
 

Intelligent Optimization Under Multiple Factories: Hybrid Flow
Shop Scheduling Problem with Blocking Constraints

Using an Advanced Iterated Greedy Algorithm

Yong Wang, Yuting Wang*, Yuyan Han*, Junqing Li, Kaizhou Gao, and Yusuke Nojima

Abstract: The  distributed  hybrid  flow  shop  scheduling  problem  (DHFSP),  which  integrates  distributed

manufacturing models with parallel machines, has gained significant attention. However, in actual scheduling,

some  adjacent  machines  do  not  have  buffers  between  them,  resulting  in  blocking.  This  paper  focuses  on

addressing  the  DHFSP  with  blocking  constraints  (DBHFSP)  based  on  the  actual  production  conditions.  To

solve DBHFSP, we construct  a mixed integer linear programming (MILP) model  for  DBHFSP and validate its

correctness  using  the  Gurobi  solver.  Then,  an  advanced  iterated  greedy  (AIG)  algorithm  is  designed  to

minimize the makespan, in which we modify the Nawaz, Enscore, and Ham (NEH) heuristic to solve blocking

constraints. To balance the global and local search capabilities of AIG, two effective inter-factory neighborhood

search strategies and a swap-based local search strategy are designed. Additionally, each factory is mutually

independent,  and the movement  within one factory does not  affect  the others.  In  view of  this,  we specifically

designed  a  memory-based  decoding  method  for  insertion  operations  to  reduce  the  computation  time  of  the

objective.  Finally,  two  shaking  strategies  are  incorporated  into  the  algorithm  to  mitigate  premature

convergence.  Five  advanced  algorithms  are  used  to  conduct  comparative  experiments  with  AIG  on  80  test

instances,  and  experimental  results  illustrate  that  the  makespan  and  the  relative  percentage  increase  (RPI)

obtained by AIG are 1.0% and 86.1%, respectively, better than the comparative algorithms.
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1    Introduction

With  the  increased  market  competition,  the  traditional
single-factory production model is no longer sufficient
to  meet  market  demands.  Instead,  a  novel  distributed
manufacturing  model  has  received  widespread
attention[1].  This  decentralized  manufacturing  model
offers  many  advantages  such  as  improving  efficiency,

reducing  costs,  and  shortening  manufacturing  cycle
times.  Due  to  the  fact  that  the  distributed  permutation
flow shop scheduling problem (DPFSP) simultaneously
considers factories allocation and job arrangement, that
is,  jobs  first  are  allocated  for  different  factories  and
then  scheduled  within  each  factory  in  a  reasonable
manner, the DPFSP is significantly more complex than
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the general permutation flow shop scheduling problem
(PFSP)[2].

Additionally, to adjust variations in production speed
and  enhance  productivity,  some  factories  have
integrated  parallel  machines  into  their  production
processes. This production model gives rise to a hybrid
flow  shop  scheduling  problem  (HFSP).  By
incorporating  parallel  machines,  HFSP  allows  for  the
simultaneous processing of multiple jobs, resulting in a
significant boost in productivity, and is widely used in
steelmaking,  electronic  production,  the  chemical
industry,  etc.[3–5] Given  the  increasing  collaboration
between  enterprises  and  the  trend  towards  intelligent
manufacturing,  the  advantages  of  HFSP  and  DPFSP
have  been  integrated  to  create  a  new  scheduling
problem  called  the  distributed  HFSP  (DHFSP).
Undoubtedly,  DHFSP  holds  greater  practical
significance[6].

The DHFSP can be approximated as parallel factory
scheduling,  where  each  factory  represents  an  HFSP.
Recently,  some  intelligent  optimization  methods  have
been  employed  to  solve  DHFSP,  i.e.,  multi-
neighborhood iterated greedy algorithm[6], artificial bee
colony  (ABC)  algorithm[7],  bi-population  cooperative
memetic  algorithm[8],  and  so  on.  However,  in  some
production  scenarios,  jobs  may  be  blocked  on  a
machine  because  of  cost  or  storage  space  limitations,
impeding  their  transition  to  the  next  stage  of
processing.  Consequently,  DHFSP  has  been  extended
to a  more  complex variant  known as  the  DHFSP with
blocking  constraints  (DBHFSP).  DBHFSP  needs  to
solve  the  following  issues:  allocating  a  factory,
assigning  a  suitable  machine  for  each  job,  and
scheduling the sequence of the jobs. Notably, DBHFSP
is  significantly  more  complex  than  DHFSP,  more
closely  aligned  with  actual  production  processes,  and
hence more deserving of our attention and study.

