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Abstract: Nowadays,  autonomous  robots  are  expected  to  accomplish  more  complex  tasks  and  operate  in  an

open-world  environment  with  uncertainties.  Developing  software  for  such  robots  involves  the  design  of  task

planning  paradigms  and  the  implementation  of  robotic  software  architectures,  making  software  development

rather  tricky  and  time-consuming.  In  recent  decades,  component-based  software  development  approaches

have  been  increasingly  adopted  in  robotics  to  improve  software  development  efficiency  by  reusing  data  and

controlling  flows  between  components.  However,  few  works  have  tackled  the  more  critical  issue  of  reusing

complex high-level task planning paradigms and robotic software architectures. To make up for the limitation,

this  paper  first  identifies  the  mainstream  task  planning  paradigms  and  proposes  a  set  of  novel  patterns  for

interaction pipelines between the robotic functions of sensing, planning, and acting. Then this paper presents a

novel  Behavior  Tree  (BT)  based development  framework  Structural-BT,  which  provides  a  set  of  reusable  BT

structures  that  implement  abstract  interaction  pipelines  while  maintaining  interfaces  for  task-specific

customization. The Structural-BT framework supports the modular design of structure functionalities and allows

easy  extensibility  of  the  inner  planning  flows  between  BT  components.  With  the  Structural-BT  framework,

software engineers can develop robotic software by flexibly composing BT structures to formulate the skeleton

software  architecture  and  implement  task-specific  algorithms  when  necessary.  In  the  experiment,  this  paper

develops robotic software for diverse task scenarios and selects the baseline approaches of Robot Operating

System  (ROS)  and  classical  BT  development  frameworks  for  comparison.  By  quantitatively  measuring  the

reuse  frequencies  and  ratios  of  BT  structures,  the  Structural-BT  framework  has  been  shown  to  be  more

efficient than the baseline approaches for robotic software development.

Key words: robotic software modeling and development; software architecture; task planning paradigm; behavior tree

modeling

1    Introduction

Autonomous robots have been playing an increasingly
important  role  in  the  open-world  human  society,

accomplishing  various  challenging  tasks  such  as  field
exploration,  remote  transportation,  and  domestic
service.  Open-world  environments  commonly  feature
state  dynamics  and perception uncertainties,  making it
much more difficult  for  autonomous robots  to  achieve
the  tasks  successfully.  The  increasing  complexity  of
robot  task  requirements  and  environmental
uncertainties  makes  developing  the  underlying
autonomous  robot  software  cumbersome,  which  has
drawn much attention from both robotics and software
engineering communities[1].

Autonomous robot software, commonly conceived as
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the medium to embody intelligence and deployed upon
the robotic hardware[2, 3], plays a critical role in making
high-level  plans  for  achieving  tasks  and  driving
hardware  devices  for  concrete  plan  execution.  The
software  generally  consists  of  an  abstract  layer  that
regulates  a  high-level  task  planning  paradigm for  task
achievement,  and  a  concrete  layer  that  architects
interaction  pipelines  between  concrete  software
components  in  the  software  architecture.  The  abstract
layer establishes the high-level task planning paradigm
that  specifies  how  the  computational  functions  of
planning,  sensing,  and  acting  interact  to  make  up  task
plans.  Different  robotic  tasks  require  diverse  different
task  planning  paradigms  under  specific  environmental
assumptions. Robot software development must decide
the top-level task planning paradigm based on specific
tasks  and  environment  characteristics.  The  concrete
layer  maintains  a  styled  software  architecture  that
specifies  how  software  is  divided  into  different
functional  software  components  and  how  the  data,
planning,  and  controlling  flows  run  through  these
components.  The  task  planning  paradigm  and  robot
software  architecture  are  closely  interconnected  and
mutually  influenced.  On  one  side,  the  abstract  task
planning paradigm generally decides the design choice
of  underlying  software  architecture.  Conversely,  the
robotic  software architecture is  commonly regarded as
the  concrete  implementation  solutions  regarding  the
components’ organizational  structures  that  support  the
high-level  task  planning  paradigms.  Software
developers must make an integral architecture decision
and  make  trade-offs  when  necessary[4].  In  this  sense,
the  development  of  autonomous  robot  software  needs
to  integrally  consider  the  designs  of  the  above  two
layers  for  both  the  algorithmic  achievements  of  task
goal  and  architectural  structure  of  software
components[5].

The  autonomous  robot  software,  commonly
conceived  as  a  complex  cyber-physical  system,
urgently  requires  effective  modeling  and  development
approaches for efficient development[6]. In the past few
decades,  developing  autonomous  robotic  software  has
long  been  recognized  as  a  challenging  issue  for  both
robotic  researchers  and  software  engineers[3, 7, 8],
especially  for  software  in  open-world  environments.
More  specifically,  there  are  three  main  challenges  to
current robotic software development practices. Firstly,
developing task planning paradigms highly depends on
developers’ expertise  and  experiences  due  to  the  need

for  clearly  specified  design  patterns.  Different  robotic
tasks  may  feature  the  same  tasks  and  environments,
whose  software  development  may  require  similar
patterns  of  task  planning  paradigms.  Software
engineers’ primary  and  challenging  step  is  identifying
and  recognizing  specific  patterns  for  task  planning
paradigms[9, 10].  Secondly,  current  robotic  software
architectures’ reuse  granularity  must  be  improved  for
high-level  decision-making  schemes.  Existing  robotic
software  architectures  mainly  provide  basic  reusable
interfaces for data communications without considering
complex  controlling  and  planning  flows  between
software  components,  resulting  in  low  levels  of
software  reuse  in  robotics.  Thirdly,  the  robotic
community  still  lacks  an  integral  solution  for  robotic
software  development.  Robotic  software  development
needs  to  holistically  consider  the  design  choices  of
high-level  task  planning  paradigms  and  concrete
software  architecture.  The  two  layers  of  autonomous
robot  software  are  closely  interconnected  and
influenced,  which  requires  software  engineers  to  take
an  integrated  development  solution  to  maintain  layer
consistency.

The  challenges  above  have  jointly  lowered  the
efficiency  of  robotic  software  development,  making
such  systems  rather  tricky  and  time-consuming  to
construct.  To  enable  efficient  robotic  software
development,  this  paper  presents  a  novel  component-
based  software  development  framework  Structural-BT
that  increases  the  reuse  granularity  from  component
level  to  structure  level.  Generally,  the  main
contributions of the Structural-BT framework are three-
fold.

● Abstract  paradigm  patterns  for  design
reusability. This framework formalizes the mainstream
task planning paradigms and develops a set of reusable
patterns  regarding  the  interaction  pipelines  between
sensing,  planning,  and  acting  functions.  It  is  perhaps
the  first  time  these  highly  abstract  paradigms  are
concretely  formalized  and  decomposed.  It  would  be
much easier for software engineers to design high-level
decision-making  schemes  by  flexibly  synthesizing  the
paradigm  patterns.  Structural-BT  has  been  the  first
robotic  component  framework  that  enables  design
reusability  of  the  high-level  task  planning  paradigms,
which  greatly  improves  the  reuse  granularity  from
component to structure level.

● Concrete  BT  structures  for  implementation
reusability.  The framework provides a  set  of  reusable
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BT  structures  based  on  behavior  tree  components  for
robotic  software  architecture  implementation,  with
each BT structure embedding the concrete algorithmic
implementation  of  interaction  schemes.  Software
engineers  can  efficiently  implement  the  robotic
software  architectures  by  flexibly  composing  the
concrete  reusable  BT  structures  and  making
customized task-specific modifications.

● Validated  efficiency  of  robot  software
development.  This  paper  has  preliminarily  validated
the  feasibility  of  paradigm-level  reuse  in  robotic
software  development.  The  experiment  results  have
proved  the  improved  efficiency  of  robotic  software
development  with  Structural  BT  by  comparing  the
reusability  performance  with  Robot  Operating  System
(ROS) and classical BT baseline approaches, two of the
most  popular  robotic  component  based  development
frameworks.

2    Related Work

In  recent  years,  robotic  experts  and  software
engineering  researchers  have  made  joint  efforts  to
minimize  robotic  software  development  complexity
and improve efficiency by introducing a set of practical
software  engineering  techniques  into  robotics,
including  component-based[11, 12],  model-driven[13, 14],
and  service-oriented[15] approaches.  Notably,
component-based  software  engineering  has  become
one  of  the  most  popular  and  widely  acknowledged
approaches  in  robotics,  which  shifts  the  emphasis  of
robotic  software  development  from  traditional  ad-hoc
analysis  and  programming  to  composing  existing
reusable  components[2].  In  this  section,  we  review
existing  component-based  works  and  discuss  the
limitations  of  software  reuse  in  robotic  software
development.

In the past few decades, the Robot Operating System
(ROS)  framework  has  been  recognized  as  one  of  the
most  popular  component-based  software  development
frameworks  in  robotics[11, 16, 17].  It  creatively  solves
heterogeneity  by  reusing  software  components  and
robotic  algorithms  across  diverse  robotic  hardware
platforms,  establishing  the  defacto  software
development  standard  in  robotic  communities.  The
ROS  framework  proposes  the  ROS  node  component,
which  wraps  the  remote  communication  schemes  of
“topic” and “service” as  node  infrastructures,
facilitating  easy  reuse  of  communication-related  code
snippets.  With  standardized  communication  interfaces

and  independent  node  functionalities,  robotic  software
can  be  quickly  developed  by  composing  a  set  of
functional  ROS  nodes  without  much  effort  in
programming  the  data  communication  codes.  For
example,  Xin  et  al.[18] utilized  the  ROS  node
components  and  its  distributed  architecture  for
implementing  the  distributed  model  predictive  control
of multi-robot systems.

