c2

c1 c2

From Eqs.  (8)−(10),  EEDSPSO combines  these  two
learning methods through a dynamic approach.  and

 change dynamically with the number of evaluations.
In  the  early  evolutionary  stage  of  the  algorithm,  is
larger  and  is  smaller.  Neighborhood  learning
dominates,  which  facilitates  exploration  in  the  early
stages of the algorithm,  is smaller and  is larger in
the  late  evolutionary  stages.  The  larger  proportion  of
experience-based  elite  archive  mechanism  makes  the
algorithm  have  stronger  local  search  capability.  Thus,
EEDSPSO  effectively  integrates  the  neighborhood
learning  strategy  and  the  elite  archive  mechanism.  It
can  balance  algorithm’s  diversity  and  convergence
well.

3.4    Gaussian crisscross learning strategy

An exemplary algorithm is one that adeptly maintains a
harmonious  equilibrium  between  convergence  and
diversity.  Although  assimilating  knowledge  from
proficient  particles  expedites  the  algorithm’s
convergence, it often proves arduous to strike a balance
with respect to its diversity. Equation (8) discriminates
particles  possessing  commendable  fitness  values  by
virtue  of  an  evolutionary  experience-driven  adaptive
framework,  thereby  exerting  an  influence  on  the
algorithm’s  diversity.  To  overcome  this  drawback,  a
Gaussian crisscross learning strategy is introduced into
the  algorithm.  The  Gaussian  crisscross  learning
strategy is defined as follows:
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vi (t) = ω · (vi (t−1)+N (0,1))+
2 · rand(1,D) ·

(
PBrp− xi (t−1)

) (11)

 

vi (t) = ω · vi (t−1)+
2 · rand(1,D) · (PBre− xi (t−1)) (12)

 

ω = 1− fes/FES (13)

ω

ω

PBrp

PBre

ω

where  is  the  inertia  weight  component,  decreasing
gradually from 1 to 0. First a random number rand (1)
is generated. If it is smaller than , then the population
is  updated  using  Eq.  (11).  That  is,  the  iterative
operation  is  performed  with  high  probability  using
Eq.  (11)  in  the  early  stage  of  population  iteration.
Equation  (11)  uses  a  learning  mechanism  with
Gaussian mutation. This is because it is more biased to
enhance  the  diversity  of  the  algorithm  in  the  early
stages of the population. Adding Gaussian terms to the
original  velocity  is  conducive  to  enhancing  the
discreteness  in  population  iterations  and  thus  more
conducive to  maintaining population diversity.  is
a  randomly  selected  particle  in  the  population  that  is
worse  than  its  own  historical  optimal  value.  is  a
randomly  selected  particle  from  a  population  that  is
better  than  its  own  historical  optimum.  And  the
iterative  operation  is  performed  using  Eq.  (12)  only
when  the  randomly  generated  number  rand  (1)  is
greater  than .  So,  this  iterative  operation  is  more
biased  towards  the  late  iteration  of  the  population,
which means that it is more biased towards maintaining
the convergence performance of the population. At this
point,  learning  from  better  particles  can  further
improve  the  convergence  of  the  population  in  the  late
iterative stage.

3.5    Computational complexity analysis

D

nlog2n

In  this  paper,  the  proposed  algorithm  contains  three
main  components,  experience-based  neighborhood
topology  adjustment,  experience-based  elite  archive
mechanism,  and  Gaussian  crisscross  learning  strategy.
To  analyze  the  computational  complexity  of  each
component, for a problem of dimension , experience-
based  neighborhood  topology  adjustment  and
experience-based  elite  archive  mechanism  use  an
adaptive  framework  of  evolutionary  experience.
Evolutionary  experience  adaptive  framework  requires
sorting  according  to  their  fitness  values.  The
computational  complexity  of  the  sort  operation  is
O( ).  In  addition,  Gaussian  crisscross  learning
strategy  is  a  new  learning  strategy  to  further  balance
the  diversity  and  convergence.  Obviously,  the

nlog2n

computational  complexity  of  this  strategy  is O(1)  in
every  generation.  Therefore,  based  on  the
computational  complexity  analysis  of  the  above  main
parts,  in  every  generation,  the  computational
complexity of the proposed algorithm is O( ).

4    Experiment

4.1    Experimental settings

This section analyzes the performance of the algorithm
through a series of experiments. Experiment 1 analyzes
the  effectiveness  of  the  algorithm  with  different
strategies  to  verify  the  rationality  of  the  proposed
strategies.  Experiment  2  analyzes  the  effectiveness  of
the  algorithm’s  parameters  to  select  more  suitable
parameter  values.  Experiment  3  compares  different
algorithms  on  the  CEC2013  test  set  to  verify  the
excellent  performance  of  the  proposed  algorithm.  In
Experiment  4,  in  order  to  verify  the  superiority  of  the
proposed  algorithm  in  different  test  problems,
CEC2017 test  set  is  used to carry out  the comparative
experiment  of  the  proposed  algorithm.  Experiment  5
uses  non-parametric  tests  to  compare  the  significant
differences  between  the  proposed  algorithm  and  other
algorithms in CEC test sets.

In  this  experiment,  seven  popular  PSO  variants  are
selected  as  comparison  algorithms.  They  are  used  to
verify  the  comprehensive  performance  of  EEDSPSO.
The parameter settings of each algorithm are shown in
Table  1.  And the  comparison  experiments  are  done  in
two  widely  used  test  sets,  CEC2013  test  set  and
CEC2017  test  set.  Among  them,  two  sets  of
experiments  with  dimension D as  50  are  done.  To
further  verify  the  effectiveness  of  the  algorithm  in
higher  dimensions,  experiments  with  dimension  100
are  also  done  using  the  CEC2017.  In  order  to
comprehensively  assess  the  performance  of  the
proposed  algorithm,  a  series  of  experiments  is
conducted  utilizing  the  CEC2013  and  CEC2017  test
sets  across  varying  dimensions.  These  test  sets  are
renowned benchmarks specifically designed to evaluate
the  efficacy  of  optimization  algorithms.  By  subjecting
the  algorithm  to  diverse  problem  domains  and
dimensionalities, a rigorous evaluation is undertaken to
gauge  its  adaptability  and  robustness.  This  empirical
approach  allows  for  a  comprehensive  examination  of
the  algorithm’s  capabilities  and  effectiveness,  thereby
providing  a  comprehensive  understanding  of  its
performance  across  different  problem  landscapes.  To
ensure  the  fairness  and  accuracy  of  the  experiments,
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each  algorithm is  run  51  times  independently  on  each
test set. The maximum evaluation test of the algorithm
is set to 10 000×D.