In practical production scenarios, the occurrence of a
blocking  state  can  have  significant  negative
consequences  on  the  completion  time  and  overall
productivity.  Therefore,  it  is  crucial  to  thoroughly
analyze  the  challenges  and  risks  associated  with  the
DBHFSP  before  devising  suitable  strategies.  Some  of
the  potential  challenges  should  be  considered:  (1)
Blocked  jobs  need  to  wait  until  the  machine  is  idle
before  they  can  continue  processing,  which  causes
additional delays and affects the completion time of the
jobs.  (2)  Poor  job  allocation  strategies  may  create
imbalances  between  factories,  resulting  in  more
instances of blocking. (3) Job blocking can increase the

risk  of  the  solution  getting  stuck  in  a  local  optimum,
making  it  necessary  to  develop  effective  strategies  to
minimize blocking time.

Based  on  the  above  motivations,  we  know that  it  is
crucial to select an appropriate algorithm and do some
adjustments  tailored to the properties  of  the DBHFSP.
Through  comparisons  with  various  intelligent
optimization  algorithms[7–11],  we  observe  that  the
iterated  greedy  algorithm  (IGA)  demonstrates
superiority  in  some  scheduling  problems[12–14].  The
structure of IGA is simple and easy to be implemented.
Therefore, we develop an advanced IGA (AIG) method
to  minimize  the  makespan  by  reducing  the  blocking
time. The contributions of our work are listed.

(1)  We  build  a  mixed  integer  linear  programming
(MILP) model for DBHFSP and use the Gurobi solver
to  prove  its  validity.  Under  the  search  framework  of
IGA,  we  design  the  AIG  algorithm  based  on  problem
characteristics  and  provide  the  optimization  gap  for
MILP and AIG.

(2) Two inter-factory neighborhood search strategies
and a swap-based local search strategy are proposed to
balance the global and local search capabilities of AIG,
respectively.

(3)  To  prevent  premature  convergence,  two  shaking
strategies are proposed.

(4)  Extensive  simulation  experiments  are  conducted
on  80  test  instances  and  compared  against  five
optimization algorithms to showcase the superiority of
AIG in optimizing DBHFSP.

The paper is structured as follows. Section 2 offers a
review  of  previous  studies  on  the  subject.  Section  3
outlines  the  mathematical  model  of  DBHFSP  and
presents  a  simple  example  for  better  understanding.
Section 4 provides detailed information about the AIG
algorithm.  The  experimental  results  and  their  analysis
are presented in Section 5. Finally, Section 6 provides a
summary  and  suggests  potential  directions  for  future
research.

2    Literature Review

According  to  our  best  knowledge,  the  DBHFSP  is
rarely  reported  in  the  literature.  Consequently,  we
conduct  a  comprehensive  review  of  the  most  relevant
research  work  in  the  literature,  including  the  DPFSP,
HFSP, DHFSP, and IGA.