Recently,  the  Behavior  Tree  (BT)[19–21] framework
has  been  newly  introduced  into  robotics  as  another
promising  component-based  development  approach.
The BT framework has provided a set of functional BT
node  components,  including  internal  control  flow
nodes  encapsulating  the  common  control  logics  of
sequential,  parallel,  and  fallback,  and  external
execution  nodes  that  abstract  the  durative  robotic
acting  action  and  instantaneous  condition  node.
Technically, BT robotic software is built by composing
diverse types of BT nodes. The BT framework enables
good  modular  design  on  all  scales  ranging  from  the
topmost  subtree  structures  to  all  tree  leaf  nodes.  The
BT framework has gained popularity in robotics due to
its enhanced reusability of common controlling logic in
the control flow nodes, as most robotic software needs
to  handle  the  implementation  of  the  common
controlling logic. The BT framework has increased the
level of reusability beyond that of the ROS framework
by  encapsulating  and  reusing  the  robotic  controlling
schemes,  not  just  inter-node  data  communication
channels.  Many  works  are  introducing  the  BT
framework  into  robotics.  In  Ref.  [21],  Kuckling  et  al.
explored  the  possibility  of  adopting  behavior  trees  as
an  architecture  for  the  control  software  of  robot
swarms.  They  introduced  Maple’s  automatic  design
method  to  combine  preexisting  modules  into  behavior
trees.  In  Ref.  [22],  Woolley  and  Peterson  presented  a
unified behavior  tree software framework representing
five  famous  behavior-based  control  structures.  The
unified  behavior  tree  framework  (1)  eases  the
complexity  of  development  and  testing;  (2)  promotes
code reuse; (3) supports designs that scale quickly into
large  hierarchies  of  focused  base  behaviors,  and  (4)
allows  system developers  with  the  freedom to  use  the
architectures that function the best.  In Ref.  [23],  Yang
et  al.  utilized BT components  to implement  an adjoint
observation scheme by proposing parallel and fallback
BT  tree  structures.  The  authors  extended  BT  control
nodes  with  an  online  planning  component  and  mutual
data  store  mechanism,  enabling  continuous  planning
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and  efficient  data  communication  between  robotic
sensing and actuating processes.

Besides the two well-known component frameworks
above,  robotic  software  engineers  have  proposed
different  component  models  for  robotic  software
development.  For  example,  in  Ref.  [24],  Cassou  et  al.
proposed  a  new  notion  of  interaction  contracts  that
specify  the  allowed  interactions  between  components
for  developing  Sense-Compute-Control  (SCC)
application  software.  SCC  robotic  software  systems
can  be  designed  and  implemented  by  an  architectural
pattern that includes four components (sensors, context
operators,  control  operators,  and  actuators)  and  the
reuse  of  interaction  contracts.  Experiments  show  that
interaction  contracts  significantly  improve  program
size,  execution  coverage,  and  code  quality.  In  Ref.
[25], Bruyninckx et al. developed methods and tools in
the  BRICS  project  to  design,  configure,  and  compose
stable  robotic  software  architectures.  Each  functional
sub-system  is  designed  as  a  software  product  line
whose architecture explicitly models software variation
points and variants.

As can be  analyzed,  both  the  ROS and classical  BT
frameworks  have  shown  limitations  in  meeting  the
three  challenges  above,  which  leaves  the  research  gap
in  efficient  robotic  software  development.  Firstly,
neither ROS nor the classical BT framework offers the
easy-to-follow  design  patterns  of  robotic  software
architecture,  with  only  essential  node  models  and
communication  mechanisms  provided.  Secondly,  both
frameworks have limited the reusability level  to node-
level  or  control  unit-level,  without  basic  reusable
infrastructures for higher-level robotic decision-making
paradigms.  Thirdly,  the  above  works  have  rarely
proposed  the  reusability  concepts  integrally  from  the
full  cycle  of  software  design  to  software
implementation, with most works concerning on partial
phase of robotic software development.

3    Structural-BT Development Framework

The  Structural-BT  software  development  framework
aims  to  improve  robotic  software  development
efficiency by presenting the conceptual reuse design of
task  planning  paradigms  and  providing  a  set  of
concrete reusable BT structures. In this section, we first
illustrate our insights on the hierarchical abstraction of
robotic  software  development  procedures,  which
explicitly  specifies  the  abstract  layer  of  decision-
making  logic  and  a  concrete  layer  of  architecture

design for  the  first  time.  Then we illustrate  the  design
motivation of structural-reuse setting in the Structural-
BT framework. The following two sections present the
technical details regarding the task planning paradigms
abstraction and reusable BT structures development.

3.1    Insights on robotic software development

As  previously  discussed,  the  robotic  software  can  be
explicitly  abstracted  and  decomposed  into  two
interconnected  layers  to  separate  concerns.  In  this
paper,  we  propose  that  robotic  software  development
should  be  handled  in  a  multi-phase  workflow  that
separates  the  abstract  paradigm  design  from  the
concrete  architecture  implementation,  which  helps  to
reduce the overall complexity of software development
and  offers  a  systematic  engineering  solution.  The
current  robotic  software  engineering  practices  treat
software  development  as  a  miscellaneous  and  ad-hoc
coding  process  for  achieving  the  task  requirements
without  recognizing  the  diverse  layers  of  software
concerns.  Such  an  intuitive  development  style  may  be
inefficient  for  complex  robotic  software  with
deliberative  task  requirements  and  environmental
uncertainties as the design complexity and difficulty of
task  planning  paradigms  and  software  architectures
increase  rapidly.  Therefore,  the  Structural-BT
framework  dedicates  to  tackling  the  following  two
issues:

● Ad-hoc  design  of  task  planning  paradigm. The
interaction design for each computational function in a
task  planning  paradigm  is  essentially  ad-hoc  and
cumbersome.  The  current  software  engineering
approaches  require  the  developer  to  manually  design
the  interaction  pipelines  (sensing-planning,  planning-
acting,  and  sensing-acting)  and  construct  the  software
prototype mostly based on their expertise. There are no
fixed  or  reusable  interaction  patterns  provided  for
novice  developers.  It  may  be  difficult  for  novice
developers  to  decide  on  a  suitable  task  planning
paradigm quickly, so they usually fail to reuse existing
good designs from other software products.

● Inadequate reusability level of robotic software
architecture. Reusable  designs  in  existing  robotic
software  architectures  (such  as  ROS  and  BT)  are
generally limited to the data and controlling logic level
without  considering  the  more  complex  task  planning
logic, making developing task planning loops in robotic
software  difficult  and  cumbersome.  Software
developers  can  reuse  the  ROS  topic/service  remote
communication  schemes  in  their  ROS-based  software
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architecture  without  manually  developing  the
component  communication  channels.  However,
software  developers  program  the  controlling  and
planning  flow  in  these  node  components  without
reusing  existing  solutions,  which  generally  requires
much development effort.

3.2    Motivation  of  Structural-BT  framework
design

Motivated  by  the  above  goals,  the  design  of  the
Structural-BT  framework  dedicates  to  improving  the
software reuse granularity from the current component
level to the structure level, which expects to reduce the
design  complexity  and  improve  software  development
efficiency. Figure  1 presents  the  design  of  the
Structural-BT  framework  for  structure-level  software
reuse.  The  core  reuse  design  of  the  Structural-BT
framework  adopts  a “decompose-realize-compose”
process, with each step explained as follows:

● Decompose.  This  step  decomposes  the  current
mainstream  robotic  task  planning  paradigms  into
fundamental  paradigm  baselines.  By  abstracting  and
decomposing the critical functions of these paradigms,
we can  recognize  some commonly  used  functions  and
their  interaction  patterns,  which  resolves  the  ad-hoc
design  issue  of  task  planning  paradigms.  In  the
Structural-BT  framework,  we  have  acquired  three
general  patterns  of  interaction  pipelines  (Sensing  &
Planning,  Sensing  &  Acting,  and  Planning  &  Acting)
between  the  critical  sensing,  planning,  and  acting
functions, which could be further reused for developers
to  design  customized  task  planning  paradigms for  any
robotic tasks.

● Realize.  After  identifying  the  above  abstract
interaction  patterns,  we  propose  to  realize  them  as
concrete  software  artifacts  so  that  the  identified
paradigm  patterns  can  be  practically  reused.  Our
approach uses the behavior tree component framework
to  represent  and  realize  them  as  a  set  of  reusable
behavior tree structures.

● Compose.  the  reusable  behavior  tree  structures
implemented  with  standardized  composable  interfaces
also  allow  easy  algorithmic  customization  in  task-
relevant  behavior  tree  components.  The  developer
could easily compose one or several reusable structures
in this setting to produce a preliminary and prototypical
robotic  software  architecture.  The “Realize” and
“Compose” steps have jointly improved the reusability
level  from  the  component-level  to  the  structure-level,
which  resolves  the  second  reusability  issue  of  robotic
software architecture.

4    Abstraction of Task Planning Paradigms

In  this  section,  we  identify  existing  mainstream  task
planning  paradigms  in  robotics  and  explore  how  to
reuse  these  abstract  paradigms  in  robotic  software
development.  We  first  identify  the  paradigms  from
existing  literature  and  open-sourced  robotic  software
projects. Then we establish the symbolic representation
of  each  computational  function  and  its  interaction
pipelines  to  synthesize  fixed  interaction  patterns  in
these paradigms. Finally, we validate the feasibility and
applicability  of  the  proposed  interaction  patterns  by
illustrating  the  composition  algorithms  that  formulate
the  existing  task  planning  paradigms  in  robotic
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Fig. 1    Overview of structure-level reuse design in the Structural-BT framework.
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software development.

4.1    Mainstream task planning paradigms

We  obtained  a  set  of  influential  research  papers  in
robotics  and  software  engineering  disciplines  and  25
popular robotic software projects from the open-source
GitHub  repositories  to  identify  the  mainstream  task
planning  paradigms  in  robotics.  To  obtain  as  many
resources  as  possible,  we  used  the  following  search
strings  to  collect  the  academic  papers  and  projects:
robot  task  planning  and  robot  planning  (control
paradigm or control loop or task planning algorithm) in
the  Google  Scholar  search  engine.  The  collected
academic papers[9, 26–30] and software projects generally
have  highly  significant  effects  and  have  gained  much
popularity within the robotic community, so they serve
as  reliable  foundations  for  our  analysis  results.  We
have  extracted  five  mainstream  robotic  task  planning
paradigms:  hierarchical,  reactive,  hybrid,  and
online/offline  probabilistic. Figures  2−6 have
graphically illustrated the interaction pipelines between
the sensing, planning, and acting functions for the five
paradigms.

The  hierarchical  planning  paradigm[28],  called  the
sense-plan-act  paradigm,  maintains  sequential
interaction  pipelines.  The  sensing  function  first  senses
the  environment  and  sends  sensor-based  knowledge
(domain  model)  to  the  planning  function.  Then  the
planning  function  outputs  the  task  plan  to  the  acting
function  for  execution.  In  this  paradigm,  three
computational  functions  decompose  the  task  planning
problem  into  vertical  slices,  making  the  information
flow from the environment via the sensing function and
back  to  the  environment  via  the  acting  function.  The
hierarchical  planning  paradigm  establishes  the  closed

feedback  loop  and  effectively  solves  robotic  tasks  in
static  and  fully  observable  environments. Figure  2
graphically  depicts  the  hierarchical  decomposition  of
the three functions and the sequential information flow.