4.2    Strategy validity analysis

From the introduction of the algorithms in Section 3, it
is  clear  that  the  good  performance  of  EEDSPSO  is
mainly  due  to  the  three  newly  introduced  strategies,
namely,  the  experience-based  neighborhood  topology
adjustment,  the  experience-based  elite  archive
mechanism,  and  the  Gaussian  crisscross  learning
strategy.  Therefore,  in  this  section,  some  experiments
are  used  to  examine  the  performance  effects  of
different  strategies  on  populations.  To  examine  the
performance  of  these  strategies  in  an  integrated
manner,  this  experiment  selects  four  different  test
functions in CEC2017, namely, unimodal function f(1),
simple multimodal function f(8), hybrid function f(13),
and composition function f(29).  The results  are shown

in Figs.  3 and 4,  where  GCL,  EEA,  and  ENT  are  the
removal  of  the  Gaussian  crisscross  learning  strategy,
the  removal  of  the  experience-based  elite  archive
mechanism,  and  the  algorithms  for  removing  the
experience-based neighborhood topology adjustment.

In  return  for  analyzing  the  performance  of  the  three
new  strategies,  two  metrics,  namely  the  fitness  value
and diversity, are used for testing[41].

The results presented in Fig. 3 indicate that ENT and
EEA  possess  poor  convergence  accuracy  relative  to
EEDSPSO  and  GCL.  These  results  indicate  that
experience-based  neighborhood  topology  adjustment
and  experience-based  elite  archive  mechanism  have
significant performance improvement on the algorithm
performance.  EEDSPSO slightly  outperforms  GCL on
the unimodal function. The performance is closer to the
other  three  functions,  but  EEDSPSO  still  has  the  best
performance.  Thus,  the  Gaussian  crisscross  learning
strategy  further  enhances  the  algorithm’s  performance

 

Table 1    Parameter settings for all algorithms.

Algorithm Parameter setting
EEDSPSO ω c1 · ω c2=[1, 0], =2  , and =[1, 2]
BFLPSO[34] ω c I E G=[0.2, 0.9], =1.494 45, = =1, and =5

HCLDMSPSO[35] ω ω2 c1 c2 Pm Vmax · Range=[0.29, 0.99], , = =[0.5, 0.25], =0.1, and =0.5  
DSPSO[36] c1 Fmin=2.0 and =0.7
MPSO[37] logistic chaotic ω c1 c2  =[0.4, 0.9] and = =2.0
BLPSO[38] ω c G=[0.2, 0.9], =1.494 45, and =5
GLPSO[39] ω c pm sg=0.7298, =1.496 18, =0.01, and =7

HCLPSO[40] ω c1 c2 c=[0.2, 0.99], =[0.5, 2.5], =[0.5, 2.5], and =[1.5, 3]
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Fig. 3    Optimization values of EEDSPSO, GCL, EEA, and ENT.
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in  an  evolutionary  experience-driven  adaptive
framework,  in  particular,  the  improvement  of  the
algorithm’s  convergence  accuracy.  In  addition,  the
convergence  rate  of  EEDSPSO  is  relatively  smooth
compared to the other three algorithms. And EEDSPSO
always  stalls  last  in  the  late  stage  of  the  algorithm.  A
conclusion  can  be  drawn  that  EEDSPSO  plays  an
excellent  role  in  balancing  the  algorithm’s  diversity
and convergence.

In  order  to  make  the  data  more  intuitive,  the
smoothdata  function  is  used  to  smooth  the  data.  The
results  in Fig.  4 are  generally  more  similar  to  the
performance of the results in Fig. 3, where EEA shows
more confusion in diversity. For example, in the hybrid
function,  EEA  has  a  low  diversity  in  the  early  stage,
but the diversity becomes abnormally large in the later
stage  around  3000  generations.  This  is  clearly
detrimental  to  the  eventual  convergence  of  the
population,  so  it  is  clearly  easy  to  see  in Fig.  3 that
EEA  eventually  possesses  the  worst  convergence
accuracy.  This  also  directly  indicates  that  the
experience-based  elite  archive  mechanism  has  a
positive  effect  on  the  convergence  of  the  population.
Similarly,  ENT’s  diversity  is  also  more  chaotic  and
performs the worst in terms of diversity accuracy. This
also  indicates  that  experience-based  neighborhood
topology  adjustment  provides  better  diversity  for  the
population.  GCL  and  EEDSPSO  are  similar  to  the
experiments  above,  indicating  that  the  Gaussian
crisscross  learning  strategy  further  improves  the

performance  of  the  algorithm.  EEDSPSO  is  still  the
smoothest and best performing algorithm.

The findings pertaining to diversity and convergence
substantiate  the  commendable  efficacy  of  EEDSPSO.
In  essence,  the  pioneering  topological  approach
effectively  upholds  population  diversity,  thereby
ensuring its robustness. Furthermore, the incorporation
of  the  experience-based  elite  archive  mechanism
enhances  population  convergence,  fostering  increased
efficiency. Moreover, the employment of the Gaussian
crisscross  learning  strategy  serves  to  bolster  the
algorithm’s  overall  performance.  The  results  of
diversity  and  convergence  verify  that  EEDSPSO  has
very  good  performance.  Overall,  the  novel  topology
strategy maintains the diversity  of  the population.  The
experience-based  elite  archive  mechanism  improves
the  convergence  of  the  population.  The  Gaussian
crisscross learning strategy further improves the overall
performance of the algorithm.