2.1    Distributed  permutation  flow shop  scheduling
problem

DPFSP  has  been  the  subject  of  much  research  in  the
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manufacturing  industry.  A  hybrid  estimation  of
distribution  algorithm  (EDA)  was  proposed,  which
combines  the  advantages  of  the  memetic  algorithm  to
solve  DPFSP[15].  To  accelerate  the  iteration  speed  of
IGA,  Ruiz  et  al.[13] designed  an  enhanced  IGA  to
optimize  the  DPFSP,  resulting  in  improving
computational  efficiency  and  enhancing  solution
quality.  Moreover,  Wang  et  al.[16] designed  a  hybrid
discrete  cuckoo  search  algorithm  to  address  DPFSP,
which  has  been  demonstrated  to  be  effective  in
optimizing  this  problem.  Shao  et  al.[17] made  notable
contributions to optimizing the makespan in the DPFSP
by  developing  three  advanced  iterated  greedy
algorithms  that  leverage  the  problem  characteristics.
For  distributed  assembly  no-idle  PFSP,  a  cooperative
water  wave  optimization  method  was  proposed  to
optimize assembly completion time[18].  Reference [19]
focused  on  the  energy-aware  scheduling  problem  and
proposed  a  cooperative  memetic  algorithm  to  address
DPFSP. To reduce energy consumption and makespan
in distributed no-wait PFSP, Zhao et al.[20] developed a
Q-learning driven cooperative metaheuristic algorithm.
The  aforementioned  studies  have  been  effective  in
solving  the  distributed  scheduling  problem.  However,
they did not consider the presence of parallel machines.
Incorporating  parallel  machines  can  significantly
increase production speed by enabling multiple jobs to
be processed simultaneously.

2.2    Hybrid flow shop scheduling problem

HFSP  is  a  composite  problem  that  encompasses  both
the  parallel  machine  and  the  PFSP.  The  solution  to
HFSP  involves  two  sub-problems:  assigning  the
available machines to the jobs and sequencing the jobs.
To optimize the HFSP with makespan as the objective,
Pan et al.[21] designed a discrete ABC algorithm, which
has  been  demonstrated  to  be  effective  in  several
studies.  To  optimize  the  HFSP  on  identical  parallel
machines, Wang et al.[22] developed an enhanced EDA,
which  combines  local  and  global  search  strategies  to
improve  the  solution  quality.  To  minimize  energy
consumption  for  green  production,  Li  et  al.[23]

developed  a  two-level  imperialistic  competitive
algorithm to optimize HFSP. Considering the impact of
the  human  factor  in  HFSP,  Marichelvam  et  al.[9]

applied  an  enhanced  particle  swarm  optimization
(PSO)  algorithm  and  proved  its  effectiveness
experimentally.  In  addition,  to  cope  with  real-time
scheduling  in  manufacturing  systems,  Wu  et  al.[24]

proposed  a  gene  expression  programming  real-time

scheduling method to solve the real-time HFSP. While
the studies mentioned above have effectively addressed
the HFSP problem, they did not  consider the blocking
constraints  and  the  manufacturing  mode  of  multi-
factory  processing.  However,  with  the  increasing
demand  for  multi-factory  production  in  the  market,  it
has become an inevitable trend to consider these factors
in the optimization process.

2.3    Distributed  hybrid  flow  shop  scheduling
problem

Due to the rapid economic development,  HFSP within
a  single  factory  is  no  longer  sufficient  to  meet  the
production  demands  of  modern  enterprises,  which
leads to the emergence of DHFSP. However, DHFSP is
more  challenging  than  HFSP.  We  note  the  following
studies.  To  tackle  the  challenging  DHFSP  with
multiprocessor  tasks,  an  improved  IGA  was  proposed
by  Ying  and  Lin[25].  Shao  et  al.[6] modeled  DHFSP
according  to  its  characteristics  and  proposed  a  multi-
neighborhood  IGA.  Xi  and  Lei[26] studied  fuzzy
distributed  two-stage  HFSP  and  introduced  a  Q-
learning-based  teaching-learning  optimization  method
for  makespan  optimization.  For  multi-objective  fuzzy
DHFSP  with  due  date,  a  co-evolutionary  algorithm
combining  EDA  and  IGA  features  was  developed  by
Zheng  et  al.[27] Jiang  et  al.[28] studied  DHFSP  with
multiprocessor  tasks  and  designed  a  decomposition-
based  multi-objective  optimization  method.  For
energy-aware  DHFSP  optimization,  a  reinforcement
learning strategy and a cooperative memetic algorithm
were  proposed[29].  Similarly,  to  reduce  energy
consumption,  Pan  et  al.[30] studied  the  scheduling
problem  of  distributed  energy-efficient  parallel
machines  and  proposed  a  knowledge-based  two-
population  optimization  algorithm.  Shao  et  al.[31]

investigated  DHFSP  with  energy  and  labor-aware  and
proposed a hybrid memetic algorithm by combining the
advantages  of  network  optimization  and  memetic
algorithm.  The  above  research  effectively  solved  the
problems  of  parallel  machines  and  multiple  factory
processing.  However,  they  did  not  consider  the
blocking  constraint.  In  the  real  world,  there  are  many
applications  for  train  track  scheduling[32],  ship
manufacturing[33],  and  concrete  blocks[34].  It  is
important to develop new algorithms and strategies that
can  handle  these  additional  constraints  and
complexities  to  further  improve  the  efficiency  and
effectiveness  of  production  systems  in  various
industries.

