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Harmony Search Algorithm Based on Dual-Memory Dynamic
Search and Its Application on Data Clustering

Jinglin Wang, Haibin Ouyang*, Zhiyu Zhou, and Steven Li

Abstract: Harmony Search (HS) algorithm is highly effective in solving a wide range of real-world engineering
optimization problems. However, it still has the problems such as being prone to local optima, low optimization
accuracy, and low search efficiency. To address the limitations of the HS algorithm, a novel approach called the
Dual-Memory Dynamic Search Harmony Search (DMDS-HS) algorithm is introduced. The main innovations of
this algorithm are as follows: Firstly, a dual-memory structure is introduced to rank and hierarchically organize
the harmonies in the harmony memory, creating an effective and selectable trust region to reduce approach
blind searching. Furthermore, the trust region is dynamically adjusted to improve the convergence of the
algorithm while maintaining its global search capability. Secondly, to boost the algorithm’s convergence speed,
a phased dynamic convergence domain concept is introduced to strategically devise a global random search
strategy. Lastly, the algorithm constructs an adaptive parameter adjustment strategy to adjust the usage
probability of the algorithm’s search strategies, which aim to rationalize the abilities of exploration and
exploitation of the algorithm. The results tested on the Computational Experiment Competition on 2017
(CEC2017) test function set show that DMDS-HS outperforms the other nine HS algorithms and the other four
state-of-the-art algorithms in terms of diversity, freedom from local optima, and solution accuracy. In addition,
applying DMDS-HS to data clustering problems, the results show that it exhibits clustering performance that
exceeds the other seven classical clustering algorithms, which verifies the effectiveness and reliability of

DMDS-HS in solving complex data clustering problems.
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are based on heuristic principles such as biology,
nature, and social behavior, and seek potential optimal
solutions by simulating processes such as natural

1 Introduction

The emergence of meta-heuristic search algorithm

provides a powerful way to solve these complex
engineering optimization problems. These algorithms
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evolution and swarm intelligence. They have the ability
to search for high-dimensional, non-linear, and
multimodal problems, and are usually able to obtain
satisfactory solutions in a relatively short time. Due to
the flexibility and adaptability of meta-heuristic search
algorithms, they have been widely used in the field of
engineering optimization, including but not limited to
structural  designl!=#, schedulingl>- 6], and path
planningl7~191. As a result, they have attracted a lot of
attention in recent years, and simple meta-heuristic
search algorithms have become increasingly important.
Harmony Search (HS) algorithm is a music-inspired
swarm search algorithm that draws inspiration from
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music improvisation, which is proposed by Geem
et al.llll in 2001. In HS algorithm, the objective
function is treated as musical composition composed of
decision variables. By simulating the adjustment and
coordination of musical notes, HS aims to obtain
optimal solutions, or better “music”. HS has several
advantages, including simplicity of implementation,
case of parameter tuning, and relatively quick
convergence compared to other optimization
algorithms. It has found successful applications in
various fields, such as feature selection(!2], robot path
planning(!3], economic  dispatchl[14-16], shop
schedulingl!77191 neural networks(20-24], and image
processing(25-281.  Despite its successes, the HS
algorithm still faces challenges, including slow
convergence speed and weak local search capabilities,
which can impact its optimization performance. To
overcome these challenges, researchers have improved
HS through parameter settings, search strategies, and
ensembles with other optimization algorithms.

The HS algorithm has some limitations in terms of
parameter configuration. Currently, contributions to
parameter adaptive adjustment and fuzzy control have
been made by scholars. For instance, Peraza et al.[?%]
used Interval 2 Fuzzy Logic System to dynamically
adjust parameters in the HS algorithm, which changed
the algorithm’s global and local search capabilities.
Shaqgfa and Orban(39] recorded occurrence probabilities
of Harmony Memory Consideration Rate (HMCR) and
Pitch Adjustment Rate (PAR) in generated and
replaced solution vectors, redefining HMCR and PAR
based on the current performance stage. They also
introduced new parameters, HMCRmax and PARmin,
to limit the working range of spontaneous probability
for design variablesB9. Jeong et al.[3!l proposed an
advanced parameter-less version of HS to solve the
parameter setting problem by using an improved
Parameter-Setting-Free  (PSF) scheme, reducing
memory consumption, and improving efficiency.
Valdez et al.BZ applied fuzzy logic during the
algorithm execution and dynamically adjusted the main
parameter HMCR using triangular membership
functions. Ocak et al.[33] designed a version of HS with
adaptive parameter variation for optimizing the Tuned
Liquid Damper (TLD). They assigned initial values to
the parameters (HMCR and BandWidth (BW)) of HS
and gradually reduced these values with increasing
iteration counts33]. However, there are still challenges
in current research, such as the requirement for
extensive expertise and experience for parameter

adjustment and the low adaptability of adjustment
schemes that need to be addressed.

To raise the search effectiveness and optimization
performance of the HS, scholars have proposed
innovative methods. Boryczka and Szwarcl3]
introduced a Modification rate (MOD) to improve
harmony preservation and setting, enhancing the
algorithm’s effectiveness in solving the traveling
salesman problem. Yi et al.[33] incorporated chaos into
the HS algorithm by conducting parallel chaotic local
searches from multiple starting points, reducing
sensitivity to initial conditions and improving
robustness. Doush et al.ll7l improved the harmony
memory using Nearest Neighbor (NN) and Modified
Nawaz-Enscore-Ham (MNEH) techniques, exploring
search space regions with different heuristic methods
and enhancing global search capability. Wang et al.[3¢]
transformed optimization variables into matrix form,
utilizing a Conductor State Memory (CSM) to record
time sequence constraints for scheduling problems. Li
et al.[2] proposed an innovative harmony generation
strategy that relies on explicit learning experiences,
improving search efficiency and applying it to image
segmentation with constraints on the search space.
However, some enhancement strategies require
significant computational resources and time, limiting
their application to large-scale problems.

Scholars have explored combining strategies from
different algorithms to achieve complementary
optimization. Amini and Ghaderil3”] introduced
dynamic weighting factors from the ant colony
optimization algorithm and constant weighting factors
based on structural system modal analysis into the HS
to improve its convergence speed. Gheisarnejad[38]
combined strategies from the cuckoo optimization
algorithm with the HS algorithm by introducing
intelligent laying and hybrid migration mechanisms to
equilibrium the abilities of exploration and
exploitation. Kayabekir et al.3% integrated the
capability of local search of flower pollination
algorithm with the global search capability of the HS
algorithm for optimizing structural systems with certain
degrees of freedom. Radman*] fused the HS with the
Bi-directional Evolutionary Structural Optimization
(BESO) algorithm, balancing the fast convergence of
BESO and the strong global search capability of the HS
to optimize the topology structure of cellular materials
at the microscale. Gong et al.[*ll combined the Tabu
search algorithm with the HS, leveraging the Tabu
search algorithm’s performance in neighborhood
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search and the HS’s advantages in global search to
solve the row layout problem. While these studies have
achieved certain results by combining strategies from
different algorithms, determining trade-off ratios and
interaction methods between different algorithms
remains a challenging problem.

Many enhancements to the HS algorithm have not
fully leveraged the information and experience stored
in the harmony memory. Instead, typically only the
best or worst harmony in the harmony memory is used,
and a random adjustment is made to generate a new
harmony. This approach has limitations because
relying solely on the best or worst harmony can easily
trap the population in local optima and make it difficult
to escape from them. Therefore, exploring how to
better utilize the individual harmonies in the Harmony
Memory (HM) to get guide for the search process is
worth investigating. In there, a new algorithm,
harmony search algorithm based on dual-memory
dynamic search, Dual-Memory Dynamic Search
Harmony Search (DMDS-HS) algorithm, is proposed
to improve the capability of optimization. This
algorithm constructs two sets of harmonies with
different ranks as candidate pools to determine the
position and scope of the adaptive trust region for
search. A nonlinear dynamic convergence domain
adjustment is introduced to adjust the global search
range in stages. Furthermore, appropriate adaptive
variations are designed for parameters HMCR, PAR,
and BW based on an improved search strategy. For the
two sets of harmonies, one is the dominant memory,
and the other is the archive memory. By arbitrarily
selecting one dominant harmony and one archive
harmony, a trusted search area is constructed for
conducting the search, providing a
directionality for individual evolution. The proposed
algorithm is evaluated against various HS algorithms
and heuristic algorithms for the Computational
Experiment Competition on 2017 (CEC2017)
benchmark function set. Results indicate that the
proposed algorithm outperforms others in terms of
solution accuracy, stability, and search capability,
especially for complex high-dimensional problems.
Furthermore, the DMDS-HS algorithm is applied to
clustering problems and compared with other clustering
algorithms, demonstrating its notable advantages in
solving such problems.

