

Towards Efficient Robotic Software Development by Reusing
Behavior Tree Structures for Task Planning Paradigms

Shuo Yang and Qi Zhang*

Abstract: Nowadays, autonomous robots are expected to accomplish more complex tasks and operate in an

open-world environment with uncertainties. Developing software for such robots involves the design of task

planning paradigms and the implementation of robotic software architectures, making software development

rather tricky and time-consuming. In recent decades, component-based software development approaches

have been increasingly adopted in robotics to improve software development efficiency by reusing data and

controlling flows between components. However, few works have tackled the more critical issue of reusing

complex high-level task planning paradigms and robotic software architectures. To make up for the limitation,

this paper first identifies the mainstream task planning paradigms and proposes a set of novel patterns for

interaction pipelines between the robotic functions of sensing, planning, and acting. Then this paper presents a

novel Behavior Tree (BT) based development framework Structural-BT, which provides a set of reusable BT

structures that implement abstract interaction pipelines while maintaining interfaces for task-specific

customization. The Structural-BT framework supports the modular design of structure functionalities and allows

easy extensibility of the inner planning flows between BT components. With the Structural-BT framework,

software engineers can develop robotic software by flexibly composing BT structures to formulate the skeleton

software architecture and implement task-specific algorithms when necessary. In the experiment, this paper

develops robotic software for diverse task scenarios and selects the baseline approaches of Robot Operating

System (ROS) and classical BT development frameworks for comparison. By quantitatively measuring the

reuse frequencies and ratios of BT structures, the Structural-BT framework has been shown to be more

efficient than the baseline approaches for robotic software development.

Key words: robotic software modeling and development; software architecture; task planning paradigm; behavior tree

modeling

1 Introduction

Autonomous robots have been playing an increasingly
important role in the open-world human society,

accomplishing various challenging tasks such as field
exploration, remote transportation, and domestic
service. Open-world environments commonly feature
state dynamics and perception uncertainties, making it
much more difficult for autonomous robots to achieve
the tasks successfully. The increasing complexity of
robot task requirements and environmental
uncertainties makes developing the underlying
autonomous robot software cumbersome, which has
drawn much attention from both robotics and software
engineering communities[1].

Autonomous robot software, commonly conceived as

 Shuo Yang and Qi Zhang are with the College of Systems

Engineering, National University of Defense Technology,
Changsha 410072, China. E-mail: zhangqiy123@nudt.edu.cn.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Wenyin

Gong.
 Manuscript received: 2023-04-21; revised: 2023-06-25;

accepted: 2023-07-22

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 06/06 pp 357−380
Volume 3, Number 4, December 2023
DOI: 10 .23919 /CSMS.2023 .0017

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

the medium to embody intelligence and deployed upon
the robotic hardware[2, 3], plays a critical role in making
high-level plans for achieving tasks and driving
hardware devices for concrete plan execution. The
software generally consists of an abstract layer that
regulates a high-level task planning paradigm for task
achievement, and a concrete layer that architects
interaction pipelines between concrete software
components in the software architecture. The abstract
layer establishes the high-level task planning paradigm
that specifies how the computational functions of
planning, sensing, and acting interact to make up task
plans. Different robotic tasks require diverse different
task planning paradigms under specific environmental
assumptions. Robot software development must decide
the top-level task planning paradigm based on specific
tasks and environment characteristics. The concrete
layer maintains a styled software architecture that
specifies how software is divided into different
functional software components and how the data,
planning, and controlling flows run through these
components. The task planning paradigm and robot
software architecture are closely interconnected and
mutually influenced. On one side, the abstract task
planning paradigm generally decides the design choice
of underlying software architecture. Conversely, the
robotic software architecture is commonly regarded as
the concrete implementation solutions regarding the
components’ organizational structures that support the
high-level task planning paradigms. Software
developers must make an integral architecture decision
and make trade-offs when necessary[4]. In this sense,
the development of autonomous robot software needs
to integrally consider the designs of the above two
layers for both the algorithmic achievements of task
goal and architectural structure of software
components[5].

The autonomous robot software, commonly
conceived as a complex cyber-physical system,
urgently requires effective modeling and development
approaches for efficient development[6]. In the past few
decades, developing autonomous robotic software has
long been recognized as a challenging issue for both
robotic researchers and software engineers[3, 7, 8],
especially for software in open-world environments.
More specifically, there are three main challenges to
current robotic software development practices. Firstly,
developing task planning paradigms highly depends on
developers’ expertise and experiences due to the need

for clearly specified design patterns. Different robotic
tasks may feature the same tasks and environments,
whose software development may require similar
patterns of task planning paradigms. Software
engineers’ primary and challenging step is identifying
and recognizing specific patterns for task planning
paradigms[9, 10]. Secondly, current robotic software
architectures’ reuse granularity must be improved for
high-level decision-making schemes. Existing robotic
software architectures mainly provide basic reusable
interfaces for data communications without considering
complex controlling and planning flows between
software components, resulting in low levels of
software reuse in robotics. Thirdly, the robotic
community still lacks an integral solution for robotic
software development. Robotic software development
needs to holistically consider the design choices of
high-level task planning paradigms and concrete
software architecture. The two layers of autonomous
robot software are closely interconnected and
influenced, which requires software engineers to take
an integrated development solution to maintain layer
consistency.

The challenges above have jointly lowered the
efficiency of robotic software development, making
such systems rather tricky and time-consuming to
construct. To enable efficient robotic software
development, this paper presents a novel component-
based software development framework Structural-BT
that increases the reuse granularity from component
level to structure level. Generally, the main
contributions of the Structural-BT framework are three-
fold.

● Abstract paradigm patterns for design
reusability. This framework formalizes the mainstream
task planning paradigms and develops a set of reusable
patterns regarding the interaction pipelines between
sensing, planning, and acting functions. It is perhaps
the first time these highly abstract paradigms are
concretely formalized and decomposed. It would be
much easier for software engineers to design high-level
decision-making schemes by flexibly synthesizing the
paradigm patterns. Structural-BT has been the first
robotic component framework that enables design
reusability of the high-level task planning paradigms,
which greatly improves the reuse granularity from
component to structure level.

● Concrete BT structures for implementation
reusability. The framework provides a set of reusable

 358 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

BT structures based on behavior tree components for
robotic software architecture implementation, with
each BT structure embedding the concrete algorithmic
implementation of interaction schemes. Software
engineers can efficiently implement the robotic
software architectures by flexibly composing the
concrete reusable BT structures and making
customized task-specific modifications.

● Validated efficiency of robot software
development. This paper has preliminarily validated
the feasibility of paradigm-level reuse in robotic
software development. The experiment results have
proved the improved efficiency of robotic software
development with Structural BT by comparing the
reusability performance with Robot Operating System
(ROS) and classical BT baseline approaches, two of the
most popular robotic component based development
frameworks.

2 Related Work

In recent years, robotic experts and software
engineering researchers have made joint efforts to
minimize robotic software development complexity
and improve efficiency by introducing a set of practical
software engineering techniques into robotics,
including component-based[11, 12], model-driven[13, 14],
and service-oriented[15] approaches. Notably,
component-based software engineering has become
one of the most popular and widely acknowledged
approaches in robotics, which shifts the emphasis of
robotic software development from traditional ad-hoc
analysis and programming to composing existing
reusable components[2]. In this section, we review
existing component-based works and discuss the
limitations of software reuse in robotic software
development.

In the past few decades, the Robot Operating System
(ROS) framework has been recognized as one of the
most popular component-based software development
frameworks in robotics[11, 16, 17]. It creatively solves
heterogeneity by reusing software components and
robotic algorithms across diverse robotic hardware
platforms, establishing the defacto software
development standard in robotic communities. The
ROS framework proposes the ROS node component,
which wraps the remote communication schemes of
“topic” and “service” as node infrastructures,
facilitating easy reuse of communication-related code
snippets. With standardized communication interfaces

and independent node functionalities, robotic software
can be quickly developed by composing a set of
functional ROS nodes without much effort in
programming the data communication codes. For
example, Xin et al.[18] utilized the ROS node
components and its distributed architecture for
implementing the distributed model predictive control
of multi-robot systems.

Recently, the Behavior Tree (BT)[19–21] framework
has been newly introduced into robotics as another
promising component-based development approach.
The BT framework has provided a set of functional BT
node components, including internal control flow
nodes encapsulating the common control logics of
sequential, parallel, and fallback, and external
execution nodes that abstract the durative robotic
acting action and instantaneous condition node.
Technically, BT robotic software is built by composing
diverse types of BT nodes. The BT framework enables
good modular design on all scales ranging from the
topmost subtree structures to all tree leaf nodes. The
BT framework has gained popularity in robotics due to
its enhanced reusability of common controlling logic in
the control flow nodes, as most robotic software needs
to handle the implementation of the common
controlling logic. The BT framework has increased the
level of reusability beyond that of the ROS framework
by encapsulating and reusing the robotic controlling
schemes, not just inter-node data communication
channels. Many works are introducing the BT
framework into robotics. In Ref. [21], Kuckling et al.
explored the possibility of adopting behavior trees as
an architecture for the control software of robot
swarms. They introduced Maple’s automatic design
method to combine preexisting modules into behavior
trees. In Ref. [22], Woolley and Peterson presented a
unified behavior tree software framework representing
five famous behavior-based control structures. The
unified behavior tree framework (1) eases the
complexity of development and testing; (2) promotes
code reuse; (3) supports designs that scale quickly into
large hierarchies of focused base behaviors, and (4)
allows system developers with the freedom to use the
architectures that function the best. In Ref. [23], Yang
et al. utilized BT components to implement an adjoint
observation scheme by proposing parallel and fallback
BT tree structures. The authors extended BT control
nodes with an online planning component and mutual
data store mechanism, enabling continuous planning

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 359

and efficient data communication between robotic
sensing and actuating processes.