The  reactive  planning  paradigm  is  one  of  the  most
effective  planning  solutions  for  robotic  tasks  in
dynamic  environments,  which  is  popular  in  robotic
software with real-time requirements[29]. This paradigm
implements  a  direct  input/output  interaction  pipeline
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Fig. 2    Interaction  pipeline  of  the  hierarchical  planning
paradigm.
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Fig. 3    Interaction  pipeline  of  the  reactive  planning
paradigm.
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Fig. 4    Interaction pipeline of the hybrid planning paradigm.
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from the sensing function to the acting function without
intermediate  computational  functions  for  long-term
deliberation.  The  sensing  function  receives  sensory
data  from  robot  sensor  devices  and  triggers  the
corresponding  acting  functions  to  handle  the  events
based  on  pre-defined  rules.  Multiple  sensing-acting
interaction  pipelines  can  be  hierarchically  organized,
with  each  pipeline  running  at  a  specific  priority  level
and  being  scheduled  by  user-specified  arbitration
schemes.  This  paradigm  supports  strongly  reactive
robot  software  that  quickly  responds  to  dynamic
environment  changes. Figure  3 presents  a  graphical
representation  of  the  multiple  pipelines  of  direct
interactions  between  sensing  and  acting  functions  in
the reactive planning paradigm.

The  hybrid  planning  paradigm[9, 28],  also  known  as
the  layered  planning  paradigm,  goes  a  step  further  to
integrally consider both the goal deliberation and event
reaction  requirements  of  robotic  tasks.  This  paradigm
combines  the  hierarchical  paradigm’s  deliberative
planning capability and the reactive paradigm’s strong
reactivity.  In  this  paradigm,  the  deliberative  layer
implements  high-level  deliberation  by  maintaining  the
typical sense-plan-act interaction pipeline that makes a

deliberative task plan based on internal domain models.
The reactive layer implements the reactive pipeline that
directly  couples  sensory  information  from  the  sensing
function  to  the  acting  function,  allowing  the  robot  to
cope  reactively  with  environment  dynamics  while
making high-level task plans.

The  probabilistic  planning  paradigms  have  been
widely  known  for  making  robust  plans  in  open-
world  environments  with  uncertain  acting  and
perception[26, 27, 31].  The  paradigms  have  utilized
probabilistic  planning  models  (such  as  Markov
Decision  Process  (MDP)  and  Partially  Observable
Markov  Decision  Process  (POMDP))  to  model  non-
deterministic  acting  effects  and  partially  observable
perception  results,  enabling  the  robot  task  plan  to  be
robust  in  any  possible  environment.  Specifically,  two
probabilistic  planning  paradigms  maintain  offline  and
online  planning  pipelines  for  diverse  environmental
conditions.

The  offline  probabilistic  planning  paradigm  suits
robotic tasks under partially known environment states.
The  planning  function  receives  initial  domain
knowledge  from  the  sensing  function  and  creates  a
complete  task  plan.  The  task  plan  has  a  contingent
structure  that  contains  sensing  action  operators  for
checking  runtime  environment  conditions  and  acting
action  operators  for  changing  environment  states.  The
complete task plan gets executed and receives runtime
observations  and  feedback  from  each  dispatched
action.  The  offline  paradigm  deals  with  the
uncertainties  of  environment  states  by  dynamically
switching to the proper contingent branch based on the
runtime observations from the sensing actions. Figure 5
depicts  the  offline  paradigm’s  interaction  pipeline  and
iterative plan dispatching process.

Unlike  the  offline  paradigm,  the  online  probabilistic
planning  paradigm  makes  a  one-step  action  at  each
planning  step.  It  iteratively  performs  the  planning
function  until  the  task  goal  is  finally  achieved.  The
online  paradigm  repetitively  performs  the “sensing-
planning-acting” interaction  pipeline:  the  sensing
function  sends  real-time  observation  results  to  the
planning function, and the planning function computes
the  currently  optimal  action  and  sends  it  to  the  acting
function for acting. This paradigm makes no complete
plan  at  the  initial  stage.  Instead,  it  incrementally
outputs  one-step  actions  at  each  planning  step  after
receiving  a  new  observation.  Due  to  its  real-time
sensing and planning capabilities,  the  online paradigm
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Fig. 5    Interaction  pipeline  of  the  offline  probabilistic
planning paradigm.
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Fig. 6    Interaction  pipeline  of  the  online  probabilistic
planning paradigm.
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enables  robust  task  achievement  under  possible
environmental  changes. Figure  6 presents  the  online
paradigm’s  repetitive  interaction  pipeline  of “sensing-
planning-acting”.

4.2    Common  patterns  of  sensing,  planning,  and
acting

In  this  section,  we  look  deeper  into  the  interaction
pipelines  of  the  above  task  planning  paradigms  and
explore the common interaction patterns between these
computational functions. We first formalize the critical
concepts and functions of task planning paradigms and
then  propose  a  set  of  common  interaction  patterns  for
reuse in software prototype design.
4.2.1    Concept and definition

Σ = ⟨S ,A,Z, fs, fp, fa⟩ S
A

Z
fs fp fa

Definition 1 (Task planning paradigm)　A common
task  planning  paradigm  contains  a  set  of  critical
domain  concepts  and  the  computational  functions  of
sensing,  planning,  and  acting.  We  define  a  basic
paradigm  as  a  tuple  where  is
the set of all the environment states,  is the set of all
possible  actions,  and  is  the  set  of  all  possible
observations. , ,  and  represent  the  computation
functions of sensing, planning, and acting, respectively.

st ∈ S

t zt ∈ Z

st st

zt t

Definition  2  (State  and  observation)　 A  state
 is  a  description  of  the  properties  and  status  of

various  objects  in  the  robot’s  situated  environment  at
time  step .  An  observation  is  the  sensed
knowledge based on the raw sensing readings from the
sensors at the state . This paper describes the state 
and  observation  at  time  step  as  a  set  of  ground
atoms.

as = ⟨τ,υ⟩ τ

τ

υ

Definition  3  (Action)　 An  action  operator
represents the behaviors of a robotic sensor or actuator
device. In the view of robotic software, a sensor device
(such  as  a  camera  or  laser  sensor)  senses  the
environment  and  receives  environmental  information.
The  operation  of  a  sensor  device  does  not  change  the
environmental state. However, an actuator device (such
as  an  arm  or  move  base)  changes  the  environment
states  by  its  operation  effects  but  receives  no  sensory
information.  Based  on  this  characteristic,  we  abstract
two  types  of  action  operators:  sensing  actions  and
actuating actions. Formally, a sensing action operator is
a  tuple ,  where  is  the  target  to  be  sensed.
The  sensing  target  may  either  be  an  environmental
object that needs to be recognized or an environmental
condition  that  needs  to  be  observed.  represents  the
received  observation  after  action  execution.  An

aa = ⟨ϖ,ϵ⟩
ϖ

ϵ

actuating  action  operator  is  a  tuple ,  where
 is the precondition that makes the action applicable

to execute, and  represents the effects of the actuating
action.

Π

Π = ⟨I,G,K⟩

Definition  4  (Planning  task)　 A  robotic  task
generally requires a robot to fulfill a specific goal from
the  initial  state.  We  define  a  planning  task  as

, in which:
I = st t●  is the environment state at initial time step ;
G = st′ t′●  is the goal environment state at time step ;
K = ⟨zt,A⟩

zt st

A

●  is  the  initially  sensed  domain-specific
knowledge  regarding the initial environment state 
and  the  set  of  available  actions  that  the  robot  can
operate.

∆

∆ = {a0,a1, . . . ,an} ai as

aa ∆

Π I
∆−→G

∆

I
G

A task plan  is a generous concept that refers to the
output  from  the  planning  function,  which  can  be
defined  as  an  ordered  set  of  action  operators

, where  may either be a sensing 
or  actuating  action  operator.  A  task  plan  for  a
planning  task  can  be  formalized  as ,
representing that the plan  is capable of transitioning
the  environment  from  the  initial  state  to  the  goal
state .

fp

Π = ⟨I,G,K⟩ ∆

fp

Definition  5  (Planning  function)　 The  planning
function  is  the  process  that  solves  a  planning  task

 by  making  up  a  valid  task  plan .  We
formalize the planning function  as
 

fp(Π) =

∆, I
∆−→G;

failure, otherwise.

fa aa

aa

t st

fa

Definition 6 (Acting function)　The acting function
 is  dedicated  to  executing  an  actuating  action ,

which transitions the environment state with the action
effects. Assume the robot needs to execute action  at
 on  the  current  environment  state ,  the  acting

function  goes as follows:
 

fa(st,aa) = st+1 = st ∪aa(ϵ), st |= aa(ϖ).

st

aa(ϖ)
st+1

aa(ϵ) st

When  current  state  satisfies  the  action
precondition ,  the  resulting  environment  state

 is  then  formulated  by  merging  the  action  effects
 with state .

fs

as as(τ)
st zt

zt

st

Definition  7  (Sensing  function)　 The  sensing
function  is the process of executing a sensing action

 that  aims  to  sense  the  target  based  on  the
current environment state  and receives observation 
after  execution.  Notably,  the  observation  may  be
either  the  complete  or  partial  sensed  knowledge  upon
the  state  depending  on  the  full  or  partial
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observability  of  environment  states.  The  function  can
be defined as
 

fs(st,as) = as(υ) = zt (1)
4.2.2    Interaction pipelines between functions
The above concepts and definitions have described the
independent  functionalities  of  sensing,  planning,  and
acting  functions.  In  this  section,  we  examine  the
standard interaction pipelines between these functions,
which  helps  decompose  the  complex  task  planning
paradigms into a set of reusable interaction patterns.

κ = ⟨ f1, f2,D,T ⟩

Definition 8 (Interaction pipeline)　An interaction
pipeline  is  essentially  the  information  flow  between
two  computational  functions.  The  information  flows
between  different  functions  are  generally  diverse
regarding the information types and temporal  features.
We first define a basic interaction pipeline as the tuple

,  and  these  elements  are  explained  as
follows:

D = f1→ f2| f1← f2

f1 f2

● ,  which  indicates  the
information  flow  is  initially  generated  from/to  the
computational function  to/from .