The article’s structure is outlined as follows. In

certain

Section 2, this paper provides a brief introduction to the

HS algorithm, while Section 3 presents a detailed
description of the proposed DMDS-HS algorithm. In
Section 4, we will present numerical experiments and
application results of the DMDS-HS algorithm, along
with analysis. Furthermore, assess the
computational intricacy of the enhanced algorithm.
Lastly, a comprehensive summary of the entire paper
will be provided in Section 5.

we will

2 Harmony Search Algorithm

In HS, each solution is an N-dimensional vector and is
collectively referred to as a “harmony”. These
harmonies are randomly generated at the initial stage
and stored in the HM. The algorithm involves
initialization, improvisation of new harmonies, and
updating the harmony memory to optimize the process.
The steps are as follows.

2.1 Initializing harmony memory

At the beginning of the algorithm, it is crucial to define
the extent of the search space and generate an initial
harmony memory within the extent. The search space
is the set of feasible ranges for which there exists a
globally optimal solution for each dimension of the
decision variable. The initial harmony memory consists
of a set of randomly generated harmony values. In each
harmony, each decision variable represents a note, and
the range of values of the note is determined by the
search space.

2.2 Generating new harmonies

During the harmony update stage, it is necessary to
utilize the information and experience saved in the HM
to adjust each harmony. The harmony memory consists
of a set of optimal and suboptimal solutions maintained
throughout the search process, which guides the
harmonies towards better solutions. The size of the HM
is typically set to Harmony Memory Size (HMS),
representing the number of harmonies. To generate
new harmonies, a specific formula can be used.

Xnew (J) = x4 (j),r1 <HMCR,r, > PAR;
Xnew () = X4 (j) +rxBW,r; < HMCR, r, < PAR;

Xnew (j) = LB, +rx(UB; - LB;),r > HMCR
@)
where xnew represents the generated new harmony.
Xnew(j) represents the j-th variable of xpey. X, represents
a randomly selected harmony in HM, and x,(j)
represents the j-th variable of x,. LB; represents the
lower boundary of the j-th variable. UB, represents the

Xnew =
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upper boundary of the j-th variable. HMCR represents
the harmony memory PAR
represents the pitch adjustment rate, and BW represents
the bandwidth size. ri, r2, and r represent random
numbers between 0 and 1.

consideration rate.

2.3 Updating the harmony memory

During the updating of HS, it is necessary to update the
harmony memory based on the new harmony. If the
adaptation value of the worst harmony in the HM is
less than the newly generated harmony, it is replaced,
and thus the HM is wupdated. Otherwise, no
modification is made. In summary, the selection is
made in the harmony by employing a greedy strategy,
and the operations of generate new harmonies and
update HM are repeated until the maximum number of
iterations is reached.

3 Harmony Search Algorithm Based on
Dual-Memory Dynamic Search

The current best solution in the HS algorithm
represents only the best level among all current
solutions and does not reflect the evolutionary direction
of the overall level. Especially in high-dimensional
complex optimization problems, if the current best
solution is only a local optimum, it will be difficult to
guide the creation of new harmonies and achieve the
desired optimization results. Therefore, the HS tends to
fall into a local optimum. To avoid this situation,
multiple better solutions can be used to guide the
generation of new solutions. Based on this idea, the
DMDS-HS proposes four innovations: Firstly, it
constructs a dual-memory system consisting of a
dominant memory and an archive memory. Secondly, it
constructs a dynamic trust region for search by
selecting any combination of harmonies from the
dominant and archive memories. Thirdly, it designs a
stage-wise changing nonlinear dynamic convergence
region. Finally, it introduces adaptive changing
parameters HMCR, PAR, and BW. These innovations
enable the algorithm to have better global optimization
capability and faster convergence speed. At the end of
this section, we introduce the calculation steps of
DMDS-HS in detail, and the pseudocode of DMDS-HS
is shown in Algorithm 1.

3.1 Dual harmony memory

The construction of a dual-memory harmony aims to
provide various combinations of choices for generating

Algorithm 1 DMDS-HS

1 Initialization parameters.
2 Initialize UHM and LHM.

3 while T < T do

4 Update the SHM: SHM = {X?eSl,xz,xHMs_l,xHMs,x[SnI_eIaMn}
5 Update parameters HMCR, PAR, and BW by Egs.
(13)—(15).
6  Update x*° and x' by Egs. (10) and (11).
for each j€[1,D] do
if ry < HMCR then

T\

9 (= (l _ ) max
Tmax
10 w=2xsign(r—0.5)x[e ¥ -1]
11 AW = xSHM (XITHM - xS“M) X w
j J J

12 if r» < PAR then
13 x‘}ew = xrl?ew +rand XxBW
14 rand is a random number in [0, 1]
15 end if
16 else
17 A%V = Ib; +rand x (ub; —Ib;), if iter < Tmax/2;
18 x?ew = xljb +rand X (x‘;b - xljb) , if iter > Tnax/2;
19 end if
20 end for
21 Update the UHM and LHM.
22 T=T+1

23 end while

Note: UHM: upper-level harmony memory; LHM: lower-level
harmony; SHM: senior harmony memory.

new harmonies, increasing the diversity of generated
harmonies, and reducing the likelihood of falling into a
local optimal state. The initialization of the dual-
memory harmony involves two harmonious memories
of size HMS. The harmonies are sorted based on the
fitness values from the best one to the worst one. The
top HMS harmonies are allocated to the UHM, while
the remaining HMS harmonies are allocated to the
LHM. In each iteration, the best, second-best, worst,
second-worst, and the mean of these four harmonies
from the UHM are selected to form the SHM. The
specific steps are as follows:
Initialize the sort:

best St
{xleb ’x2’x37 e 7-xHM87-xHMS+1 LR 7-x2HMS—1 7-x§/l—(;ﬁs} (2)
. [, best
UHM : {xles ,)C2,X3,...,XHM5} (3)
. st
LHM : {xHMS+l’~~~,x2HMS—l,x‘2V]?1{\j[ } 4)
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. |, best mean
SHM : {x1 ,X2, xHMS—l,XHMs,XSHM} (%)

The updating method for the upper-level and lower-
level memories involves greedy selection and archiving
strategy. For the upper-level memory, a greedy
selection approach is employed. If the new harmony’s
fitness value (xpew) exceeds that of the worst one in the
upper-level memory (xums), *new replaces xpms in the
upper-level memory. Simultaneously, xums is moved
to the lower-level memory, and the worst one in the
lower-level memory (xJjs) is removed to maintain
the capacity of the lower-level memory. Consequently,
the lower-level memory stores the harmonies that have
been eliminated from the upper-level memory, thus
also referred to the archiving memory. The specific
updating process is illustrated in Fig. 1.

3.2 Dynamic trust region search

The purpose of constructing the dual-layer memory is
to classify harmonies into different tiers, aiming to
guide the evolution of harmonies in the lower-level
memory with the influence of superior harmonies in the
upper-level memory. The specific evolutionary strategy
involves selecting one harmony from both the
dominant memory and the archiving memory, using the
dominant harmony as the center and the archiving
harmony as the boundaries, to construct a trusted
search region for exploration. The specific procedure is
as follows:

new _ xS.HM

i Fia (xITHM - xS.HM) X w (6)

X J J

w=2xsign(r-0.5)x[e™ - 1],

T \To (7
z=(1— )

max

SHM

;" represents the j-th variable of xnew, X7

where x'
represents the j-th variable of any harmony in SHM,

XM represents the j-th variable of any harmony in
If F{xnew)<f(xHMS) @
‘ x| x| xe | | XHMS | yHMS#1 [ yHMS+2 | yHMS+3 | ... | x2Hws
A

Y Y
UHM LHM

‘X1 3] | xnew | yHMS | yHMS+ [ yHmse2 | | ¥2HMS-1 |

N A y
Y Y
UHM LHM

Fig.1 UHM and LHM update process diagram.

LHM, r and A are random numbers in the range of [0,
1], T represents the total number of iterations
completed so far, and Tpm.x denotes the maximum
allowed number of iterations for the computation. ¢ is a
number that decreases from 1 to 0 as the number of
iterations increases. As ¢ decreases, the value range of
w decreases from 1 to 0. w is an important parameter
that controls the generation range of e The greater
the value range of w, the larger the value range of x5,
and vice versa. Therefore, from Fig. 2, it can be
observed that as the iterations progress, the range of the
trust region will converge towards x}"™, and the value
of x%V under the same A will be closer to x}"™. In the
early stages of computation, the trust region has a large
range, which helps reduce the risk of the population
getting stuck in local optima. As the computation
progresses, conducting a small-range search near the
guided harmony contributes to improving the
convergence speed.