Besides the two well-known component frameworks
above, robotic software engineers have proposed
different component models for robotic software
development. For example, in Ref. [24], Cassou et al.
proposed a new notion of interaction contracts that
specify the allowed interactions between components
for developing Sense-Compute-Control (SCC)
application software. SCC robotic software systems
can be designed and implemented by an architectural
pattern that includes four components (sensors, context
operators, control operators, and actuators) and the
reuse of interaction contracts. Experiments show that
interaction contracts significantly improve program
size, execution coverage, and code quality. In Ref.
[25], Bruyninckx et al. developed methods and tools in
the BRICS project to design, configure, and compose
stable robotic software architectures. Each functional
sub-system is designed as a software product line
whose architecture explicitly models software variation
points and variants.

As can be analyzed, both the ROS and classical BT
frameworks have shown limitations in meeting the
three challenges above, which leaves the research gap
in efficient robotic software development. Firstly,
neither ROS nor the classical BT framework offers the
easy-to-follow design patterns of robotic software
architecture, with only essential node models and
communication mechanisms provided. Secondly, both
frameworks have limited the reusability level to node-
level or control unit-level, without basic reusable
infrastructures for higher-level robotic decision-making
paradigms. Thirdly, the above works have rarely
proposed the reusability concepts integrally from the
full cycle of software design to software
implementation, with most works concerning on partial
phase of robotic software development.

3 Structural-BT Development Framework

The Structural-BT software development framework
aims to improve robotic software development
efficiency by presenting the conceptual reuse design of
task planning paradigms and providing a set of
concrete reusable BT structures. In this section, we first
illustrate our insights on the hierarchical abstraction of
robotic software development procedures, which
explicitly specifies the abstract layer of decision-
making logic and a concrete layer of architecture

design for the first time. Then we illustrate the design
motivation of structural-reuse setting in the Structural-
BT framework. The following two sections present the
technical details regarding the task planning paradigms
abstraction and reusable BT structures development.

3.1 Insights on robotic software development

As previously discussed, the robotic software can be
explicitly abstracted and decomposed into two
interconnected layers to separate concerns. In this
paper, we propose that robotic software development
should be handled in a multi-phase workflow that
separates the abstract paradigm design from the
concrete architecture implementation, which helps to
reduce the overall complexity of software development
and offers a systematic engineering solution. The
current robotic software engineering practices treat
software development as a miscellaneous and ad-hoc
coding process for achieving the task requirements
without recognizing the diverse layers of software
concerns. Such an intuitive development style may be
inefficient for complex robotic software with
deliberative task requirements and environmental
uncertainties as the design complexity and difficulty of
task planning paradigms and software architectures
increase rapidly. Therefore, the Structural-BT
framework dedicates to tackling the following two
issues:

● Ad-hoc design of task planning paradigm. The
interaction design for each computational function in a
task planning paradigm is essentially ad-hoc and
cumbersome. The current software engineering
approaches require the developer to manually design
the interaction pipelines (sensing-planning, planning-
acting, and sensing-acting) and construct the software
prototype mostly based on their expertise. There are no
fixed or reusable interaction patterns provided for
novice developers. It may be difficult for novice
developers to decide on a suitable task planning
paradigm quickly, so they usually fail to reuse existing
good designs from other software products.

● Inadequate reusability level of robotic software
architecture. Reusable designs in existing robotic
software architectures (such as ROS and BT) are
generally limited to the data and controlling logic level
without considering the more complex task planning
logic, making developing task planning loops in robotic
software difficult and cumbersome. Software
developers can reuse the ROS topic/service remote
communication schemes in their ROS-based software

 360 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

architecture without manually developing the
component communication channels. However,
software developers program the controlling and
planning flow in these node components without
reusing existing solutions, which generally requires
much development effort.

3.2 Motivation of Structural-BT framework
design

Motivated by the above goals, the design of the
Structural-BT framework dedicates to improving the
software reuse granularity from the current component
level to the structure level, which expects to reduce the
design complexity and improve software development
efficiency. Figure 1 presents the design of the
Structural-BT framework for structure-level software
reuse. The core reuse design of the Structural-BT
framework adopts a “decompose-realize-compose”
process, with each step explained as follows:

● Decompose. This step decomposes the current
mainstream robotic task planning paradigms into
fundamental paradigm baselines. By abstracting and
decomposing the critical functions of these paradigms,
we can recognize some commonly used functions and
their interaction patterns, which resolves the ad-hoc
design issue of task planning paradigms. In the
Structural-BT framework, we have acquired three
general patterns of interaction pipelines (Sensing &
Planning, Sensing & Acting, and Planning & Acting)
between the critical sensing, planning, and acting
functions, which could be further reused for developers
to design customized task planning paradigms for any
robotic tasks.

● Realize. After identifying the above abstract
interaction patterns, we propose to realize them as
concrete software artifacts so that the identified
paradigm patterns can be practically reused. Our
approach uses the behavior tree component framework
to represent and realize them as a set of reusable
behavior tree structures.

● Compose. the reusable behavior tree structures
implemented with standardized composable interfaces
also allow easy algorithmic customization in task-
relevant behavior tree components. The developer
could easily compose one or several reusable structures
in this setting to produce a preliminary and prototypical
robotic software architecture. The “Realize” and
“Compose” steps have jointly improved the reusability
level from the component-level to the structure-level,
which resolves the second reusability issue of robotic
software architecture.

4 Abstraction of Task Planning Paradigms

In this section, we identify existing mainstream task
planning paradigms in robotics and explore how to
reuse these abstract paradigms in robotic software
development. We first identify the paradigms from
existing literature and open-sourced robotic software
projects. Then we establish the symbolic representation
of each computational function and its interaction
pipelines to synthesize fixed interaction patterns in
these paradigms. Finally, we validate the feasibility and
applicability of the proposed interaction patterns by
illustrating the composition algorithms that formulate
the existing task planning paradigms in robotic

Task planning
paradigm A Sensing & Planning Reusable BT structure of

S&P interaction

Sensing & Acting

Planning & Acting

Reusable BT structure of
S&A interaction

Reusable BT structure of
P&A interaction

Robotic software
architecture D

Robotic software
architecture E

Robotic software
architecture F

Decompose

Realize

Other functions

Other functions

Other BT functional
components

Other BT functional
components

Compose

Task planning
paradigm B

…

Task planning
paradigm N

Fig. 1 Overview of structure-level reuse design in the Structural-BT framework.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 361

software development.

4.1 Mainstream task planning paradigms

We obtained a set of influential research papers in
robotics and software engineering disciplines and 25
popular robotic software projects from the open-source
GitHub repositories to identify the mainstream task
planning paradigms in robotics. To obtain as many
resources as possible, we used the following search
strings to collect the academic papers and projects:
robot task planning and robot planning (control
paradigm or control loop or task planning algorithm) in
the Google Scholar search engine. The collected
academic papers[9, 26–30] and software projects generally
have highly significant effects and have gained much
popularity within the robotic community, so they serve
as reliable foundations for our analysis results. We
have extracted five mainstream robotic task planning
paradigms: hierarchical, reactive, hybrid, and
online/offline probabilistic. Figures 2−6 have
graphically illustrated the interaction pipelines between
the sensing, planning, and acting functions for the five
paradigms.

The hierarchical planning paradigm[28], called the
sense-plan-act paradigm, maintains sequential
interaction pipelines. The sensing function first senses
the environment and sends sensor-based knowledge
(domain model) to the planning function. Then the
planning function outputs the task plan to the acting
function for execution. In this paradigm, three
computational functions decompose the task planning
problem into vertical slices, making the information
flow from the environment via the sensing function and
back to the environment via the acting function. The
hierarchical planning paradigm establishes the closed

feedback loop and effectively solves robotic tasks in
static and fully observable environments. Figure 2
graphically depicts the hierarchical decomposition of
the three functions and the sequential information flow.

The reactive planning paradigm is one of the most
effective planning solutions for robotic tasks in
dynamic environments, which is popular in robotic
software with real-time requirements[29]. This paradigm
implements a direct input/output interaction pipeline

Robot hardware platform

Sensing ActingPlanning

Environment

Sensor Actuator

Sensory data Low-level
command

Knowledge Task plan

Hierarchical decomposition

Fig. 2 Interaction pipeline of the hierarchical planning
paradigm.

Sensor 3

Robot hardware platform

Sensing 1 Acting 1

Sensing 2 Acting 2

Sensing 3 Acting 3

Environment

Sensor 1

Arbitration
scheme

Actuator 2 Actuator 1
Actuator 3

Sensor 2

Fig. 3 Interaction pipeline of the reactive planning
paradigm.

Robot hardware platform

Sensing ActingPlanning

Environment

Sensor 1

Sensory data

Knowledge Task plan

Sensing Acting with
higher priority

Arbitration
scheme

Low-level command

Event

Actuator 1Sensor 2
Reactive layer

Deliberative layer

Actuator 2

Fig. 4 Interaction pipeline of the hybrid planning paradigm.

 362 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

from the sensing function to the acting function without
intermediate computational functions for long-term
deliberation. The sensing function receives sensory
data from robot sensor devices and triggers the
corresponding acting functions to handle the events
based on pre-defined rules. Multiple sensing-acting
interaction pipelines can be hierarchically organized,
with each pipeline running at a specific priority level
and being scheduled by user-specified arbitration
schemes. This paradigm supports strongly reactive
robot software that quickly responds to dynamic
environment changes. Figure 3 presents a graphical
representation of the multiple pipelines of direct
interactions between sensing and acting functions in
the reactive planning paradigm.

The hybrid planning paradigm[9, 28], also known as
the layered planning paradigm, goes a step further to
integrally consider both the goal deliberation and event
reaction requirements of robotic tasks. This paradigm
combines the hierarchical paradigm’s deliberative
planning capability and the reactive paradigm’s strong
reactivity. In this paradigm, the deliberative layer
implements high-level deliberation by maintaining the
typical sense-plan-act interaction pipeline that makes a

deliberative task plan based on internal domain models.
The reactive layer implements the reactive pipeline that
directly couples sensory information from the sensing
function to the acting function, allowing the robot to
cope reactively with environment dynamics while
making high-level task plans.

The probabilistic planning paradigms have been
widely known for making robust plans in open-
world environments with uncertain acting and
perception[26, 27, 31]. The paradigms have utilized
probabilistic planning models (such as Markov
Decision Process (MDP) and Partially Observable
Markov Decision Process (POMDP)) to model non-
deterministic acting effects and partially observable
perception results, enabling the robot task plan to be
robust in any possible environment. Specifically, two
probabilistic planning paradigms maintain offline and
online planning pipelines for diverse environmental
conditions.