4.3    Parameter validity analysis

time Ea

In  the  EEDSPSO  algorithm,  an  adaptive  framework
based  on  evolutionary  experience-driven  and  a
Gaussian crisscross learning strategy are applied to co-
evolve  the  population,  which  well  balances  the
diversity  and  convergence  of  the  population.  In  this
section, two parameters, namely the adaptive parameter

 and the archive size , are selected to verify the
impact  of  different  parameters  on  the  performance  of
the  algorithm.  Comparison  experiments  are  performed
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Fig. 4    Distance between the particles of EEDSPSO, GCL, EEA, and ENT.
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using  different  test  functions  in  CEC2017,  i.e.,
unimodal  function f(1),  simple  multimodal  function
f(9),  hybrid  function f(17),  and  composition  function
f(21). The algorithms have the same settings except for
the different settings of the comparison parameters.

Ea
One of the important parameters is the archive size of

the  elite  archive.  The  effect  of  the  archive  size  on
this strategy is extremely significant. When the archive
size  is  set  larger,  the  selection  range  of  elite  particles
becomes  larger,  and  then  it  is  easier  to  select  poorer
particles.  Thus,  the  convergence  of  the  algorithm
becomes worse. On the contrary, when the archive size
becomes  smaller,  then  the  algorithm  converges  faster,
and  thus  it  is  very  easy  to  fall  into  local  optima.
Therefore, this section sets multiple archive size values
for  comparison  experiments.  The  experimental  results
are shown in Figs. 5 and 6.

Ea

Ea

From Fig. 5, it can be seen that four archive sizes of
5,  15,  25,  and  35  based  on  CEC2017  are  selected  for
comparison  experiments.  For  the  unimodal  function
f(1),  the  performance  of  the  algorithm  using  the  four
parameters  is  basically  the  same.  Among  them,  the
algorithm performs slightly better when Ea is taken as
15  compared  to  using  other  other  parameters.  In  the
simple  multimodal  function f(9),  the  algorithm
performs  the  worst  when  is  taken  as  5.  This
indicates  that  when  the  archive  size  is  small,  the
algorithm  is  more  likely  to  learn  from  elite  particles.
Thus, it converges faster and falls into a local optimum.
When  is taken as 15, the algorithm performs better

Ea

Ea

in  terms  of  convergence  speed  and  convergence
accuracy.  For  the  hybrid  function f(17)  and  the
composition function f(21), the algorithm performs the
best when Ea is taken as 15, and the worst when Ea is
taken as 5. It indicates that as the archive size becomes
larger,  the  performance  of  the  algorithm  is  limited  as
well.  The  main  reason  is  that  as  the  archive  size
becomes  larger,  the  algorithm  is  unable  to  select  the
appropriate elite particles for learning, which leads to a
decrease in the performance of the algorithm. When 
is  taken  as  5,  the  algorithm  still  has  the  problem  of
faster  convergence  and  lower  accuracy.  A  smaller
archive capacity is not conducive to the performance of
this  algorithm.  On  the  contrary,  when  is  15,  the
algorithm has excellent convergence speed and the best
convergence  accuracy  under  different  types  of
functions. Therefore, the archive size is finally set to 15
for the elite archive.

The time is  an  adaptive  parameter,  which is  used to
reasonably  control  the  weight  of  the  evolutionary
experience  adaptive  framework  and  the  Gaussian
crisscross learning strategy in the population iterations.
The parameter time is controlled using Eq. (6), and the
value  of  time  is  large  in  the  early  stage  and  becomes
less volatile with population iteration. This means that,
in  the  early  stage  of  the  population,  the  algorithm
mainly  uses  an  adaptive  framework  driven  by
evolutionary  experience.  Later  in  the  population,  the
weight  of  the  Gaussian  crisscross  learning  strategy
slowly  becomes  larger.  For  the  effectiveness  of  this
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Fig. 5    Optimization values under different archive sizes.
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control approach, this section is experimentally verified
by three fixed parameters, and the experimental results
are shown in Fig. 6.

T

time

T T

time

time

time

From Fig.  6,  three  fixed  parameters  are  set  for
comparison  experiments,  0.3,  0.5,  and  0.7.  Firstly,  for
the  unimodal  function f(1),  the  algorithm  is  the  least
effective  when  the  transition  probability  is  taken  as
0.3.  This  indicates  that  the  adaptive  framework  based
on  evolutionary  experience  has  less  weight  when  the
transition  probability  is  small.  The  convergence  and
diversity  of  the  algorithm  also  become  worse.  In
contrast,  the  algorithm  works  the  best  when  the
adaptive  parameter  is  used.  Secondly,  for  the
simple  multimodal  function f(9),  the  algorithm  works
worst  when  takes  0.7.  This  is  because  when 
becomes  larger,  the  weight  of  the  Gaussian  crisscross
learning  strategy  decreases  and  thus  falls  into  the
local  optimal  value  prematurely.  Thus,  the  diversity
and convergence of  the  algorithm cannot  be  improved
in .  Finally,  for  the  hybrid  function f(17)  and  the
composition  function f(21),  the  overall  difference  is
not  particularly  large.  But  the  algorithm  works  the
best  when  the  transformation  probability  uses  the
adaptive  parameter .  Especially,  the  improvement
for  algorithm  diversity  and  convergence  is  far  better
than  other  parameters.  Therefore,  this  paper  uses
the  adaptive  parameter  to  dynamically  update
the  weight  of  the  adaptive  framework  and  the
Gaussian crisscross learning strategy in the population
iteration.

