

Evolutionary Experience-Driven Particle Swarm
Optimization with Dynamic Searching

Wei Li, Jianghui Jing, Yangtao Chen, Xunjun Chen*, and Ata Jahangir Moshayedi

Abstract: Particle swarm optimization (PSO) algorithms have been successfully used for various complex

optimization problems. However, balancing the diversity and convergence is still a problem that requires

continuous research. Therefore, an evolutionary experience-driven particle swarm optimization with dynamic

searching (EEDSPSO) is proposed in this paper. For purpose of extracting the effective information during

population evolution, an adaptive framework of evolutionary experience is presented. And based on this

framework, an experience-based neighborhood topology adjustment (ENT) is used to control the size of the

neighborhood range, thereby effectively keeping the diversity of population. Meanwhile, experience-based elite

archive mechanism (EEA) adjusts the weights of elite particles in the late evolutionary stage, thus enhancing

the convergence of the algorithm. In addition, a Gaussian crisscross learning strategy (GCL) adopts cross-

learning method to further balance the diversity and convergence. Finally, extensive experiments use the

CEC2013 and CEC2017. The experiment results show that EEDSPSO outperforms current excellent PSO

variants.

Key words: particle swarm optimization; experience-based topology structure; elite archive; Gaussian crisscross learning

1 Introduction

Population intelligence algorithm[1] encompasses a
class of heuristic search algorithms characterized by
their capacity to optimize complex problems without
an excessive reliance on algorithmic organizational
information. These algorithms exhibit broad
applicability in the realm of optimization and
computation. Among many population intelligence
algorithms, particle swarm optimization[2, 3] has simple

form, strong robustness, and fast convergence
compared with other population intelligence algorithms
(such as artificial bee colony algorithm[4, 5], differential
evolution algorithm[6, 7], etc.). It is considered as an
excellent candidate algorithm for solving many
practical application problems. Therefore, it has been
utilized in a wide variety of scientific and industrial
applications[8, 9].

Although the particle swarm optimization (PSO)
algorithm can perform excellently in solving some
complex problems, it is also usually difficult to escape
from the local optimum trap, which causes the
accuracy of the solution to decrease. Furthermore,
complex optimization problems such as power
dispatching[10, 11] and fault diagnosis[12, 13] have high
requirements on solution effectiveness of algorithm.
For such problems, although PSO algorithm possesses
a high speed of convergence, it is very challenging to
locate a correct solution fast during a restricted time. In
fact, the essential reason for this problem lies in the
difficult balance between the diversity of algorithms
and convergence.

 Wei Li, Jianghui Jing, Yangtao Chen, Xunjun Chen, and Ata

Jahangir Moshayedi are with the School of Information
Engineering, Jiangxi University of Science and Technology,
Ganzhou 341000, China. E-mail: liwei@jxust.edu.cn;
jingjianghui@mail.jxust.edu.cn; chenyangtao@jxust.edu.cn;
cxj@jxust.edu.cn; ajm@jxust.edu.cn.

 Ata Jahangir Moshayedi is also with the Khomeini Shahr
Branch, Islamic Azad University, Isfahan 86145-311, Iran.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Wenyin

Gong.
 Manuscript received: 2023-04-11; revised: 2023-06-25;

accepted: 2023-07-05

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 03/06 pp 307−326
Volume 3, Number 4, December 2023
DOI: 10 .23919 /CSMS.2023 .0015

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

In order to tackle the challenges inherent in PSO
algorithms, numerous researchers have undertaken
efforts to enhance the performance of particle swarm
optimization primarily by focusing on three key
aspects.

The first direction is the parameter setting
adjustment. The initial PSO algorithm proposed by
Eberhart and Kennedy[2] in 1995 did not have inertia
weights. To enhance the performance of the algorithm,
Gao et al.[14] added new parameter inertia weights to
the initial version of the PSO velocity update
formulation and proposed the standard particle swarm
algorithm. Shi and Eberhart[15] verified the effect of the
variation of inertia weights on the performance of the
particle swarm algorithm and set the range of inertia
weights within the interval [0.4, 0.9] to enhance the
performance of the PSO algorithm. Li and Cheng[16]

presented a parameter adjustment method based on
particle adaptation, which can effectively boost the
convergence speed and solution quality of the
algorithm. Karimi-Nasab et al.[17] improved the initial
version of the PSO algorithm by introducing adaptive
parameters to improve the efficiency and convergence
speed of the algorithm.

The second direction is the neighborhood topology.
The topology of a particle swarm establishes a measure
of how well its members are connected to other
members. It basically describes the subset of particles
with which a particle can exchange information[18].
Kennedy et al.[19] were the first to put the global
topology, which is the definition of the neighborhood
of a particle in the PSO algorithm as the rest of the
particles except itself. The global topology is not the
definition of the local topology as the two particles
closest to itself[19]. With these two proposed topologies,
researchers have found that PSO algorithm with a good
topology outperforms the standard PSO algorithm. Shi
et al.[20] proposed a hybrid cellular automata
mechanism, which used three different lattice
structures as neighborhoods to allow particles to
interact within the swarm. Many topologies of PSO
have been proposed by researchers, and some of the
superior PSO topologies are random topology, von
Neumann topology, star topology, and ring topology.

The third direction is the combination of other
algorithmic strategies. This direction mainly combines
the inherent social and cooperative features of the
algorithms with other optimization strategies. This
optimization strategies originate from different
evolutionary paradigms, but all aim at achieving

intelligent exploration development. This helps to
compensate for weaknesses in the PSO algorithm and
can be used to guide the algorithm in purposeful
search. Shi et al.[21] proposed the idea of exchanging
the most suitable particles between genetic algorithm
(GA) and PSO, running both algorithms in parallel at a
fixed number of iterations. In the work of the hybrid
PSO-GA based evolutionary algorithm, a two-stage
mechanism is used for the evolutionary strategy of the
particles, where the PSO algorithm is responsible for
the evolutionary process, while diversity is maintained
by using a GA. The authors used this approach to
optimize three unconstrained and three constrained
problems with good results[22].

For the three aspects of PSO algorithm improvement,
parameter settings are basic and very important. Only
suitable parameter values can correctly guide the
topology of the population and achieve better
performance. Topology is the core framework of the
algorithm, and excellent neighborhood topology can
design excellent algorithms. Algorithm hybridization is
a popular direction, learning the excellent strategies of
other algorithms and further enhancing the
performance of algorithms on the basis of the original.
With the above introduction, the use of parameter
setting, neighborhood topology, and algorithm
hybridization can increase the diversity and
convergence of PSO algorithms. However, facing
increasingly complex problems, it is extremely
necessary to further improve the performance of the
algorithm. In this paper, an evolutionary experience-
driven particle swarm optimization with dynamic
searching (EEDSPSO) is introduced. EEDSPSO uses
an evolutionary experience-driven framework to
adaptively update the neighborhood structure of
particles as well as the archive content. Thus, more
suitable particles are selected to guide the population
update. In addition, a Gaussian crisscross learning
strategy is employed to adjust, and the weight of
different search methods is adjusted throughout
evolutionary progress to balance the algorithm’s
performance requirements at different stages. The main
research can be concluded in the following.

(1) Evolutionary experience is introduced as a new
driving framework to efficiently utilize the population’s
empirical information in the evolutionary process.

(2) Rationalize the use of evolutionary experience to
update the neighborhood structure of particles as well
as the adjustment of the archive content, so as to guide
the population to search for more suitable localizations.

 308 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

(3) A Gaussian crisscross learning strategy is
proposed to keep a better balance of diversity and
convergence.

The remainder of this paper is presented in the
following. Section 2 describes related work for
proposed algorithm. Section 3 elaborates the proposed
algorithm through framework and strategies. Section 4
demonstrates EEDSPSO’s effectiveness and high
performance through experiments. And finally Section
5 concludes the work and looks to the future.

2 Related Work

2.1 Traditional PSO

xi = [x1
i , x

2
i , x

3
i , ..., x

D
i]

vi = [v1
i ,v

2
i ,v

3
i , ...,v

D
i]

Pbi = [Pb1
i ,Pb2

i ,Pb3
i , ...,PbD

i] i
G = [G1,G2,G3, ...,GD]

D

In the traditional PSO algorithm, each particle denotes
the corresponding problem’s solution. During the
algorithm’s search process, the particle adjusts its
motion direction and step size through the velocity
term, so as to achieve the purpose of searching for the
optimal solution. In each iteration, the position vector
of the particle is , and the
corresponding velocity vector is .
In addition, are particle ’s
historical optimal value. are
population’s historical optimal value, where
represents the problem’s dimension. The traditional
PSO is given as follows:

vi(t) =ω · vi(t−1)+ c1 · r1 · (Pbi− xi(t−1))+
c2 · r2 · (G− xi(t−1)) (1)

xi(t) = xi(t−1)+ vi(t−1) (2)

ω

r1 r2

c1 c2

where is used to change the previous generation
velocity’s weight, called the inertia weight. t is the
current number of iterations. and are the random
numbers generated in the interval [0, 1]. and are
acceleration coefficients adjusting for individual
cognitive and social cognitive weights, respectively.