T = f1⊖ f2| f1⊚ f2 f1
f2 ⊖ ⊚

● ,  indicating  that  function 
interacts  with  at  one-shot  ( )  or  periodical  ( )
temporal styles.

κsp fs

fp

fs→ fp

⊖
⊚

Definition  9  (S-P  interaction  pipeline)　 The
interaction  pipeline  between  the  sensing  and
planning  function  is  aimed  at  formulating  sensed
domain  knowledge  based  on  sensory  information  and
making valid task plan based on the knowledge. In the
pipeline,  the  information  flows  from  the  sensing
function to the planning function, sending the received
observation  and  knowledge  as  the  planning  input
( ).  In  the  paradigms  above,  the  interaction
pipeline  between  sensing  and  planning  functions  is
either  one-shot  ( )  in  the  hierarchical  paradigm  or
periodically ( ) in the online probabilistic paradigm. In
this case, the S-P interaction pipeline can be expressed
as follows:
 

κsp = ⟨ fs, fp, fs→ fp, fs⊖ fp| fs⊚ fp⟩.

κsa fs

fa

fs→ fa

Definition  10  (S-A  interaction  pipeline)　 The
interaction  pipeline  between  the  sensing  and
acting  function  aims  to  react  to  unexpected
environmental  changes  by  continually  receiving  the
real-time  sensory  information  and  sending  it  to  the
acting function for quick response. In this pipeline, the
sensory  information  flows  directly  from  the  sensing
function to the acting function without passing through
any  deliberative  planning  functions  ( ).  The

reactive  planning  paradigm  consists  of  a  collection  of
prioritized  sensing-acting  interaction  pipelines,
requiring  these  pipelines  to  run  periodically  to  make
the robot robust to any environmental changes. The S-
A interaction pipeline can thus be described as follows:
 

κsa = ⟨ fs, fa, fs→ fa, fs⊚ fa⟩.

κpas

κpa

fa

κpas

fa fs

κpa κpas

Definition  11  (P-A/S  interaction  pipeline)　 The
interaction  pipeline  handles  the  issue  of  how  to
dispatch and execute a compete task plan. In the above
paradigms,  a  complete  task  plan  may  have  diverse
structures, including a deterministic plan that contains a
sequentially ordered set of actuating actions, and a non-
deterministic  plan  that  contains  both  sensing  and
actuating  actions  in  a  contingently  branched  structure.
The  above  plans  generally  require  a  continuous  and
iterative  loop  of  action  dispatching  and  feedback  until
the  task  plan  is  executed  completely.  Notably,  a
deterministic  plan  generally  requires  the  interaction
pipeline  in  which the actuating actions in  the plan
are dispatched to the acting function  and return the
execution  status.  The  non-deterministic  plan  requires
the  interaction  pipeline  in  which  both  actuating
and  sensing  actions  of  the  plan  are  dispatched  to  the
acting  and  sensing  functions,  respectively.  The
sensing  action  returns  the  observation,  and  the  task
plan  switches  to  the  corresponding  actuating  action
branch  accordingly.  In  these  cases,  both  interaction
pipelines  and  need  to  work  periodically.  The
task  plan  information  always  flows  from  the  planning
function’s  output  to  the  input  of  the  acting/sensing
function. Therefore, the P-A/S interaction pipelines can
be expressed as follows:
 

κpa = ⟨ fp, fa, fp→ fa, fp⊚ fa⟩,
κpas = ⟨ fp, fa/ fs, fp→ fa/ fs, fp⊚ fa/ fs⟩.

4.3    Composition of interaction pipelines

The sections above have formalized the computational
functions  and  abstracted  a  set  of  common  interaction
pipelines  between  these  functions.  In  this  section,  we
compose  the  proposed  interaction  pipelines  to
formulate  the  above  mainstream  task  planning
paradigms to check the reasonability and reusability of
these common interaction pipelines.
4.3.1    Hierarchical planning paradigm
As  illustrated  in Fig.  2,  the  hierarchical  planning
paradigm features  the  sequential  execution  of  sensing,
planning,  and  acting.  This  paradigm  assumes  a  static
environment  and  performs  one-shot  planning.  The
planning  function  makes  a  complete  task  plan
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consisting  of  a  set  of  ordered  action  operators,  which
must  be  continuously  dispatched  until  the  last  action
operator  gets  executed.  Based  on  the  above  features,
the algorithmic description of the hierarchical planning
paradigm is shown in Algorithm 1.
4.3.2    Reactive planning paradigm
The reactive planning paradigm, as shown in Fig. 3, is
hierarchically  organized  by  a  collection  of  prioritized
interaction pipelines of sensing-acting. Each interaction
pipeline  senses  a  specific  environmental  state  and
specifies a fast-responding action to handle the possible
state  changes.  The  paradigm  maintains  an  arbitration
scheme  to  prioritize  these  pipelines  to  express  the
significance of different state changes. The algorithmic
description  of  the  reactive  planning  paradigm  is
illustrated in Algorithm 2.
4.3.3    Hybrid planning paradigm
The  hybrid  planning  paradigm,  as  shown  in Fig.  4,
combines  the  advantages  of  hierarchical  and  reactive
paradigms  by  integrally  maintaining  two  layers  of
sensing, planning, and acting interaction pipelines. The
sensing  functions  formulate  domain  knowledge  and
real-time  sensory  events  to  the  planning  and  acting
functions, allowing for time-consuming deliberation on
task plans and fast reactions to environmental changes.
As long as the task plan has not finished execution, the
set  of  sensing-acting  interaction  pipelines  is  kept
running  along  with  the  task  plan  process  and  can  be
triggered  according  to  pre-defined  priorities.  When
some environment  condition  is  detected  as  unsafe,  the
task  plan  will  be  terminated,  and  the  corresponding

sensing-acting  pipeline  outputs  a  reactive  action  for
fast response based on user-defined reactive rules. The
procedural  algorithm  of  the  hybrid  paradigm  can  be
jointly  described  based  on  the  above  two  algorithmic
descriptions in Algorithm 3.
4.3.4    Offline probabilistic planning paradigm
The  offline  probabilistic  planning  paradigm  is  similar
to  the  hierarchical  paradigm  in  performing  one-shot
planning for a complete task plan. However, the offline
probabilistic  task  plan  features  a  different  contingent
branched  structure  than  the  sequentially  ordered
structure  of  the  hierarchical  task  plan,  which  contains
both  sensing  and  actuating  action  operators.  The
contingently  branched  task  plan  requires  the  periodic
dispatching and feedback of each executed sensing and
actuating action operator, whose plan execution results
closely  depend on the  external  environment  states  and
the  observations  from  sensing  action  operators.  Based
on  these  features,  the  algorithmic  description  of  the
offline probabilistic paradigm is shown in Algorithm 4.
4.3.5    Online probabilistic planning paradigm
Unlike the above paradigms that comprise the complete
task  plan,  the  online  probabilistic  planning  paradigm
performs  periodic  planning  and  outputs  a  one-shot
action  operator  for  each  planning  step.  As  shown  in

 

Algorithm 1　Composition algorithm for the hierarchical
planning paradigm

fs(I,as) = K1: 
Π = ⟨K, I,G⟩2: 

κsp : fs
Π−→ fp, fs ⊖ fp3: 

fp(Π) = ∆4: 

κpa : fp
∆−→ fa, fp ⊚ fa5: 

 

Algorithm 2　Composition algorithm for the reactive
planning paradigm

fs0 (st,as0 ) = zt,Rule(st,zt) = aa0 , fa0 (st,aa0 )1: 
κsa0 : fs0 → fa0 , fs0 ⊚ fa02: 
fs1 (st′ ,as1 ) = zt′ ,Rule(st′ ,zt′ ) = aa1 , fa1 (st′ ,aa1 )3: 
κsa1 : fs1 → fa1 , fs1 ⊚ fa14: 

5:...

κsan : fsn → fan , fsn ⊚ fan6: 
(κsa0 , κsa1 , ..., κsan )7: Prioritize

 

Algorithm 3　Composition algorithm for the hybrid
planning paradigm

fs(I,as) = K1: 
Π = ⟨I,G,K⟩2: 

κsp : fs
Π−→ fp, fs ⊖ fp3: 

fp(Π) = ∆4: 

κpa : fp
∆−→ fa, fp ⊚ fa5: 
κpa6: while  has not finished do

κsa0 , κsa1 , ..., κsan7:    Parallelize ( )
(κsa0 , κsa1 , ..., κsan )8:    Prioritize 
κsai9:    if some  has detected a state change then

fa(∆)10:        Terminate ( )
κsai : fsi → fai , fsi ⊚ fai11:        

12:  end if
13:  end while

 

Algorithm 4　Composition algorithm for the offline
probabilistic planning paradigm

fs(I,as) = K1: 
Π = ⟨I,G,K⟩2: 

κsp : fs
Π−→ fp, fs ⊖ fp3: 

fp(Π) = ∆4: 

κpas : fp
∆−→ fa/ fs, fp ⊚ fa/ fs5: 
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Fig.  6,  the  sensing  functions  produce  initial  domain
knowledge  for  the  planning  function  to  compute  the
first best action operator. After executing the action in
the acting function, the sensing functions obtain a real-
time  observation  and  send  it  to  the  planning  function
for  next-step  planning.  The  interaction  pipelines  of
sensing-planning-acting keep running periodically until
the  robot  finally  achieves  the  goal.  The  algorithmic
description of this paradigm is in Algorithm 5.

5    Reusable  Behavior  Tree  Structures  for
Interaction Pipelines

The  previous  section  has  proposed  a  set  of  standard
interaction  pipelines  for  synchronization  and
cooperation  between  the  sensing,  planning,  and  acting
functions. The above composition algorithms show that
the  well-decomposed  and  abstracted  interaction
pipelines  can  be  composed  flexibly  to  constitute  the
different robot task planning paradigms. In this section,
we  take  a  step  further  to  make  these  common
interaction pipelines easily reusable in robotic software
development.  We utilize  the  essential  components  and
interfaces  of  the  Behavior  Tree  (BT)  software
development  framework  to  develop  a  set  of  reusable
behavior  tree  structures.  Each  BT  structure  can
concretely  implement  the  above  abstract-level
interaction pipeline. It provides well-defined interfaces
for  easy  programming  of  inter-component
communication  and  complex  controlling  and  planning
flows.  The  overview of  our  Structural-BT approach  is
shown in Fig. 1.