4.4    Comparison of PSO algorithm variants

4.4.1    Data analysis on CEC2013

Mean

Rank
Count

Average rank Total rank

In  purpose  of  verifying  the  excellent  overall
performance  of  EEDSPSO,  this  section  conducts
comparison  experiments  in  the  CEC2013  test  set  and
with  dimension  50.  The  mean  ( )  of  each
independent  run  of  51  times  is  used  to  represent  the
mean results. For each test function, the results of each
algorithm  are  ranked  and  presented  in .  The
bolded data are the best ones.  represents the total
number  of  the  best  performing  test  functions  for  each
algorithm.  is  the  average rank. 
stands  for  the  final  rank  of  each  algorithm.  The  final
results are shown in Table 2.

From the results  presented in Table 2,  the following
results  can  be  derived.  Firstly,  for  the  unimodal
functions  (f(1)−f(5)),  EEDSPSO  achieves  the  best
performance,  followed  by  DSPSO  and  BLPSO.
EEDSPSO  achieves  a  more  stable  and  excellent
performance  for  the  functions f(2)  and f(5).  For  the
basic multimodal functions (f(6)− f(20)), the EEDSPSO
achieves  the  best  performance  on  only  three  tested
functions,  but  the  sum  of  the  average  rankings  is  the
same as DSPSO. This  indicates  that  EEDSPSO shows
excellent performance in solving multimodal functions,
but  there  is  still  room  for  improvement.  Finally,  for
more  complex  composition  functions  (f(21)− f(28)),
EEDSPSO  has  the  best  performance  on  half  of  the
functions.  It  directly  shows  that  EEDSPSO  is  far
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Fig. 6    Optimization values under different transition probabilities.
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Table 2    Experimental results in CEC2013 (D=50).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 5.23×10−13 7.88×10−13 2.20×10−13 1.59 3.03×10−13 4.32×10−13 2.27×10−13 2.27×10−13

Rank 6 7 1 8 4 5 2 2

f(2)
Mean 1.40×106 2.16×106 1.84×107 2.41×107 2.37×106 3.24×106 1.43×107 6.56×105

Rank 2 3 7 8 4 5 6 1

f(3)
Mean 2.60×108 2.97×108 2.90×107 4.29×108 7.97×106 1.88×107 3.44×107 2.92×107

Rank 6 7 3 8 1 2 5 4

f(4)
Mean 1.57×103 6.54×103 2.53×103 5.33×102 5.13×101 1.16×104 2.31×103 2.19×103

Rank 3 7 6 2 1 8 5 4

f(5)
Mean 7.31×10−13 ×10−121.52 3.15×10−13 1.09×101 4.09×10−13 4.45×10−11 4.21×10−13 1.71×10−13

Rank 5 6 2 8 3 7 4 1

f(6)
Mean 4.43×101 6.31×101 4.47×101 9.86×101 4.37×101 4.53×101 4.60×101 4.44×101

Rank 2 7 4 8 1 5 6 3

f(7)
Mean 4.75×101 6.10×101 2.05×101 7.95×101 1.84×101 1.08×101 2.49×101 9.80
Rank 6 7 4 8 3 2 5 1

f(8)
Mean 2.11×101 2.11×101 2.05×101 2.11×101 2.11×101 2.11×101 2.11×101 2.10×101

Rank 7 6 1 3 4 5 8 2

f(9)
Mean 4.00×101 4.02×101 5.11×101 5.10×101 1.94×101 2.72×101 5.13×101 1.94×101

Rank 4 5 7 6 1 3 8 2

f(10)
Mean 2.24×10−1 2.41×10−1 2.90×10−1 6.62×10−1 1.16×10−1 1.55×10−1 2.56×10−1 1.57×10−1

Rank 4 5 7 8 1 2 6 3

f(11)
Mean 2.75 5.31×10−1 3.11 6.66×101 3.76×101 6.91×101 1.06 3.49×101

Rank 3 1 4 7 6 8 2 5

f(12)
Mean 1.13×102 1.44×102 6.83×101 1.97×102 4.60×101 6.37×101 5.65×101 4.40×101

Rank 6 7 5 8 2 4 3 1

f(13)
Mean 2.48×102 2.93×102 1.33×102 3.39×102 1.16×102 1.50×102 1.15×102 1.19×102

Rank 6 7 4 8 2 5 1 3

f(14)
Mean 1.07×102 1.41×101 2.51×102 2.94×103 2.81×103 3.56×103 2.61×102 1.37×103

Rank 2 1 3 7 6 8 4 5

f(15)
Mean 7.40×103 7.60×103 7.51×103 7.74×103 5.50×103 6.38×103 7.14×103 5.19×103

Rank 5 7 6 8 2 3 4 1

f(16)
Mean 2.15 1.13 2.08 2.67 3.32 1.08 1.93 3.31
Rank 5 2 4 6 8 1 3 7

f(17)
Mean 5.40×101 5.71×101 5.00×101 1.40×102 8.19×101 1.32×102 5.19×101 7.22×101

Rank 3 4 1 8 6 7 2 5

f(18)
Mean 1.50×102 1.58×102 1.80×102 2.18×102 1.13×102 1.49×102 1.74×102 3.73×102

Rank 3 4 6 7 1 2 5 8

f(19)
Mean 2.21 3.83 3.02 9.08 5.66 6.33 3.81 4.90
Rank 1 4 2 8 6 7 3 5

f(20)
Mean 2.03×101 1.98×101 1.85×101 2.29×101 2.76×101 1.89×101 1.87×101 2.04×101

Rank 5 4 1 7 8 3 2 6

f(21)
Mean 6.52×102 9.56×102 9.39×102 2.06×103 9.70×102 6.27×102 9.00×102 9.44×102

Rank 2 6 4 8 7 1 3 5

f(22)
Mean 1.16×102 5.05×101 2.87×102 3.13×103 2.77×103 3.98×103 2.55×102 1.42×103

Rank 2 1 4 7 6 8 3 5

f(23)
Mean 8.82×103 8.09×103 7.58×103 8.96×103 6.02×103 6.89×103 7.45×103 4.82×103

Rank 7 6 5 8 2 3 4 1
(to be continued)
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superior  to  other  algorithms  in  handling  complex
problems.  In  addition,  the  performance  of  DSPSO,
which  performs  consistently  in  front,  fails  to  make  it
into the top three and lags far behind other algorithms.
All  in  all,  EEDSPSO  ranks  the  first  overall  and
performs  well  in  more  complex  functions  under  the
experiments  with  dimension  50  of  the  CEC2013  test
set.  This  indicates  that  using  an  adaptive  framework
based  on  evolutionary  experience  and  a  Gaussian
crisscross  learning  strategy  has  excellent  performance
in solving complex problems.
4.4.2    Data analysis on CEC2017
To  further  test  the  performance  of  the  EEDSPSO
algorithm,  this  section  performs  another  experimental
analysis using the CEC2017 test set. The experimental
method  is  the  same  as  in  the  previous  section.  The
experimental results are shown in Tables 3 and 4.