    284 Complex System Modeling and Simulation, December  2023, 3(4): 282−306

 



We  note  the  following  studies  on  blocking
constraints.  Han  et  al.[35] extended  the  PFSP model  to
include  blocking  constraints  and  setup  time  and
designed  a  discrete  multi-objective  optimization
(DEMO)  algorithm  to  optimize  energy  consumption.
To optimize the setup time and the blocking constraint
of  HFSP,  Aqil  and  Allali[36] presented  two  meta-
heuristic  algorithms.  Han  et  al.[37] embedded  the
learning  mechanism  into  the  IGA  and  studied  the
DPFSP  with  blocking  constraints.  Shao  et  al.[1]

analyzed the properties of distributed fuzzy PFSP with
blocking  constraints  and  designed  some  effective
heuristic  and  meta-heuristic  methods.  Aiming  at  the
blocking  constraint  and  energy consumption  in  HFSP,
an enhanced IGA was employed to optimize HFSP[38].
Recently,  Zhao  et  al.[39, 40] focused  on  multi-objective
distributed  blocking  PFSP  and  proposed  two  multi-
objective  algorithms:  Pareto-based  discrete  Jaya
algorithm  and  hyper-heuristic  with  Q-learning
algorithm. The above studies demonstrate that blocking
constraints  have  been  explored  by  researchers  and
highlight  the  significance  of  considering  blocking
constraints  in  scheduling  problems.  Therefore,  it  is
important  to  investigate  the  DHFSP  with  blocking  to
address  real-world  challenges  and  improve  production
efficiency.

2.4    Iterated greedy algorithm

IGA  has  been  widely  employed  in  PFSP  due  to  its
simplicity  and  efficient  performance[12].  Fernandez-
Viagas  et  al.[41] investigated  PFSP with  total  tardiness
as  the  optimization  objective  and  designed  eight
different  variants  of  IGA  to  address  this  problemx.
Wang  et  al.[42] focused  on  the  PFSP  with  mixed  no-
wait  constraint  and  developed  an  improved  IGA  to
adapt  to  the  problem characteristics.  To solve DPFSP,
Han  et  al.[43] designed  an  effective  IGA  based  on
single-job and job-block swapping strategies. To solve
the  DPFSP  with  blocking  constraints  (DBFSP),  Chen
et  al.[44] introduced  a  novel  population-based  IG
(PBIG)  that  integrates  the  strengths  of  population
search  methods  and  IGA.  Qin  et  al.[38] improved  the
IGA  by  proposing  a  special  substitution  strategy  to
handle HFSP with blocking constraints. In addition, for
DHFSP,  Qin  et  al.[45] analyzed  the  influence  of
heterogeneous  factories  and  blocking  constraints  and
designed a collaborative IGA (CIG) to address DHFSP.

According  to  the  above  literature,  IGA  shows  good
performance  in  solving  the  flow  shop  scheduling
problem. (1) As mentioned in Ref. [43], compared with

other  swarm  intelligence  algorithms,  IGA  is  a  very
simple and easily understandable algorithm with strong
local  search  ability.  (2)  Reference  [44]  took  full
advantage  of  the  extensibility  of  IGA,  added  a
population-based  search  method  to  it,  and  proposed  a
PBIG to solve DBFSP. The test of 720 instances proves
that  PBIG  is  superior  to  the  existing  algorithms.  (3)
Recently,  a  collaborative  IGA  was  designed  in  Ref.
[45]  based  on  the  characteristics  of  DHFSP,  and  the
performance  of  the  algorithm  was  improved  by  the
coevolution of two solutions. By comparing it with five
other  advanced  algorithms,  the  effectiveness  of  CIG
was  validated.  Based  on  the  above  analysis,  we  select
IGA to solve DBHFSP.