2.2 Neighborhood topology

In the iterative process of populations, the
neighborhood topology plays an extremely important
tool to facilitate the exchange of information between
populations. Only a proper neighborhood topology can
guide particles to perform a correct search in the space.
Recently, numerous scholars have studied this issue.
Qu et al.[23] introduced a distance-based dynamic
neighborhood topology. The algorithm’s fine search
capability is enhanced by dynamically changing the
neighborhood size using distance as an indicator. This

neighborhood topology can be calculated as follows:

Vd
i (t) = ω ·

(
Vd

i (t−1)+φ
(
Pd

i −Xd
i (t−1)

))
(3)

Pi =

∑nsize
j=1 (φ j ·nbest j)/nsize

φ
(4)

φ j φwhere and are distributed random numbers. nbestj
is the j-th nearest neighborhood to the i-th particle’s
pbest. nsize is the neighborhood size. This is a classic
neighborhood topology. This neighborhood topology
makes full use of neighborhood information and
increases the algorithm’s ability for local search and
fine-tuning. Since then, more researchers have
proposed more excellent neighborhood topologies.
Wang et al.[24] presented a dynamic tournament
topology method and achieved good performance in
artificial neural networks’ optimization. The fuzzy rule
based neighborhood method proposed by He et al.[25]

used fuzzy rules and individual distribution to generate
subpopulations and achieved good results in solving
nonlinear systems of equations. Li et al.[26] used a
complex network topology based on fitness distance to
effectively balance algorithm’s diversity and
convergence. Zhang et al.[27] used the Voronoi-based
neighborhood concept and eliminated the need for
additional parameters for the algorithm by increasing
the computational complexity. Li et al.[28] introduced a
differential evolution algorithm based on the
neighborhood strategy, used the fitness distance to base
the problem difficulty, and achieved excellent results
on a single-objective problem. Because the
neighborhood topology method has a decisive
influence on the search direction and search effort of
the particles, the continued exploration of the
neighborhood topology method is extremely necessary.

2.3 Archive mechanism

The archival mechanism has garnered considerable
scrutiny as an ancillary strategy for enhancing
optimization algorithms. Lin et al.[29] undertook a
comprehensive examination by integrating
collaborative archives with learning probabilities. The
integration of collaborative archives furnishes
populations with more auspicious information, thereby
facilitating their application in the realm of optimal
radar system design[29]. This archive mechanism can be
calculated as follows:

archd
β = rd · archd

β +
(
1− rd

)
·pbestdi (5)

rd βwhere is a random number. is the index of the

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 309

archd
β d-th

β

worst archive particle to be updated. is the
dimension of the -th archive particle. This archive
mechanism is an excellent method. This method uses
archives to gather useful information that leads
populations to evolve better. There are more excellent
algorithms that use the archive mechanisms. A three-
archive strategy (stored elites, profiteers, and
outstanding exemplars) was proposed by Xia et al.[30]

with excellent performance in different optimization
functions. Wei et al.[31] archived elite particles for
generating new solutions different from the current
population and guiding the population to explore in
more promising directions. Pan et al.[32] stored particles
satisfying the accuracy requirements in the archive and
randomly initialized the surrounding particles. The
effect is to prevent the population from being trapped
in local optima and increase the population’s
diversity[32]. Tao et al.[33] used an archival strategy with
an exploratory function and an integrated learning
approach to generate samples and prevent the
population from converging prematurely. External
archiving is worth further investigation as an effective
method to increase the algorithm’s diversity and
convergence.

3 Proposed EEDSPSO

3.1 Motivation

PSO has been well developed recently as an excellent
method for solving complex problem models.
Especially, the improvement based on the
neighborhood topology has received wide attention.
For traditional neighborhood topology, fixed or
dynamic topologies based on distance and the number
of stops are often used. These structural approaches
tend to ignore the favorable information during the
evolution of particles. Populations have different need
for diversity and convergence in different evolutionary
periods. Neighborhood structures with larger ranges
tend to accelerate the convergence of populations, and
those with smaller ranges tend to increase the diversity
of populations. So, it is extremely necessary for the
adjustment of the neighborhood structure. Intuitively,
particles with the above-mentioned neighborhood
topology cannot select the right particles for learning in
the evolutionary process. Thus, it is hard to balance the
population’s diversity and convergence, leading to the
population trapped in local optimum.

In response to the above analysis, breaking the
traditional method of dynamically adjusting the

topology based on distance or the number of stagnation
generations, a new evolutionary experience based
driving framework is used. The neighborhood structure
of the population and the particles in the elite archive is
dynamically updated. It is combined with a Gaussian
crisscross learning strategy, thus meeting the needs of
the population at different evolutionary stages.

3.2 Framework of EEDSPSO

In this section, two strategies driven by evolutionary
experience and a Gaussian crisscross learning strategy
are combined. Neighborhood techniques and archival
strategies utilize evolutionary experience to construct
the main framework of the algorithm. Then, the
particles adaptively form their own neighborhoods, and
the experience-based elite archive mechanism is used
to guide the population update. Finally, a Gaussian
crisscross learning strategy further balances the
diversity and convergence of the algorithm. A
transformation strategy is used to transform between
the evolutionary experience-driven adaptive framework
and the Gaussian crisscross learning strategy.

The main framework of EEDSPSO is shown in
Algorithm 1. From Lines 1−4, the algorithm focuses on
the setting of relevant parameters, such as population
size, neighborhood size, and archive content.

time

time

From Lines 5−11, the particles are dynamically
updated using the transformation parameter to
select different population evolution methods. The
transformation parameter can be described as
follows:

time = cos(1/2 · fes/FES+π/5) (6)

fes
FES

time

where is current number of function evaluations.
 is the maximum number of function evaluations.

The size of the transformation parameter changes
with the evaluation of the population. From Lines
12−18, the neighborhood size and archive content are
dynamically updated by evolutionary experience. And
the algorithm updates the position and fitness value of
the particles. The algorithm ends with the output of the
global optimal value.

3.3 Evolutionary experience-driven adaptive
search structure

It is known from Section 3.1 that for many changes in
the neighborhood structure, dynamic improvements
based on distance and the number of stops are often
used. Specifically, the corresponding particles are
selected for learning in a population of particles that

 310 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

are close to each other relative to themselves. Or the
topology of the population is dynamically updated
when the population reaches a certain number of
stagnation generations. And above dynamic changes
usually ignore the degree of progress in each
evolutionary process, namely, the evolutionary
experience of the population.

t
t+1

t+1
X1

X4

X4

An example of an evolutionary experience-driven
structure is shown in Fig. 1 for a better understanding.
As shown in Fig. 1, there are a total of 4 particles X1,
X2, X3, and X4. The fitness values of each particle are
{5, 9, 10, and 15} after the iteration, which becomes
{4, 6, 8, and 11} after iteration. In this paper, the
algorithm considers the minimum value optimization
problem. The difference in fitness at each iteration is
the degree of evolution of the particle. The degree of
evolution of the four particles in Fig. 1 after the
iteration is {1, 3, 2, 4}. Although ’s fitness value is
better, ’s evolutionary degree of the particle with the
worst fitness value is better. It means has a better
evolutionary experience.

3.3.1 Experience-based neighborhood topology
adjustment

An important concept, namely evolutionary experience,
is introduced in the above paper. The improvement of
algorithms using evolutionary experience is a novel
attempt. In this section, experience-based
neighborhood topology adjustment and Cauchy
mutation are introduced in detail.

The neighborhood topology’s importance is
specifically shown by the number of neighborhood
particles that has a serious impact on the algorithm’s
diversity and convergence. Figure 2 shows the different
states of the population after iteration with different
numbers of neighborhood particles. Red particles
represent the historical optimal positions with better
fitness values in that neighborhood range, and the
yellow particles represent the particles to be evolved,
where the yellow particles learn from the red particles.
From Fig. 2a, it can be observed that when the number
of particles in the neighborhood is small, a relatively
large number of red examples will be generated. Then
the population will converge to different regions in the
search space, so that the diversity of the population is
better maintained. On the contrary, it can be seen from
Fig. 2b that the population possesses better
convergence when the number of neighboring particles
is higher. And the requirements of diversity and
convergence of populations are different at different
times of evolution. So, it is extremely important to

Algorithm 1　Proposed EEDSPSO
Ns FES

[xd
min, x

d
max]

[vd
min,v

d
max] Nh

Ea PB

Input: Control parameters: (swarm size), (maximum
number of function evaluations), (position
　 boundary), (velocity boundary), (the
　 neighborhood size), (the elite archive), and (personal
　 historical best position)
Output: Optimal value
1: Initialize the swarm;

fes = 1,2,3, ...,FES2: for do
PBn → Nh3:　　 the best particle in ;
PBarch → Ne4:　　 the random particle in ;

i = 1; i < Ns; i++5:　　for do
rand(1) < time6: 　　　if (calculate by Eq. (6)) then

7: 　　　　Update the particles velocity using Eq. (8);
8: 　　　else
9: 　　　　Update the particles velocity using Eqs. (11) and
　(12);
10: 　　　end if
11:　　end for

PB12:　　Update and evolutionary experience;

Nh
13:　　Select progressive particles to update the neighborhood
　 ;

PB14:　　Sort according to the evolutionary experience;
Ea15:　　Update the elite archive ;

16:　　Calculate the particles’ position using Eq. (2);
17: end for
18: return global optimal value;

X1

X2

X3

X4

Iteration

5

9

10

15

4

6

8

11

1

3

2

4

Position Fitness Fitness Evolutionary
experience

Fig. 1 Evolutionary experience-driven schematic.

Iteration
Iteration

(a) Small number
of neighborhood

(b) Large number
of neighborhood

Fig. 2 Small and large number of neighborhoods.

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 311

control the range size of the neighborhood reasonably
well.