3.3 Phase-wise nonlinear dynamic convergence
region
The harmony search algorithm relies on three rules to
govern the generation of new harmonies: harmony
pitch selection, pitch adjustment, and random
generation within the search range. Among these rules,
the third rule assists the population in escaping local
optima by introducing global random generation,
particularly in the early stages of computation.
However, in the later stages, the global optimum is
typically located near the population, making it
difficult for continued global random search to look for
the global optimum. To enhance the likelihood of
discovering the global optimum, targeted random
search can be conducted in the later stages of
computation by considering the current position of the
population. This is achieved through the use of a stage-

.,’.—_'_‘_.-—______T=1 A=0.9 = -
2 T A=09  Tel
é () ©
XjSHM Xjnew,T:‘ax/Z XjLHM Xj"ew_1
)(jLHM_)(jSHM

Randomly selected pitches in LHM

. Randomly selected pitches in SHM
“~n When T=T_./2, A=0.9, the position of the

N i Tmax/2
=2+ generated new pitch x""-

When T=1, A=0.9, the position of the
generated new pitch x/ "

Fig.2 Schematic diagram of dynamic search in trust region.
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wise nonlinear dynamic convergence domain. The
specific steps are as follows:

B = max (SHM) (8)
B™ = min (SHM) 9)
= 0+ (BT = )X (T Tnax)> (10)
= 2P+ (BT = ) X (T Tinan)? (1

(12)

new xj ),lf iter > Tinax /2

J

X%V = LB, +rand><(UB ~-LB ) if iter < Tmax/2;
x :)C» +rand><(xj -

where x”b

is the upper boundary of the dynamic
is the lower boundary of the
stands for the

maximum value of the j-th variable in SHM, and B‘;ﬁ“

convergence reglon XJ

dynamic convergence region. BT

expresses the minimum value of the j-th variable in
SHM. And they denote the range of convergence
domain in the j-th and dimensions, respectively. “rand”
refers to a randomly generated number that falls within
the interval of [0, 1]. Equation (12) shows how to
generate new harmonies in a phase-wise nonlinear
dynamic convergence region. When iter < Tax /2, that
is, the number of iterations is before half of the
maximum number of iterations, new harmonies are still
randomly generated in the global search domain like
HS algorithm to increase the diversity of harmonies.
When iter > Tax /2, i.€., after half the calculation, the
new harmony is generated in the range [xP,x!"].

Equations (8)—(11) show that the range is centered on
SHM and decreases with the number of iterations in a
quadratic nonlinear manner. By surrounding the SHM
region, the search range of the random search domain
is narrowed, the probability of generating inferior
harmony is reduced, and the solving efficiency and
accuracy of the algorithm are improved.

3.4 Dynamic parameter adaptation

The parameters HMCR and PAR in the HS determine
the probabilities of using the three rules throughout the
computation process. Therefore, the settings of HMCR
and PAR make a big difference on the harmony search
algorithm. In order to set HMCR and PAR
appropriately and adjust them during different
computation stages, further research is needed. In the
aforementioned DMDS-HS algorithm, improvements
have been made to the first and third rules. To ensure
the maximum effectiveness of these improved rules,

new HMCR and PAR values should be designed to
adjust the usage of these three rules effectively. To
achieve a trade-off between exploration and
exploitation abilities in the DMDS-HS algorithm, this
study proposes a new nonlinear adaptive HMCR,
which is used to adjust the usage of the first and third
rules in a reasonable manner. Meanwhile, a linearly
changing PAR and a logarithmic changing BW are
employed. The specific formulas are as follows:

- T/ Tmax)’

0.5+ 1.0X \/T/Tnax % (1
if T < T‘“a";
2 (13)
0.8+ 0.4 % \T/Tiax X (1 = T/ Trmay),
if T> Tiax /2

HMCR =

—PARpin) X (T/Timax)*  (14)

mein ) % T
BWnax

PAR = PARin + (PAR phax

BW = BW ¢ Xexp (ln( ) (15)

Tmax
3.5 Steps of the DMDS-HS algorithm

The complete steps of DMDS-HS are as follows:

Step 1: Initialization of NIGHS parameters. In this
step, DMDS-HS algorithm parameters are defined,
such as the number of decision variables (D), search
upper and lower bounds for each variable (ub and 1b),
harmonic memory size (HMS), and maximum number
of iterations (Tmax )-

Step 2: Initialization of the UHM and LHM. The
HM generated by the initial is sorted according to the
fitness value and divided into UHM and LHM. See
Formulas (2)—(4) for detailed methods.

Step 3: Update the SHM, HMCR, PAR, BW, xtb,
and x'*, In this step we update the SHM, HMCR, PAR,
BW, x', and x® through Formula (5) and Egs.
(8)—(11) and (13)—(15).

Step 4: Improvisation of a new harmony. In this
step, a new harmony (x"V) is created through a
dynamic trust domain search and a phase-wise
nonlinear dynamic convergence region (Lines 7-20 of
Algorithm 1).

Step 5: Update the UHM and LHM. If the fitness
value of the new harmony (x"®%) is better than the
fitness value of the worst harmony in UHM (x%Vors!),
then the worst harmony in UHM will be replaced by
the new harmony, and x"°™' will replace the worst
harmony in LHM.

Step 6: Check the termination criterion. If the
number of the current iteration (7) is less than the
maximum number of iterations (7max ), then Steps 3 and
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4 are repeated. Otherwise, the optimization process
stops.

4 Comparison and
Experimental Results

Analysis of

The conducted experiments utilized a system that
comprised an Intel(R) Xeon(R) processor with a clock
speed of 2.76 GHz, 36 processors, 160 GB of RAM,
and ran on the Windows 10 operating system. The
programming implementation was done using
MATLAB R2015b. To validate the capability of the
DMDS-HS, we selected 9 HS algorithm variants for
comparison: HSUY,  SGHSM2], THSM3], GHSM4),
NGHSMI IGHSI6], LHSEH71, IMGHSI8], and ID-HS-
LDDI*I. We also tested these algorithms on the well-
known CEC2017 benchmark function set. In all
experiments, each algorithm ran 51 times on the 30
functions in the CEC2017 benchmark function set. The
experiments were conducted for three different
dimensions: D =10, 30, and 50. The search space for all
test functions encompassed the interval of [-100, 100].
The upper limit for the of evaluations of functions
(Tmax) was determined as 10 000 x D based on the
benchmark rules, and an error value below 108 was
treated as 0. In addition to comparing the improved
versions of HS, we also compared DMDS with four
other cutting-edge heuristic algorithms, namely
SLWCHOAPY, TWOAB!I, HGWOI2l, and GWOBR3],
under 30D conditions. To facilitate statistical analysis
of the experimental results, we use the terms of error
values to presented the results. The parameter settings
for each algorithm are shown in Table 1.

4.1 Comparison of DMDS-HS under the same
evaluation budget

By conducting 51 independent experiments for each
function of each algorithm, we obtained the mean and
standard deviation (std) of the experimental results
under conditions D =10, 30, and 50. The best result for
each group is highlighted in bold. To compare the
performance of different algorithms, we used non-
parametric tests (Mann-Whitney U test) to verify
whether there are statistically significant differences in
performance between DMDS-HS and other algorithms.
The Mann-Whitney U test, also known as the Mann-
Whitney-Wilcoxon test!>4 531, is a non-parametric rank-
based test method used to compare differences between
different groups. It has been widely used for
performance comparison of heuristic algorithms(!7, In
the non-parametric test, the symbol “+” indicates that

Table 1 Parameters setting.

Algorithm Parameter
HS HMS=5, HMCR=0.9, PAR=0.3, BW=0.01.
HMS=5,BW nin = 0.0001,BWynax = (UB —LB)/20,
HMCR=0.9, PAR ;i = 0.01, PARax = 0.99.
GHS HMS=5, HMCR=0.9, PAR i, = 0.01,PARmax = 0.9.
HMS=5, HMCR=0.98, PAR=0.9, BW,;; = 0.0005,
BWpax = (UB —LB)/10, Ip=100.
NGHS HMS=5, P, = 0.005.
IGHS HMS=5, Py, = 0.005, PAR=0.4.
LHS HMS=5, HMCR=0.99.
HMS=5, HMCR=0.9, PAR=0.3, BW=0.01,
P =0.005, 1 =0.7, pup =0.3.
ID-HS- HMS=30, HMCR;, = 0.3, HMCRp5x = 0.99,
LDD  PARyi = 0.3, PARpax = 0.99.
DMDS- HMS=5, PAR i, = 0.01, PARpax = 0.99,
HS  BWyy, = 0.0001, BWmax = (UB —LB)/20.