The offline probabilistic planning paradigm suits
robotic tasks under partially known environment states.
The planning function receives initial domain
knowledge from the sensing function and creates a
complete task plan. The task plan has a contingent
structure that contains sensing action operators for
checking runtime environment conditions and acting
action operators for changing environment states. The
complete task plan gets executed and receives runtime
observations and feedback from each dispatched
action. The offline paradigm deals with the
uncertainties of environment states by dynamically
switching to the proper contingent branch based on the
runtime observations from the sensing actions. Figure 5
depicts the offline paradigm’s interaction pipeline and
iterative plan dispatching process.

Unlike the offline paradigm, the online probabilistic
planning paradigm makes a one-step action at each
planning step. It iteratively performs the planning
function until the task goal is finally achieved. The
online paradigm repetitively performs the “sensing-
planning-acting” interaction pipeline: the sensing
function sends real-time observation results to the
planning function, and the planning function computes
the currently optimal action and sends it to the acting
function for acting. This paradigm makes no complete
plan at the initial stage. Instead, it incrementally
outputs one-step actions at each planning step after
receiving a new observation. Due to its real-time
sensing and planning capabilities, the online paradigm

Planning

Robot hardware platform

Environment

Sensor Actuator

Sensing Acting

Sensory data

Dispatcher

Low-level command

Knowledge
Complete
task plan

Observation Feedback
Action

Sensing

Fig. 5 Interaction pipeline of the offline probabilistic
planning paradigm.

Sensory
data

Robot hardware platform

ActingPlanning

Environment

Sensor Actuator

Initial domain
knowledge

One-step
action

Low-level
command

Sensing

Sensing

Real-time
observation

Sensor Actuator

Fig. 6 Interaction pipeline of the online probabilistic
planning paradigm.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 363

enables robust task achievement under possible
environmental changes. Figure 6 presents the online
paradigm’s repetitive interaction pipeline of “sensing-
planning-acting”.

4.2 Common patterns of sensing, planning, and
acting

In this section, we look deeper into the interaction
pipelines of the above task planning paradigms and
explore the common interaction patterns between these
computational functions. We first formalize the critical
concepts and functions of task planning paradigms and
then propose a set of common interaction patterns for
reuse in software prototype design.
4.2.1 Concept and definition

Σ = ⟨S ,A,Z, fs, fp, fa⟩ S
A

Z
fs fp fa

Definition 1 (Task planning paradigm)　A common
task planning paradigm contains a set of critical
domain concepts and the computational functions of
sensing, planning, and acting. We define a basic
paradigm as a tuple where is
the set of all the environment states, is the set of all
possible actions, and is the set of all possible
observations. , , and represent the computation
functions of sensing, planning, and acting, respectively.

st ∈ S

t zt ∈ Z

st st

zt t

Definition 2 (State and observation)　 A state
 is a description of the properties and status of

various objects in the robot’s situated environment at
time step . An observation is the sensed
knowledge based on the raw sensing readings from the
sensors at the state . This paper describes the state
and observation at time step as a set of ground
atoms.

as = ⟨τ,υ⟩ τ

τ

υ

Definition 3 (Action)　 An action operator
represents the behaviors of a robotic sensor or actuator
device. In the view of robotic software, a sensor device
(such as a camera or laser sensor) senses the
environment and receives environmental information.
The operation of a sensor device does not change the
environmental state. However, an actuator device (such
as an arm or move base) changes the environment
states by its operation effects but receives no sensory
information. Based on this characteristic, we abstract
two types of action operators: sensing actions and
actuating actions. Formally, a sensing action operator is
a tuple , where is the target to be sensed.
The sensing target may either be an environmental
object that needs to be recognized or an environmental
condition that needs to be observed. represents the
received observation after action execution. An

aa = ⟨ϖ,ϵ⟩
ϖ

ϵ

actuating action operator is a tuple , where
 is the precondition that makes the action applicable

to execute, and represents the effects of the actuating
action.

Π

Π = ⟨I,G,K⟩

Definition 4 (Planning task)　 A robotic task
generally requires a robot to fulfill a specific goal from
the initial state. We define a planning task as

, in which:
I = st t● is the environment state at initial time step ;
G = st′ t′● is the goal environment state at time step ;
K = ⟨zt,A⟩

zt st

A

● is the initially sensed domain-specific
knowledge regarding the initial environment state
and the set of available actions that the robot can
operate.

∆

∆ = {a0,a1, . . . ,an} ai as

aa ∆

Π I
∆−→G

∆

I
G

A task plan is a generous concept that refers to the
output from the planning function, which can be
defined as an ordered set of action operators

, where may either be a sensing
or actuating action operator. A task plan for a
planning task can be formalized as ,
representing that the plan is capable of transitioning
the environment from the initial state to the goal
state .

fp

Π = ⟨I,G,K⟩ ∆

fp

Definition 5 (Planning function)　 The planning
function is the process that solves a planning task

 by making up a valid task plan . We
formalize the planning function as

fp(Π) =

∆, I
∆−→G;

failure, otherwise.

fa aa

aa

t st

fa

Definition 6 (Acting function)　The acting function
 is dedicated to executing an actuating action ,

which transitions the environment state with the action
effects. Assume the robot needs to execute action at
 on the current environment state , the acting

function goes as follows:

fa(st,aa) = st+1 = st ∪aa(ϵ), st |= aa(ϖ).

st

aa(ϖ)
st+1

aa(ϵ) st

When current state satisfies the action
precondition , the resulting environment state

 is then formulated by merging the action effects
 with state .

fs

as as(τ)
st zt

zt

st

Definition 7 (Sensing function)　 The sensing
function is the process of executing a sensing action

 that aims to sense the target based on the
current environment state and receives observation
after execution. Notably, the observation may be
either the complete or partial sensed knowledge upon
the state depending on the full or partial

 364 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

observability of environment states. The function can
be defined as

fs(st,as) = as(υ) = zt (1)
4.2.2 Interaction pipelines between functions
The above concepts and definitions have described the
independent functionalities of sensing, planning, and
acting functions. In this section, we examine the
standard interaction pipelines between these functions,
which helps decompose the complex task planning
paradigms into a set of reusable interaction patterns.

κ = ⟨ f1, f2,D,T ⟩

Definition 8 (Interaction pipeline)　An interaction
pipeline is essentially the information flow between
two computational functions. The information flows
between different functions are generally diverse
regarding the information types and temporal features.
We first define a basic interaction pipeline as the tuple

, and these elements are explained as
follows:

D = f1→ f2| f1← f2

f1 f2

● , which indicates the
information flow is initially generated from/to the
computational function to/from .

T = f1⊖ f2| f1⊚ f2 f1
f2 ⊖ ⊚

● , indicating that function
interacts with at one-shot () or periodical ()
temporal styles.

κsp fs

fp

fs→ fp

⊖
⊚

Definition 9 (S-P interaction pipeline)　 The
interaction pipeline between the sensing and
planning function is aimed at formulating sensed
domain knowledge based on sensory information and
making valid task plan based on the knowledge. In the
pipeline, the information flows from the sensing
function to the planning function, sending the received
observation and knowledge as the planning input
(). In the paradigms above, the interaction
pipeline between sensing and planning functions is
either one-shot () in the hierarchical paradigm or
periodically () in the online probabilistic paradigm. In
this case, the S-P interaction pipeline can be expressed
as follows:

κsp = ⟨ fs, fp, fs→ fp, fs⊖ fp| fs⊚ fp⟩.

κsa fs

fa

fs→ fa

Definition 10 (S-A interaction pipeline)　 The
interaction pipeline between the sensing and
acting function aims to react to unexpected
environmental changes by continually receiving the
real-time sensory information and sending it to the
acting function for quick response. In this pipeline, the
sensory information flows directly from the sensing
function to the acting function without passing through
any deliberative planning functions (). The

reactive planning paradigm consists of a collection of
prioritized sensing-acting interaction pipelines,
requiring these pipelines to run periodically to make
the robot robust to any environmental changes. The S-
A interaction pipeline can thus be described as follows:

κsa = ⟨ fs, fa, fs→ fa, fs⊚ fa⟩.

κpas

κpa

fa

κpas

fa fs

κpa κpas

Definition 11 (P-A/S interaction pipeline)　 The
interaction pipeline handles the issue of how to
dispatch and execute a compete task plan. In the above
paradigms, a complete task plan may have diverse
structures, including a deterministic plan that contains a
sequentially ordered set of actuating actions, and a non-
deterministic plan that contains both sensing and
actuating actions in a contingently branched structure.
The above plans generally require a continuous and
iterative loop of action dispatching and feedback until
the task plan is executed completely. Notably, a
deterministic plan generally requires the interaction
pipeline in which the actuating actions in the plan
are dispatched to the acting function and return the
execution status. The non-deterministic plan requires
the interaction pipeline in which both actuating
and sensing actions of the plan are dispatched to the
acting and sensing functions, respectively. The
sensing action returns the observation, and the task
plan switches to the corresponding actuating action
branch accordingly. In these cases, both interaction
pipelines and need to work periodically. The
task plan information always flows from the planning
function’s output to the input of the acting/sensing
function. Therefore, the P-A/S interaction pipelines can
be expressed as follows:

κpa = ⟨ fp, fa, fp→ fa, fp⊚ fa⟩,
κpas = ⟨ fp, fa/ fs, fp→ fa/ fs, fp⊚ fa/ fs⟩.