H

H

Nh

H
PBn

Based on the above analysis, an evolutionary
experience-driven framework is used to control the size
of the neighborhood range. Firstly, the difference is
made between the before and after fitness values of the
particles after each iteration. Then the values of the
neighborhood range before each iteration are taken for
each particle whose difference value is greater than 0
(i.e., the particle whose fitness value becomes better).
The squared average of these values () is the base
value of the neighborhood size for the next population
iteration based on evolutionary experience. The
squared average is used instead of the arithmetic
average mainly to prevent the effect of extreme values.
Finally, in order to allow for a more varied selection of
particles, the base value for each particle is treated
using a Cauchy distribution that takes a wide
distribution of values. In each loop iteration, the
neighborhood size of each individual is generated
independently according to the Cauchy distribution
with position parameter and scale parameter 1. And
the particle with the best fitness value in the
neighborhood range is selected according to the current
neighborhood size. The neighborhood size is defined as
follows:

Nh = Cauchy(H,1) (7)

H

H

where is the squared average of the neighborhood
sizes of particles whose fitness values have become
better in the previous generation. The initial value of
is 5, and then it is updated at the end of each iteration.
3.3.2 Experience-based elite archive mechanism
The necessity of using evolutionary experience to
dynamically update the neighborhood range is
described above. For this part it is called the individual
cognitive part. The other part, the social cognitive part,
is also extremely important. It often plays the role of
leading the population to convergence. For the
traditional social cognitive part, the global optimum is
used to guide learning. This tends to make the
population converge faster and fall into local optima.
From the above introduction to the archive mechanism,
it can be seen that an appropriate archive mechanism
can collect and store some excellent information in
the population and then guide the population to
evolve in a better direction. Therefore, an experience-
based elite archive mechanism is used. The experience-
based evolutionary framework can be described as
follows:

vi (t) =c1 · rand(1,D) · (PBn− xi (t−1))+
c2 · rand(1,D) · (PBarch− xi (t−1))

(8)

c1 = 2 · (1− fes/FES) (9)

c2 = 2−0.5 · c1 (10)

PBn

PBarch

PBarch

where is the historical optimum with the best
fitness value selected from the neighborhood based on
the experience-based neighborhood topology
adjustment. is the guide particle selected based
on the experience-based elite archive mechanism.
Firstly, the size of the elite archive is determined, here
it is set to 15. Next, the particles with better fitness
values in the previous generation are sorted according
to the evolutionary degree. The top 15 particles are
selected and stored in the Ne archive, and a particle is
randomly selected from the archive as a guide particle
(). If no 15 particles became better in the
previous generation update, then the top 10 historical
best values with better fitness values are selected and
deposited in the archive.

c1

c2

c1

c2

c1 c2

From Eqs. (8)−(10), EEDSPSO combines these two
learning methods through a dynamic approach. and

 change dynamically with the number of evaluations.
In the early evolutionary stage of the algorithm, is
larger and is smaller. Neighborhood learning
dominates, which facilitates exploration in the early
stages of the algorithm, is smaller and is larger in
the late evolutionary stages. The larger proportion of
experience-based elite archive mechanism makes the
algorithm have stronger local search capability. Thus,
EEDSPSO effectively integrates the neighborhood
learning strategy and the elite archive mechanism. It
can balance algorithm’s diversity and convergence
well.

3.4 Gaussian crisscross learning strategy

An exemplary algorithm is one that adeptly maintains a
harmonious equilibrium between convergence and
diversity. Although assimilating knowledge from
proficient particles expedites the algorithm’s
convergence, it often proves arduous to strike a balance
with respect to its diversity. Equation (8) discriminates
particles possessing commendable fitness values by
virtue of an evolutionary experience-driven adaptive
framework, thereby exerting an influence on the
algorithm’s diversity. To overcome this drawback, a
Gaussian crisscross learning strategy is introduced into
the algorithm. The Gaussian crisscross learning
strategy is defined as follows:

 312 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

vi (t) = ω · (vi (t−1)+N (0,1))+
2 · rand(1,D) ·

(
PBrp− xi (t−1)

) (11)

vi (t) = ω · vi (t−1)+
2 · rand(1,D) · (PBre− xi (t−1)) (12)

ω = 1− fes/FES (13)

ω

ω

PBrp

PBre

ω

where is the inertia weight component, decreasing
gradually from 1 to 0. First a random number rand (1)
is generated. If it is smaller than , then the population
is updated using Eq. (11). That is, the iterative
operation is performed with high probability using
Eq. (11) in the early stage of population iteration.
Equation (11) uses a learning mechanism with
Gaussian mutation. This is because it is more biased to
enhance the diversity of the algorithm in the early
stages of the population. Adding Gaussian terms to the
original velocity is conducive to enhancing the
discreteness in population iterations and thus more
conducive to maintaining population diversity. is
a randomly selected particle in the population that is
worse than its own historical optimal value. is a
randomly selected particle from a population that is
better than its own historical optimum. And the
iterative operation is performed using Eq. (12) only
when the randomly generated number rand (1) is
greater than . So, this iterative operation is more
biased towards the late iteration of the population,
which means that it is more biased towards maintaining
the convergence performance of the population. At this
point, learning from better particles can further
improve the convergence of the population in the late
iterative stage.

3.5 Computational complexity analysis

D

nlog2n

In this paper, the proposed algorithm contains three
main components, experience-based neighborhood
topology adjustment, experience-based elite archive
mechanism, and Gaussian crisscross learning strategy.
To analyze the computational complexity of each
component, for a problem of dimension , experience-
based neighborhood topology adjustment and
experience-based elite archive mechanism use an
adaptive framework of evolutionary experience.
Evolutionary experience adaptive framework requires
sorting according to their fitness values. The
computational complexity of the sort operation is
O(). In addition, Gaussian crisscross learning
strategy is a new learning strategy to further balance
the diversity and convergence. Obviously, the

nlog2n

computational complexity of this strategy is O(1) in
every generation. Therefore, based on the
computational complexity analysis of the above main
parts, in every generation, the computational
complexity of the proposed algorithm is O().

4 Experiment

4.1 Experimental settings

This section analyzes the performance of the algorithm
through a series of experiments. Experiment 1 analyzes
the effectiveness of the algorithm with different
strategies to verify the rationality of the proposed
strategies. Experiment 2 analyzes the effectiveness of
the algorithm’s parameters to select more suitable
parameter values. Experiment 3 compares different
algorithms on the CEC2013 test set to verify the
excellent performance of the proposed algorithm. In
Experiment 4, in order to verify the superiority of the
proposed algorithm in different test problems,
CEC2017 test set is used to carry out the comparative
experiment of the proposed algorithm. Experiment 5
uses non-parametric tests to compare the significant
differences between the proposed algorithm and other
algorithms in CEC test sets.

In this experiment, seven popular PSO variants are
selected as comparison algorithms. They are used to
verify the comprehensive performance of EEDSPSO.
The parameter settings of each algorithm are shown in
Table 1. And the comparison experiments are done in
two widely used test sets, CEC2013 test set and
CEC2017 test set. Among them, two sets of
experiments with dimension D as 50 are done. To
further verify the effectiveness of the algorithm in
higher dimensions, experiments with dimension 100
are also done using the CEC2017. In order to
comprehensively assess the performance of the
proposed algorithm, a series of experiments is
conducted utilizing the CEC2013 and CEC2017 test
sets across varying dimensions. These test sets are
renowned benchmarks specifically designed to evaluate
the efficacy of optimization algorithms. By subjecting
the algorithm to diverse problem domains and
dimensionalities, a rigorous evaluation is undertaken to
gauge its adaptability and robustness. This empirical
approach allows for a comprehensive examination of
the algorithm’s capabilities and effectiveness, thereby
providing a comprehensive understanding of its
performance across different problem landscapes. To
ensure the fairness and accuracy of the experiments,

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 313

each algorithm is run 51 times independently on each
test set. The maximum evaluation test of the algorithm
is set to 10 000×D.

4.2 Strategy validity analysis

From the introduction of the algorithms in Section 3, it
is clear that the good performance of EEDSPSO is
mainly due to the three newly introduced strategies,
namely, the experience-based neighborhood topology
adjustment, the experience-based elite archive
mechanism, and the Gaussian crisscross learning
strategy. Therefore, in this section, some experiments
are used to examine the performance effects of
different strategies on populations. To examine the
performance of these strategies in an integrated
manner, this experiment selects four different test
functions in CEC2017, namely, unimodal function f(1),
simple multimodal function f(8), hybrid function f(13),
and composition function f(29). The results are shown

in Figs. 3 and 4, where GCL, EEA, and ENT are the
removal of the Gaussian crisscross learning strategy,
the removal of the experience-based elite archive
mechanism, and the algorithms for removing the
experience-based neighborhood topology adjustment.

In return for analyzing the performance of the three
new strategies, two metrics, namely the fitness value
and diversity, are used for testing[41].

The results presented in Fig. 3 indicate that ENT and
EEA possess poor convergence accuracy relative to
EEDSPSO and GCL. These results indicate that
experience-based neighborhood topology adjustment
and experience-based elite archive mechanism have
significant performance improvement on the algorithm
performance. EEDSPSO slightly outperforms GCL on
the unimodal function. The performance is closer to the
other three functions, but EEDSPSO still has the best
performance. Thus, the Gaussian crisscross learning
strategy further enhances the algorithm’s performance

Table 1 Parameter settings for all algorithms.

Algorithm Parameter setting
EEDSPSO ω c1 · ω c2=[1, 0], =2 , and =[1, 2]
BFLPSO[34] ω c I E G=[0.2, 0.9], =1.494 45, = =1, and =5

HCLDMSPSO[35] ω ω2 c1 c2 Pm Vmax · Range=[0.29, 0.99], , = =[0.5, 0.25], =0.1, and =0.5
DSPSO[36] c1 Fmin=2.0 and =0.7
MPSO[37] logistic chaotic ω c1 c2 =[0.4, 0.9] and = =2.0
BLPSO[38] ω c G=[0.2, 0.9], =1.494 45, and =5
GLPSO[39] ω c pm sg=0.7298, =1.496 18, =0.01, and =7

HCLPSO[40] ω c1 c2 c=[0.2, 0.99], =[0.5, 2.5], =[0.5, 2.5], and =[1.5, 3]

0 1000 2000 3000 4000 5000
Number of iterations

0 1000 2000 3000 4000 5000
Number of iterations

0
2
4
6
8

10
12

lg
 e

rro
r

(a) Function f(1)

EEDSPSO
GCL

EEDSPSO
GCL

EEA
ENT

EEA
ENT

EEDSPSO
GCL
EEA
ENT

EEDSPSO
GCL
EEA
ENT

1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

lg
 e

rro
r

2
3
4
5
6
7
8
9

10
11

lg
 e

rro
r

(c) Function f(13)

0 1000 2000 3000 4000 5000
Number of iterations

0 1000 2000 3000 4000 5000
Number of iterations

(b) Function f(8)

(d) Function f(29)

2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

lg
 e

rro
r

Fig. 3 Optimization values of EEDSPSO, GCL, EEA, and ENT.