5.1    Prior knowledge of BT framework

The  component-based  BT  software  development

framework has recently become increasingly popular in
the  robotic  community.  It  dramatically  improves
robotic software development efficiency by introducing
modular  and  reusable  control  logic  in  software
components.  A  BT  is  a  new  way  to  structure  the
switching  between  different  robot  behaviors  in
autonomous robotic software. A BT is a directed rooted
tree  whose  internal  nodes  are  called  the  control  flow
nodes  and  external  leaf  nodes  are  referred  to  as  the
execution  nodes.  In  the  classical  BT  framework[19],
there are four types of control flow nodes, including the
Sequence, Fallback, Parallel, and Decorator nodes, and
two  execution  nodes  of  Action  and  Condition.  The
advantage  of  BT  components  in  robotic  software
development  is  the  encapsulation  of  common
controlling  logic  into  reusable  control  flow  nodes,
making  implementing  controlling  logic  in  robotic
software  easier  than  existing  component-based
approaches,  such  as  the  ROS  framework.  BT-based
robot  software  starts  its  execution  from  the  root  BT
node and generates execution signal ticks with a given
frequency.  The  rest  BT  node  components  start  to
execute  if  and  only  if  it  receives  ticks  from its  parent
nodes.  We  discuss  the  reusable  control  flows  of
Sequence,  Parallel,  and  Fallback  nodes  and  two
execution  nodes,  which  are  the  foundation  for  our
developed reusable BT structures. Figure 7 presents the
graphical representations of these nodes.

M

For  a  Sequence  node  with N children  (Fig.  7a),  it
routes ticks to its children from the left  until  it  finds a
child  node  that  returns  either  Failure  or  Running.  The
Sequence  node  returns  Success  if  and  only  if  all  its
children  return  Success  (Algorithm  6[19]).  A  Fallback
node (Fig. 7b) routes ticks to its children from the left
until it finds a child node that returns either Success or
Running. It returns Failure if and only if all its children
return  Failure  (Algorithm  7[19]).  A  Parallel  node
(Fig.  7c)  routes  the  ticks  to  all  the  children  nodes.  It
returns Success if  children nodes return Success, or

 

Algorithm 5　Composition algorithm of the online
probabilistic planning paradigm

fs(I = st,as) = K1: 
Πt = ⟨I,G,K⟩2: 

κsp : fs
Πt−−→ fp, fs ⊚ fp3: 

fp(Πt) = ∆ = a∗t4:  {a single action operator}
5: while G has not been achieved do

κpa : fp
a∗t−−→ fa, fp ⊖ fa6:    

fs(st+1,as) = zt+17:    
Πt+1 = Πt + zt+18:    

fp(Πt+1) = a∗t+19:    

κsp : fs
Πt+1−−−→ fp, fs ⊚ fp10:    

11: end while

 

→

Child 1 Child N…

→→?

(a) Sequence node
Child 1 Child N…

(b) Fallback node
Child 1 Child N…

(c) Parallel node

Action

(d) Action node

Condition

(e) Condition node 

→ ⇒

Fig. 7    Graphical representation of a Sequence control node
( ), a Fallback control node (?), a Parallel control node ( ),
an Action node, and a Condition node.
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N −M+1returns  Failure  if  children  nodes  return
Failure  (Algorithm 8[19]).  For  an  Action node,  it  starts
to  execute  the  encoded  low-level  action  commands
when it receives ticks. An Action node returns Success
if  the  action  execution  is  completed  or  Failure  if  the
action has failed. While the Action node does not finish
executing  the  commands,  the  node  status  returns
Running. For a Condition node, it checks a proposition
that  describes a certain environment condition when it
receives  ticks.  A  Condition  node  returns  Success  or
Failure depending on whether the proposition holds or
not.  In  the  classical  BT  framework,  the  proposition
checking  process  is  assumed  to  be  instantaneous,  and
the  Condition  node  never  returns  a  status  of
Running[19].

The  classical  BT  framework  provides  a  modular

design  for  robotic  software.  It  is  the  first  work  to
encapsulate  the  general-purpose  controlling  logic  into
reusable  control  flow  nodes.  The  modular  design  and
encapsulation  of  controlling  flow  significantly  reduce
the  programming  efforts  required  for  complex
controlling  logic  implementation,  compared  with  the
limited  reusability  of  data  communication  pipelines  in
the ROS component framework. However, the classical
BT  framework  and  other  popular  component-based
robotic  software  development  frameworks  provide  no
encapsulation  and  reusable  designs  regarding  task
planning  paradigms’ more  cumbersome
implementation  issue,  which  generally  requires  more
programming efforts.  In  this  work,  we utilize  some of
the  standard  concepts  of  BT  and  develop  a  set  of
reusable BT structures that could facilitate the efficient
implementation of abstract task planning paradigms.

5.2    Domain-specific robotic BT components

We first develop a set of domain-specific BT software
components  that  closely  relate  to  the  task  planning
functionality  in  robotic  software.  We  have  designed
concrete component models and reusable interfaces for
the critical computation functions of sensing, planning,
and  acting.  The  general  computation  scheme  can  be
flexibly  reused  in  each  component,  and  software
engineers  can  easily  customize  the  task-specific
settings of different planners, sensors, and actuators.

Ns

Ns = ⟨N ,α⟩ N
α

Ns

Definition  12  (Sensing  action  node)　The  sensing
action node  inherits  the basic  tick engine from the
BT  action  node  that  waits  for  external  ticks  for
execution,  and  also  incorporates  a  task-specific  sensor
that  senses environment states for  sensory information
and formulates high-level observations or generates the
task-specific problem model. Formally, the main model
elements  of  a  sensing action node can be described as

,  where  the  represents  the  basic  BT
action  node  that  implements  the  tick  engine,  and 
represents  a  robotic  sensor  component  that  interacts
with  external  environments  and  receives  sensory
information. Figure 8 graphically describes the internal
component elements of a sensing action node. The 
component  could  receive  either  raw  sensory
information (such as the image and laser readings) or a
domain  model  (the  contextual  information  of  specific
tasks)  and output  a  high-level  observation (formulated
knowledge  based  on  raw  sensory  information)  or  a
problem  model.  The  internal  sensor  component
provides  two  methods  of  ObservationFormulation()
and  RunProblemGenerator()  that  could  be  user-

 

Algorithm 6　Pseudocode of Sequence node with N children
←1: for i  1 to N do

=2:    childStatus  Tick(child(i));
3:    if childStatus == Running then
4:        return Running;
5:    else if childStatus == Failure then
6:        return Failure;
7:    end if
8: end for
9: return Success;

 

Algorithm 7　Pseudocode of Fallback node with N children
←1: for i  1 to N do

=2:    childStatus  Tick(child(i));
3:    if childStatus == Running then
4:        return Running;
5:    else if childStatus == Success then
6:        return Success;
7:    end if
8: end for
9: return Failure;

 

Algorithm 8　Pseudocode of Parallel node with N children
←1: for i  1 to N do

=2:    childStatus  Tick(child(i));
3: end for

⩾4: if Sum(childStatus(i)==Success)  M then
5:    return Success;

>6: else if Sum(childStatus(i)==Failure)  N−M then
7:    return Failure;
8: else
9:    return Running;
10: end if
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customized for different task requirements.

N
β

Np

Definition  13  (Planning  action  node)　 The
planning  action  node Np=〈 N, β〉 also  inherits  the
basic  tick  engine  from  the  BT  action  node  and
incorporates  a  task-specific  planner  component  that
performs  diverse  types  of  task  planning,  such  as  the
POPF  planner☆ for  hierarchical  planning  and  the
DESPOT  planner†  for  online  probabilistic  POMDP
planning. Figure  9 shows  the  internal  model  elements
of the BT-based planning action node. The component

 generally  provides  interfaces  for  receiving  a
problem  model  and  outputting  a  generated  plan.  The
planner component provides the RunPlanning() method
for  customizing  internal  planning  algorithms  based  on
diverse task requirements.

Na

Na

N
γ

Definition  14  (Acting  action  node)　 The  acting
action  node  is  dedicated  to  executing  a  task-level
plan  by  implementing  the  motion-based  actor  for
concrete  acting  with  low-level  robotic  hardware
actuators. The  component consists of the basic BT
action  node  for  receiving  the  ticks  and  starting  the
motion-based  acting  process  and  the  actor  for
implementing the specific motion-based acting process.
For  example,  when  receiving  the  task-level  plan  of

γgoto  (pos1,  pos2),  a  move  base  actor ,  which
interfaces  with  the  hardware  move  base  actuator  and
provides  the  Proportional-Integral-Derivative  (PID)
controlling motion algorithm, could concretely execute
the  plan  and  drive  the  robot  to  reach  the  goal
destination in the real-world environment. As shown in
Fig.  10,  the  actor  component  receives  the  plan  and
maintains  the  customizable  function
RunConcreteActing() for different actuators.

5.3    BT structure realization of interaction pipeline

Based  on  the  above  robot-specific  functional  BT
components, we develop a set of reusable BT structures
to  implement  the  abstract  interaction  pipelines.  The
reusable  BT  structures  can  then  be  flexibly  composed
to quickly develop the  skeleton architecture  of  robotic
software, which improves the development efficiency.
5.3.1    Reusable  BT  structure  for  S-P  interaction

pipeline

Tsp

Ns Np

Figure  11 presents  external  and  internal  views  of  the
BT  structure  for  the  sensing-planning  interaction
pipeline. As shown in the external view (Fig. 11a), the
BT  structure  uses  the  sequence  node  as  its  root
node  and  adds  sensing  and  planning  action
nodes  as  the  children  nodes.  In  the  structure,  the
controlling  and  planning  flow  in  the  interaction
pipeline  are  implemented  synchronously  and  could  be
encapsulated within the structure for software reuse. As

 

Sensing action node

Sensor→RunProblemGenerator( )

ActionNode→WaitForTick( )

Problem modelDomain model

Sensory information Sensor→ObservationFormulation( ) Observation

Observation

Tick

 
Fig. 8    Graphical representation of the BT-based sensing action node component.

 

Planning action node

Planner→RunPlanning()

ActionNode→WaitForTick()

PlanProblem model

Tick

 
Fig. 9    Graphical  representation  of  the  BT-based  planning
action node component.

 

Acting action node

Actor→RunConcreteActing( )

ActionNode→WaitForTick()

Plan

Tick

 
Fig. 10    Graphical  representation  of  the  BT-based  acting
action node component.