IHS

SGHS

IMGHS

the overall result of the DMDS-HS is better than the
specific algorithm on a particular function; the symbol
“—=” indicates that the overall result of the DMDS-HS
algorithm is worse than the specific algorithm on a
particular function; the symbol “=" indicates that the
overall result of the DMDS-HS algorithm is similar to
the specific algorithm on a particular function. The
final statistical results are presented in Table 2 in the
format of “+/—/=".

According to the results in Tables 3—8, we performed
nonparametric tests on 51 instances to independently
validate the results when D = 10, 30, and 50. In the
case of D = 10, the DMDS-HS algorithm is
significantly superior to HS, IHS, GHS, SGHS, NGHS,
IGHS, LHS, IMGHS, and IDHS-LDD algorithms in
29, 24, 28, 28, 29, 29, 27, 30, and 13 of the 30
functions, respectively. Similarly, when D = 30, the
DMDS-HS algorithm outperforms the HS, ITHS, GHS,
SGHS, NGHS, IGHS, LHS, IMGHS, and ID-HS-LDD
algorithms in 28, 27, 29, 30, 29, 30, 23, 26, and 20 of
the 30 functions, respectively. And in the high-
dimensional case (D = 50), the DMDS-HS algorithm
also performs well. It outperforms the HS, IHS, GHS,
SGHS, NGHS, IGHS, LHS, IMGHS, and ID-HS-LDD
algorithms in 26, 26, 28, 30, 28, 30, 25, 26, and 24 of
the 30 functions, respectively. As can be seen from the
comparative notation in Tables 3—9, although the
DMDS-HS algorithm does not give satisfactory results
on functions F10, F12, and F18, it achieves the best
results on the vast majority of the other functions. In
low-dimensional problems (D = 10), the DMDS-HS
algorithm does not perform as well as the ID-HS-LDD
algorithm. However, as the dimensionality increases,
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Table 2 Statistical results of DMDS-HS and other algorithm groups on data clustering problems.

Dataset ~ Statistical index K-means K-means++ GA PSO DE SCA HS DMDS-HS
Mean 1.0234x10%2 9.8344x10! 1.3228x102 1.1835%10% 1.0752x102 1.2851x102 9.6860x10! 9.6676x10!
IRIS Std 1.0235x10! 5.0463 5.9674 1.2251x10' 1.3044x10' 53505 4.9423x107! 1.4520x10!
Sign + + + + + + + —
Mean 5.5438x10% 5.5436x10° 6.3188x103 6.3332x10% 5.8357x103 6.5907x103 6.9137x10° 5.5322x103
CMC Std 1.5789 1.5511  1.6593x102 4.0394x10% 2.4215x102 2.9741x10% 6.4980x10% 6.8641x10~7
Sign + + + + + + + —
Mean 2.2567x102 2.2463x102 4.2007x102 3.8549x10% 3.2868x102 3.6654x10% 3.2927x102 2.3729x102
Glass Std 1.2569x10" 1.1859x10! 1.9849x10! 3.3833x10! 3.5507x10' 1.3814x10! 6.5071x10! 6.0636
Sign - - + + + + + —
Mean 1.4267x10% 1.4276x103 1.4402x10% 1.4277x103 1.4244x10% 1.4389%x103 1.4273x10% 1.4252x103
Balance Std 3.1110 3.8407 4.0364 2.1860 2.0515 2.9503 2.8966 1.3805
Sign + + + + - + + —
Mean 1.7166x10% 1.7423x10* 1.6638x10* 1.7930x10* 1.6484x10* 1.6556x10* 1.9303x10* 1.6293x104
Wine Std 8.7435x10% 9.3234x102 1.2506x10% 8.1625x102 1.9947x10% 8.0615x10' 1.3714x103 7.9050x10!
Sign + + + + + + + —
Mean 2.7726x103 2.7697x10% 3.1337x103 3.0234x103 2.7708%10% 3.1040x103 3.1760x10% 2.7411x103
Aggregation Std 6.5213x10' 5.2785%x10' 7.2205x10' 1.8300x10% 6.9682x10' 5.8419x10! 2.0581x102 5.5920x10!
Sign + + + + + + + —
Mean 1.3925x10% 1.3934x103 1.8181x10% 1.9411x103 1.8489x10% 1.8831x103 1.8345x10% 1.4666x103
Vowel Std 8.6113 1.0904x101 2.7410x10! 6.4071x10! 1.2761x10% 2.9419%x10! 9.5115x10! 1.8239x10!
Sign - - + + + + + —
Mean 1.1470x10% 1.1513x103 1.2594x10% 1.2102x103 1.1008x10% 1.2370x103 1.2416x10% 1.0719%x103
Compound Std 7.2641x10" 7.8623x10! 3.2775x10! 7.1360x10! 5.4181x10! 2.6151x10" 7.3336x10! 1.8900x10!
Sign + + + + - + + —
Mean 2.9877x103 2.9881x10% 4.3903x103 4.5149x103 3.2164x10% 3.2356x103 5.0479%10° 2.9644x103
Cancer Std 7.3925x107! 5.8802x107! 2.3740%10% 6.4333x102 1.9787x10% 4.2978%10! 5.8233x10%2 3.2000x1073
Sign + + + + + + + —
Mean 2.3505x102 2.3506x10% 3.2647x102 3.3568x102 2.8719%x10% 3.3855x102 2.3757x10% 2.4739%10?
Sonar Std 1.7159x1071 1.8616x107"  6.7534  1.9232x10! 1.2761x10!  5.8943 5.1230 5.3927
Sign - - + + + + - —
+/—/= 7/3/0 7/3/0 10/0/0 10/0/0 7/2/0 10/0/0 9/1/0 —

Note: CMC is the contraceptive method choice dataset.

the DMDS-HS algorithm significantly outperforms the
ID-HS-LDD algorithm. Further observing the data in
Table 9, the DMDS-HS algorithm statistically
outperforms the SLWCHOA, IWOA, HGWO, and
GWO algorithms in 30, 29, 30, and 29 of the 30
functions when D = 30 and all algorithms have the
same number of function evaluations. In summary, the
DMDS-HS algorithm outperforms the other nine HS
algorithms as well as the four advanced heuristics.
These results clearly demonstrate the superiority of the
DMDS-HS algorithm in different dimensions.
According to the analysis of the experimental results,
we can gain clearer insights into the performance of the
DMDS-HS algorithm. The iteration plot in Fig. 3
reveals that the DMDS-HS algorithm utilizes adaptive

variation design of HMCR. Initially, it has a small
HMCR value, which increases the probability of Rule 3
(see the third line in Eq. (1)) for global random search.
Consequently, the algorithm exhibits slower
convergence at the beginning. However, as the iteration
progresses, HMCR gradually increases, and Rule 3
performs local search, leading to accelerated
convergence and higher-precision solutions compared
to the other nine algorithms. Notably, in the case of the
function F20, the DMDS-HS algorithm demonstrates a
particularly strong ability to escape local optima. This
can be attributed to the construction of the dual-
memory structure and dynamic trust region, which
provide a richer diversity for generating new harmonies
in the DMDS-HS algorithm. The results presented in
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Table 3 Experimental results of HS, IHS, GHS, SGHS, and NGHS in CEC2017, when D = 10.

Function HS IHS GHS SGHS NGHS
Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign
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Table 4 Experimental results of IGHS, LHS, IMGHS, ID-HS-LDD, and DMDS-HS in CEC2017, when D = 10.

Function IGHS LHS IMGHS ID-HS-LDD DMDS-HS
Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std
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Table 5 Experimental results of HS, IHS, GHS, SGHS, and NGHS in CEC2017, when D = 30.

Function HS IHS GHS SGHS NGHS
Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign
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F30 1.06098% 4.93029x n 1.04119% 1.069 68x n 6.06206% 6.25287x% + 1.99803% 1.04920x% + 4.81986x 1.64438x +
10* 103 104 10* 103 103 108 108 104 103
+-I= 28/2/0 27/3/0 29/1/0 30/0/0 29/1/0
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Table 6 Experimental results of IGHS, LHS, IMGHS, ID-HS-LDD, and DMDS-HS in CEC2017, when D = 30.