 314 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

in an evolutionary experience-driven adaptive
framework, in particular, the improvement of the
algorithm’s convergence accuracy. In addition, the
convergence rate of EEDSPSO is relatively smooth
compared to the other three algorithms. And EEDSPSO
always stalls last in the late stage of the algorithm. A
conclusion can be drawn that EEDSPSO plays an
excellent role in balancing the algorithm’s diversity
and convergence.

In order to make the data more intuitive, the
smoothdata function is used to smooth the data. The
results in Fig. 4 are generally more similar to the
performance of the results in Fig. 3, where EEA shows
more confusion in diversity. For example, in the hybrid
function, EEA has a low diversity in the early stage,
but the diversity becomes abnormally large in the later
stage around 3000 generations. This is clearly
detrimental to the eventual convergence of the
population, so it is clearly easy to see in Fig. 3 that
EEA eventually possesses the worst convergence
accuracy. This also directly indicates that the
experience-based elite archive mechanism has a
positive effect on the convergence of the population.
Similarly, ENT’s diversity is also more chaotic and
performs the worst in terms of diversity accuracy. This
also indicates that experience-based neighborhood
topology adjustment provides better diversity for the
population. GCL and EEDSPSO are similar to the
experiments above, indicating that the Gaussian
crisscross learning strategy further improves the

performance of the algorithm. EEDSPSO is still the
smoothest and best performing algorithm.

The findings pertaining to diversity and convergence
substantiate the commendable efficacy of EEDSPSO.
In essence, the pioneering topological approach
effectively upholds population diversity, thereby
ensuring its robustness. Furthermore, the incorporation
of the experience-based elite archive mechanism
enhances population convergence, fostering increased
efficiency. Moreover, the employment of the Gaussian
crisscross learning strategy serves to bolster the
algorithm’s overall performance. The results of
diversity and convergence verify that EEDSPSO has
very good performance. Overall, the novel topology
strategy maintains the diversity of the population. The
experience-based elite archive mechanism improves
the convergence of the population. The Gaussian
crisscross learning strategy further improves the overall
performance of the algorithm.

4.3 Parameter validity analysis

time Ea

In the EEDSPSO algorithm, an adaptive framework
based on evolutionary experience-driven and a
Gaussian crisscross learning strategy are applied to co-
evolve the population, which well balances the
diversity and convergence of the population. In this
section, two parameters, namely the adaptive parameter

 and the archive size , are selected to verify the
impact of different parameters on the performance of
the algorithm. Comparison experiments are performed

50004000300020001000
Number of iterations

50004000300020001000
Number of iterations

50004000300020001000
Number of iterations

500040003000200010000
Number of iterations

0

50

100

150

200
lg

 e
rro

r

(a) Function f(1) (a) Function f(8)

(c) Function f(13) (d) Function f(29)

EEDSPSO
GCL
EEA
ENT

EEDSPSO
GCL
EEA
ENT

EEDSPSO
GCL
EEA
ENT

EEDSPSO
GCL
EEA
ENT

0

50
100
150
200
250
300
350

lg
 e

rro
r

0

50

100

150

200

250

lg
 e

rro
r

50

100

150

200

250

lg
 e

rro
r

Fig. 4 Distance between the particles of EEDSPSO, GCL, EEA, and ENT.

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 315

using different test functions in CEC2017, i.e.,
unimodal function f(1), simple multimodal function
f(9), hybrid function f(17), and composition function
f(21). The algorithms have the same settings except for
the different settings of the comparison parameters.

Ea
One of the important parameters is the archive size of

the elite archive. The effect of the archive size on
this strategy is extremely significant. When the archive
size is set larger, the selection range of elite particles
becomes larger, and then it is easier to select poorer
particles. Thus, the convergence of the algorithm
becomes worse. On the contrary, when the archive size
becomes smaller, then the algorithm converges faster,
and thus it is very easy to fall into local optima.
Therefore, this section sets multiple archive size values
for comparison experiments. The experimental results
are shown in Figs. 5 and 6.

Ea

Ea

From Fig. 5, it can be seen that four archive sizes of
5, 15, 25, and 35 based on CEC2017 are selected for
comparison experiments. For the unimodal function
f(1), the performance of the algorithm using the four
parameters is basically the same. Among them, the
algorithm performs slightly better when Ea is taken as
15 compared to using other other parameters. In the
simple multimodal function f(9), the algorithm
performs the worst when is taken as 5. This
indicates that when the archive size is small, the
algorithm is more likely to learn from elite particles.
Thus, it converges faster and falls into a local optimum.
When is taken as 15, the algorithm performs better

Ea

Ea

in terms of convergence speed and convergence
accuracy. For the hybrid function f(17) and the
composition function f(21), the algorithm performs the
best when Ea is taken as 15, and the worst when Ea is
taken as 5. It indicates that as the archive size becomes
larger, the performance of the algorithm is limited as
well. The main reason is that as the archive size
becomes larger, the algorithm is unable to select the
appropriate elite particles for learning, which leads to a
decrease in the performance of the algorithm. When
is taken as 5, the algorithm still has the problem of
faster convergence and lower accuracy. A smaller
archive capacity is not conducive to the performance of
this algorithm. On the contrary, when is 15, the
algorithm has excellent convergence speed and the best
convergence accuracy under different types of
functions. Therefore, the archive size is finally set to 15
for the elite archive.

The time is an adaptive parameter, which is used to
reasonably control the weight of the evolutionary
experience adaptive framework and the Gaussian
crisscross learning strategy in the population iterations.
The parameter time is controlled using Eq. (6), and the
value of time is large in the early stage and becomes
less volatile with population iteration. This means that,
in the early stage of the population, the algorithm
mainly uses an adaptive framework driven by
evolutionary experience. Later in the population, the
weight of the Gaussian crisscross learning strategy
slowly becomes larger. For the effectiveness of this

2

4

6

8

10

12

lg
 e

rro
r

Ea=5
Ea=15
Ea=25
Ea=35

Ea=5
Ea=15
Ea=25
Ea=35

Ea=5
Ea=15
Ea=25
Ea=35

Ea=5
Ea=15
Ea=25
Ea=35

−12
−10
−8
−6
−4
−2

0
2
4
6

lg
 e

rro
r

500040003000200010000
Number of iterations

2.5
3.0
3.5
4.0
4.5
5.0
5.5

lg
 e

rro
r

(c) Function f(17)

500040003000200010000
Number of iterations

(d) Function f(21)

500040003000200010000
Number of iterations

(a) Function f(1)

500040003000200010000
Number of iterations

(b) Function f(9)

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

lg
 e

rro
r

Fig. 5 Optimization values under different archive sizes.

 316 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

control approach, this section is experimentally verified
by three fixed parameters, and the experimental results
are shown in Fig. 6.

T

time

T T

time

time

time

From Fig. 6, three fixed parameters are set for
comparison experiments, 0.3, 0.5, and 0.7. Firstly, for
the unimodal function f(1), the algorithm is the least
effective when the transition probability is taken as
0.3. This indicates that the adaptive framework based
on evolutionary experience has less weight when the
transition probability is small. The convergence and
diversity of the algorithm also become worse. In
contrast, the algorithm works the best when the
adaptive parameter is used. Secondly, for the
simple multimodal function f(9), the algorithm works
worst when takes 0.7. This is because when
becomes larger, the weight of the Gaussian crisscross
learning strategy decreases and thus falls into the
local optimal value prematurely. Thus, the diversity
and convergence of the algorithm cannot be improved
in . Finally, for the hybrid function f(17) and the
composition function f(21), the overall difference is
not particularly large. But the algorithm works the
best when the transformation probability uses the
adaptive parameter . Especially, the improvement
for algorithm diversity and convergence is far better
than other parameters. Therefore, this paper uses
the adaptive parameter to dynamically update
the weight of the adaptive framework and the
Gaussian crisscross learning strategy in the population
iteration.

4.4 Comparison of PSO algorithm variants

4.4.1 Data analysis on CEC2013

Mean

Rank
Count

Average rank Total rank

In purpose of verifying the excellent overall
performance of EEDSPSO, this section conducts
comparison experiments in the CEC2013 test set and
with dimension 50. The mean () of each
independent run of 51 times is used to represent the
mean results. For each test function, the results of each
algorithm are ranked and presented in . The
bolded data are the best ones. represents the total
number of the best performing test functions for each
algorithm. is the average rank.
stands for the final rank of each algorithm. The final
results are shown in Table 2.

From the results presented in Table 2, the following
results can be derived. Firstly, for the unimodal
functions (f(1)−f(5)), EEDSPSO achieves the best
performance, followed by DSPSO and BLPSO.
EEDSPSO achieves a more stable and excellent
performance for the functions f(2) and f(5). For the
basic multimodal functions (f(6)− f(20)), the EEDSPSO
achieves the best performance on only three tested
functions, but the sum of the average rankings is the
same as DSPSO. This indicates that EEDSPSO shows
excellent performance in solving multimodal functions,
but there is still room for improvement. Finally, for
more complex composition functions (f(21)− f(28)),
EEDSPSO has the best performance on half of the
functions. It directly shows that EEDSPSO is far

500040003000200010000
Number of iterations

0
2
4
6
8

10
12

lg
 e

rro
r

(a) Function f(1)

500040003000200010000
Number of iterations

(b) Function f(9)

500040003000200010000
Number of iterations

(c) Function f(17)

500040003000200010000
Number of iterations

(d) Function f(21)

T=0.3
T=0.5
T=0.7
T=time

T=0.3
T=0.5
T=0.7
T=time

T=0.3
T=0.5
T=0.7
T=time

T=0.3
T=0.5
T=0.7
T=time

−12
−10
−8
−6
−4
−2

0
2
4
6

lg
 e

rro
r

2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

lg
 e

rro
r

2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2

lg
 e

rro
r

Fig. 6 Optimization values under different transition probabilities.