4.3 Composition of interaction pipelines

The sections above have formalized the computational
functions and abstracted a set of common interaction
pipelines between these functions. In this section, we
compose the proposed interaction pipelines to
formulate the above mainstream task planning
paradigms to check the reasonability and reusability of
these common interaction pipelines.
4.3.1 Hierarchical planning paradigm
As illustrated in Fig. 2, the hierarchical planning
paradigm features the sequential execution of sensing,
planning, and acting. This paradigm assumes a static
environment and performs one-shot planning. The
planning function makes a complete task plan

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 365

consisting of a set of ordered action operators, which
must be continuously dispatched until the last action
operator gets executed. Based on the above features,
the algorithmic description of the hierarchical planning
paradigm is shown in Algorithm 1.
4.3.2 Reactive planning paradigm
The reactive planning paradigm, as shown in Fig. 3, is
hierarchically organized by a collection of prioritized
interaction pipelines of sensing-acting. Each interaction
pipeline senses a specific environmental state and
specifies a fast-responding action to handle the possible
state changes. The paradigm maintains an arbitration
scheme to prioritize these pipelines to express the
significance of different state changes. The algorithmic
description of the reactive planning paradigm is
illustrated in Algorithm 2.
4.3.3 Hybrid planning paradigm
The hybrid planning paradigm, as shown in Fig. 4,
combines the advantages of hierarchical and reactive
paradigms by integrally maintaining two layers of
sensing, planning, and acting interaction pipelines. The
sensing functions formulate domain knowledge and
real-time sensory events to the planning and acting
functions, allowing for time-consuming deliberation on
task plans and fast reactions to environmental changes.
As long as the task plan has not finished execution, the
set of sensing-acting interaction pipelines is kept
running along with the task plan process and can be
triggered according to pre-defined priorities. When
some environment condition is detected as unsafe, the
task plan will be terminated, and the corresponding

sensing-acting pipeline outputs a reactive action for
fast response based on user-defined reactive rules. The
procedural algorithm of the hybrid paradigm can be
jointly described based on the above two algorithmic
descriptions in Algorithm 3.
4.3.4 Offline probabilistic planning paradigm
The offline probabilistic planning paradigm is similar
to the hierarchical paradigm in performing one-shot
planning for a complete task plan. However, the offline
probabilistic task plan features a different contingent
branched structure than the sequentially ordered
structure of the hierarchical task plan, which contains
both sensing and actuating action operators. The
contingently branched task plan requires the periodic
dispatching and feedback of each executed sensing and
actuating action operator, whose plan execution results
closely depend on the external environment states and
the observations from sensing action operators. Based
on these features, the algorithmic description of the
offline probabilistic paradigm is shown in Algorithm 4.
4.3.5 Online probabilistic planning paradigm
Unlike the above paradigms that comprise the complete
task plan, the online probabilistic planning paradigm
performs periodic planning and outputs a one-shot
action operator for each planning step. As shown in

Algorithm 1　Composition algorithm for the hierarchical
planning paradigm

fs(I,as) = K1:
Π = ⟨K, I,G⟩2:

κsp : fs
Π−→ fp, fs ⊖ fp3:

fp(Π) = ∆4:

κpa : fp
∆−→ fa, fp ⊚ fa5:

Algorithm 2　Composition algorithm for the reactive
planning paradigm

fs0 (st,as0) = zt,Rule(st,zt) = aa0 , fa0 (st,aa0)1:
κsa0 : fs0 → fa0 , fs0 ⊚ fa02:
fs1 (st′ ,as1) = zt′ ,Rule(st′ ,zt′) = aa1 , fa1 (st′ ,aa1)3:
κsa1 : fs1 → fa1 , fs1 ⊚ fa14:

5:...

κsan : fsn → fan , fsn ⊚ fan6:
(κsa0 , κsa1 , ..., κsan)7: Prioritize

Algorithm 3　Composition algorithm for the hybrid
planning paradigm

fs(I,as) = K1:
Π = ⟨I,G,K⟩2:

κsp : fs
Π−→ fp, fs ⊖ fp3:

fp(Π) = ∆4:

κpa : fp
∆−→ fa, fp ⊚ fa5:
κpa6: while has not finished do

κsa0 , κsa1 , ..., κsan7: Parallelize ()
(κsa0 , κsa1 , ..., κsan)8: Prioritize
κsai9: if some has detected a state change then

fa(∆)10: Terminate ()
κsai : fsi → fai , fsi ⊚ fai11:

12: end if
13: end while

Algorithm 4　Composition algorithm for the offline
probabilistic planning paradigm

fs(I,as) = K1:
Π = ⟨I,G,K⟩2:

κsp : fs
Π−→ fp, fs ⊖ fp3:

fp(Π) = ∆4:

κpas : fp
∆−→ fa/ fs, fp ⊚ fa/ fs5:

 366 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

Fig. 6, the sensing functions produce initial domain
knowledge for the planning function to compute the
first best action operator. After executing the action in
the acting function, the sensing functions obtain a real-
time observation and send it to the planning function
for next-step planning. The interaction pipelines of
sensing-planning-acting keep running periodically until
the robot finally achieves the goal. The algorithmic
description of this paradigm is in Algorithm 5.

5 Reusable Behavior Tree Structures for
Interaction Pipelines

The previous section has proposed a set of standard
interaction pipelines for synchronization and
cooperation between the sensing, planning, and acting
functions. The above composition algorithms show that
the well-decomposed and abstracted interaction
pipelines can be composed flexibly to constitute the
different robot task planning paradigms. In this section,
we take a step further to make these common
interaction pipelines easily reusable in robotic software
development. We utilize the essential components and
interfaces of the Behavior Tree (BT) software
development framework to develop a set of reusable
behavior tree structures. Each BT structure can
concretely implement the above abstract-level
interaction pipeline. It provides well-defined interfaces
for easy programming of inter-component
communication and complex controlling and planning
flows. The overview of our Structural-BT approach is
shown in Fig. 1.

5.1 Prior knowledge of BT framework

The component-based BT software development

framework has recently become increasingly popular in
the robotic community. It dramatically improves
robotic software development efficiency by introducing
modular and reusable control logic in software
components. A BT is a new way to structure the
switching between different robot behaviors in
autonomous robotic software. A BT is a directed rooted
tree whose internal nodes are called the control flow
nodes and external leaf nodes are referred to as the
execution nodes. In the classical BT framework[19],
there are four types of control flow nodes, including the
Sequence, Fallback, Parallel, and Decorator nodes, and
two execution nodes of Action and Condition. The
advantage of BT components in robotic software
development is the encapsulation of common
controlling logic into reusable control flow nodes,
making implementing controlling logic in robotic
software easier than existing component-based
approaches, such as the ROS framework. BT-based
robot software starts its execution from the root BT
node and generates execution signal ticks with a given
frequency. The rest BT node components start to
execute if and only if it receives ticks from its parent
nodes. We discuss the reusable control flows of
Sequence, Parallel, and Fallback nodes and two
execution nodes, which are the foundation for our
developed reusable BT structures. Figure 7 presents the
graphical representations of these nodes.

M

For a Sequence node with N children (Fig. 7a), it
routes ticks to its children from the left until it finds a
child node that returns either Failure or Running. The
Sequence node returns Success if and only if all its
children return Success (Algorithm 6[19]). A Fallback
node (Fig. 7b) routes ticks to its children from the left
until it finds a child node that returns either Success or
Running. It returns Failure if and only if all its children
return Failure (Algorithm 7[19]). A Parallel node
(Fig. 7c) routes the ticks to all the children nodes. It
returns Success if children nodes return Success, or

Algorithm 5　Composition algorithm of the online
probabilistic planning paradigm

fs(I = st,as) = K1:
Πt = ⟨I,G,K⟩2:

κsp : fs
Πt−−→ fp, fs ⊚ fp3:

fp(Πt) = ∆ = a∗t4: {a single action operator}
5: while G has not been achieved do

κpa : fp
a∗t−−→ fa, fp ⊖ fa6:

fs(st+1,as) = zt+17:
Πt+1 = Πt + zt+18:

fp(Πt+1) = a∗t+19:

κsp : fs
Πt+1−−−→ fp, fs ⊚ fp10:

11: end while

→

Child 1 Child N…

→→?

(a) Sequence node
Child 1 Child N…

(b) Fallback node
Child 1 Child N…

(c) Parallel node

Action

(d) Action node

Condition

(e) Condition node

→ ⇒

Fig. 7 Graphical representation of a Sequence control node
(), a Fallback control node (?), a Parallel control node (),
an Action node, and a Condition node.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 367

N −M+1returns Failure if children nodes return
Failure (Algorithm 8[19]). For an Action node, it starts
to execute the encoded low-level action commands
when it receives ticks. An Action node returns Success
if the action execution is completed or Failure if the
action has failed. While the Action node does not finish
executing the commands, the node status returns
Running. For a Condition node, it checks a proposition
that describes a certain environment condition when it
receives ticks. A Condition node returns Success or
Failure depending on whether the proposition holds or
not. In the classical BT framework, the proposition
checking process is assumed to be instantaneous, and
the Condition node never returns a status of
Running[19].

The classical BT framework provides a modular

design for robotic software. It is the first work to
encapsulate the general-purpose controlling logic into
reusable control flow nodes. The modular design and
encapsulation of controlling flow significantly reduce
the programming efforts required for complex
controlling logic implementation, compared with the
limited reusability of data communication pipelines in
the ROS component framework. However, the classical
BT framework and other popular component-based
robotic software development frameworks provide no
encapsulation and reusable designs regarding task
planning paradigms’ more cumbersome
implementation issue, which generally requires more
programming efforts. In this work, we utilize some of
the standard concepts of BT and develop a set of
reusable BT structures that could facilitate the efficient
implementation of abstract task planning paradigms.

5.2 Domain-specific robotic BT components

We first develop a set of domain-specific BT software
components that closely relate to the task planning
functionality in robotic software. We have designed
concrete component models and reusable interfaces for
the critical computation functions of sensing, planning,
and acting. The general computation scheme can be
flexibly reused in each component, and software
engineers can easily customize the task-specific
settings of different planners, sensors, and actuators.