Function IGHS LHS IMGHS ID-HS-LDD DMDS-HS
Mean Std Sign  Mean Std Sign  Mean Std Sign  Mean Std  Sign Mean Std
5.65933x 1.25429x 4.69323x 5.19265% 6.60033%x 6.43017x 5.70117x 6.42193x 3.91849x 4.88540x
F1 + + +
10° 10° 103 103 103 103 103 103 103 103
2.87098x 1.31963x 8.53329x 5.67845x 1.52004x 2.24541x 1.47661x 1.05433x 3.14537x 2.31330x%
F2 + + + +
1030 1031 10* 10° 1073 1073 108 10° 105 105
2.87314x 5.469 18x 3.18831x 1.83315x 7.07491x 1.53312x 9.64967x 4.32992x 1.67371x 2.68714x
F3 + + + +
10* 103 103 103 102 103 103 103 1077 1078
F4 8.48530x 1.79299x " 7.87745% 3.03639x + 2.16209x 2.59581x  2.46201x 3.07919x  6.77635% 3.06724x
102 102 10! 10! 101 101 10! 10! 10! 10!
2.62576x 1.70614x 1.00208x 2.591 64x 1.51856x 3.87064x 2.18124x 2.47057x 3.14796x 1.71481x%
F5 + + + +
102 10! 102 10! 102 10! 102 10! 10! 10!
6 3.14626x 4.933 54x N 3.96173x 8.71211x  1.50803x 1.09652x . 6.94835x 2.01696x N 4.22318x 2.01487x%
10! 10 10~ 10~ 107! 107! 1073 1072 104 1073
B 3.60548% 2.66345x N 1.32961x 2.68566x . 2.08580x 4.599 14x . 2.52238x 2.13927x N 6.42530% 1.26582x
10? 10! 10? 10! 102 10! 10? 10! 101 101
F8 2.38310x 1.47955x N 1.11415% 2.73212x . 1.48290% 3.32618x . 2.13276x 1.95865x N 3.24090% 1.10774x
10? 10! 10? 10! 102 10! 10? 10! 101 101
3.30355% 9.85819x 8.24252x 6.92514x 3.14124x 1.50095x 4.17754x 1.20721x%
F9 103 102 + 102 102 + 103 103 + 101 102 + 5.68414 6.53559
6.88871x 3.03718x 2.62890x 5.104 64x 3.18001x 5.21376x 7.04624x 3.04210x 5.39402x 1.61564x
F10 + - - +
103 102 103 102 103 102 103 10? 103 103
4.14922x 1.95281x 6.90106% 2.85833x 9.62033x 3.77620x 7.80426% 6.27776x 4.49341x 3.23084x
F11 + + + +
102 102 10! 10! 10! 10! 10! 10! 10! 10!
9.97533%x 4.60997x 1.15058% 1.10180x 4.82118x 3.82172x 1.10820% 7.95729x 1.06557% 6.36326x
F12 + + - -
107 107 106 106 104 104 103 10* 103 10*
9.45501x 7.68482x 1.61067x 2.01457x 2.23477% 1.99075% 6.76382x 8.14385x% 1.77246% 1.75158x
F13 + - + -
10° 10° 10% 10* 10* 104 103 103 10% 10*
2.09156x 2.32689x 2.33929x 1.52641x% 2.48508x 1.66591x 1.32130x 1.41319x 3.79748x 3.56795%
F14 + + + +
10% 105 10° 10° 104 104 10* 10* 103 103
Fl5 1.32667x 3.48084x N 5.43809% 5.61951x + 7.52618% 8.68117x . 4.71845x 6.26198x  7.08304x 8.99773x
10° 10° 103 103 103 103 103 103 103 103
Fl6 1.83138x 2.42372x N 1.19531x 3.20906x . 1.37788x 3.11674x . 1.28396x 5.81342x N 4.01664x 3.26430x
103 102 103 102 103 102 103 10? 102 10?
F17 3.16404x 1.49633x N 4.75709x% 2.42404x . 7.04020% 2.72375x . 1.58777x 1.18283x N 1.15589% 9.469 61x
10? 102 10? 10? 102 102 10? 10? 102 101
FI8 1.10441x 1.03217x N 1.19499x 1.24838x . 1.33839% 9.16169x  4.71492x 3.53831x N 2.05959x 1.65101x
106 106 10° 10° 105 104 10° 10° 10° 10°
1.87095% 2.44307x 8.19905x 1.02856x 9.78325% 1.21482x 5.59102x 6.79247% 8.47925% 9.35787x
F19 + - + -
10° 10° 103 10 103 10* 103 103 103 103
3.41497x 1.33704x 5.08102x 2.40137x 6.98522x 2.15132x 1.63397x 1.11447x 1.25165% 1.06272x
F20 + + + +
102 102 102 102 102 102 102 102 102 102
4.43787x 1.81665% 3.05829% 2.45330x 3.51863x 3.91137x 4.04118x 2.14195x% 2.37888x 1.85514x
F21 + + + +
102 101 102 10! 102 10! 102 10! 102 10!
1.35580x 1.72586x 1.45149% 1.68101x 3.49960x 1.24868x 1.00243x 7.43704x 2.53671x 2.97997x
F22 + - + _ -
103 103 103 103 103 103 102 101 103 103
6.343 14x 2.34041x 4.58013% 2.56226% 5.09632x 4.21873x 5.27699x 6.41196x 3.84657x 1.08045x%
F23 + + + +
102 10! 102 10! 102 10! 102 10! 102 10!
F4 7.01684x 1.97305x N 7.06254x 8.96803x + 7.78615x 1.24893x . 6.21966x 3.50108x N 5.01346x 4.49124x
102 10! 102 10! 102 102 102 10! 102 10!
25 6.42908x 5.86937x N 4.00413x 2.31494x . 4.00170x 1.80606% . 3.87401x 5.84859x  3.87106x 7.82030x%
10? 10! 10? 10! 102 10! 10? 10 102 101
26 3.51940% 9.03493x N 2.02427x 1.18385x . 2.80911x 1.19009x . 1.28982x 1.13801x  1.37412x 9.24367x
103 102 103 103 103 103 103 103 103 101
F27 6.04677x 3.028 79x N 5.42806% 1.98666x . 5.71707x 2.82078x . 5.09992x 1.13077x N 5.05911x 6.10333
10? 10! 10? 10! 10? 10! 10? 10! 102 )
28 7.65456% 9.46092x N 3.68475x 5.62002x  3.48044x 6.14817x . 3.33243x 5.27641x  3.69846x 7.02718x
102 10! 102 10! 102 10! 102 10! 102 10!
1.31625% 2.68595x 9.20382x 2.51686x 1.03511x 2.44088x 5.86124x 1.39216x 5.18119%x 1.15098x
F29 + + + +
103 102 102 102 103 102 102 102 102 102
F30 2.80243%x 4.45310x 6.69605% 4.00902x 9.04043x 4.51132x + 4.83946% 2.51407x 7.48488% 3.48633x
106 106 103 103 103 103 103 103 103 103
+—/= 30/0/0 23/7/0 26/4/0 20/10/0 —
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Table 7 Experimental results of HS, IHS, GHS, SGHS, and NGHS in CEC2017, when D = 50.