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 317

Table 2 Experimental results in CEC2013 (D=50).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 5.23×10−13 7.88×10−13 2.20×10−13 1.59 3.03×10−13 4.32×10−13 2.27×10−13 2.27×10−13

Rank 6 7 1 8 4 5 2 2

f(2)
Mean 1.40×106 2.16×106 1.84×107 2.41×107 2.37×106 3.24×106 1.43×107 6.56×105

Rank 2 3 7 8 4 5 6 1

f(3)
Mean 2.60×108 2.97×108 2.90×107 4.29×108 7.97×106 1.88×107 3.44×107 2.92×107

Rank 6 7 3 8 1 2 5 4

f(4)
Mean 1.57×103 6.54×103 2.53×103 5.33×102 5.13×101 1.16×104 2.31×103 2.19×103

Rank 3 7 6 2 1 8 5 4

f(5)
Mean 7.31×10−13 ×10−121.52 3.15×10−13 1.09×101 4.09×10−13 4.45×10−11 4.21×10−13 1.71×10−13

Rank 5 6 2 8 3 7 4 1

f(6)
Mean 4.43×101 6.31×101 4.47×101 9.86×101 4.37×101 4.53×101 4.60×101 4.44×101

Rank 2 7 4 8 1 5 6 3

f(7)
Mean 4.75×101 6.10×101 2.05×101 7.95×101 1.84×101 1.08×101 2.49×101 9.80
Rank 6 7 4 8 3 2 5 1

f(8)
Mean 2.11×101 2.11×101 2.05×101 2.11×101 2.11×101 2.11×101 2.11×101 2.10×101

Rank 7 6 1 3 4 5 8 2

f(9)
Mean 4.00×101 4.02×101 5.11×101 5.10×101 1.94×101 2.72×101 5.13×101 1.94×101

Rank 4 5 7 6 1 3 8 2

f(10)
Mean 2.24×10−1 2.41×10−1 2.90×10−1 6.62×10−1 1.16×10−1 1.55×10−1 2.56×10−1 1.57×10−1

Rank 4 5 7 8 1 2 6 3

f(11)
Mean 2.75 5.31×10−1 3.11 6.66×101 3.76×101 6.91×101 1.06 3.49×101

Rank 3 1 4 7 6 8 2 5

f(12)
Mean 1.13×102 1.44×102 6.83×101 1.97×102 4.60×101 6.37×101 5.65×101 4.40×101

Rank 6 7 5 8 2 4 3 1

f(13)
Mean 2.48×102 2.93×102 1.33×102 3.39×102 1.16×102 1.50×102 1.15×102 1.19×102

Rank 6 7 4 8 2 5 1 3

f(14)
Mean 1.07×102 1.41×101 2.51×102 2.94×103 2.81×103 3.56×103 2.61×102 1.37×103

Rank 2 1 3 7 6 8 4 5

f(15)
Mean 7.40×103 7.60×103 7.51×103 7.74×103 5.50×103 6.38×103 7.14×103 5.19×103

Rank 5 7 6 8 2 3 4 1

f(16)
Mean 2.15 1.13 2.08 2.67 3.32 1.08 1.93 3.31
Rank 5 2 4 6 8 1 3 7

f(17)
Mean 5.40×101 5.71×101 5.00×101 1.40×102 8.19×101 1.32×102 5.19×101 7.22×101

Rank 3 4 1 8 6 7 2 5

f(18)
Mean 1.50×102 1.58×102 1.80×102 2.18×102 1.13×102 1.49×102 1.74×102 3.73×102

Rank 3 4 6 7 1 2 5 8

f(19)
Mean 2.21 3.83 3.02 9.08 5.66 6.33 3.81 4.90
Rank 1 4 2 8 6 7 3 5

f(20)
Mean 2.03×101 1.98×101 1.85×101 2.29×101 2.76×101 1.89×101 1.87×101 2.04×101

Rank 5 4 1 7 8 3 2 6

f(21)
Mean 6.52×102 9.56×102 9.39×102 2.06×103 9.70×102 6.27×102 9.00×102 9.44×102

Rank 2 6 4 8 7 1 3 5

f(22)
Mean 1.16×102 5.05×101 2.87×102 3.13×103 2.77×103 3.98×103 2.55×102 1.42×103

Rank 2 1 4 7 6 8 3 5

f(23)
Mean 8.82×103 8.09×103 7.58×103 8.96×103 6.02×103 6.89×103 7.45×103 4.82×103

Rank 7 6 5 8 2 3 4 1
(to be continued)

 318 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

superior to other algorithms in handling complex
problems. In addition, the performance of DSPSO,
which performs consistently in front, fails to make it
into the top three and lags far behind other algorithms.
All in all, EEDSPSO ranks the first overall and
performs well in more complex functions under the
experiments with dimension 50 of the CEC2013 test
set. This indicates that using an adaptive framework
based on evolutionary experience and a Gaussian
crisscross learning strategy has excellent performance
in solving complex problems.
4.4.2 Data analysis on CEC2017
To further test the performance of the EEDSPSO
algorithm, this section performs another experimental
analysis using the CEC2017 test set. The experimental
method is the same as in the previous section. The
experimental results are shown in Tables 3 and 4.

Table 3 provides the experimental results in
CEC2017 with dimension 50. First of all, for unimodal
functions (f(1) and f(3)) and simple multimodal
functions (f(4)−f(10)), EEDSPSO performs better than
the other algorithms, as it achieves the best
convergence results for 4 of the 9 functions. In
contrast, the second ranked DSPSO achieves the best
convergence results for only 2 functions. Then for the
hybrid function (f(11)−f(20)), EEDSPSO achieves the
best accuracy in 4 out of 10 functions, while the
second-ranked HCLPSO performs well in only 3
functions. And DSPSO, which performs reasonably
well in simple multimodal functions, does not perform
well in one function. Finally, for the more complex
composition functions (f(21)−f(30)), EEDSPSO still
outperformed the other algorithms by 4 functions. This

is followed by MPSO and HCLDMSPSO both
achieving optimal values on 2 functions. In conclusion,
EEDSPSO performs much better than the other
algorithms for both simple multimodal functions and
more complex hybrid and composition functions.

Experiments with both CEC2013 and CEC2017 at 50
dimensions are done above, and the experimental
results show that EEDSPSO with the three new
strategies outperforms the more popular seven
algorithms. To further verify the performance of
EEDSPSO in higher dimensions, experiments with
CEC2017 at 100 dimensions are conducted. The
following information can be summarized from the
results in Table 4. Firstly, for unimodal functions (f(1)
and f(3)) and simple multimodal functions (f(4)−f(10)),
EEDSPSO achieves the highest accuracy on 4
functions, which is better than other algorithms. And
only for the function f(3), EEDSPSO ranks the 5th,
while the remaining functions are in the top three. This
directly indicates that EEDSPSO is extremely good in
both the performance of individual functions and
overall performance. Then for the hybrid functions
(f(11)−f(20)), EEDSPSO dominates on 4 functions.
Both HCLPSO and BFLPSO are tied for second place
with excellent performance on 2 functions. Finally,
there are the composition functions (f(21)−f(30)),
where EEDSPSO performs the best on the functions
f(25)−f(28). In addition, the average ranking of
EEDSPSO is 2.39, which is also much better than the
3.18 of CEC2013 in 50 dimensions and 3.25 of
CEC2017 in 50 dimensions. It is obvious that the
performance of EEDSPSO is rather better as the
dimensionality increases.

Table 2 Experimental results in CEC2013 (D=50).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(24)
Mean 2.81×102 3.01×102 2.51×102 3.24×102 2.24×102 2.28×102 2.52×102 2.22×102

Rank 6 7 4 8 2 3 5 1

f(25)
Mean 3.58×102 3.38×102 3.38×102 3.73×102 3.64×102 3.22×102 3.18×102 3.05×102

Rank 6 5 4 8 7 3 2 1

f(26)
Mean 2.00×102 3.31×102 2.38×102 3.54×102 3.39×102 3.29×102 2.11×102 2.69×102

Rank 1 6 3 8 7 5 2 4

f(27)
Mean 1.22×103 1.31×103 1.28×103 1.48×103 8.56×102 8.51×102 1.04×103 7.35×102

Rank 5 7 6 8 3 2 4 1

f(28)
Mean 4.00×102 1.29×103 3.91×102 9.92×102 6.96×102 4.00×102 4.00×102 4.00×102

Rank 4 8 1 7 6 5 2 2
Count 2 3 5 0 6 2 1 9

Average rank 4.18 5.25 3.89 7.25 3.93 4.36 3.89 3.18
Total rank 5 7 2 8 4 6 2 1

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 319

Table 3 Experimental results in CEC2017 (D=50).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 4.79×103 1.33×103 1.71×103 ×1092.62 2.34×103 1.79×103 1.32×103 1.70×103

Rank 7 2 4 8 6 5 1 3

f(3)
Mean 3.87 7.63×102 3.13×104 8.24×101 1.42×101 1.63×104 3.80×104 1.35×104

Rank 1 4 7 3 2 6 8 5

f(4)
Mean 9.76×101 9.09×101 1.17×102 5.34×102 2.28×102 1.04×102 1.24×102 8.80×101

Rank 3 2 5 8 7 4 6 1

f(5)
Mean 9.13×101 1.05×102 7.13×101 1.47×102 3.38×101 6.40×101 6.80×101 6.41×101

Rank 6 7 5 8 1 2 4 3

f(6)
Mean 1.27×10−5 2.20×10−3 1.01×10−8 1.49 2.37×10−3 2.89×10−2 2.72×10−8 4.18×10−3

Rank 3 4 1 8 5 7 2 6

f(7)
Mean 1.53×102 1.28×102 1.32×102 2.47×102 7.05×101 1.06×102 1.31×102 2.02×102