Ns

Ns = ⟨N ,α⟩ N
α

Ns

Definition 12 (Sensing action node)　The sensing
action node inherits the basic tick engine from the
BT action node that waits for external ticks for
execution, and also incorporates a task-specific sensor
that senses environment states for sensory information
and formulates high-level observations or generates the
task-specific problem model. Formally, the main model
elements of a sensing action node can be described as

, where the represents the basic BT
action node that implements the tick engine, and
represents a robotic sensor component that interacts
with external environments and receives sensory
information. Figure 8 graphically describes the internal
component elements of a sensing action node. The
component could receive either raw sensory
information (such as the image and laser readings) or a
domain model (the contextual information of specific
tasks) and output a high-level observation (formulated
knowledge based on raw sensory information) or a
problem model. The internal sensor component
provides two methods of ObservationFormulation()
and RunProblemGenerator() that could be user-

Algorithm 6　Pseudocode of Sequence node with N children
←1: for i 1 to N do

=2: childStatus Tick(child(i));
3: if childStatus == Running then
4: return Running;
5: else if childStatus == Failure then
6: return Failure;
7: end if
8: end for
9: return Success;

Algorithm 7　Pseudocode of Fallback node with N children
←1: for i 1 to N do

=2: childStatus Tick(child(i));
3: if childStatus == Running then
4: return Running;
5: else if childStatus == Success then
6: return Success;
7: end if
8: end for
9: return Failure;

Algorithm 8　Pseudocode of Parallel node with N children
←1: for i 1 to N do

=2: childStatus Tick(child(i));
3: end for

⩾4: if Sum(childStatus(i)==Success) M then
5: return Success;

>6: else if Sum(childStatus(i)==Failure) N−M then
7: return Failure;
8: else
9: return Running;
10: end if

 368 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

customized for different task requirements.

N
β

Np

Definition 13 (Planning action node)　 The
planning action node Np=〈 N, β〉 also inherits the
basic tick engine from the BT action node and
incorporates a task-specific planner component that
performs diverse types of task planning, such as the
POPF planner☆ for hierarchical planning and the
DESPOT planner† for online probabilistic POMDP
planning. Figure 9 shows the internal model elements
of the BT-based planning action node. The component

 generally provides interfaces for receiving a
problem model and outputting a generated plan. The
planner component provides the RunPlanning() method
for customizing internal planning algorithms based on
diverse task requirements.

Na

Na

N
γ

Definition 14 (Acting action node)　 The acting
action node is dedicated to executing a task-level
plan by implementing the motion-based actor for
concrete acting with low-level robotic hardware
actuators. The component consists of the basic BT
action node for receiving the ticks and starting the
motion-based acting process and the actor for
implementing the specific motion-based acting process.
For example, when receiving the task-level plan of

γgoto (pos1, pos2), a move base actor , which
interfaces with the hardware move base actuator and
provides the Proportional-Integral-Derivative (PID)
controlling motion algorithm, could concretely execute
the plan and drive the robot to reach the goal
destination in the real-world environment. As shown in
Fig. 10, the actor component receives the plan and
maintains the customizable function
RunConcreteActing() for different actuators.

5.3 BT structure realization of interaction pipeline

Based on the above robot-specific functional BT
components, we develop a set of reusable BT structures
to implement the abstract interaction pipelines. The
reusable BT structures can then be flexibly composed
to quickly develop the skeleton architecture of robotic
software, which improves the development efficiency.
5.3.1 Reusable BT structure for S-P interaction

pipeline

Tsp

Ns Np

Figure 11 presents external and internal views of the
BT structure for the sensing-planning interaction
pipeline. As shown in the external view (Fig. 11a), the
BT structure uses the sequence node as its root
node and adds sensing and planning action
nodes as the children nodes. In the structure, the
controlling and planning flow in the interaction
pipeline are implemented synchronously and could be
encapsulated within the structure for software reuse. As

Sensing action node

Sensor→RunProblemGenerator()

ActionNode→WaitForTick()

Problem modelDomain model

Sensory information Sensor→ObservationFormulation() Observation

Observation

Tick

Fig. 8 Graphical representation of the BT-based sensing action node component.

Planning action node

Planner→RunPlanning()

ActionNode→WaitForTick()

PlanProblem model

Tick

Fig. 9 Graphical representation of the BT-based planning
action node component.

Acting action node

Actor→RunConcreteActing()

ActionNode→WaitForTick()

Plan

Tick

Fig. 10 Graphical representation of the BT-based acting
action node component.

☆https://github.com/fmrico/popf.git

†https://github.com/AdaCompNUS/despot.git

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 369

Ns

Ns

Np

Np

shown in Fig. 11b, the root sequence node routes the
execution signal tick to the sensing and planning action
nodes sequentially: (1) the root node sends the tick to
the sensing node , ticking the sensor to formulate an
observation and generate a problem model; (2) after
successfully generating the problem model, the
returns its execution status of “success” back to the
root node; (3) the root node then sequentially routes the
tick to the planning node to trigger the planner to
perform task planning; (4) as soon as the task plan is
computed, the node returns the status of “success”
back to the root node, and the root node subsequently
set the status of this structure as “success”. Notably, the
above controlling flow of tick and status routing is
implemented in sync with the planning flow of problem
model generation and task plan computation, making
this BT structure a well-behaved and independent
composite component for software reuse.
5.3.2 Reusable BT structure for P-A/S interaction

pipeline
The aforementioned planning-acting/sensing

κpa κpas

κpa κpas

→

interaction pipelines are dedicated to dispatching and
executing a task plan that contains an ordered set of
actuating/sensing action operators. We develop a BT
structure that is capable of implementing both the
planning-acting and planning-acting/sensing
interaction pipelines. As and implement a
periodic plan dispatching process, we develop a new
BT control node of SequenceNodeWithIteration to
realize the iterative control logic. In the node, we
implement an iterative procedure of “action
selection−action dispatch−action execution−action
feedback” inside the function of “ControlNode
Tick()”. With each tick arriving at the
SequenceNodeWithIteration node, the iterative
procedure will be executed once, along with routing a
tick to the children’s action nodes. In this case, the
iterative procedure of plan execution is kept
synchronous with the control flow of tick routing.
Notably, to enable easy composition of the S-P and
P-A/S structures, we add the interface of
SequenceNodeWithIteration node to receive the task

Sensing action node Planning action node

Sequence node

(a) External view of the sensing-planning BT structure

Planner→RunPlanning()

ActionNode→WaitForTick()

Plan
Sensor→RunProblemGenerator()

ActionNode→WaitForTick()

Problem model
Domain model

Sensory information Sensor→ObservationFormulation()
Observation

Observation

Planning action node

Sensing
action node

Sequence node

ControlNode→Tick()

(b) Internal view of the sensing-planning BT structure

(1) Tick (3) Tick(2) Status (4) Status

Fig. 11 Graphical representation of (a) external and (b) internal views of the BT structure for the implementation of sensing-
planning interaction pipeline.

 370 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

plan from external data flow to avoid the redundancy
of planning node implementation.

Np

{Na1 ,Na2 , ...,Nan },
{Ns1 ,Ns2 , ...,Nsn }

Figure 12 presents external and internal views of the
reusable BT structure for the planning-acting/sensing
interaction pipeline. As shown in the external view
(Fig. 12a), the SequenceNodeWithIteration node is set
as the root node. In the BT structure, we add a planning
action node , a set of acting action nodes

 and possibly a set of sensing action
nodes as the children nodes that
handle the different actuating/sensing action operators
of the deterministic/non-deterministic task plans. The
BT structure can support the planning-acting (P-A)
interaction pipeline by dispatching each actuating

action operator of the deterministic task plan to the
acting action nodes. It can support the planning-
acting/sensing (P-A/S) interaction pipeline by
dispatching each actuating or sensing action operator of
the non-deterministic task plan to the corresponding
acting or sensing action nodes.

Np

Np

As shown in Fig. 12b, the iteration scheme of action
dispatching and feedback is implemented in sync with
the controlling flow of tick routing. (1) The root node
sends the tick to the planning node and triggers the
planner to make up the task plan. (2) As soon as the
planning is finished, the returns the status of
“success” back and the generated task plan to the root
node. The root node then starts the iterative procedure

Planning action node Acting action node 1

Acting action node 2

Acting action node 3

SequenceNodeWithIteration

Sensing action node 1

Sensing action node 2

(a) External view of the planning-acting/sensing BT structure

Actor→RunConcreteActing()

ActionNode→WaitForTick()

Planner→RunPlanning()

ActionNode→WaitForTick()

Plan
Problem

model

Acting action nodePlanning
action node

SequenceNodeWithIteration

ControlNode→Tick()

(1) Tick (2) Status (3)
Tick

(4) Status

(5) Tick

(6) Observation

Action

Sensing action node

Sensor→RunProblemGenerator()

ActionNode→WaitForTick()

Domain model

Sensory information Sensor→ObservationFormulation()
ObservationObservation

Tick

Action

Plan

(b) Internal view of the planning-acting/sensing BT structure
Fig. 12 Graphical representation of (a) external and (b) internal views of the BT structure for implementation of the
planning-acting/sensing interaction pipeline.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 371

Nai/Nsi

and dispatches each action operator from the task plan
to the corresponding (3) acting (5) sensing action node.
The actuating/sensing action node starts its execution
by receiving the action operator and execution tick.
The corresponding acting node finishes
executing the action and returns the execution (4)
status/(6) observation back to the root node. Notably,
the execution feedback of a sensing action node is the
received observation, whereas the actuating action
node returns the execution status of “success”,
“failure”, or “running”. Both types of action feedback
can be processed in the same fashion by the iterative
procedure of the SequenceNodeWithIteration node.
The root node could repeat the steps of (3) and (4) or
(5) and (6) by iteratively dispatching the actuating or
sensing action operators to the acting or sensing
function. The root node maintains the iterative
dispatching and acting loop until the task plan has
executed all its action operators.
5.3.3 Reusable BT structure for S-A interaction

pipeline
The interaction pipeline between the sensing and acting
functions, which avoids a deliberative planning
process, is dedicated to reactively responding to
runtime environmental changes. The reactive planning
paradigm is essentially a prioritized hierarchy of

Tsa

Tsa

Ns

Ns

Na

Na

multiple interaction pipelines between the sensing and
acting functions. In each interaction pipeline, the
sensing function checks a condition proposition with
the sensory information, and the acting function runs
the corresponding action when the condition is
unsatisfied. To implement the pipeline, we develop the
sequence tree structure and encapsulate the
controlling and data flows inside the structure, enabling
the reuse of sensing-acting interaction logic in robotic
software development. Figure 13a graphically depicts
an external view of the BT structure, and Fig. 13b
describes the controlling and data flows in the
structure. (1) In the structure , the sequence root
node first routes the tick to the sensing action node
and triggers the sensor to formulate an observation
based on sensory information. The observation is then
utilized to check whether some environmental
condition is satisfied. (2) If the condition is satisfied,
the sensing node then returns the status “success”
back to the root node. (3) The root node then routes the
tick to the acting action node . It triggers the actor to
execute the corresponding reaction action operator
(specified by user-defined reactive rules). (4) The
acting node waits for the execution of the action
operator and returns the execution status to the root
node.