Table  3 provides  the  experimental  results  in
CEC2017 with dimension 50. First of all, for unimodal
functions  (f(1)  and f(3))  and  simple  multimodal
functions  (f(4)−f(10)),  EEDSPSO performs  better  than
the  other  algorithms,  as  it  achieves  the  best
convergence  results  for  4  of  the  9  functions.  In
contrast,  the  second  ranked  DSPSO  achieves  the  best
convergence results  for  only  2  functions.  Then for  the
hybrid  function  (f(11)−f(20)),  EEDSPSO  achieves  the
best  accuracy  in  4  out  of  10  functions,  while  the
second-ranked  HCLPSO  performs  well  in  only  3
functions.  And  DSPSO,  which  performs  reasonably
well in simple multimodal functions, does not perform
well  in  one  function.  Finally,  for  the  more  complex
composition  functions  (f(21)−f(30)),  EEDSPSO  still
outperformed the other algorithms by 4 functions. This

is  followed  by  MPSO  and  HCLDMSPSO  both
achieving optimal values on 2 functions. In conclusion,
EEDSPSO  performs  much  better  than  the  other
algorithms  for  both  simple  multimodal  functions  and
more complex hybrid and composition functions.

Experiments with both CEC2013 and CEC2017 at 50
dimensions  are  done  above,  and  the  experimental
results  show  that  EEDSPSO  with  the  three  new
strategies  outperforms  the  more  popular  seven
algorithms.  To  further  verify  the  performance  of
EEDSPSO  in  higher  dimensions,  experiments  with
CEC2017  at  100  dimensions  are  conducted.  The
following  information  can  be  summarized  from  the
results in Table 4. Firstly, for unimodal functions (f(1)
and f(3)) and simple multimodal functions (f(4)−f(10)),
EEDSPSO  achieves  the  highest  accuracy  on  4
functions,  which  is  better  than  other  algorithms.  And
only  for  the  function f(3),  EEDSPSO  ranks  the  5th,
while the remaining functions are in the top three. This
directly  indicates  that  EEDSPSO is  extremely good in
both  the  performance  of  individual  functions  and
overall  performance.  Then  for  the  hybrid  functions
(f(11)−f(20)),  EEDSPSO  dominates  on  4  functions.
Both HCLPSO and BFLPSO are tied for second place
with  excellent  performance  on  2  functions.  Finally,
there  are  the  composition  functions  (f(21)−f(30)),
where  EEDSPSO  performs  the  best  on  the  functions
f(25)−f(28).  In  addition,  the  average  ranking  of
EEDSPSO is  2.39,  which is  also  much better  than the
3.18  of  CEC2013  in  50  dimensions  and  3.25  of
CEC2017  in  50  dimensions.  It  is  obvious  that  the
performance  of  EEDSPSO  is  rather  better  as  the
dimensionality increases.

Table 2    Experimental results in CEC2013 (D=50).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(24)
Mean 2.81×102 3.01×102 2.51×102 3.24×102 2.24×102 2.28×102 2.52×102 2.22×102

Rank 6 7 4 8 2 3 5 1

f(25)
Mean 3.58×102 3.38×102 3.38×102 3.73×102 3.64×102 3.22×102 3.18×102 3.05×102

Rank 6 5 4 8 7 3 2 1

f(26)
Mean 2.00×102 3.31×102 2.38×102 3.54×102 3.39×102 3.29×102 2.11×102 2.69×102

Rank 1 6 3 8 7 5 2 4

f(27)
Mean 1.22×103 1.31×103 1.28×103 1.48×103 8.56×102 8.51×102 1.04×103 7.35×102

Rank 5 7 6 8 3 2 4 1

f(28)
Mean 4.00×102 1.29×103 3.91×102 9.92×102 6.96×102 4.00×102 4.00×102 4.00×102

Rank 4 8 1 7 6 5 2 2
Count 2 3 5 0 6 2 1 9

Average rank 4.18 5.25 3.89 7.25 3.93 4.36 3.89 3.18
Total rank 5 7 2 8 4 6 2 1
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Table 3    Experimental results in CEC2017 (D=50).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 4.79×103 1.33×103 1.71×103 ×1092.62 2.34×103 1.79×103 1.32×103 1.70×103

Rank 7 2 4 8 6 5 1 3

f(3)
Mean 3.87 7.63×102 3.13×104 8.24×101 1.42×101 1.63×104 3.80×104 1.35×104

Rank 1 4 7 3 2 6 8 5

f(4)
Mean 9.76×101 9.09×101 1.17×102 5.34×102 2.28×102 1.04×102 1.24×102 8.80×101

Rank 3 2 5 8 7 4 6 1

f(5)
Mean 9.13×101 1.05×102 7.13×101 1.47×102 3.38×101 6.40×101 6.80×101 6.41×101

Rank 6 7 5 8 1 2 4 3

f(6)
Mean 1.27×10−5 2.20×10−3 1.01×10−8 1.49 2.37×10−3 2.89×10−2 2.72×10−8 4.18×10−3

Rank 3 4 1 8 5 7 2 6

f(7)
Mean 1.53×102 1.28×102 1.32×102 2.47×102 7.05×101 1.06×102 1.31×102 2.02×102