Function HS IHS GHS SGHS NGHS
Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign  Mean Std  Sign
1.59045x 5.784 54x 3.90710% 1.69441x 4.80559x 8.70276x 1.15508x 2.12205x% 2.69991x 1.28393x
F1 + + +
107 100 10* 10° 10° 108 o 1010 10° 10°
1.62924x 1.16169% 3.39750% 1.96842x 1.79940x 1.26151x% 4.72599x 1.10108x 1.28873%x 9.20338x
F2 1040 1041 + 1033 1034 + 1056 1057 + 1073 1074 + 1050 1050 +
2.27081x 4.37891x 2.27420% 4.96451x 1.01042x 1.45668x 2.26608x 2.07480x 1.66660x 4.634 88x
F3 + + + + +
10 103 10* 103 10° 10* 10° 10* 10° 10*
2.14009% 5.30056x% 1.95328% 5.28257x% 7.34538x 1.44329x 2.76384x 5.97805% 1.43215% 5.004 68%
F4 + + + + +
102 10! 102 10! 102 102 10* 103 102 10!
1.43366% 2.55159x% 1.43207x 2.48426% 3.39087x 3.71957x 8.26142x 3.77657x 2.26614x 4.60295%
F5 + + + + +
102 10! 102 101 102 10! 102 10! 102 10!
2.71236x% 3.57004x 1.47675% 1.02723% 5.35188x 3.71110x
F6 1.14264 101 + 1.24240 101 + 10! 219452 + 102 6.47054 + 102 102 +
7 2.65051x 3.10820x " 2.62912x 4.73501x 4 5.63904x 4.28653x 4 2.96566x 3.31861x . 2.72321x 4.71220% .
102 10! 102 10! 102 10! 103 102 10? 10!
8 1.38037x 2.44490x N 1.46310x 2.779 86x 4 3.40925% 3.11518x . 8.21273x 4.10631x . 2.43781x 4.97421x% .
102 10! 102 10! 10? 10! 10? 10! 10? 10!
Fo 1.41684x 8.49555x N 1.75350% 9.55670% N 6.31607x 2.448 69x 4 4.62683x 3.96940x . 5.33242x 2.67424x .
103 102 103 10% 103 103 10# 103 103 103
4.13754x 5.98015% 4.19590% 6.59605x 9.63082x 8.38273x 1.34265% 4.01744x 4.97307x 6.294 54x
F10 - - - + -
103 102 103 102 103 102 10* 10? 103 102
4.50487x 2.75050x 2.05744x 1.67646x 1.48682x 6.76409% 2.03990x 3.41739x 6.78392x 5.41659%
F11 + + + + +
102 102 102 102 103 102 10% 103 103 103
1.05957% 5.83790x% 1.06530% 6.067 77x 2.35180x 8.73633% 3.42509x 1.00592x 1.18836x 6.90579x
F12 + + + + +
107 10° 107 10° 108 107 1010 1010 107 100
9.12638% 9.94214x 8.13150% 8.32300% 1.52536x 7.24643% 1.08594x 3.97155% 1.75146% 2.33977x
F13 - - + + +
103 103 103 103 100 10° 1010 10° 10° 10°
1.92447x 1.37531x 6.99240% 4.568 10% 2.72063%x 1.69212x 9.19466x 3.02478x 6.79325x 4.47006%
F14 + + + + +
10° 10° 10* 104 100 106 100 100 100 100
F15 9.30384x 6.96438% " 7.39700% 6.80748x 4 1.29862x 8.87402x . 3.01068x 9.97330x + 8.93051x 6.59754x +
103 103 103 103 103 10% 109 108 10* 10*
Fl6 1.78305% 4.17256% " 1.66690% 3.88409x 4 2.07013%x 4.14706% 4 5.50500% 4.39483x . 2.26289%x 4.35669x .
103 102 103 102 103 102 103 102 103 10?
F17 1.18055% 3.40604x N 1.21020% 2.964 78x 4 1.42005% 3.07845x% . 4.93862x 5.75108x . 1.63094x 3.48044x .
103 102 103 102 103 102 103 10? 103 10?
F18 2.43998x 1.92417x N 9.01100x 8.46155x 4 1.08834x 7.56549x . 4.58122x 1.49863% . 9.81107x 8.76999x .
106 100 10° 10° 107 106 107 107 106 106
1.68957x 1.31100% 1.63040x 1.28062x 8.57369% 4.34604x 9.92663x 4.97089x 2.15153% 1.60724x
F19 + + + + +
10* 10* 10* 10* 10* 10* 108 108 10* 10*
1.03609% 2.963 72x 1.05600% 2.89379% 1.13986x 2.98138x% 1.97725% 1.74595% 1.28258% 3.63733x%
F20 + + + + +
103 102 103 102 103 102 103 102 103 102
3.42602x 2.42151x% 3.38571x 2.52459x 5.46114x 3.71151x 1.02887x 3.81728x 4.60025x% 5.07663x
F21 + + + + +
102 10! 102 10! 102 10! 103 10! 102 10!
4.99397x 6.62310x 4.96380x 7.41662x 1.04507x 8.83233x% 1.38956% 3.74672% 6.11891x 7.043 08%
F22 - - - + -
103 102 103 102 10* 102 10* 102 103 102
5.90659% 3.208 15% 5.98369% 4.17007% 8.11877x 3.81306x 1.65851x 9.51766x 6.99673%x 4.56673%
F23 + + + + +
102 10! 102 10! 102 10! 103 10! 102 10!
6.52450% 6.17300% 6.30931x 4.99611x 9.67878x 2.57079x 1.79019x 1.21487x 1.23501x 1.99136x%
F24 - - + + +
102 10! 102 10! 102 101 103 102 103 102
F25 5.96323x 2.88130x " 5.84007x 3.18604x 4 1.01225% 1.32082x 4 1.67109x 3.78059% . 5.81601x 2.58749x% .
102 10! 102 10! 103 102 104 103 10? 101
F26 2.84802x 4.75812x N 2.97680x 3.22092x 4 5.08230% 3.27161x . 1.44913% 1.18662x . 3.90478x 1.01987x .
103 102 103 102 103 102 104 103 103 103
F27 6.70131x 7.01822x N 6.85819% 8.42710x 4 8.65843x 7.57981x . 2.62531x 2.15545x% . 9.06200% 9.98768x .
10? 10! 10? 10! 10? 10! 103 10? 10? 10!
5.60484x 4.19526x 5.52112x 4.06194x 1.05293% 1.57059x% 9.42882x 1.44083% 5.33077x 2.61533x
F28 + + + + +
102 10! 10? 10! 103 102 103 103 10? 10!
1.04599% 2.596 59x 1.03380x 2.58412x 1.56895x 3.39320x 8.42860x 1.593 84x 1.56628% 3.60328x
F29 + + + + +
103 102 103 102 103 102 103 103 103 102
1.19322% 4.066 63% 1.19100x 3.44676x 6.76439% 2.26086x 2.32244x 6.69656x 8.13244x 5.001 14x
F30 + + + + +
10° 10° 10° 10° 100 10° 10° 108 109 107
+—/= 26/4/0 26/4/0 28/2/0 30/0/0 28/2/0
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Table 8 Experimental results of IGHS, LHS, IMGHS, ID-HS-LDD, and DMDS-HS in CEC2017, when D = 50.