Sensing action node Acting action node

Sequence node

(a) External view of the sensing-acting BT structure

Actor→RunConcreteActing()

ActionNode→WaitForTick()

Sensor→RunProblemGenerator()

ActionNode→WaitForTick()

Problem model
Domain model

Sensory information Sensor→ObservationFormulation()
ObservationObservation

Acting action nodeSensing
action node

Sequence node

ControlNode→Tick()

(1) Tick (3) Tick(2) Status (4) Status

(b) Internal view of the sensing-acting BT structure
Fig. 13 Graphical representation of (a) external and (b) internal views of the BT structure for implementation of the sensing-
acting interaction pipeline.

 372 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

6 Experiment

We select four robotic tasks with diverse goals and
environmental conditions to validate the software
development efficiency of our reusable BT structures.
We then develop software systems for each task to
measure the level of development effort quantitively.
The selected robotic tasks could be actual samples to
evaluate the reusability of each abstracted interaction
pipeline and concrete BT structures. Moreover, to
make the results as objective as possible, we select two
of the most popular component-based robotic software
development frameworks (ROS and classical BT) as
the baseline approaches. We show through this
comparison that the Structural BT approach has
improved reusability compared to existing approaches.
The source codes of our Structural-BT component
framework and the software implementation for the
experimental tasks can be available upon request.

6.1 Task scenarios

In this experiment, we have selected four diverse types
of robotic domains and designed the task requirements
with different environmental constraints. Below task
scenarios are carefully selected and designed based on
the following principles. Firstly, the task domains are
relatively common in the robotic community, which
receives many software development requirements.
Secondly, the environmental constraints of four task
domains have covered the uncertainties of dynamics
and perception, such as Task 1 with the static and fully
observable environment, Task 3 with the static and
unknown environment, and Tasks 2 and 4 with the
dynamic and unknown environment. Thirdly, these
task domains generally consist of composite robotic
actions and complex deliberation requirements, making
developing corresponding software systems rather
tricky. Testing our approach within these task scenarios
could practically evaluate the applicability and
effectiveness of the framework in the most common
domains and complex environment constraints. As the
hybrid paradigm is essentially an integral combination
of hierarchical and reactive structures, the selected
robotic task scenarios are designed to cover, in
particular, the mainstream hierarchical, reactive,
offline, and online probabilistic task planning
paradigms. Figure 14 presents snapshots of the four
task scenarios. The task descriptions are as follows.

● Task 1 (target navigation): The robot is expected
to navigate in an indoor environment to visit a set of

target destinations. In this task, the robot can initially
obtain positions and target destinations with sensory
information from robotic sensors. Then the robot needs
to perform hierarchical task planning based on the
known information to compute the task plan that
minimizes movement cost.

● Task 2 (target searching): The robot is expected
to search for a target object that remains unknown in a
dynamic environment. In the environment, moving
obstacles may appear in the way and cause possible
collisions. For safety, the robot needs to prioritize
detecting and avoiding moving obstacles, then
searching for the target object by randomly wandering
in the room. The software needs to perform reactive
planning that achieves the reactive goal of obstacle
avoidance.

● Task 3 (target exploration): The robot is
expected to explore two unknown areas to find a target
object. In the task, the robot can partially estimate the
target’s existence by obtaining a partial view image,
which causes uncertainties in target recognition. The
robot must make a complete task plan containing
necessary sensing actions for checking environment
states and actuating actions for exploring the
environment. The software is expected to perform
offline probabilistic task planning.

● Task 4 (target chasing): The robot is expected to
chase after a moving target in a partially observable
environment. The robot can roughly obtain the target’s
direction by continuously obtaining and analyzing laser
readings. As the target keeps moving, the robot must
perform online probabilistic planning to decide the best
movement action. After each action execution, the

(a)Task 1: Target navigation

(c) Task 3: Target exploration

(b) Task 2: Target searching

(d) Task 4: Target chasing
Fig. 14 Task scenarios of four indoor robotic tasks in the
experiment.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 373

robot can get closer to the target. The online planning
process continues until the robot reaches the target’s
position.

6.2 Baseline approach

In this experiment, we have selected the ROS‡[16] and
classical BT¤ component frameworks as the baseline
approaches of robotic software development. Both
frameworks have been popular in robotics and software
engineering communities due to their well-designed
component interfaces, functionality encapsulation, and
modular design. With these frameworks, robotic
engineers can easily reuse remote communication
infrastructures (the topic/service schemes in ROS) and
versatile controlling logic (such as the
sequence/fallback/parallel control flows in classical
BT) when developing software for different robotic
tasks.

In Fig. 15a, the ROS framework includes the ROS
node component that encapsulates the remote data
communication channels (topic/service) as reusable
infrastructure. Software engineers can easily reuse the
topic/service invocation interfaces when architecting
communications between functional software
components. In Fig. 15b, the classical BT framework
has provided a set of BT components with versatile
types, including control and execution nodes. BT
control nodes have improved the reusability level over
the ROS framework by creatively encapsulating the
basic controlling logic of sequence, fallback, and
parallel, which are commonly required and
implemented in robotic software development. The
interfaces of BT control nodes and action/condition
nodes are modular and reusable, which relieves the
software engineers from manually implementing the
basic controlling flows between robotic software

ROS node ROS topic
Publish Subscribe

ROS server
node

CallProvide
ROS service

ROS action
server node

ROS node

ROS server
node

ROS action
server node

CallProvide
ROS action

Robotic software

ROS
node C

ROS
node D

ROS
node E

ROS
node B

ROS
node A

(a) Reusability of communication flows in ROS-based software development approach

Robotic softwareBT parallel
control node BT action

node

BT condition
node

BT sequence
control node

BT fallback
control node

Sequence
control logic

Parallel
control logic

Fallback
control logic

Action
interface

Condition
interface

BT control
node

BT control
node

BT control
node

BT condition
node

BT condition
node

(b) Reusability of controlling logic in classical BT-based software development approach

Robotic software A

Robotic software B

Reusable BT PA structure

Reusable BT SA structure

Reusable BT SP structure

Compose

Compose

Root

BT
PA subtree

BT
SP subtree

BT
nodes

Hierarchical planning paradigm

…

Root

BT SA
subtree

BT SA
subtree

BT SA
subtree

Reactive planning paradigm

Customize

Customize

(c) Reusability of controlling logic and task planning paradigms in the Structural-BT software development approach
Fig. 15 Different reusability levels of the ROS, classical BT, and Structural-BT development approaches.

‡http://wiki.ros.org/kinetic/Installation/Ubuntu

¤https://github.com/miccol/ROS-Behavior-Tree.git

 374 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

components. Figure 15c graphically presents the
reusable design of our proposed approach. Taking it a
step further, our approach proposes to minimize the
complexity of robotic software development by reusing
the basic and common patterns of interaction pipelines
between the sensing, planning, and acting functions.
The set of reusable BT structures corresponding to the
interaction pipeline patterns can be flexibly composed
to implement a specific task planning paradigm and
formulate the skeleton software architecture. Software
engineers only need to customize the task-specific
planners and hardware-specific sensors/actors inside
the software without much programming effort to
implement the basic controlling flows and task
planning paradigms.

Figure 16 presents the representative process of
composing an S-P structure and P-A/S structure for
developing software for Task 3. The software of Task 3
requires the implementation of an offline probabilistic
task planning paradigm. We select the reusable S-P and
P-A/S structures to compose a skeleton BT tree that
establishes the task planning and plan execution
framework. The planning action node has been
implemented and incorporated into the S-P structure.
The node outputs the non-deterministic task plan and
sends it to the receiver interface of the adjacent subtree
of the P-A/S structure via the inter-node mutual data
sharing scheme. The mutual data sharing of BT nodes
has been previously studied in our earlier work[23],

which can be referred to for more details.

6.3 Result and analysis

In this experiment, we quantitatively evaluate the
reusability level of components from three comparative
approaches by measuring their reuse frequency and
reuse ratio. The reuse frequency of a component shows
the extent to which the component is selected for reuse
in other components or projects by developers. A high
reuse frequency of a component means this component
could be rather beneficial and demanding in various
robotic software projects. The reuse ratio refers to the
ratio of the reused amount of code in a task-specific
software component. In a software component built by
developers, a high reuse ratio means the majority of
lines of code of this component could be reused from
existing code repositories, reducing the developers’
programming effort.

We first measure the reuse frequency of the ROS
components (ROS approach), BT components
(classical BT approach), and BT structures (Structural-
BT approach) to show their applicability in robotic
software development. Then we take it further to
evaluate the reuse ratio of code amounts of the above
components or structures in each application-specific
component.
6.3.1 Reuse frequency
Figure 17 presents the reuse frequencies of the diverse
components or structures provided by the ROS,

Sensing action node

Planning action node

Sequence node Planning action node Acting action
node 1

SequenceNodeWithIteration

Acting action node 2

Acting action node 3

Sensing action node 1

Sensing action node 2

Sensing action node

Planning action node

Move to left area

 Move to right area

Observe mark

Compose
BT S-P structure BT P-A/S structure

Task 3 software of offline probabilistic task planning paradigm
Fig. 16 Process of composing the reusable S-P and P-A/S structures to develop the Task 3 software.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 375

classical BT, and our proposed Structural-BT
development approaches. The reuse frequency of a
reusable component or structure is measured by the
number of times it is invoked in each task-specific
robotic software instance.