Rank 6 3 5 8 1 2 4 7

f(8)
Mean 8.41×101 9.97×101 7.32×101 1.67×102 3.34×101 6.59×101 7.16×101 3.23×101

Rank 6 7 5 8 2 3 4 1

f(9)
Mean 2.12×101 1.70×102 6.42×10−1 9.46×102 8.50×10−1 4.38×10−1 5.40×10−1 9.02×10−2

Rank 6 7 4 8 5 2 3 1

f(10)
Mean 4.65×103 4.22×103 5.00×103 5.51×103 3.33×103 4.73×103 4.67×103 2.47×103

Rank 4 3 7 8 2 6 5 1

f(11)
Mean 1.19×102 1.02×102 6.70×101 2.93×102 1.43×102 1.05×102 5.44×101 5.36×101

Rank 6 4 3 8 7 5 2 1

f(12)
Mean 2.83×105 2.95×105 1.53×106 3.43×107 3.55×105 8.83×105 1.51×106 1.17×106

Rank 1 2 7 8 3 4 6 5

f(13)
Mean 2.49×103 4.26×103 8.65×102 2.20×104 2.69×103 1.90×103 1.01×103 1.22×103

Rank 5 7 1 8 6 4 2 3

f(14)
Mean 2.19×104 1.37×104 9.05×104 9.77×102 1.05×104 3.41×104 8.82×104 2.23×104

Rank 4 3 8 1 2 6 7 5

f(15)
Mean 1.31×103 5.65×103 5.53×103 3.50×103 2.60×103 3.01×103 4.04×103 3.15×103

Rank 1 8 7 5 2 3 6 4

f(16)
Mean 1.00×103 9.97×102 7.24×102 1.38×103 5.10×102 7.34×102 7.53×102 5.06×102

Rank 7 6 3 8 2 4 5 1

f(17)
Mean 8.19×102 7.65×102 4.50×102 9.15×102 5.15×102 6.07×102 4.95×102 3.83×102

Rank 7 6 2 8 4 5 3 1

f(18)
Mean 5.95×104 6.57×104 6.50×105 4.88×104 6.51×104 4.44×105 3.38×105 7.97×105

Rank 2 4 7 1 3 6 5 8

f(19)
Mean 1.47×103 1.50×104 1.65×104 4.75×103 1.39×104 8.50×103 1.03×104 1.49×104

Rank 1 7 8 2 5 3 4 6

f(20)
Mean 5.25×102 5.06×102 2.76×102 8.15×102 2.12×102 4.35×102 2.71×102 1.53×102

Rank 7 6 4 8 2 5 3 1

f(21)
Mean 2.87×102 2.75×102 2.67×102 5.67×102 2.34×102 2.68×102 2.73×102 2.68×102

Rank 7 6 2 8 1 3 5 4

f(22)
Mean 3.99×103 3.40×103 4.93×103 1.80×102 6.80×102 3.18×103 4.77×103 1.00×102

Rank 6 5 8 2 3 4 7 1

f(23)
Mean 5.27×102 5.19×102 4.89×102 1.07×103 4.69×102 5.03×102 4.97×102 4.57×102

Rank 7 6 3 8 2 5 4 1

f(24)
Mean 5.97×102 5.99×102 5.61×102 2.71×102 5.25×102 5.71×102 5.66×102 5.30×102

Rank 7 8 4 1 2 6 5 3
(to be continued)
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Table 3    Experimental results in CEC2017 (D=50).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(25)
Mean 5.18×102 5.68×102 5.34×102 7.01×102 5.84×102 5.13×102 5.45×102 5.57×102

Rank 2 6 3 8 7 1 4 5

f(26)
Mean 2.01×103 1.42×103 1.73×103 5.93×102 5.99×102 1.70×103 1.73×103 4.14×102

Rank 8 4 6 2 3 5 7 1

f(27)
Mean 6.17×102 6.68×102 5.59×102 1.67×103 8.07×102 6.23×102 5.72×102 5.42×102

Rank 4 6 2 8 7 5 3 1

f(28)
Mean 4.88×102 5.06×102 5.04×102 1.62×103 5.48×102 4.81×102 5.14×102 5.00×102

Rank 2 5 4 8 7 1 6 3

f(29)
Mean 6.71×102 7.71×102 4.42×102 1.20×103 6.31×102 6.70×102 4.57×102 6.00×102

Rank 6 7 1 8 4 5 2 3

f(30)
Mean 7.83×105 8.04×105 8.11×105 2.88×105 4.06×106 8.37×105 7.84×105 8.27×105

Rank 2 4 5 1 8 7 3 6
Count 4 0 3 4 3 2 1 12

Average rank 4.79 5.32 4.68 6.36 3.96 4.43 4.50 3.25
Total rank 6 7 5 8 2 3 4 1

 

Table 4    Experimental results in CEC2017 (D=100).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 6.99×103 5.71×103 4.00×103 2.04×1010 7.37×103 6.63×103 4.31×103 3.78×103

Rank 6 4 2 8 7 5 3 1

f(3)
Mean 1.71×103 8.57×104 1.68×105 2.01×104 6.43×103 1.84×105 1.92×105 9.88×104

Rank 1 4 6 3 2 7 8 5

f(4)
Mean 6.27×102 2.63×102 2.41×102 2.57×103 4.93×102 6.46×102 2.45×102 2.41×102

Rank 6 4 2 8 5 7 3 1

f(5)
Mean 7.45×102 3.01×102 1.98×102 4.42×102 8.65×101 7.12×102 1.84×102 1.14×102

Rank 8 5 4 6 1 7 3 2

f(6)
Mean 6.00×102 1.37×10−1 1.44×10−6 1.31×101 1.60×10−2 6.01×102 7.97×10−7 3.30×10−3

Rank 7 5 2 6 4 8 1 3

f(7)
Mean 1.07×103 4.26×102 3.06×102 8.86×102 1.60×102 9.61×102 2.97×102 2.86×102