Rank 6 3 5 8 1 2 4 7

f(8)
Mean 8.41×101 9.97×101 7.32×101 1.67×102 3.34×101 6.59×101 7.16×101 3.23×101

Rank 6 7 5 8 2 3 4 1

f(9)
Mean 2.12×101 1.70×102 6.42×10−1 9.46×102 8.50×10−1 4.38×10−1 5.40×10−1 9.02×10−2

Rank 6 7 4 8 5 2 3 1

f(10)
Mean 4.65×103 4.22×103 5.00×103 5.51×103 3.33×103 4.73×103 4.67×103 2.47×103

Rank 4 3 7 8 2 6 5 1

f(11)
Mean 1.19×102 1.02×102 6.70×101 2.93×102 1.43×102 1.05×102 5.44×101 5.36×101

Rank 6 4 3 8 7 5 2 1

f(12)
Mean 2.83×105 2.95×105 1.53×106 3.43×107 3.55×105 8.83×105 1.51×106 1.17×106

Rank 1 2 7 8 3 4 6 5

f(13)
Mean 2.49×103 4.26×103 8.65×102 2.20×104 2.69×103 1.90×103 1.01×103 1.22×103

Rank 5 7 1 8 6 4 2 3

f(14)
Mean 2.19×104 1.37×104 9.05×104 9.77×102 1.05×104 3.41×104 8.82×104 2.23×104

Rank 4 3 8 1 2 6 7 5

f(15)
Mean 1.31×103 5.65×103 5.53×103 3.50×103 2.60×103 3.01×103 4.04×103 3.15×103

Rank 1 8 7 5 2 3 6 4

f(16)
Mean 1.00×103 9.97×102 7.24×102 1.38×103 5.10×102 7.34×102 7.53×102 5.06×102

Rank 7 6 3 8 2 4 5 1

f(17)
Mean 8.19×102 7.65×102 4.50×102 9.15×102 5.15×102 6.07×102 4.95×102 3.83×102

Rank 7 6 2 8 4 5 3 1

f(18)
Mean 5.95×104 6.57×104 6.50×105 4.88×104 6.51×104 4.44×105 3.38×105 7.97×105

Rank 2 4 7 1 3 6 5 8

f(19)
Mean 1.47×103 1.50×104 1.65×104 4.75×103 1.39×104 8.50×103 1.03×104 1.49×104

Rank 1 7 8 2 5 3 4 6

f(20)
Mean 5.25×102 5.06×102 2.76×102 8.15×102 2.12×102 4.35×102 2.71×102 1.53×102

Rank 7 6 4 8 2 5 3 1

f(21)
Mean 2.87×102 2.75×102 2.67×102 5.67×102 2.34×102 2.68×102 2.73×102 2.68×102

Rank 7 6 2 8 1 3 5 4

f(22)
Mean 3.99×103 3.40×103 4.93×103 1.80×102 6.80×102 3.18×103 4.77×103 1.00×102

Rank 6 5 8 2 3 4 7 1

f(23)
Mean 5.27×102 5.19×102 4.89×102 1.07×103 4.69×102 5.03×102 4.97×102 4.57×102

Rank 7 6 3 8 2 5 4 1

f(24)
Mean 5.97×102 5.99×102 5.61×102 2.71×102 5.25×102 5.71×102 5.66×102 5.30×102

Rank 7 8 4 1 2 6 5 3
(to be continued)

 320 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

Table 3 Experimental results in CEC2017 (D=50).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(25)
Mean 5.18×102 5.68×102 5.34×102 7.01×102 5.84×102 5.13×102 5.45×102 5.57×102

Rank 2 6 3 8 7 1 4 5

f(26)
Mean 2.01×103 1.42×103 1.73×103 5.93×102 5.99×102 1.70×103 1.73×103 4.14×102

Rank 8 4 6 2 3 5 7 1

f(27)
Mean 6.17×102 6.68×102 5.59×102 1.67×103 8.07×102 6.23×102 5.72×102 5.42×102

Rank 4 6 2 8 7 5 3 1

f(28)
Mean 4.88×102 5.06×102 5.04×102 1.62×103 5.48×102 4.81×102 5.14×102 5.00×102

Rank 2 5 4 8 7 1 6 3

f(29)
Mean 6.71×102 7.71×102 4.42×102 1.20×103 6.31×102 6.70×102 4.57×102 6.00×102

Rank 6 7 1 8 4 5 2 3

f(30)
Mean 7.83×105 8.04×105 8.11×105 2.88×105 4.06×106 8.37×105 7.84×105 8.27×105

Rank 2 4 5 1 8 7 3 6
Count 4 0 3 4 3 2 1 12

Average rank 4.79 5.32 4.68 6.36 3.96 4.43 4.50 3.25
Total rank 6 7 5 8 2 3 4 1

Table 4 Experimental results in CEC2017 (D=100).

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(1)
Mean 6.99×103 5.71×103 4.00×103 2.04×1010 7.37×103 6.63×103 4.31×103 3.78×103

Rank 6 4 2 8 7 5 3 1

f(3)
Mean 1.71×103 8.57×104 1.68×105 2.01×104 6.43×103 1.84×105 1.92×105 9.88×104

Rank 1 4 6 3 2 7 8 5

f(4)
Mean 6.27×102 2.63×102 2.41×102 2.57×103 4.93×102 6.46×102 2.45×102 2.41×102

Rank 6 4 2 8 5 7 3 1

f(5)
Mean 7.45×102 3.01×102 1.98×102 4.42×102 8.65×101 7.12×102 1.84×102 1.14×102

Rank 8 5 4 6 1 7 3 2

f(6)
Mean 6.00×102 1.37×10−1 1.44×10−6 1.31×101 1.60×10−2 6.01×102 7.97×10−7 3.30×10−3

Rank 7 5 2 6 4 8 1 3

f(7)
Mean 1.07×103 4.26×102 3.06×102 8.86×102 1.60×102 9.61×102 2.97×102 2.86×102

Rank 8 5 4 6 1 7 3 2

f(8)
Mean 1.05×103 2.92×102 1.95×102 4.94×102 9.05×101 1.02×103 1.81×102 1.12×102

Rank 8 5 4 6 1 7 3 2

f(9)
Mean 1.44×103 4.48×103 1.15×101 6.04×103 1.04×101 1.26×103 1.64×101 4.59×100

Rank 6 7 3 8 2 5 4 1

f(10)
Mean 1.29×104 1.10×104 1.27×104 1.35×104 8.23×103 1.30×104 1.23×104 6.58×103

Rank 6 3 5 8 2 7 4 1

f(11)
Mean 1.94×103 4.06×102 5.78×102 1.49×103 1.04×103 2.07×103 4.87×102 3.29×102

Rank 7 2 4 6 5 8 3 1

f(12)
Mean 5.35×105 2.24×106 4.13×106 1.05×109 3.23×106 1.94×106 3.95×106 2.31×106

Rank 1 3 7 8 5 2 6 4

f(13)
Mean 4.95×103 3.34×103 2.51×103 2.06×107 3.96×103 5.60×103 2.48×103 3.12×103

Rank 6 4 2 8 5 7 1 3

f(14)
Mean 8.06×104 1.54×105 1.96×106 1.56×105 7.10×104 3.54×105 1.61×106 1.78×105

Rank 2 3 8 4 1 6 7 5

f(15)
Mean 2.66×103 1.66×103 7.26×102 3.85×104 2.20×103 3.07×103 6.54×102 1.19×103

Rank 6 4 2 8 5 7 1 3
(to be continued)

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 321

4.5 Non-parametric test

R+ R−

To compare the significant differences between
EEDSPSO and other algorithms, the results of
Tables 2−4 are processed using the Wilcoxon sign test.
Tables 5−7 show the corresponding results. and
represent the positive and negative rankings,
respectively. n, w, t, and l represent the overall number
of functions, the number of functions that perform well
with EEDSPSO, the number of functions that perform
fairly well, and the number of functions that perform
poorly with EEDSPSO, respectively. In addition, the
significance level is taken as 0.05.

From Table 5, the significant differences between

EEDSPSO and GLPSO, MPSO, DSPSO, and
HCLDMSPSO are 2.42×10−2, 2.69×10−4, 1.98×10−2,
and 1.33×10−2, respectively, which are less than 0.05.
And the number of functions in which EEDSPSO
outperforms them is much higher. This directly
indicates that EEDSPSO is significantly better than
GLPSO, MPSO, DSPSO, and HCLDMSPSO. The
significant differences between EEDSPSO and
HCLPSO, BLPSO, and BFLPSO are 5.40×10−1,
7.16×10−1, and 4.54×10−1, respectively. This means
that EEDSPSO is not significantly better than
HCLPSO, BLPSO, and BFLPSO. But the number of
functions in which EEDSPSO outperforms HCLPSO,

Table 4 Experimental results in CEC2017 (D=100).
(continued)

Function Metric HCLPSO GLPSO BLPSO MPSO DSPSO HCLDMSPSO BFLPSO EEDSPSO

f(16)
Mean 4.58×103 2.72×103 2.40×103 3.96×103 1.54×103 4.27×103 2.44×103 1.53×103

Rank 8 5 3 6 2 7 4 1

f(17)
Mean 4.00×103 2.11×103 1.59×103 3.21×103 1.41×103 3.78×103 1.59×103 1.14×103

Rank 8 5 3 6 2 7 4 1

f(18)
Mean 1.62×105 6.56×105 1.99×106 2.88×105 1.96×105 1.05×106 1.23×106 1.22×106

Rank 1 4 8 3 2 5 7 6

f(19)
Mean 2.44×103 2.81×103 9.07×102 2.93×105 1.54×103 3.09×103 1.05×103 1.24×103

Rank 5 6 1 8 4 7 2 3

f(20)
Mean 4.24×103 2.11×103 1.66×103 2.11×103 9.56×102 4.08×103 1.69×103 8.28×102

Rank 8 6 3 5 2 7 4 1

f(21)
Mean 2.58×103 4.71×102 4.10×102 1.49×102 3.20×102 2.56×103 4.18×102 3.35×102