Figure 17a shows the reuse frequency of four task-
related ROS functional nodes among the four task
scenarios. In the ROS development approach, Tasks
1−4 require different task planning paradigms and
more detailed algorithmic implementation of task-
specific planners, sensors, and actuators. In this
approach, we utilize the core ROS functional nodes of
the ROSPlan¶ POPF planning framework to design and

develop the robotic software for the Task 1 scenario.
Within this context, we refer to a class or package’s
source code that implements an independent
functionality as a functional component. Five core
functional ROS components are reused in the robotic
software for Task 1. Similarly, we utilize the off-the-
shelf ROS functional nodes from the reactive
controller, SARSOP¥ offline probabilistic planning
framework, and DESPOT◎ online probabilistic
planning frameworks to develop the robotic software
for Tasks 2−4, respectively. Each ROS-based planning
framework offers highly specialized and technically
diverse planning algorithms in the software
development process, which can effectively solve the
corresponding task planning problems and efficiently
implement the software by reusing some planning
components. However, none of these frameworks, such
as ROSPlan and SARSOP, can be well reused among
different tasks due to the lack of reuse in the common
and general controlling and planning flows. In
Fig. 17a, we find out that each ROS-based planning
framework can only be applicable in their
corresponding task scenario but fail to be reused in
other task scenarios requiring different task planning
paradigms.

The classical BT framework enables the reuse of
common controlling logic, such as sequential, fallback,
and parallel control loops, by encapsulating them into
the Sequence, Fallback, and Parallel control nodes,
which makes them fully reusable without any code
modification. Moreover, the classical BT framework
provides a unified modeling and programming
framework that unifies the C++/Python programming
languages and generalized component interfaces,
making it widely applicable to robotic software
programming. In Fig. 17b, the Sequence control node
has been reused multiple times in all the tasks that
serve as the primary sequential controlling loops. The
Fallback control node has also been reused in Tasks 2
and 4, which implement the primary if-else selection
controlling loops.

Figure 17c records the reuse frequencies of the three
proposed BT structures that specifically implement the
interaction pipelines between sensing, planning, and
acting in our Structural-BT development approach. The
BT structures of S-P, P-A/S, and S-A implement the
commonly used planning and controlling flows that

1

22

1 1 1

111

2

(a) Reused ROS functional nodes from ROS approach

Task 1 Task 2 Task 3 Task 4

1 1

Task 1 Task 2 Task 3 Task 4

Task 1 Task 2 Task 3 Task 4
0

5

10

15

5
3

5

R
eu

se
 fr

eq
ue

nc
y

ROSPlan
Reactive controller
SARSOP
DESPOT

14

(b) Reused BT control nodes from classical BT approach

0

1

2

R
eu

se
 fr

eq
ue

nc
y

Sequence control node
Fallback control node

(c) Reused BT structures from Structural-BT approach

0

1

2

R
eu

se
 fr

eq
ue

nc
y

S-P BT structure
P-A/S BT structure
S-A BT structure

Fig. 17 Reuse frequencies of the diverse components or
structures provided by three comparative approaches for the
four task scenarios.

¶https://github.com/KCL-Planning/ROSPlan.git

¥https://github.com/AdaCompNUS/sarsop.git

◎https://github.com/AdaCompNUS/despot.git

 376 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

explicitly exist in the above interaction pipelines. The
BT structures have been designed to be modular,
general, and customizable, enabling the encapsulated
planning and controlling flows widely applicable in
most robotic tasks. In Fig. 17c, the S-P BT structure
has the highest reuse frequency in task scenarios 1, 3,
and 4. These tasks require a deliberative planning
scheme that first senses the environment to formulate
domain information and then performs diverse
planning algorithms to make a valid task plan.
Similarly, the P-A/S BT structure is reused in Tasks 1
and 3 as the output task plans generally consist of
action operators, which require developing the iterative
loops of plan dispatching and feedback for the
underlying software. The S-A BT structure is reused
twice in Task 2, which couples the direct data and
control flows between a robotic sensor and an actuator.
Software developers could reuse this structure multiple
times to develop the hierarchically organized layers in
the reactive planning paradigm.
6.3.2 Reuse ratio
The above statistics reveal the general reusability levels
of the BT/ROS components or BT structures from three
comparative approaches, demonstrating the
applicability of these models by comparing their reuse
frequencies in diverse types of robotic tasks. We
further examine the specific reusability ratio of each
reused component or structure concerning the code
size, which indicates the programming effort required
for robotic software development.

In the ROS approach, we develop the software for
different tasks by inheriting ROS node components’
basic interfaces and topic/service communication
channels. We also implement concrete planning
algorithms using technically different planner projects.
The ROS node interfaces only provide the skeleton of
remote data communication, while the algorithmic
implementation of planning and controlling flows is
fully task-customized. Most codes on the planning
algorithm implementation of the ROSPlan, Reactive
controller, SARSOP, and DESPOT are not reusable in
different tasks, with only the ROS-related codes
commonly reused among the above four tasks.
Figure 18a depicts the reuse ratio of the ROS-related
classes and functions (such as ros::ServiceClient and
ros::Subscriber) in the four tasks. As shown, the ROS-
related codes take the proportion of the total code size
of software implementation for Tasks 1−4 at 23.8%,
16.3%, 16.9%, and 17.2%, respectively.

The BT control nodes have been shown to have wide
reusability for different task scenarios in the classical
BT approach, with the encapsulated Sequence and
Fallback controlling logic being fully reused in
software development. We quantitatively measure the
code sizes of the overall implementation of each task’s
software and the code sizes of utilized BT control
nodes. The reuse ratios of BT control nodes for the four
tasks are shown in Fig. 18b, which take the proportion
of the total code size at 28.1%, 39.2%, 29.3%, and
18.3%. In our proposed Structural-BT approach, we

Task 1 Task 2 Task 3 Task 4
0

200

400

600

800

0

0.1

0.2

0.3

617

734
674

581

147 120 114 100N
um

be
r o

f l
in

e
of

 c
od

e

R
eu

se
 ra

tio

Total Reused Reuse ratio

0.
17

2

0.169

0.163

0.238

(a) Reuse ratio of ROS functional components from
ROS approach

Total Reused Reuse ratio

R
eu

se
 ra

tio

N
um

be
r o

f l
in

e
of

 c
od

e

Task 1 Task 2 Task 3 Task 4
(b) Reuse ratio of BT control nodes from

classical BT approach

0

200

400

600

800

1000

0

0.1

0.2

0.3

0.4

0.5

384

632 641

907

108

248
189 166

0.281

0.392

0.293

0.
18

3

Total Reused Reuse ratio

R
eu

se
 ra

tio
Task 1 Task 2 Task 3 Task 4

(c) Reuse ratio of BT structures from
Structural-BT approach

N
um

be
r o

f l
in

e
of

 c
od

e

0

200

400

600

800

1000

0

0.2

0.4

0.6

0.8

1.0

445

597

613
845

408
466

385 377

0.916

0.781

0.628

0.
44

6

Fig. 18 Number of line of code and reuse ratios of the
diverse components or structures provided by three
comparative approaches for the four task scenarios.

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 377

improve the reusability level of the controlling logic in
classical BT to the integral interaction pipelines of
planning, controlling, and data flows. The BT
structures for S-P, P-A/S, and S-A interaction pipelines
are implemented as independent and composite
components, which formulate the program skeletons of
the deliberative sensing-planning process, the iterative
planning-acting process for plan execution, and the
reactive sensing-acting process. Figure 18c shows the
proportions of the total code sizes of S-P, P-A/S, and S-
A BT structures concerning the total implementation
size of each task’s software. The statistics show
improved reusability ratios of these BT structures for
Tasks 1−4 at 91.6%, 78.1%, 62.8%, and 44.6%,
respectively. Notably, the reusability ratios of the
above components or BT structures closely depend on
implementing other technical algorithms for sensor
data processing, state-related searching strategies, and
motion-level planning and acting. In the experiment,
the Task 1 scenario is assumed to be a static and fully
known environment, making hierarchical task planning
relatively easier to implement and leading to a
straightforward non-reusable technical algorithm
implementation. The Task 4 scenario is dynamic,
partially observable, and requires the more complex
online probabilistic planning paradigm. The non-
reusable technical algorithms for laser reading analysis
and movement control make the total implementation
code size relatively more significant than the software
for other tasks. For this reason, the reusability ratios are
decreasing from Tasks 1 to 4 due to the diverse
implementation complexities. However, the reusability
ratios of BT structures in the Structural-BT approach
are generally higher than in the other two approaches.

6.4 Summary

To sum up, the ROS approach has the lowest reuse
frequencies of its third-party functional components
(such as ROSPlan and SARSOP) among diverse
robotic tasks, with only essential ROS Topic/Service

(T/S) communication infrastructures commonly reused.
The average reused ratios of the ROS communication
infrastructures reach 18.6% in our four task scenarios,
which is the least ratio among the three approaches.
The classical BT approach has a relatively higher
reusability performance as it provides the commonly
reusable Sequence (Seq) and Fallback (Fal) control
nodes. The average reuse ratios of classical BT
components (Seq and Fal) have reached 28.7%. The
Structural-BT approach, which provides the reusable
structures of S-P, P-A/S, and S-A, has reached the
highest reuse ratios of 69.3%. This is because these
reusable structures implement the common controlling
logic and decision-making flows, not only the
controlling logic, in the classical BT approach. The
developers can reuse most lines of codes of these
structures in their projects, which could greatly
improve software development efficiency. The detailed
comparison statistics have shown in Table 1.

7 Conclusion

This paper focuses on the issue of developing robotic
software in open-world environments. The existing
component-based development frameworks have
limited reusability to the data and controlling flows
without considering more complex task planning
paradigms and underlying software architectures. This
paper presents a novel component-based framework
Structural-BT to provide a set of reusable BT
structures, which implements a set of patterns for the
sensing, planning, and acting interaction pipelines
while providing interfaces for task-specific
customization. This paper has developed the software
for a set of tasks in an experiment using three
comparative development approaches, including the
ROS, classical BT, and our proposed Structural-BT
approaches. The statistics show that the BT structures
were generally reused more frequently than the
components from other approaches. The reused code

Table 1 Comparison of reusability performances for three robotic software development approaches.

Task
ROS Classical BT Structural-BT

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

1 T/S 0.238

0.186

Seq 0.281

0.287

S-P, P-A/S 0.916

0.693
2 T/S 0.163 Seq, Fal 0.392 S-A 0.781
3 T/S 0.169 Seq 0.293 S-P, P-A/S 0.628
4 T/S 0.172 Seq, Fal 0.183 S-P 0.446

Note: LOC is the line of code.