Although  IGA  has  good  performance  in  solving
scheduling problems, it also has some limitations, such
as  weak  global  search  ability,  poor  solution  diversity,
and a tendency to converge prematurely. To overcome
its  limitations  and  improve  its  performance  for
DBHFSP, a customized strategy will be designed based
on the problem characteristics. The local search ability
of  the  IGA  is  strong,  but  the  diversity  is  poor.
Therefore,  we  design  two  inter-factory  neighborhood
search  strategies,  which  can  enhance  the  collaboration
between  factories.  Additionally,  we  design  a  swap-
based  local  strengthening  strategy  that  enables  the
algorithm  to  explore  the  local  neighborhood  more
thoroughly.  Finally,  we  also  propose  two  shaking
strategies that help to prevent premature convergence.

3    Problem Statement

3.1    Problem definition

J F
f ( f = 1,2, ...,F) S

s
Ms (Ms ⩾ 1)

p j,s

j s

DBHFSP is described as follows. A job set containing
 jobs  is  to  be  assigned to  factories  for  processing.

For  any  Factory ,  there  are  identical
processing  stages,  each  processing  stage  contains

 parallel  machines,  and  the  number  of
parallel  machines  in  at  least  one  stage  is  to  be  greater
than or equal to 2. In addition, there is no intermediate
buffer between any adjacent stages. To better visualize
the  multi-factory  production  process,  an  example  of  a
two-factory production is given in Fig. 1. Factory 1 and
Factory 2 are the same and have the same machines in
each processing stage, and the job can be processed in
any factory. We use  to denote the processing time
of job  at stage .

Otherwise,  the  discussion  of  DBHFSP  is  based  on
the following assumptions:

(1) At time 0, all jobs and machines are available for
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processing.
(2) Once a job is allocated for a factory, it cannot be

changed to a different factory midway.
(3) Each machine can only process one job at a time,

and each job can only be processed by one machine at
a time.

(4)  All  jobs  should  be  processed  continuously
without any interruptions or preemptions.

(5)  Each  job  follows  a  predetermined  sequence  of
processing  stages  and  cannot  skip  any  stage  or  finish
early.

(6)  There  exist  no  intermediate  buffers  between
adjacent stages.

DBHFSP  involves  three  interconnected  sub-
problems: determining the assignment of each job to a
specific  factory,  assigning  a  machine  for  each  job  in
each factory, and sequencing the jobs in each machine.
And  the  mathematical  model  of  DBHFSP  is  given
based on the above assumptions and Ref. [46].

3.2    Mathematical model

Notations:
J : Number of jobs.
F : Number of factories.
S : Number of stages in each factory.
j j ∈ {1,2, ..., J}: Index of jobs, .
f f ∈ {1,2, ...,F}: Index of factories, .
s s ∈ {1,2, ...,S }: Index of stages, .
M f ,s s f: Number of machines at stage  in Factory .
m s m ∈

{
1,2, ...,M f ,s

}
: Index of machines at stage , .

L: A big positive integer.
p j,s j s: Processing time of job  at stage .
Decision variables:
Cmax : Makespan.
C j,s j s: Completion time of job  at stage .
D j,s j s:  Departure  time  of  job  at  stage .  It  refers  to

the  time  that  the  job  leaves  stage s after  finishing
processing.

x f , j j
f

:  Decision  variables,  1,  if  job  is  processed  in
Factory ; 0, otherwise.

y f ,s, j,m j
m s f

: Decision variables, 1, if job  is processed on
machine  at stage  in Factory ; 0, otherwise.

z f ,s, j, j′ j
j′ s f

:  Decision  variables,  1,  if  job  is  at  any
position  before  job  at  stage  in  Factory ;  0,
otherwise.