  
 

☆https://github.com/fmrico/popf.git
  
 

†https://github.com/AdaCompNUS/despot.git
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Ns

Np

Np

shown  in Fig.  11b,  the  root  sequence  node  routes  the
execution signal tick to the sensing and planning action
nodes  sequentially:  (1)  the  root  node  sends  the  tick  to
the sensing node , ticking the sensor to formulate an
observation  and  generate  a  problem  model;  (2)  after
successfully  generating  the  problem  model,  the 
returns  its  execution  status  of “success” back  to  the
root node; (3) the root node then sequentially routes the
tick  to  the  planning  node  to  trigger  the  planner  to
perform  task  planning;  (4)  as  soon  as  the  task  plan  is
computed,  the  node  returns  the  status  of “success”
back to  the  root  node,  and the  root  node subsequently
set the status of this structure as “success”. Notably, the
above  controlling  flow  of  tick  and  status  routing  is
implemented in sync with the planning flow of problem
model  generation  and  task  plan  computation,  making
this  BT  structure  a  well-behaved  and  independent
composite component for software reuse.
5.3.2    Reusable  BT  structure  for  P-A/S  interaction

pipeline
The  aforementioned  planning-acting/sensing

κpa κpas

κpa κpas

→

interaction  pipelines  are  dedicated  to  dispatching  and
executing  a  task  plan  that  contains  an  ordered  set  of
actuating/sensing  action  operators.  We  develop  a  BT
structure  that  is  capable  of  implementing  both  the
planning-acting  and  planning-acting/sensing 
interaction  pipelines.  As  and  implement  a
periodic  plan  dispatching  process,  we  develop  a  new
BT  control  node  of  SequenceNodeWithIteration  to
realize  the  iterative  control  logic.  In  the  node,  we
implement  an  iterative  procedure  of “action
selection−action  dispatch−action  execution−action
feedback” inside  the  function  of “ControlNode
Tick()”.  With  each  tick  arriving  at  the
SequenceNodeWithIteration  node,  the  iterative
procedure  will  be  executed once,  along with  routing a
tick  to  the  children’s  action  nodes.  In  this  case,  the
iterative  procedure  of  plan  execution  is  kept
synchronous  with  the  control  flow  of  tick  routing.
Notably,  to  enable  easy  composition  of  the  S-P  and
P-A/S  structures,  we  add  the  interface  of
SequenceNodeWithIteration  node  to  receive  the  task

 

Sensing action node Planning action node

Sequence node

(a) External view of the sensing-planning BT structure

Planner→RunPlanning( )

ActionNode→WaitForTick( )

Plan
Sensor→RunProblemGenerator( )

ActionNode→WaitForTick( )

Problem model
Domain model

Sensory information Sensor→ObservationFormulation( )
Observation

Observation

Planning action node

Sensing
action node

Sequence node

ControlNode→Tick( )

(b) Internal view of the sensing-planning BT structure

(1) Tick (3) Tick(2) Status (4) Status

 
Fig. 11    Graphical representation of (a) external and (b) internal views of the BT structure for the implementation of sensing-
planning interaction pipeline.
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plan  from  external  data  flow  to  avoid  the  redundancy
of planning node implementation.

Np

{Na1 ,Na2 , ...,Nan },
{Ns1 ,Ns2 , ...,Nsn }

Figure 12 presents external and internal views of the
reusable  BT  structure  for  the  planning-acting/sensing
interaction  pipeline.  As  shown  in  the  external  view
(Fig.  12a),  the SequenceNodeWithIteration node is  set
as the root node. In the BT structure, we add a planning
action  node ,  a  set  of  acting  action  nodes

 and possibly  a  set  of  sensing  action
nodes  as  the  children  nodes  that
handle  the  different  actuating/sensing  action  operators
of  the  deterministic/non-deterministic  task  plans.  The
BT  structure  can  support  the  planning-acting  (P-A)
interaction  pipeline  by  dispatching  each  actuating

action  operator  of  the  deterministic  task  plan  to  the
acting  action  nodes.  It  can  support  the  planning-
acting/sensing  (P-A/S)  interaction  pipeline  by
dispatching each actuating or sensing action operator of
the  non-deterministic  task  plan  to  the  corresponding
acting or sensing action nodes.

Np

Np

As shown in Fig. 12b, the iteration scheme of action
dispatching and feedback is  implemented in sync with
the controlling flow of  tick routing.  (1)  The root  node
sends the tick to the planning node  and triggers the
planner  to  make  up  the  task  plan.  (2)  As  soon  as  the
planning  is  finished,  the  returns  the  status  of
“success” back and the generated task plan to the root
node. The root node then starts the iterative procedure

 

Planning action node Acting action node 1

Acting action node 2

Acting action node 3

SequenceNodeWithIteration

Sensing action node 1

Sensing action node 2

(a) External view of the planning-acting/sensing BT structure

Actor→RunConcreteActing( )

ActionNode→WaitForTick( )

Planner→RunPlanning( )

ActionNode→WaitForTick( )

Plan
Problem

model

Acting action nodePlanning
action node

SequenceNodeWithIteration

ControlNode→Tick( )

(1) Tick (2) Status (3)
Tick

 

(4) Status

(5) Tick

(6) Observation

Action

Sensing action node

Sensor→RunProblemGenerator( )

ActionNode→WaitForTick( )

Domain model

Sensory information Sensor→ObservationFormulation( )
ObservationObservation

Tick

Action

Plan

(b) Internal view of the planning-acting/sensing BT structure 
Fig. 12    Graphical  representation  of  (a)  external  and  (b)  internal  views  of  the  BT  structure  for  implementation  of  the
planning-acting/sensing interaction pipeline.
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and dispatches each action operator from the task plan
to the corresponding (3) acting (5) sensing action node.
The  actuating/sensing  action  node  starts  its  execution
by  receiving  the  action  operator  and  execution  tick.
The  corresponding  acting  node  finishes
executing  the  action  and  returns  the  execution  (4)
status/(6)  observation  back  to  the  root  node.  Notably,
the execution feedback of a sensing action node is  the
received  observation,  whereas  the  actuating  action
node  returns  the  execution  status  of “success”,
“failure”,  or “running”.  Both  types  of  action  feedback
can  be  processed  in  the  same  fashion  by  the  iterative
procedure  of  the  SequenceNodeWithIteration  node.
The root  node could  repeat  the  steps  of  (3)  and (4)  or
(5)  and  (6)  by  iteratively  dispatching  the  actuating  or
sensing  action  operators  to  the  acting  or  sensing
function.  The  root  node  maintains  the  iterative
dispatching  and  acting  loop  until  the  task  plan  has
executed all its action operators.
5.3.3    Reusable  BT  structure  for  S-A  interaction

pipeline
The interaction pipeline between the sensing and acting
functions,  which  avoids  a  deliberative  planning
process,  is  dedicated  to  reactively  responding  to
runtime environmental  changes.  The reactive  planning
paradigm  is  essentially  a  prioritized  hierarchy  of

Tsa

Tsa

Ns

Ns

Na

Na

multiple  interaction  pipelines  between the  sensing and
acting  functions.  In  each  interaction  pipeline,  the
sensing  function  checks  a  condition  proposition  with
the  sensory  information,  and  the  acting  function  runs
the  corresponding  action  when  the  condition  is
unsatisfied. To implement the pipeline, we develop the
sequence  tree  structure  and  encapsulate  the
controlling and data flows inside the structure, enabling
the  reuse  of  sensing-acting  interaction  logic  in  robotic
software  development. Figure  13a graphically  depicts
an  external  view  of  the  BT  structure,  and Fig.  13b
describes  the  controlling  and  data  flows  in  the
structure.  (1)  In  the  structure ,  the  sequence  root
node first routes the tick to the sensing action node 
and  triggers  the  sensor  to  formulate  an  observation
based on sensory information.  The observation is  then
utilized  to  check  whether  some  environmental
condition  is  satisfied.  (2)  If  the  condition  is  satisfied,
the  sensing  node  then  returns  the  status “success”
back to the root node. (3) The root node then routes the
tick to the acting action node . It triggers the actor to
execute  the  corresponding  reaction  action  operator
(specified  by  user-defined  reactive  rules).  (4)  The
acting  node  waits  for  the  execution  of  the  action
operator  and  returns  the  execution  status  to  the  root
node.

 

Sensing action node Acting action node

Sequence node

(a) External view of the sensing-acting BT structure

Actor→RunConcreteActing( )

ActionNode→WaitForTick( )

Sensor→RunProblemGenerator( )

ActionNode→WaitForTick( )

Problem model
Domain model

Sensory information Sensor→ObservationFormulation( )
ObservationObservation

Acting action nodeSensing
action node

Sequence node

ControlNode→Tick( )

(1) Tick (3) Tick(2) Status (4) Status

(b) Internal view of the sensing-acting BT structure 
Fig. 13    Graphical representation of (a) external and (b) internal views of the BT structure for implementation of the sensing-
acting interaction pipeline.
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6    Experiment

We  select  four  robotic  tasks  with  diverse  goals  and
environmental  conditions  to  validate  the  software
development  efficiency  of  our  reusable  BT  structures.
We  then  develop  software  systems  for  each  task  to
measure  the  level  of  development  effort  quantitively.
The  selected  robotic  tasks  could  be  actual  samples  to
evaluate  the  reusability  of  each  abstracted  interaction
pipeline  and  concrete  BT  structures.  Moreover,  to
make the results as objective as possible, we select two
of the most popular component-based robotic software
development  frameworks  (ROS  and  classical  BT)  as
the  baseline  approaches.  We  show  through  this
comparison  that  the  Structural  BT  approach  has
improved reusability compared to existing approaches.
The  source  codes  of  our  Structural-BT  component
framework  and  the  software  implementation  for  the
experimental tasks can be available upon request.