Rank 8 5 4 6 1 7 3 2

f(8)
Mean 1.05×103 2.92×102 1.95×102 4.94×102 9.05×101 1.02×103 1.81×102 1.12×102

Rank 8 5 4 6 1 7 3 2

f(9)
Mean 1.44×103 4.48×103 1.15×101 6.04×103 1.04×101 1.26×103 1.64×101 4.59×100

Rank 6 7 3 8 2 5 4 1

f(10)
Mean 1.29×104 1.10×104 1.27×104 1.35×104 8.23×103 1.30×104 1.23×104 6.58×103

Rank 6 3 5 8 2 7 4 1

f(11)
Mean 1.94×103 4.06×102 5.78×102 1.49×103 1.04×103 2.07×103 4.87×102 3.29×102

Rank 7 2 4 6 5 8 3 1

f(12)
Mean 5.35×105 2.24×106 4.13×106 1.05×109 3.23×106 1.94×106 3.95×106 2.31×106

Rank 1 3 7 8 5 2 6 4

f(13)
Mean 4.95×103 3.34×103 2.51×103 2.06×107 3.96×103 5.60×103 2.48×103 3.12×103

Rank 6 4 2 8 5 7 1 3

f(14)
Mean 8.06×104 1.54×105 1.96×106 1.56×105 7.10×104 3.54×105 1.61×106 1.78×105

Rank 2 3 8 4 1 6 7 5

f(15)
Mean 2.66×103 1.66×103 7.26×102 3.85×104 2.20×103 3.07×103 6.54×102 1.19×103

Rank 6 4 2 8 5 7 1 3
(to be continued)
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4.5    Non-parametric test

R+ R−

To  compare  the  significant  differences  between
EEDSPSO  and  other  algorithms,  the  results  of
Tables 2−4 are processed using the Wilcoxon sign test.
Tables 5−7 show the corresponding results.  and 
represent  the  positive  and  negative  rankings,
respectively. n, w, t, and l represent the overall number
of functions, the number of functions that perform well
with EEDSPSO, the number of  functions that  perform
fairly  well,  and  the  number  of  functions  that  perform
poorly  with  EEDSPSO,  respectively.  In  addition,  the
significance level is taken as 0.05.

From Table  5,  the  significant  differences  between

EEDSPSO  and  GLPSO,  MPSO,  DSPSO,  and
HCLDMSPSO  are  2.42×10−2,  2.69×10−4,  1.98×10−2,
and  1.33×10−2,  respectively,  which  are  less  than  0.05.
And  the  number  of  functions  in  which  EEDSPSO
outperforms  them  is  much  higher.  This  directly
indicates  that  EEDSPSO  is  significantly  better  than
GLPSO,  MPSO,  DSPSO,  and  HCLDMSPSO.  The
significant  differences  between  EEDSPSO  and
HCLPSO,  BLPSO,  and  BFLPSO  are  5.40×10−1,
7.16×10−1,  and  4.54×10−1,  respectively.  This  means
that  EEDSPSO  is  not  significantly  better  than
HCLPSO,  BLPSO,  and  BFLPSO.  But  the  number  of
functions  in  which  EEDSPSO  outperforms  HCLPSO,

Table 4    Experimental results in CEC2017 (D=100).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(16)
Mean 4.58×103 2.72×103 2.40×103 3.96×103 1.54×103 4.27×103 2.44×103 1.53×103

Rank 8 5 3 6 2 7 4 1

f(17)
Mean 4.00×103 2.11×103 1.59×103 3.21×103 1.41×103 3.78×103 1.59×103 1.14×103

Rank 8 5 3 6 2 7 4 1

f(18)
Mean 1.62×105 6.56×105 1.99×106 2.88×105 1.96×105 1.05×106 1.23×106 1.22×106

Rank 1 4 8 3 2 5 7 6

f(19)
Mean 2.44×103 2.81×103 9.07×102 2.93×105 1.54×103 3.09×103 1.05×103 1.24×103

Rank 5 6 1 8 4 7 2 3

f(20)
Mean 4.24×103 2.11×103 1.66×103 2.11×103 9.56×102 4.08×103 1.69×103 8.28×102

Rank 8 6 3 5 2 7 4 1

f(21)
Mean 2.58×103 4.71×102 4.10×102 1.49×102 3.20×102 2.56×103 4.18×102 3.35×102

Rank 8 6 4 1 2 7 5 3

f(22)
Mean 1.60×104 1.13×104 1.39×104 1.49×102 2.26×103 1.27×104 1.34×104 1.11×103

Rank 8 4 7 1 3 5 6 2

f(23)
Mean 3.08×103 7.34×102 6.43×102 3.02×103 6.91×102 9.08×102 6.53×102 6.43×102

Rank 8 5 1 7 4 6 3 2

f(24)
Mean 3.60×103 1.17×103 1.05×103 5.38×102 9.60×102 1.17×103 1.07×103 9.33×102

Rank 8 7 4 1 3 6 5 2

f(25)
Mean 3.27×103 8.19×102 7.99×102 3.66×103 1.07×103 7.68×102 8.15×102 7.48×102

Rank 7 5 3 8 6 2 4 1

f(26)
Mean 8.79×103 9.23×103 4.95×103 4.77×103 2.54×103 5.67×103 4.91×103 1.32×103

Rank 7 8 5 3 2 6 4 1

f(27)
Mean 3.50×103 8.64×102 6.67×102 3.27×103 9.40×102 7.89×102 6.84×102 6.45×102

Rank 8 5 2 7 6 4 3 1

f(28)
Mean 3.37×103 6.09×102 6.18×102 4.13×103 8.57×102 5.87×102 6.38×102 5.71×102

Rank 7 3 4 8 6 2 5 1

f(29)
Mean 2.86×103 2.62×103 1.82×103 2.71×103 2.07×103 2.71×103 1.82×103 1.83×103

Rank 8 5 1 7 4 6 2 3

f(30)
Mean 5.55×103 6.15×103 7.17×103 1.58×106 3.28×104 6.31×103 7.60×103 7.45×103

Rank 1 2 4 8 7 3 6 5
Count 4 0 3 3 4 0 3 12

Average rank 6.36 4.79 3.86 6.14 3.61 6.07 4.07 2.39
Total rank 8 5 3 7 2 6 4 1
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BLPSO,  and  BFLPSO is  15,  24,  and  19,  respectively.
This  also  indirectly  indicates  that  EEDSPSO
outperforms HCLPSO, BLPSO, and BFLPSO.