Rank 8 6 4 1 2 7 5 3

f(22)
Mean 1.60×104 1.13×104 1.39×104 1.49×102 2.26×103 1.27×104 1.34×104 1.11×103

Rank 8 4 7 1 3 5 6 2

f(23)
Mean 3.08×103 7.34×102 6.43×102 3.02×103 6.91×102 9.08×102 6.53×102 6.43×102

Rank 8 5 1 7 4 6 3 2

f(24)
Mean 3.60×103 1.17×103 1.05×103 5.38×102 9.60×102 1.17×103 1.07×103 9.33×102

Rank 8 7 4 1 3 6 5 2

f(25)
Mean 3.27×103 8.19×102 7.99×102 3.66×103 1.07×103 7.68×102 8.15×102 7.48×102

Rank 7 5 3 8 6 2 4 1

f(26)
Mean 8.79×103 9.23×103 4.95×103 4.77×103 2.54×103 5.67×103 4.91×103 1.32×103

Rank 7 8 5 3 2 6 4 1

f(27)
Mean 3.50×103 8.64×102 6.67×102 3.27×103 9.40×102 7.89×102 6.84×102 6.45×102

Rank 8 5 2 7 6 4 3 1

f(28)
Mean 3.37×103 6.09×102 6.18×102 4.13×103 8.57×102 5.87×102 6.38×102 5.71×102

Rank 7 3 4 8 6 2 5 1

f(29)
Mean 2.86×103 2.62×103 1.82×103 2.71×103 2.07×103 2.71×103 1.82×103 1.83×103

Rank 8 5 1 7 4 6 2 3

f(30)
Mean 5.55×103 6.15×103 7.17×103 1.58×106 3.28×104 6.31×103 7.60×103 7.45×103

Rank 1 2 4 8 7 3 6 5
Count 4 0 3 3 4 0 3 12

Average rank 6.36 4.79 3.86 6.14 3.61 6.07 4.07 2.39
Total rank 8 5 3 7 2 6 4 1

 322 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

BLPSO, and BFLPSO is 15, 24, and 19, respectively.
This also indirectly indicates that EEDSPSO
outperforms HCLPSO, BLPSO, and BFLPSO.

From Table 6, the significant differences between
EEDSPSO and HCLPSO, BLPSO, MPSO, DSPSO,
HCLDMSPSO, and BFLPSO are 3.89×10−2,
3.65×10−3, 3.89×10−3, 1.69×10−2, 1.23×10−3, and
6.34×10−4, respectively, which are less than 0.05. This
demonstrates that EEDSPSO is significantly better than
HCLPSO, BLPSO, MPSO, DSPSO, HCLDMSPSO,
and BFLPSO. The number of functions for EEDSPSO
superior to GLPSO is 24. This indicates that EEDSPSO
is far better than GLPSO.

From Table 7, only the significance level between
EEDSPSO and BLPSO is less than 0.05. The positive
ranks between EEDSPSO and HCLPSO, GLPSO,
MPSO, DSPSO, HCLDMSPSO, and BFLPSO are 244,
271, 303, 249, 283, and 285, respectively. The numbers
of functions for EEDSPSO better than HCLPSO,

GLPSO, MPSO, DSPSO, HCLDMSPSO, and
BFLPSO are 18, 21, 23, 18, 20, and 20, respectively.
This clearly indicates the excellent performance of the
EEDSPSO algorithm.

In summary, EEDSPSO uses an adaptive framework
based on evolutionary experience and a Gaussian
crisscross learning strategy, possessing more
significant performance relative to other algorithms.

5 Conclusion

To balance the diversity and convergence of the
algorithm during the iterative process, this paper
proposes an evolutionary experience based multi-
strategy particle swarm optimization algorithm. Firstly,
the neighborhood topology and the elite archival
population are improved using an evolutionary
experience based framework. The improved
neighborhood topology maintains the population’s
diversity well. Furthermore, the elite archive is

Table 5 Wilcoxon sign test in CEC2013 (D=50).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 5.40×10−1 214 163 28/15/1/12
EEDSPSO vs. GLPSO 2.42×10−2 302 104 28/21/0/7
EEDSPSO vs. BLPSO 7.16×10−1 319 187 28/24/0/4
EEDSPSO vs. MPSO 2.69×10−4 363 43 28/21/0/7
EEDSPSO vs. DSPSO 1.98×10−2 286 92 28/17/0/11

EEDSPSO vs. HCLDMSPSO 1.33×10−2 292 86 28/18/0/10
EEDSPSO vs. BFLPSO 4.54×10−1 205 146 28/19/1/8

Table 6 Wilcoxon sign test in CEC2017 (D=50).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 3.89×10−2 313 122 29/24/0/5
EEDSPSO vs. GLPSO 5.57×10−2 306 129 29/24/0/5
EEDSPSO vs. BLPSO 3.65×10−3 310 68 29/21/2/6
EEDSPSO vs. MPSO 3.89×10−3 351 84 29/23/0/6
EEDSPSO vs. DSPSO 1.69×10−2 328 107 29/22/0/7

EEDSPSO vs. HCLDMSPSO 1.23×10−3 367 68 29/26/0/3
EEDSPSO vs. BFLPSO 6.34×10−4 375 59 29/24/0/5

Table 7 Wilcoxon sign test in CEC2017 (D=100).

Comparison p-value R+ R− n/w/t/l
EEDSPSO vs. HCLPSO 5.67×10−1 244 191 29/18/0/11
EEDSPSO vs. GLPSO 2.47×10−1 271 164 29/21/0/8
EEDSPSO vs. BLPSO 2.98×10−2 318 117 29/21/0/8
EEDSPSO vs. MPSO 6.45×10−2 303 132 29/23/0/6
EEDSPSO vs. DSPSO 4.96×10−1 249 186 29/18/0/11

EEDSPSO vs. HCLDMSPSO 6.85×10−2 283 123 29/20/1/8
EEDSPSO vs. BFLPSO 1.44×10−1 285 150 29/20/0/9

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 323

beneficial to the population convergence performance.
And their weight is dynamically changed using
adaptive parameters. In addition, the introduction of a
Gaussian crisscross learning strategy improves the
algorithm’s performance on complex problems.
Finally, experimental results in CEC2013 (D=50) and
CEC2017 (D=50 and 100) show that EEDSPSO
outperforms other popular PSO variants. In more
complex functions such as hybrid and composition
functions, EEDSPSO outperforms other algorithms by
a wide margin. This indicates that EEDSPSO has more
advantages when facing complex functions. And the
average ranking of EEDSPSO in higher dimension
100D is 2.39. The result is further improved relative to
that in 50D, which shows that EEDSPSO is expected to
try to solve optimization problems in higher
dimensions.

In future studies, we will further enhance the
diversity of EEDSPSO to enable the entire population
to perform effective search behavior. More efficient
and novel learning frameworks will be further
investigated. Due to the simple implementation and
efficiency in exploring global solutions of the proposed
algorithm, the solution of many complex problems is
always a hot issue. The study of solving complex
problems will be beneficial to the optimization of
practical applications.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (No. 62066019), Jiangxi
Provincial Education Department Project (No.
GJJ200819), and Doctoral Startup Foundation of
Jiangxi University of Science and Technology (No.
205200100022).

References

 J. Kennedy, Swarm intelligence, in Handbook of Nature-
Inspired and Innovative Computing, A. Y. Zomaya, ed.
New York, NY, USA: Springer, 2006, pp. 187–219.

[1]

 R. Eberhart and J. Kennedy, A new optimizer using
particle swarm theory, in Proc. Sixth Int. Symp. Micro
Machine and Human Science, Nagoya, Japan, 1995, pp.
39–43.

[2]

 W. Li, Y. Chen, Q. Cai, C. Wang, Y. Huang, and S.
Mahmoodi, Dual-stage hybrid learning particle swarm
optimization algorithm for global optimization problems,
Complex System Modeling and Simulation, vol. 2, no. 4,
pp. 288–306, 2022.

[3]

 D. Karaboga and B. Basturk, A powerful and efficient
algorithm for numerical function optimization: Artificial

[4]

bee colony (ABC) algorithm, J. Glob. Optim., vol. 39, no.
3, pp. 459–471, 2007.
 S. Xiao, H. Wang, W. Wang, Z. Huang, X. Zhou, and M.
Xu, Artificial bee colony algorithm based on adaptive
neighborhood search and Gaussian perturbation, Appl. Soft
Comput., vol. 100, p. 106955, 2021.

[5]

 R. Storn and K. Price, Differential evolution—A simple
and efficient heuristic for global optimization over
continuous spaces, J. Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[6]

 W. Li, X. Ye, Y. Huang, and S. Mahmoodi, Adaptive
dimensional learning with a tolerance framework for the
differential evolution algorithm, Complex System
Modeling and Simulation, vol. 2, no. 1, pp. 59–77, 2022.

[7]

 A. Slowik and H. Kwasnicka, Nature inspired methods
and their industry applications—Swarm intelligence
algorithms, IEEE Trans. Ind. Inform., vol. 14, no. 3, pp.
1004–1015, 2018.

[8]

 T. Kerdphol, K. Fuji, Y. Mitani, M. Watanabe, and Y.
Qudaih, Optimization of a battery energy storage system
using particle swarm optimization for stand-alone
microgrids, Int. J. Electr. Power Energy Syst., vol. 81, pp.
32–39, 2016.

[9]

 K. Mahadevan and P. S. Kannan, Comprehensive learning
particle swarm optimization for reactive power dispatch,
Appl. Soft Comput., vol. 10, no. 2, pp. 641–652, 2010.

[10]

 A. N. Hussain, A. A. Abdullah, and O. M. Neda, Modified
particle swarm optimization for solution of reactive power
dispatch, Res. J. Appl. Sci. Eng. Technol., vol. 15, no. 8,
pp. 316–327, 2018.