6.1    Task scenarios

In this experiment, we have selected four diverse types
of robotic domains and designed the task requirements
with  different  environmental  constraints.  Below  task
scenarios are carefully selected and designed based on
the  following  principles. Firstly,  the  task  domains  are
relatively  common  in  the  robotic  community,  which
receives  many  software  development  requirements.
Secondly,  the  environmental  constraints  of  four  task
domains  have  covered  the  uncertainties  of  dynamics
and perception, such as Task 1 with the static and fully
observable  environment,  Task  3  with  the  static  and
unknown  environment,  and  Tasks  2  and  4  with  the
dynamic  and  unknown  environment. Thirdly,  these
task  domains  generally  consist  of  composite  robotic
actions and complex deliberation requirements, making
developing  corresponding  software  systems  rather
tricky. Testing our approach within these task scenarios
could  practically  evaluate  the  applicability  and
effectiveness  of  the  framework  in  the  most  common
domains and complex environment  constraints.  As the
hybrid paradigm is  essentially an integral  combination
of  hierarchical  and  reactive  structures,  the  selected
robotic  task  scenarios  are  designed  to  cover,  in
particular,  the  mainstream  hierarchical,  reactive,
offline,  and  online  probabilistic  task  planning
paradigms. Figure  14 presents  snapshots  of  the  four
task scenarios. The task descriptions are as follows.

● Task 1 (target navigation): The robot is expected
to  navigate  in  an  indoor  environment  to  visit  a  set  of

target  destinations.  In  this  task,  the  robot  can  initially
obtain  positions  and  target  destinations  with  sensory
information from robotic sensors. Then the robot needs
to  perform  hierarchical  task  planning  based  on  the
known  information  to  compute  the  task  plan  that
minimizes movement cost.

● Task 2 (target searching): The robot is  expected
to search for a target object that remains unknown in a
dynamic  environment.  In  the  environment,  moving
obstacles  may  appear  in  the  way  and  cause  possible
collisions.  For  safety,  the  robot  needs  to  prioritize
detecting  and  avoiding  moving  obstacles,  then
searching for the target object by randomly wandering
in  the  room.  The  software  needs  to  perform  reactive
planning  that  achieves  the  reactive  goal  of  obstacle
avoidance.

● Task  3  (target  exploration): The  robot  is
expected to explore two unknown areas to find a target
object.  In  the task,  the robot  can partially  estimate the
target’s  existence  by  obtaining  a  partial  view  image,
which  causes  uncertainties  in  target  recognition.  The
robot  must  make  a  complete  task  plan  containing
necessary  sensing  actions  for  checking  environment
states  and  actuating  actions  for  exploring  the
environment.  The  software  is  expected  to  perform
offline probabilistic task planning.

● Task 4 (target chasing): The robot is expected to
chase  after  a  moving  target  in  a  partially  observable
environment. The robot can roughly obtain the target’s
direction by continuously obtaining and analyzing laser
readings.  As  the  target  keeps  moving,  the  robot  must
perform online probabilistic planning to decide the best
movement  action.  After  each  action  execution,  the

 

(a)Task 1: Target navigation

(c) Task 3: Target exploration

(b) Task 2: Target searching

(d) Task 4: Target chasing 
Fig. 14    Task  scenarios  of  four  indoor  robotic  tasks  in  the
experiment.
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robot  can get  closer  to  the  target.  The online planning
process  continues  until  the  robot  reaches  the  target’s
position.

6.2    Baseline approach

In  this  experiment,  we have selected  the  ROS‡[16] and
classical  BT¤ component  frameworks  as  the  baseline
approaches  of  robotic  software  development.  Both
frameworks have been popular in robotics and software
engineering  communities  due  to  their  well-designed
component  interfaces,  functionality  encapsulation,  and
modular  design.  With  these  frameworks,  robotic
engineers  can  easily  reuse  remote  communication
infrastructures (the topic/service schemes in ROS) and
versatile  controlling  logic  (such  as  the
sequence/fallback/parallel  control  flows  in  classical
BT)  when  developing  software  for  different  robotic
tasks.

In Fig.  15a,  the  ROS  framework  includes  the  ROS
node  component  that  encapsulates  the  remote  data
communication  channels  (topic/service)  as  reusable
infrastructure.  Software  engineers  can  easily  reuse  the
topic/service  invocation  interfaces  when  architecting
communications  between  functional  software
components.  In Fig.  15b,  the  classical  BT  framework
has  provided  a  set  of  BT  components  with  versatile
types,  including  control  and  execution  nodes.  BT
control nodes have improved the reusability level over
the  ROS  framework  by  creatively  encapsulating  the
basic  controlling  logic  of  sequence,  fallback,  and
parallel,  which  are  commonly  required  and
implemented  in  robotic  software  development.  The
interfaces  of  BT  control  nodes  and  action/condition
nodes  are  modular  and  reusable,  which  relieves  the
software  engineers  from  manually  implementing  the
basic  controlling  flows  between  robotic  software
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Fig. 15    Different reusability levels of the ROS, classical BT, and Structural-BT development approaches.  

 

‡http://wiki.ros.org/kinetic/Installation/Ubuntu
  
 

¤https://github.com/miccol/ROS-Behavior-Tree.git
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components. Figure  15c graphically  presents  the
reusable  design of  our  proposed approach.  Taking it  a
step  further,  our  approach  proposes  to  minimize  the
complexity of robotic software development by reusing
the basic and common patterns of interaction pipelines
between  the  sensing,  planning,  and  acting  functions.
The set of reusable BT structures corresponding to the
interaction  pipeline  patterns  can  be  flexibly  composed
to  implement  a  specific  task  planning  paradigm  and
formulate  the  skeleton  software  architecture.  Software
engineers  only  need  to  customize  the  task-specific
planners  and  hardware-specific  sensors/actors  inside
the  software  without  much  programming  effort  to
implement  the  basic  controlling  flows  and  task
planning paradigms.

Figure  16 presents  the  representative  process  of
composing  an  S-P  structure  and  P-A/S  structure  for
developing software for Task 3. The software of Task 3
requires  the  implementation  of  an  offline  probabilistic
task planning paradigm. We select the reusable S-P and
P-A/S  structures  to  compose  a  skeleton  BT  tree  that
establishes  the  task  planning  and  plan  execution
framework.  The  planning  action  node  has  been
implemented  and  incorporated  into  the  S-P  structure.
The  node  outputs  the  non-deterministic  task  plan  and
sends it to the receiver interface of the adjacent subtree
of  the  P-A/S  structure  via  the  inter-node  mutual  data
sharing scheme. The mutual  data sharing of  BT nodes
has  been  previously  studied  in  our  earlier  work[23],

which can be referred to for more details.

6.3    Result and analysis

In  this  experiment,  we  quantitatively  evaluate  the
reusability level of components from three comparative
approaches  by  measuring  their  reuse  frequency  and
reuse ratio. The reuse frequency of a component shows
the extent to which the component is selected for reuse
in other components or projects by developers. A high
reuse frequency of a component means this component
could  be  rather  beneficial  and  demanding  in  various
robotic  software  projects.  The  reuse  ratio  refers  to  the
ratio  of  the  reused  amount  of  code  in  a  task-specific
software component. In a software component built by
developers,  a  high  reuse  ratio  means  the  majority  of
lines  of  code  of  this  component  could  be  reused  from
existing  code  repositories,  reducing  the  developers’
programming effort.

We  first  measure  the  reuse  frequency  of  the  ROS
components  (ROS  approach),  BT  components
(classical BT approach), and BT structures (Structural-
BT  approach)  to  show  their  applicability  in  robotic
software  development.  Then  we  take  it  further  to
evaluate  the  reuse  ratio  of  code  amounts  of  the  above
components  or  structures  in  each  application-specific
component.
6.3.1    Reuse frequency
Figure 17 presents the reuse frequencies of the diverse
components  or  structures  provided  by  the  ROS,
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classical  BT,  and  our  proposed  Structural-BT
development  approaches.  The  reuse  frequency  of  a
reusable  component  or  structure  is  measured  by  the
number  of  times  it  is  invoked  in  each  task-specific
robotic software instance.

Figure  17a shows  the  reuse  frequency  of  four  task-
related  ROS  functional  nodes  among  the  four  task
scenarios.  In  the  ROS  development  approach,  Tasks
1−4  require  different  task  planning  paradigms  and
more  detailed  algorithmic  implementation  of  task-
specific  planners,  sensors,  and  actuators.  In  this
approach, we utilize the core ROS functional nodes of
the ROSPlan¶ POPF planning framework to design and

develop  the  robotic  software  for  the  Task  1  scenario.
Within  this  context,  we  refer  to  a  class  or  package’s
source  code  that  implements  an  independent
functionality  as  a  functional  component.  Five  core
functional  ROS  components  are  reused  in  the  robotic
software  for  Task  1.  Similarly,  we  utilize  the  off-the-
shelf  ROS  functional  nodes  from  the  reactive
controller,  SARSOP¥ offline  probabilistic  planning
framework,  and  DESPOT◎ online  probabilistic
planning  frameworks  to  develop  the  robotic  software
for Tasks 2−4, respectively. Each ROS-based planning
framework  offers  highly  specialized  and  technically
diverse  planning  algorithms  in  the  software
development  process,  which  can  effectively  solve  the
corresponding  task  planning  problems  and  efficiently
implement  the  software  by  reusing  some  planning
components. However, none of these frameworks, such
as  ROSPlan  and  SARSOP,  can  be  well  reused  among
different tasks due to the lack of reuse in the common
and  general  controlling  and  planning  flows.  In
Fig.  17a,  we  find  out  that  each  ROS-based  planning
framework  can  only  be  applicable  in  their
corresponding  task  scenario  but  fail  to  be  reused  in
other  task  scenarios  requiring  different  task  planning
paradigms.

The  classical  BT  framework  enables  the  reuse  of
common controlling logic, such as sequential, fallback,
and  parallel  control  loops,  by  encapsulating  them into
the  Sequence,  Fallback,  and  Parallel  control  nodes,
which  makes  them  fully  reusable  without  any  code
modification.  Moreover,  the  classical  BT  framework
provides  a  unified  modeling  and  programming
framework  that  unifies  the  C++/Python  programming
languages  and  generalized  component  interfaces,
making  it  widely  applicable  to  robotic  software
programming.  In Fig.  17b,  the  Sequence  control  node
has  been  reused  multiple  times  in  all  the  tasks  that
serve  as  the  primary  sequential  controlling  loops.  The
Fallback control  node has also been reused in Tasks 2
and  4,  which  implement  the  primary  if-else  selection
controlling loops.