 378 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

sizes of BT structures have an average proportion of
69.3% of the full software implementation across
software for four tasks in the Structural-BT approach.
In contrast, the average reuse ratios of ROS or BT
components are 18.6% and 28.7% in the ROS and
classical BT approaches, respectively. The experiment
has demonstrated the improved development efficiency
of our proposed Structural BT approach for
programming robotic software.

8 Future Work

While the robotic software of four task scenarios in the
experiment was developed by the Structural-BT
framework with a relatively high reuse performance,
there are still several limitations in our preliminary
research work, which need to be enhanced in future
works. Firstly, the selected task planning paradigms
may be inadequate for a wider range of robotic tasks.
In this paper, we have comprehensively surveyed the
research papers and robotic software projects in
robotics and software engineering, synthesizing and
identifying the five mainstream paradigms. The
selected paradigms have shown to be applicable in the
single robot tasks with simple action synchronization
requirements. However, for more complex robotic
domains that involve multi-robot cooperation, multi-
task synchronization, etc., more types of task planning
paradigms need to be analyzed and abstracted to cover
more versatile robotic tasks. Secondly, some
composable interfaces of behavior tree structures cause
need extra programming effort when composing. When
composing two reusable behavior tree structures, there
may be a functional behavior tree node existing in the
two structures, which needs tailoring the overall
structure and upper control flow to resolve the conflict.
In the future work, the composition flexibility of some
repetitively embedded functional nodes needs to be
enhanced by optimizing their model interfaces. Thirdly,
the confidence level of experimental validation needs
to be improved. This paper selects four typical robotic
task scenarios and designs the simulation environment
for experiments. The simulation experiments are
conducted on the Gazebo robotic simulator, which has
been widely recognized as the most popular and
credible experimental platform. The robotic software
that tested through Gazebo simulator can be easily
transferred to the real robotic hardware without much
modification. However, to make the validation results

as convincing as possible, we would like to test the
robotic software development efficiency of Structural-
BT framework on more versatile types of robotic tasks
and implement the software on real robotic hardware
for more reliable statistics.

References

 H. S. D. Andrade, J. Schroeder, and I. Crnkovic, Software
deployment on heterogeneous platforms: A systematic
mapping study, IEEE Trans. Softw. Eng., vol. 47, no. 8,
pp. 1683–1707, 2021.

[1]

 D. Brugali, Software Engineering for Experimental
Robotics. Heidelberg, Germany: Springer Berlin, 2007.

[2]

 D. Brugali and E. Prassler, Software engineering for
robotics [from the guest editors], IEEE Robotics Autom.
Mag., vol. 16, no. 1, pp. 9–15, 2009.

[3]

 A. Shahbazian, Y. K. Lee, Y. Brun, and N. Medvidovic,
Making well-informed software design decisions, in Proc.
40th Int. Conf. Software Engineering: Companion
Proceeedings, Gothenburg, Sweden, 2018, pp. 262–263.

[4]

 E. Bouwers, A. V. Deursen, and J. Visser, Quantifying the
encapsulation of implemented software architectures, in
Proc. 2014 IEEE Int. Conf. Software Maintenance and
Evolution, Victoria, Canada, 2014, pp. 211–220.

[5]

 Y. Tang, L. Li, and X. Liu, State-of-the-art development
of complex systems and their simulation methods,
Complex System Modeling Simulation, vol. 1, no. 4, pp.
271–290, 2021.

[6]

 P. Kruchten, R. Capilla, and J. C. Dueñas, The decision
view’s role in software architecture practice, IEEE Softw.,
vol. 26, no. 2, pp. 36–42, 2009.

[7]

 C. Menghi, C. Tsigkanos, P. Pelliccione, C. Ghezzi, and T.
Berger, Specification patterns for robotic missions, IEEE
Trans. Softw. Eng., vol. 47, no. 10, pp. 2208–2224, 2021.

[8]

 F. Ingrand and M. Ghallab, Deliberation for autonomous
robots: A survey, Artif. Intell., vol. 247, pp. 10–44, 2017.

[9]

 A. Chella, M. Cossentino, S. Gaglio, L. Sabatucci, and V.
Seidita, Agent-oriented software patterns for rapid and
affordable robot programming, J. Syst. Softw., vol. 83, no.
4, pp. 557–573, 2010.

[10]

 D. Brugali and P. Scandurra, Component-based robotic
engineering (part I) [tutorial], IEEE Robotics Autom.
Mag., vol. 16, no. 4, pp. 84–96, 2009.

[11]

 D. Brugali and A. Shakhimardanov, Component-based
robotic engineering (part II), IEEE Robotics Autom. Mag.,
vol. 17, no. 1, pp. 100–112, 2010.

[12]

 E. D. A. Silva, E. Valentin, J. R. H. Carvalho, and R. D. S.
Barreto, A survey of model driven engineering in robotics,
J. Comput. Lang., vol. 62, pp. 101021, 2021.

[13]

 C. Schlegel, A. Lotz, M. Lutz, D. Stampfer, J. F. Inglés-
Romero, and C. Vicente-Chicote, Model-driven software
systems engineering in robotics: Covering the complete
life-cycle of a robot, Inf. Technol., vol. 57, no. 2, pp.
85–98, 2015.

[14]

 N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari,
and A. R. B. C. Hussin, Understanding service-oriented
architecture (SOA): A systematic literature review and
directions for further investigation, Inf. Syst., vol. 91, pp.

[15]

 Shuo Yang et al.: Towards Efficient Robotic Software Development by Reusing Behavior Tree Structures for Task... 379

101491, 2020.
 M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J.
Leibs, E. Berger, R. Wheeler, and A. Ng, ROS: An
opensource robot operating system, presented at ICRA
Workshop on Open Source Software，Kobe，Japan，
2009.

[16]

 S. García, D. Strüber, D. Brugali, T. Berger, and P.
Pelliccione, Robotics software engineering: A perspective
from the service robotics domain, in Proc. 28th ACM Joint
Meeting on European Software Engineering Conf. and
Symp. on the Foundations of Software Engineering,
Virtual Event, USA, 2020, pp. 593–604.

[17]

 J. Xin, Y. Qu, F. Zhang, and R. Negenborn, Distributed
model predictive contouring control for real-time multi-
robot motion planning, Complex System Modeling and
Simulation, vol. 2, no. 4, pp. 273–287, 2022.

[18]

 M. Colledanchise and P. Ögren, Behavior Trees in
Robotics and AI: An Introduction. Boca Raton, FL, USA:
CRC Press, 2018.

[19]

 M. Colledanchise, D. Almeida, and P. Ögren, Towards
blended reactive planning and acting using behavior trees,
in Proc. 2019 Int. Conf. Robotics and Automation (ICRA),
Montreal, Canada, 2019, pp. 8839–8845.

[20]

 J. Kuckling, A. Ligot, D. Bozhinoski, and M. Birattari,
Behavior trees as a control architecture in the automatic
modular design of robot swarms, in Proc. 11th Int. Conf.
Swarm Intelligence, Rome, Italy, 2018, pp. 30–43.

[21]

 B. G. Woolley and G. L. Peterson, Unified behavior
framework for reactive robot control, J. Intell. Robotic
Syst., vol. 55, no. 2, pp. 155–176, 2009.

[22]

 S. Yang, X. Mao, Y. Lu, and Y. Xu, Towards a behavior
tree-based robotic software architecture with adjoint
observation schemes for robotic software development,

[23]

Autom. Softw. Eng., vol. 29, no. 1, pp. 31, 2022.
 D. Cassou, E. Balland, C. Consel, and J. Lawall,
Leveraging software architectures to guide and verify the
development of sense/compute/control applications, in
Proc. 33rd Int. Conf. Software Engineering, Waikiki, HI,
USA, 2011, pp. 431–440.

[24]

 H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G.
Kraetzschmar, L. Gherardi, and D. Brugali, The BRICS
component model: A model-based development paradigm
for complex robotics software systems, in Proc. 28th

Annual ACM Symp. Applied Computing, Coimbra,
Portugal, 2013, pp. 1758–1764.

[25]

 M. Ghallab, D. Nau, and P. Traverso, Automated Planning
and Acting. Cambridge, UK: Cambridge University Press,
2016.

[26]

 M. Ghallab, D. Nau, and P. Traverso, The actorʼs view of
automated planning and acting: A position paper, Artif.
Intell., vol. 208, pp. 1–17, 2014.

[27]

 D. Kortenkamp, R. Simmons, and D. Brugali, Robotic
systems architectures and programming, in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, eds.
Cham, Switzerland: Springer, 2016, pp. 283–306.

[28]

 F. Michaud and M. Nicolescu, Behavior-based systems, in
Springer Handbook of Robotics, B. Siciliano and O.
Khatib, eds. Cham, Switzerland: Springer, 2016, pp.
307–328.

[29]

 P. Gregory, D. Long, M. Fox, and J. C. Beck, Planning
modulo theories: Extending the planning paradigm, in
Proc. Twenty-Second Int. Conf. Autom. Plan. Sched.,
Atibaia, Brazil, 2012, pp. 65–73.

[30]

 S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, Online
planning algorithms for POMDPs, J. Artif. Intell. Res., vol.
32, no. 2, pp. 663–704, 2008.

[31]

Shuo Yang received the PhD degree in
software engineering from National
University of Defense Technology,
Changsha, China in 2022. He is currently a
lecturer in control science and engineering
at the College of Systems Engineering,
National University of Defense
Technology, Changsha, China. His current

research interests include cyber-physical robotic system
modeling, robotic software development, behavior tree
modeling, and robotic task planning.

Qi Zhang received the PhD degree in
control science and engineering from
National University of Defense
Technology, Changsha, China in 2018. He
is currently a lecturer in control science
and engineering at the College of Systems
Engineering, National University of
Defense Technology, Changsha, China.

His research interests include behavior tree modeling and
Computer Generated Forces (CGF) modeling and learning.

 380 Complex System Modeling and Simulation, December 2023, 3(4): 357−380