[11]

 X. -B. Wang, Z. -X. Yang, and X. -A. Yan, Novel particle
swarm optimization-based variational mode
decomposition method for the fault diagnosis of complex
rotating machinery, IEEE/ASME Trans. Mechatron., vol.
23, no. 1, pp. 68–79, 2018.

[12]

 H. Chen, D. L. Fan, L. Fang, W. Huang, J. Huang, C. Cao,
L. Yang, Y. He, and L. Zeng, Particle swarm optimization
algorithm with mutation operator for particle filter noise
reduction in mechanical fault diagnosis, Int. J. Patt.
Recogn. Artif. Intell., vol. 34, no. 10, p. 2058012, 2020.

[13]

 Y. -L. Gao, X. -H. An, and J. -M. Liu, A particle swarm
optimization algorithm with logarithm decreasing inertia
weight and chaos mutation, in Proc. 2008 Int. Conf.
Computational Intelligence and Security, Suzhou, China,
2008, pp. 61–65.

[14]

 Y. Shi and R. C. Eberhart, Parameter selection in particle
swarm optimization, in Proc. 7th Int. Conf. Evolutionary
Programming, San Diego, CA, USA, 1998, pp. 591–600.

[15]

 S. -F. Li and C. -Y. Cheng, Particle swarm optimization
with fitness adjustment parameters, Comput. Ind. Eng.,
vol. 113, pp. 831–841, 2017.

[16]

 M. Karimi-Nasab, M. Modarres, and S. M. Seyedhoseini,
A self-adaptive PSO for joint lot sizing and job shop
scheduling with compressible process times, Appl. Soft
Comput., vol. 27, pp. 137–147, 2015.

[17]

 J. Kennedy and R. Mendes, Population structure and
particle swarm performance, in Proc. 2002 Cong.
Evolutionary Computation CEC’02 (Cat. No. 02TH8600),
Honolulu, HI, USA, 2002, pp. 1671–1676.

[18]

 324 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

 J. Kennedy, Small worlds and mega-minds: Effects of
neighborhood topology on particle swarm performance, in
Proc. 1999 Cong. Evolutionary Computation-CEC99 (Cat.
No. 99TH8406), Washington, DC, USA, 1999, pp.
1931–1938.

[19]

 Y. Shi, H. Liu, L. Gao, and G. Zhang, Cellular particle
swarm optimization, Information Sciences, vol. 181, no.
20, pp. 4460–4493, 2011.

[20]

 X. H. Shi, Y. H. Lu, C. G. Zhou, H. P. Lee, W. Z. Lin, and
Y. C. Liang, Hybrid evolutionary algorithms based on
PSO and GA, in Proc. 2003 Cong. Evolutionary
Computation, Canberra, Australia, 2003, pp. 2393–2399.

[21]

 B. Yang, Y. Chen, and Z. Zhao, A hybrid evolutionary
algorithm by combination of PSO and GA for
unconstrained and constrained optimization problems, in
Proc. 2007 IEEE Int. Conf. Control and Automation,
Guangzhou, China, 2007, pp. 166–170.

[22]

 B. Y. Qu, P. N. Suganthan, and S. Das, A distance-based
locally informed particle swarm model for multimodal
optimization, IEEE Trans. Evol. Comput., vol. 17, no. 3,
pp. 387–402, 2013.

[23]

 L. Wang, B. Yang, and J. Orchard, Particle swarm
optimization using dynamic tournament topology, Appl.
Soft Comput., vol. 48, pp. 584–596, 2016.

[24]

 W. He, W. Gong, L. Wang, X. Yan, and C. Hu, Fuzzy
neighborhood-based differential evolution with orientation
for nonlinear equation systems, Knowl. Based Syst., vol.
182, p. 104796, 2019.

[25]

 W. Li, B. Sun, Y. Huang, and S. Mahmoodi, Adaptive
complex network topology with fitness distance
correlation framework for particle swarm optimization,
Int. J. Intell. Syst., vol. 37, no. 8, pp. 5217–5247, 2022.

[26]

 Y. -H. Zhang, Y. -J. Gong, Y. Gao, H. Wang, and J.
Zhang, Parameter-free voronoi neighborhood for
evolutionary multimodal optimization, IEEE Trans. Evol.
Comput., vol. 24, no. 2, pp. 335–349, 2019.

[27]

 W. Li, Y. Sun, Y. Huang, and J. Yi, An adaptive
differential evolution algorithm using fitness distance
correlation and neighbourhood-based mutation strategy,
Connect. Sci., vol. 34, no. 1, pp. 829–856, 2022.

[28]

 A. Lin, W. Sun, H. Yu, G. Wu, and H. Tang, Adaptive
comprehensive learning particle swarm optimization with
cooperative archive, Appl. Soft Comput., vol. 77, pp.
533–546, 2019.

[29]

 X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y. -L. Zhang, and[30]

Z. -H. Zhan, Triple archives particle swarm optimization,
IEEE Trans. Cybern., vol. 50, no. 12, pp. 4862–4875,
2019.
 B. Wei, X. Xia, F. Yu, Y. Zhang, X. Xu, H. Wu, L. Gui,
and G. He, Multiple adaptive strategies based particle
swarm optimization algorithm, Swarm Evol. Comput., vol.
57, p. 100731, 2020.

[31]

 L. Pan, Y. Zhao, and L. Li, Neighborhood-based particle
swarm optimization with discrete crossover for nonlinear
equation systems, Swarm Evol. Comput., vol. 69, p.
101019, 2022.

[32]

 X. Tao, X. Li, W. Chen, T. Liang, Y. Li, J. Guo, and L. Qi,
Self-adaptive two roles hybrid learning strategies-based
particle swarm optimization, Inf. Sci., vol. 578, pp.
457–481, 2021.

[33]

 X. Chen, H. Tianfield, and W. Du, Bee-foraging learning
particle swarm optimization, Appl. Soft Comput., vol. 102,
p. 107134, 2021.

[34]

 S. Wang, G. Liu, M. Gao, S. Cao, A. Guo, and J. Wang,
Heterogeneous comprehensive learning and dynamic
multi-swarm particle swarm optimizer with two mutation
operators, Inf. Sci., vol. 540, pp. 175–201, 2020.

[35]

 X. Zhang, X. Wang, Q. Kang, and J. Cheng, Differential
mutation and novel social learning particle swarm
optimization algorithm, Inf. Sci., vol. 480, pp. 109–129,
2019.

[36]

 D. Tian and Z. Shi, MPSO: Modified particle swarm
optimization and its applications, Swarm Evol. Comput.,
vol. 41, pp. 49–68, 2018.

[37]

 X. Chen, H. Tianfield, C. Mei, W. Du, and G. Liu,
Biogeography-based learning particle swarm optimization,
Soft Comput., vol. 21, no. 24, pp. 7519–7541, 2017.

[38]

 Y. -J. Gong, J. -J. Li, Y. Zhou, Y. Li, H. S. -H. Chung, Y.
H. Shi, and J. Zhang, Genetic learning particle swarm
optimization, IEEE Trans. Cybern., vol. 46, no. 10, pp.
2277–2290, 2015.

[39]

 N. Lynn and P. N. Suganthan, Heterogeneous
comprehensive learning particle swarm optimization with
enhanced exploration and exploitation, Swarm Evol.
Comput., vol. 24, pp. 11–24, 2015.

[40]

 O. Olorunda and A. P. Engelbrecht, Measuring
exploration/exploitation in particle swarms using swarm
diversity, in Proc. 2008 IEEE Cong. Evolutionary
Computation (IEEE World Cong. Computational
Intelligence), Hong Kong, China, 2008, pp. 1128–1134.

[41]

Jianghui Jing received the BEng degree
from Zhongyuan University of Science and
Technology in 2021. He is currently
pursuing the master degree at the School of
Information Engineering, Jiangxi
University of Science and Technology. His
current research interests are evolutionary
optimization, evolutionary state estimation,

and evolutionary strategy design.

Yangtao Chen received the BEng degree
from Jiangxi University of Science and
Technology in 2020. He is currently
pursuing the master degree at the School of
Information Engineering, Jiangxi
University of Science and Technology. His
main research interest is particle swarm
optimization algorithm and multi-objective

evolutionary algorithm.

 Wei Li et al.: Evolutionary Experience-Driven Particle Swarm Optimization with Dynamic Searching 325

Wei Li received the PhD degree from
South China Agricultural University in
2018, the MEng degree in computer
application technology from Jiangxi
University of Science and Technology in
2008, and the BEng degree in computer
science and technology from Jiangxi
University of Science and Technology in

2003. He is currently an associate professor at the School of
Information Engineering, Jiangxi University of Science and
Technology. He has over 30 papers published in fully refereed
international journals and conferences and has served as the
program chair or program committee member in many
international conferences. His research focuses mainly on
computational intelligence, evolutionary optimization, fitness
landscape analysis, and large-scale optimization.

Xunjun Chen received the PhD degree in
computer application technology from
Hohai University in 2018. He is currently
working at the School of Information
Engineering, Jiangxi University of Science
and Technology. His research interests
include computational intelligence,
machine learning security, and privacy

computing.

Ata Jahangir Moshayedi received the
PhD degree in electronic science in the
field of mobile olfaction from Savitribai
Phule Pune University, Pune, India in
2015. He is an associate professor at
Jiangxi University of Science and
Technology, China. He is a member of
IEEE, ACM, and International Association

of Engineers (IAENG). He is a life member of Instrument
Society of India and Speed Society of India. He is a member of
the editorial team of various conferences and journals like
International Journal of Robotics and Control, Bulletin of
Electrical Engineering and Informatics, International Journal of
Physics and Robotics Applied Electronics, etc. He published
various papers in national journals and conferences and three
books. He is the owner of 2 patents and nine copyrights. His
research interests include robotics and automation, sensor
modeling, biology-inspired robots, mobile robot olfaction,
column tracking, embedded systems, machine vision-based
systems, virtual reality, machine vision, and artificial
intelligence.

 326 Complex System Modeling and Simulation, December 2023, 3(4): 307−326