Function IGHS LHS IMGHS ID-HS-LDD DMDS-HS
Mean Std Sign  Mean Std Sign  Mean Std  Sign  Mean Std  Sign  Mean Std
Fl 3.19607x 3.50942x N 4.19431x 5.61831x  7.45128x 7.31166x  6.19374x 7.09899x  1.08742x 1.00362x
1010 10° 103 103 103 103 103 103 10* 10*
1.46452x 5.963 58% 3.92561x 1.99596x 3.77895x 2.77267% 8.34987x 4.14909x
B2 e 02 T om0 qon T e g0 T o qes 7 137682 983205
9.42338x 1.19486% 1.28852x 6.85591x% 1.31110% 1.76665% 6.92044x 1.22931x 5.27035x% 8.45589x
F3 + + + +
10* 10* 10* 103 103 103 104 10% 102 102
4.92072x 7.49549x 1.11524x 4.88745x% 3.36961x 3.69716x 9.07506x 5.029 65% 8.12606% 5.40156%
F4 + + - +
103 102 102 10! 10! 10! 10! 10! 10! 10!
5.33225% 2.54546x% 1.95216x 3.481 68% 2.63265% 5.33344x 4.42774x 2.91076% 7.26749% 2.73674x
F5 + + + +
102 10! 102 10! 102 10! 102 10! 10! 10!
5.63213x% 6.49313%x 9.73608% 1.31258x 6.44757% 3.09229% 5.28307x
+ - + +
F6 10! 4.24886 10-4 10-4 101 102 1.86807 2.24412 103 103
7 7.98328x 4.18679% . 2.55900% 4.10521x% . 3.83545% 5.77590x N 5.32505% 3.73421x% . 1.20571x 1.35692x
102 10! 10? 10! 10? 10! 102 10! 102 101
F8 5.26335% 2.33663% . 1.95877x 3.33884x . 2.62063% 5.42656% N 4.43063x 3.34348x . 6.94982x 2.50691x
102 101 10? 10! 10? 10! 10? 10! 10! 10!
F9 1.82283x 3.08777% . 3.14759x 1.85079x% . 8.44862x 3.75350x N 3.78503x 3.18205x% . 4.15470% 2.90951%
10* 103 103 103 103 103 103 103 10! 101
1.31224x 3.60416% 4.41236x 6.63686% 5.28910% 6.56068x 1.32132x 3.29452x% 1.15721x 1.99547x
F10 + - - +
10* 102 103 10? 103 102 10* 102 10* 103
2.11340% 5.966 84x 1.88772x 8.38270x 1.67480% 4.88067x 3.53299x 9.84806x 6.10261x 3.32062%
F11 + + + +
103 102 102 10! 102 10! 102 10! 10! 10!
3.27106%x 6.25551x% 2.92384x 1.48033x% 2.43764% 1.46955% 8.32660x 4.31704x 1.34499x 8.80787x
F12 + + - -
10° 108 100 106 105 103 10° 10° 106 10°
1.60552x 1.08036% 5.64377x 7.31872x 9.078 75% 9.40219x 5.73398x 5.92067% 8.02957x 7.46898%
F13 + - - -
107 107 103 103 103 103 103 103 103 103
1.24245% 8.26136x% 3.63465%x 2.31019x% 3.34724x 2.04486% 4.88950x 2.92906% 2.01301x 1.77818x%
F14 + + + +
106 10° 10° 10% 10* 10* 10* 10* 104 104
3.90557x 5.52234x 7.63902x 6.56048x 1.11009x 6.98060x 2.95662x 3.58606% 5.23424x 6.39444x
F15 + + + -
10° 10° 103 103 10* 103 103 103 103 103
Fl6 3.62105% 3.10637x% . 2.12087x 4.70024x . 2.19453x% 3.95284x N 3.16217x 4.88031x% . 1.42196x 6.91785x
103 102 103 10? 103 102 103 10? 103 102
F17 2.18305% 1.88132x . 1.41225x% 3.49631x% . 1.69899% 3.68795x N 1.87282x 2.92798x . 7.68211x 4.02005%
103 102 103 10? 103 102 103 10? 102 102
FI8 5.76066x 4.06822x . 1.21545x% 8.11542x% . 1.47591x 7.09061% N 1.69531x 1.29412x . 1.45167x 1.19744x
100 10° 10¢ 10° 10° 104 100 106 105 10°
2.51044x 5.61414x 1.87331x 1.11130x% 1.97387x 1.30245x 1.12156% 8.29270x 1.25630x 1.15351x
F19 + + + +
10° 10° 10* 10* 10* 10* 104 103 10* 10*
1.55043x 3.25375x% 1.14310x 2.81672x 1.33005% 3.33224x 1.68731x 2.03467x 9.53178x% 4.70142x%
F20 + + + +
103 102 103 102 103 102 103 102 102 102
7.35804x 2.82926% 4.10420x% 4.46436% 4.78619% 4.86691x 6.40929% 2.39943x 2.71860% 3.47111x
F21 + + + +
102 10! 102 10! 102 10! 102 10! 102 10!
1.21915%x 3.24909% 5.28395x 1.03177x 6.42426x 7.67218x 1.12162x 5.20722x 1.14905%x 2.21895x%
F22 + - - +
10* 103 103 103 103 102 10* 103 104 103
1.09860x 3.84004x 6.78871x 5.31366% 7.54139% 7.19590x 8.87474x 4.38206x 5.02695% 1.80407x
F23 + + + +
103 10! 102 10! 102 10! 102 10! 102 101
4 L14150x 4.49944x = 1.12579x 1.48145x  1.22407x 1.84331x N 9.64258x 2.90034x 6.74187x 1.02697x
103 10! 103 102 103 102 102 10! 102 102
F25 3.32300% 4.49302x . 5.59211x 2.99739x . 5.58496% 4.13231x N 5.16774x 3.76675x  5.19922x 3.92342x
103 10? 10? 10! 10? 10! 102 10! 102 10!
26 7.61651x 7.88865% . 3.63882x 1.39324x . 4.71319x 1.14487x N 5.12899x 1.63739x% . 1.94516x 1.60184x
103 102 103 103 103 103 103 103 103 102
F27 1.38475x 1.11105% . 7.88887x 9.51233% . 9.65783x 1.38753% N 5.74478x 5.83911x% . 5.60891x 2.83407x
103 10? 10? 10! 10? 10? 10? 10! 102 101
3.03322x 3.18436% 5.03351x 2.48580x% 4.94430x% 3.16415% 4.80490x 2.25731x% 4.77455x% 2.55058x
F28 + + + +
103 102 102 10! 102 10! 102 10! 102 10!
3.34482x 3.09926% 1.27434x 3.50994x 1.55771x 3.58258x 1.05531x 5.95177x% 5.20648x% 1.28560%
F29 + + + +
103 102 103 102 103 102 103 102 102 102
5.05897x 1.82220x% 9.87257x 2.64394x 9.89557x 1.84471x 9.58279x 1.50992x 9.06384x 1.81187x
F30 + +
107 107 10° 10° 10° 10° 10° 105 105 10°
+—I= 30/0/0 25/5/0 24/6/0 25/5/0 —
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Table 9 Results obtained from 51 independent runs of DMDS-HS and four other advanced algorithms on the 30D benchmark

of CEC2017.
Function  Statistical index SLWCHOA IWOA HGWO GWO DMDS-HS
F1 Mean 3.1427025%1010 1.2208871x10°  4.8193326x1010 1.4202351x10° 3.9184942x103
Std 4.7994355%10° 3.6892701x108 8.5282402x10° 1.1333496x10° 4.8853985x103
m Mean 1.5959448x103  1.1194591x1030  1.0428313x10*  2.3557110x103  3.1453736x1075
Std 1.7595367x10%  3.3549497x1030  3.4984481x10%  1.5939404x103!  2.3132986x10°5
3 Mean 6.2389399x10* 3.976928 5x10* 9.1600059x10* 3.2412839x10*  1.6737079x1077
Std 6.9179740x103 7.6071728x103 3.5042174%103 1.1585595%10*  2.6871356x1078
Mean 3.8680228x103 3.3645362x102 1.3516019x10* 1.6886969x102 6.776349 6x10!
F4 Std 1.2172326x%103 9.1809914x10! 3.1210514x103 6.2175849x%10! 3.0672450x10!
F5 Mean 3.5199300x102 2.4577646x102 4.1224161x102 9.3997063x10! 3.1479577x10!
Std 2.0713916x10! 3.7244508x10! 3.2831866x10! 2.5007342x10! 1.7148106x10!
Fé Mean 7.6311156x10! 5.905994 8x10! 9.4220202x10! 6.7980890 4.2231825x10™4
Std 6.9288576 6.4927645 7.5657627 3.9941614 2.0148732x1073
Mean 5.700763 1x102 4.5336113x%102 6.9383060x102 1.574 506 0x102 6.4253003x10!
K7 Std 3.722064 8x10! 7.1421021x10! 4.5828077x10! 4.4862857x10! 1.2658195x101
Mean 2.8542480%1072 1.728922 1x102 3.5266079x%102 8.2155180x10! 3.2408977x10!
k8 Std 2.626 899 3x10! 2.5334267x10! 2.4635760x10! 2.0053676x10! 1.1077443x10!
o Mean 7.773 696 8x103 4.6051388x103 1.0473333x10* 6.4525544x102 5.6841394
Std 1.4670260%x103 8.7373344x10? 1.655926 1x103 3.8385034x102 6.535594 6
Mean 7.1584675%103 4.4124286x103 8.7337780x103 2.9946683x103 5.3940217x103
F10 Std 2.896 049 9x102 6.0964539x102 4.245863 7x102 4.9432462x102 1.6156362x103
Mean 2.8518966x103 5.2334006x102 9.2231107x103 6.7477169x102 4.4934135%10!
Fil Std 7.3025243x102 1.6564709x%102 2.3561085x103 7.7363736x10% 3.2308424x10!
F12 Mean 6.0505633x10° 2.0066875%108 1.0590692x1010  4.3195995%107 1.065569 6x105
Std 2.0502741x10° 1.5212784x108 3.1097009%10° 4.6653248x107 6.3632639x104
Mean 2.0864503x10° 7.0339174x105 9.6721921x10° 4.8399024x10°0 1.772456 8x104
F13 Std 2.1668203x10° 1.330203 8x106 3.3462747x10° 2.3289275x%107 1.7515804x104
Mean 5.8228236x105 3.7186265x10° 7.7933310x10° 2.4391080%10° 3.797476 8x103
k14 Std 5.4358562x10° 3.4552073x10° 5.8413120x106 3.6907518x%10° 3.567948 6x103
F15 Mean 1.4252304x%107 3.9664398x10* 4.0143753%108 1.2494448x10°6 7.0830400x103
Std 1.276 1353%107 3.1342264x104 2.416 804 6x108 8.3678736x106 8.9977284x103
Fl6 Mean 2.3968770x103 1.7841680x103 4.3868527x103 7.3797149x102 4.016 639 0x10?
Std 3.696 833 0x102 3.8420053x102 7.6012752x102 2.7827157%10* 3.2643004x102
F17 Mean 9.3463949x102 6.8668510x102 2.3789611x103 2.7914155x102 1.155893 0x102
Std 1.4554396x1072 2.297894 5x10?2 8.6254730x102 1.3737704x10? 9.469 607 0x10!
F18 Mean 2.167806 6x10° 1.663328 6x10° 7.7890397x107 6.2139461x10° 2.0595874x105
Std 1.3324311x106 2.5533463x10°6 5.2245843x107 1.0506143x106 1.6510099x105
Mean 2.0193291x108 2.0513030x10° 7.2649748x108 1.2380925x10° 8.4792548x103
F19 Std 1.9889231x108 1.7144994x106 3.9535317x108 4.6475474x100 9.357866 8x103
Mean 8.2824827x102 5.8372885x102 1.3246706x103 3.3178584x10? 1.251 653 5x102
F20 Std 1.4808274x102 1.495553 8x102 2.1727324%102 1.2323846x102 1.0627209x%102
1 Mean 5.1959229x102 4.286328 7102 6.3654587x102 2.825593 1x102 2.3788755%102
Std 3.1170052x10! 4.0452815x%10! 4.4094083x10! 2.8178945%10! 1.8551435x10!
2 Mean 7.0679532x103 2.5472169x%103 8.3158280x103 1.936296 1x103 2.5367093x103
Std 4.5043219x102 2.1257057%103 9.1587382x10? 1.5454537%103 2.9799674x103
23 Mean 7.660 660 9x102 6.9099253x102 1.3958328x103 4.4675624x102 3.8465750%x102
Std 4.0337742x10! 5.9637639x10! 1.7299173x10? 3.6840099x%10! 1.0804514x10!