From Table  6,  the  significant  differences  between
EEDSPSO  and  HCLPSO,  BLPSO,  MPSO,  DSPSO,
HCLDMSPSO,  and  BFLPSO  are  3.89×10−2,
3.65×10−3,  3.89×10−3,  1.69×10−2,  1.23×10−3,  and
6.34×10−4,  respectively, which are less than 0.05. This
demonstrates that EEDSPSO is significantly better than
HCLPSO,  BLPSO,  MPSO,  DSPSO,  HCLDMSPSO,
and BFLPSO. The number of functions for EEDSPSO
superior to GLPSO is 24. This indicates that EEDSPSO
is far better than GLPSO.

From Table  7,  only  the  significance  level  between
EEDSPSO and BLPSO is  less  than 0.05.  The positive
ranks  between  EEDSPSO  and  HCLPSO,  GLPSO,
MPSO, DSPSO, HCLDMSPSO, and BFLPSO are 244,
271, 303, 249, 283, and 285, respectively. The numbers
of  functions  for  EEDSPSO  better  than  HCLPSO,

GLPSO,  MPSO,  DSPSO,  HCLDMSPSO,  and
BFLPSO  are  18,  21,  23,  18,  20,  and  20,  respectively.
This clearly indicates the excellent performance of the
EEDSPSO algorithm.

In summary, EEDSPSO uses an adaptive framework
based  on  evolutionary  experience  and  a  Gaussian
crisscross  learning  strategy,  possessing  more
significant performance relative to other algorithms.

5    Conclusion

To  balance  the  diversity  and  convergence  of  the
algorithm  during  the  iterative  process,  this  paper
proposes  an  evolutionary  experience  based  multi-
strategy particle swarm optimization algorithm. Firstly,
the  neighborhood  topology  and  the  elite  archival
population  are  improved  using  an  evolutionary
experience  based  framework.  The  improved
neighborhood  topology  maintains  the  population’s
diversity  well.  Furthermore,  the  elite  archive  is

 

Table 5    Wilcoxon sign test in CEC2013 (D=50).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 5.40×10−1 214 163 28/15/1/12
EEDSPSO vs. GLPSO 2.42×10−2 302 104 28/21/0/7
EEDSPSO vs. BLPSO 7.16×10−1 319 187 28/24/0/4
EEDSPSO vs. MPSO 2.69×10−4 363 43 28/21/0/7
EEDSPSO vs. DSPSO 1.98×10−2 286 92 28/17/0/11

EEDSPSO vs. HCLDMSPSO 1.33×10−2 292 86 28/18/0/10
EEDSPSO vs. BFLPSO 4.54×10−1 205 146 28/19/1/8

 

Table 6    Wilcoxon sign test in CEC2017 (D=50).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 3.89×10−2 313 122 29/24/0/5
EEDSPSO vs. GLPSO 5.57×10−2 306 129 29/24/0/5
EEDSPSO vs. BLPSO 3.65×10−3 310 68 29/21/2/6
EEDSPSO vs. MPSO 3.89×10−3 351 84 29/23/0/6
EEDSPSO vs. DSPSO 1.69×10−2 328 107 29/22/0/7

EEDSPSO vs. HCLDMSPSO 1.23×10−3 367 68 29/26/0/3
EEDSPSO vs. BFLPSO 6.34×10−4 375 59 29/24/0/5

 

Table 7    Wilcoxon sign test in CEC2017 (D=100).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 5.67×10−1 244 191 29/18/0/11
EEDSPSO vs. GLPSO 2.47×10−1 271 164 29/21/0/8
EEDSPSO vs. BLPSO 2.98×10−2 318 117 29/21/0/8
EEDSPSO vs. MPSO 6.45×10−2 303 132 29/23/0/6
EEDSPSO vs. DSPSO 4.96×10−1 249 186 29/18/0/11

EEDSPSO vs. HCLDMSPSO 6.85×10−2 283 123 29/20/1/8
EEDSPSO vs. BFLPSO 1.44×10−1 285 150 29/20/0/9
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beneficial  to  the  population convergence performance.
And  their  weight  is  dynamically  changed  using
adaptive  parameters.  In  addition,  the  introduction  of  a
Gaussian  crisscross  learning  strategy  improves  the
algorithm’s  performance  on  complex  problems.
Finally,  experimental  results  in  CEC2013  (D=50)  and
CEC2017  (D=50  and  100)  show  that  EEDSPSO
outperforms  other  popular  PSO  variants.  In  more
complex  functions  such  as  hybrid  and  composition
functions,  EEDSPSO outperforms  other  algorithms  by
a wide margin. This indicates that EEDSPSO has more
advantages  when  facing  complex  functions.  And  the
average  ranking  of  EEDSPSO  in  higher  dimension
100D is 2.39. The result is further improved relative to
that in 50D, which shows that EEDSPSO is expected to
try  to  solve  optimization  problems  in  higher
dimensions.

In  future  studies,  we  will  further  enhance  the
diversity  of  EEDSPSO to  enable  the  entire  population
to  perform  effective  search  behavior.  More  efficient
and  novel  learning  frameworks  will  be  further
investigated.  Due  to  the  simple  implementation  and
efficiency in exploring global solutions of the proposed
algorithm,  the  solution  of  many  complex  problems  is
always  a  hot  issue.  The  study  of  solving  complex
problems  will  be  beneficial  to  the  optimization  of
practical applications.
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