Figure 17c records the reuse frequencies of the three
proposed BT structures that specifically implement the
interaction  pipelines  between  sensing,  planning,  and
acting in our Structural-BT development approach. The
BT  structures  of  S-P,  P-A/S,  and  S-A  implement  the
commonly  used  planning  and  controlling  flows  that
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Fig. 17    Reuse  frequencies  of  the  diverse  components  or
structures provided by three comparative approaches for the
four task scenarios.
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explicitly  exist  in  the  above  interaction  pipelines.  The
BT  structures  have  been  designed  to  be  modular,
general,  and  customizable,  enabling  the  encapsulated
planning  and  controlling  flows  widely  applicable  in
most  robotic  tasks.  In Fig.  17c,  the  S-P  BT  structure
has  the  highest  reuse  frequency in  task  scenarios  1,  3,
and  4.  These  tasks  require  a  deliberative  planning
scheme  that  first  senses  the  environment  to  formulate
domain  information  and  then  performs  diverse
planning  algorithms  to  make  a  valid  task  plan.
Similarly,  the P-A/S BT structure is reused in Tasks 1
and  3  as  the  output  task  plans  generally  consist  of
action operators, which require developing the iterative
loops  of  plan  dispatching  and  feedback  for  the
underlying  software.  The  S-A  BT  structure  is  reused
twice  in  Task  2,  which  couples  the  direct  data  and
control flows between a robotic sensor and an actuator.
Software developers could reuse this structure multiple
times to develop the hierarchically organized layers in
the reactive planning paradigm.
6.3.2    Reuse ratio
The above statistics reveal the general reusability levels
of the BT/ROS components or BT structures from three
comparative  approaches,  demonstrating  the
applicability of these models by comparing their reuse
frequencies  in  diverse  types  of  robotic  tasks.  We
further  examine  the  specific  reusability  ratio  of  each
reused  component  or  structure  concerning  the  code
size,  which  indicates  the  programming  effort  required
for robotic software development.

In  the  ROS  approach,  we  develop  the  software  for
different  tasks  by  inheriting  ROS  node  components’
basic  interfaces  and  topic/service  communication
channels.  We  also  implement  concrete  planning
algorithms using technically different planner projects.
The ROS node interfaces  only provide the skeleton of
remote  data  communication,  while  the  algorithmic
implementation  of  planning  and  controlling  flows  is
fully  task-customized.  Most  codes  on  the  planning
algorithm  implementation  of  the  ROSPlan,  Reactive
controller,  SARSOP, and DESPOT are not reusable in
different  tasks,  with  only  the  ROS-related  codes
commonly  reused  among  the  above  four  tasks.
Figure  18a depicts  the  reuse  ratio  of  the  ROS-related
classes  and  functions  (such  as  ros::ServiceClient  and
ros::Subscriber) in the four tasks. As shown, the ROS-
related codes take the proportion of the total code size
of  software  implementation  for  Tasks  1−4  at  23.8%,
16.3%, 16.9%, and 17.2%, respectively.

The BT control nodes have been shown to have wide
reusability  for  different  task  scenarios  in  the  classical
BT  approach,  with  the  encapsulated  Sequence  and
Fallback  controlling  logic  being  fully  reused  in
software  development.  We  quantitatively  measure  the
code sizes of the overall implementation of each task’s
software  and  the  code  sizes  of  utilized  BT  control
nodes. The reuse ratios of BT control nodes for the four
tasks are shown in Fig. 18b, which take the proportion
of  the  total  code  size  at  28.1%,  39.2%,  29.3%,  and
18.3%.  In  our  proposed  Structural-BT  approach,  we
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Fig. 18    Number  of  line  of  code  and  reuse  ratios  of  the
diverse  components  or  structures  provided  by  three
comparative approaches for the four task scenarios.
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improve the reusability level of the controlling logic in
classical  BT  to  the  integral  interaction  pipelines  of
planning,  controlling,  and  data  flows.  The  BT
structures for S-P, P-A/S, and S-A interaction pipelines
are  implemented  as  independent  and  composite
components, which formulate the program skeletons of
the  deliberative  sensing-planning  process,  the  iterative
planning-acting  process  for  plan  execution,  and  the
reactive  sensing-acting  process. Figure  18c shows  the
proportions of the total code sizes of S-P, P-A/S, and S-
A  BT  structures  concerning  the  total  implementation
size  of  each  task’s  software.  The  statistics  show
improved  reusability  ratios  of  these  BT  structures  for
Tasks  1−4  at  91.6%,  78.1%,  62.8%,  and  44.6%,
respectively.  Notably,  the  reusability  ratios  of  the
above components or  BT structures closely depend on
implementing  other  technical  algorithms  for  sensor
data  processing,  state-related  searching  strategies,  and
motion-level  planning  and  acting.  In  the  experiment,
the Task 1 scenario is assumed to be a static and fully
known environment, making hierarchical task planning
relatively  easier  to  implement  and  leading  to  a
straightforward  non-reusable  technical  algorithm
implementation.  The  Task  4  scenario  is  dynamic,
partially  observable,  and  requires  the  more  complex
online  probabilistic  planning  paradigm.  The  non-
reusable technical algorithms for laser reading analysis
and  movement  control  make  the  total  implementation
code size  relatively  more significant  than the  software
for other tasks. For this reason, the reusability ratios are
decreasing  from  Tasks  1  to  4  due  to  the  diverse
implementation complexities.  However,  the reusability
ratios  of  BT  structures  in  the  Structural-BT  approach
are generally higher than in the other two approaches.

6.4    Summary

To  sum  up,  the  ROS  approach  has  the  lowest  reuse
frequencies  of  its  third-party  functional  components
(such  as  ROSPlan  and  SARSOP)  among  diverse
robotic  tasks,  with  only  essential  ROS  Topic/Service

(T/S) communication infrastructures commonly reused.
The  average  reused  ratios  of  the  ROS  communication
infrastructures  reach 18.6% in  our  four  task scenarios,
which  is  the  least  ratio  among  the  three  approaches.
The  classical  BT  approach  has  a  relatively  higher
reusability  performance  as  it  provides  the  commonly
reusable  Sequence  (Seq)  and  Fallback  (Fal)  control
nodes.  The  average  reuse  ratios  of  classical  BT
components  (Seq  and  Fal)  have  reached  28.7%.  The
Structural-BT  approach,  which  provides  the  reusable
structures  of  S-P,  P-A/S,  and  S-A,  has  reached  the
highest  reuse  ratios  of  69.3%.  This  is  because  these
reusable structures  implement  the common controlling
logic  and  decision-making  flows,  not  only  the
controlling  logic,  in  the  classical  BT  approach.  The
developers  can  reuse  most  lines  of  codes  of  these
structures  in  their  projects,  which  could  greatly
improve software development efficiency. The detailed
comparison statistics have shown in Table 1.

7    Conclusion

This  paper  focuses  on  the  issue  of  developing  robotic
software  in  open-world  environments.  The  existing
component-based  development  frameworks  have
limited  reusability  to  the  data  and  controlling  flows
without  considering  more  complex  task  planning
paradigms  and  underlying  software  architectures.  This
paper  presents  a  novel  component-based  framework
Structural-BT  to  provide  a  set  of  reusable  BT
structures,  which  implements  a  set  of  patterns  for  the
sensing,  planning,  and  acting  interaction  pipelines
while  providing  interfaces  for  task-specific
customization.  This  paper  has  developed  the  software
for  a  set  of  tasks  in  an  experiment  using  three
comparative  development  approaches,  including  the
ROS,  classical  BT,  and  our  proposed  Structural-BT
approaches.  The  statistics  show that  the  BT  structures
were  generally  reused  more  frequently  than  the
components  from  other  approaches.  The  reused  code

 

Table 1    Comparison of reusability performances for three robotic software development approaches.

Task
ROS Classical BT Structural-BT

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

Reused
component

LOC reuse
ratio

Average LOC
reuse ratio

1 T/S 0.238

0.186

Seq 0.281

0.287

S-P, P-A/S 0.916

0.693
2 T/S 0.163 Seq, Fal 0.392 S-A 0.781
3 T/S 0.169 Seq 0.293 S-P, P-A/S 0.628
4 T/S 0.172 Seq, Fal 0.183 S-P 0.446

Note: LOC is the line of code.

    378 Complex System Modeling and Simulation, December  2023, 3(4): 357−380

 



sizes  of  BT  structures  have  an  average  proportion  of
69.3% of  the  full  software  implementation  across
software  for  four  tasks  in  the  Structural-BT  approach.
In  contrast,  the  average  reuse  ratios  of  ROS  or  BT
components  are  18.6% and  28.7% in  the  ROS  and
classical  BT approaches,  respectively.  The  experiment
has demonstrated the improved development efficiency
of  our  proposed  Structural  BT  approach  for
programming robotic software.

8    Future Work

While the robotic software of four task scenarios in the
experiment  was  developed  by  the  Structural-BT
framework  with  a  relatively  high  reuse  performance,
there  are  still  several  limitations  in  our  preliminary
research  work,  which  need  to  be  enhanced  in  future
works.  Firstly,  the  selected  task  planning  paradigms
may  be  inadequate  for  a  wider  range  of  robotic  tasks.
In  this  paper,  we  have  comprehensively  surveyed  the
research  papers  and  robotic  software  projects  in
robotics  and  software  engineering,  synthesizing  and
identifying  the  five  mainstream  paradigms.  The
selected paradigms have shown to be applicable in the
single  robot  tasks  with  simple  action  synchronization
requirements.  However,  for  more  complex  robotic
domains  that  involve  multi-robot  cooperation,  multi-
task synchronization, etc.,  more types of task planning
paradigms need to be analyzed and abstracted to cover
more  versatile  robotic  tasks.  Secondly,  some
composable interfaces of behavior tree structures cause
need extra programming effort when composing. When
composing two reusable behavior tree structures, there
may be a functional behavior tree node existing in the
two  structures,  which  needs  tailoring  the  overall
structure and upper control flow to resolve the conflict.
In the future work, the composition flexibility of some
repetitively  embedded  functional  nodes  needs  to  be
enhanced by optimizing their model interfaces. Thirdly,
the  confidence  level  of  experimental  validation  needs
to be improved. This paper selects four typical robotic
task scenarios and designs the simulation environment
for  experiments.  The  simulation  experiments  are
conducted on the Gazebo robotic simulator, which has
been  widely  recognized  as  the  most  popular  and
credible  experimental  platform.  The  robotic  software
that  tested  through  Gazebo  simulator  can  be  easily
transferred  to  the  real  robotic  hardware  without  much
modification.  However,  to  make  the  validation  results

as  convincing  as  possible,  we  would  like  to  test  the
robotic  software  development  efficiency  of  Structural-
BT framework on more versatile types of robotic tasks
and  implement  the  software  on  real  robotic  hardware
for more reliable statistics.
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