(to be continued)
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Table 9 Results obtained from 51 independent runs of DMDS-HS and four other advanced algorithms on the 30D benchmark
of CEC2017.

(continued)
Function Statistical index SLWCHOA IWOA HGWO GWO DMDS-HS
F24 Mean 8.6682118x102  7.3412087x102 1.5604044x103 5.1970107x102 5.0134595x%102
Std 3.9936274x101  6.263361 1x10! 1.6547250x102  4.7656459%10! 4.491241 1x10!
25 Mean 2.2711387x103  53140224x10%2  2.7572124x10°  4.6965325%x10?2 3.8710562x10?
Std 3.4607783x10%  3.2479147x10! 5.7679039x10%2  3.5769854x10! 7.8203034x107!
F26 Mean 4.5367029%x10°  4.6344855%103 8.3977317x103 1.9805498x103 1.3741178x103
Std 3.5863734x102 1.2400030x10°  6.6150042x102  3.5737939x102 9.243 666 8x10!
27 Mean 9.0197797x10%2  6.5820156x102  2.2271309x103 5.3829398x102 5.0591062x102
Std 7.579209 8x10! 7.711016 8x10! 4.6567611x102 1.6227959x10! 6.1033264
28 Mean 22582611103  6.2559269%x102  4.0744467x103 5.9056323x102 3.698 4554x10?
Std 6.2789847x102  5.9803542x10! 6.9745883x102  5.8347489x10! 7.0271795%10!
F29 Mean 1.741740 1x103 1.7979328%10%  4.6445955%x10%  7.9863174x10?2 5.181186 6x102
Std 2.2638402x102  2.6973782x10?2 1.040186 1x103 1.621681 1x102 1.150981 6x102
F30 Mean 7.0432289x107  2.783 026 1x107 1.2666274x10°  5.6178748x10°6 7.484 8823x103
Std 2.2208662x107  2.8590188x107  6.6051850x10%  5.1156206x10° 3.4863331x103
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(continued)
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Fig. 3 Optimal error value iteration curve.

Tables 3—8 highlight the exceptional performance of
the DMDS-HS algorithm on the three unimodal
functions, indicating its strong solution accuracy.
Moreover, these findings also reveal that the DMDS-
HS algorithm maintains a stable and outstanding
performance as the dimensionality increases,
showcasing its robustness in comparison to other
algorithms. This provides confirmation of the
remarkable results achieved by the DMDS-HS
algorithm in solving complex optimization problems in
high-dimensional spaces. Furthermore, the iteration
plot in Fig. 3 shows that during the early stages of
computation, the global random search of the DMDS-
HS algorithm effectively discovers potential global
optima. As the iteration progresses, the algorithm
gradually shifts towards local search, resulting in
accelerated convergence, enhanced solution quality,
and improved search efficiency. In summary, the
analysis of the experimental results highlights the

strengths of the DMDS-HS algorithm. Its adaptive
variation design of HMCR allows for a balance
between global and local search strategies, leading to
superior convergence rates and solution accuracy. The
incorporation of dual-memory structure and dynamic
trust region further enhances its ability to escape local
optima. Additionally, the algorithm showcases
robustness in high-dimensional scenarios. These
findings provide valuable insights into the performance
and capabilities of the DMDS-HS algorithm.

4.2 Analysis of computational complexity for
DMDS-HS

The computational efficiency of an algorithm can be
reflected by its computational intricacy. In this section,
we  will O notation to represent the
computational intricacy of the EDMDS-HS for
initialization, the establishment of the dual-memory,
and the improvisation update process. The initialization

use the
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computational intricacy of UHM and LHM is
OHMSxD), and equivalently O(HMSxD), where
HMS is the size of UHM and LHM, and D represents
the dimensionality of the optimization problem in
terms of the number of decision variables. The
computational intricacy for sorting all harmonies is
OHMS), and the improvisation process has a
computational intricacy of O(D) since sorting the HM
is performed in each iteration, with a computational
intricacy of O(HMS). Additionally, in the worst case,
the computational intricacy of the update process is
O(HMS). It should be noted that the computational
complexities of parameter initialization, adaptive
parameter calculation, and the update of UHM and
LHM repositories are all O(1). Therefore, if the
iterations 1S  Tmax, the
computational intricacy of the DMDS-HS algorithm
will be less than O(HMSxD)+O((HMS+D+1)XTax),
which can be considered as O(HMSxD) +O((HMS+D)x
Tmax ), similar to the computational intricacy of the HS
algorithm.

maximum number of

4.3 Comparison of DMDS-HS in data clustering
applications

The DMDS-HS algorithm has  demonstrated
exceptional performance in the CEC2017 benchmark
functions. To validate its efficacy in overcoming real-
world problems, we applied it to a data clustering
problem and compared it against seven classical
clustering algorithms and heuristic algorithms. The
objective function and encoding scheme of the problem
were adopted from Talaei et al.[3%] In order to conduct a
comprehensive evaluation, we selected 10 well-known
clustering datasets and performed 51 experiments on
each dataset with an equal number of evaluations
(10 000 iterations). The results of the experiments are
presented in Table 2. The findings indicate that the
DMDS-HS algorithm outperforms K-means, K-
means++, GA, PSO, DE, SCA, and HS algorithms in 7,
7, 10, 10, 8, 10, and 9 of the 10 datasets, respectively.
These seven datasets encompass diverse data
characteristics and distributions, and the DMDS-HS
algorithm exhibits strong clustering performance on
these complex datasets. This highlights the algorithm’s
robust adaptability and versatility in effectively
handling various types of data.

5 Conclusion

We propose the DMDS-HS algorithm as an
enhancement to the HS algorithm, aiming to improve

its performance. DMDS-HS incorporates a dual
memory structure and dynamic trust region to explore
new harmonies and incorporates phased planning for
global random search using Rule 3 of the harmony. By
carefully designing the algorithm’s parameters, the
probabilities of using the improved rules are adjusted
accordingly. After analyzing the experimental results
of a large number of tests performed on the
internationally standardized CEC2017 benchmark
function set, we find that the DMDS-HS algorithm
outperforms the other nine HS algorithms and four
state-of-the-art heuristic algorithms in all dimensions.
Furthermore, the algorithm has been applied to data
clustering tasks, where it has demonstrated its
effectiveness and reliability in solving complex
clustering problems. In conclusion, the DMDS-HS
algorithm showcases excellent performance in terms of
diversity, escaping local optima, and solution accuracy
by incorporating the dual memory structure and
dynamic trust region. It maintains stability and
outstanding performance when tackling optimization
problems of different dimensions and function types.
These results confirm the efficacy and practicality of
the DMDS-HS algorithm, providing a viable approach
for dealing with the real-world complex optimization
problems.
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