Constraints:
 

Minimize Cmax (1)
 

F∑
f=1

x f , j = 1,∀ j ∈ {1,2, ..., J} (2)

 

M f ,s∑
m=1

y f ,s, j,m = x f , j, ∀ f ∈ {1,2, ...,F} ,

∀ j ∈ {1,2, . . . , J} ,∀s ∈ {1,2, . . . ,S }

(3)

 

z f ,s, j, j′ + z f ,s, j′, j ⩽ 1,∀ f ∈ {1,2, ...,F} ,
∀s ∈ {1,2, ...,S } , ∀ j, j′ ∈ {1,2, ..., J} , j < j′ (4)

 

z f ,s, j, j′ + z f ,s, j′, j ⩾ y f ,s, j,m+ y f ,s, j′,m−1,
∀ f ∈ {1,2, . . . ,F} ,∀s ∈ {1,2, . . . ,S } ,
∀ j, j′ ∈ {1,2, . . . , J} , j < j′,∀m ∈

{
1,2, ...,M f ,s

}
(5)

 

C j,s ⩾ p j,s,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S } (6)
 

C j′,s ⩾ D j,s+ p j′,s+
(
y f ,s, j,m+ y f ,s, j′,m+ z f ,s, j, j′ −3

)
×

L,∀ j, j′ ∈ {1,2, ..., J} , j , j′,∀ f ∈ {1,2, ...,F} ,
∀s ∈ {1,2, ...,S } ,∀m ∈

{
1,2, ...,M f ,s

}
(7)

 

C j,s+1 = D j,s+ p j,s+1,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S −1}
(8)

 

D j,s ⩾C j,s,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S } (9)

 

M1 M2 M3

M1 M2

M1 M2 M3

Stage 1

Stage 2

Stage 3

Factory 1

M2 M1 M2 M3

M1 M2

M1 M2 M3

Stage 1

Stage 2

Stage 3

Factory 2

M2

 
Fig. 1    Example of isomorphic factories.

    286 Complex System Modeling and Simulation, December  2023, 3(4): 282−306

 



 

Cmax ⩾ D j,S ,∀ j ∈ {1,2, ..., J} (10)

f

f z f ,s, j, j′

z f ,s, j′, j j j′

j
j′ s

f z f ,s, j, j′ z f ,s, j′, j

j s

j s

j
s

Formula (1) is the makespan objective. Constraint (2)
ensures that each job is allocated for only one factory.
For  Factory ,  Constraint  (3)  enforces  that  a  job  is
allocated  to  only  one  machine  at  a  given  stage.  In
Factory , Constraint (4) guarantees only one of 
and  can  be  1  if  and  are  processed  at  the
same stage. Constraint (5) guarantees that if both jobs 
and  are processed on the same machine at stage  in
Factory ,  either  or  must  be  1  and  the
other  must  be  0.  Constraint  (6)  enforces  that  the
processing  time  of  job  at  stage  is  smaller  than  its
completion  time.  Constraint  (7)  ensures  that  there
exists no overlap in the processing of jobs on the same
machine at the same stage. Constraint (8) states that the
completion  time  of  job  at  stage  is  equal  to  the
processing time plus its  departure time at  the previous
stage. Constraint (9) ensures that no job  leaves stage

 before it is completed. Constraint (10) guarantees that
the makespan is not smaller than the time required for
all jobs to complete the processing.

3.3    Example

F = 2 S = 2 M1,1 = 2 M1,2 = 2 M2,1 = 2 M2,2 = 2
J = 6

We  give  an  example  to  illustrate  the  problem.  Let
, , , , , ,

and . Table 1 gives the processing time of the job
at each stage. Processing time uses integers (1, 2, 3, ...)
to  represent  the  length  of  time  without  units.  We  use
the  Gurobi  solver  to  run  this  small-scale  instance  and
find  the  smallest  makespan.  The  optimal  solution  is
x1,3 = x1,4 = x1,6 = x2,1 = x2,2 = x2,5 = 1, y1,1,3,2 = y1,1,4,1 =
y1,1,6,1 = y1,2,3,2 = y1,2,4,2 = y1,2,6,1 = y2,1,1,2 = y2,1,2,1 =
y2,1,5,1 = y2,2,1,1 = y2,2,2,2 = y2,2,5,2 =  1, z1,1,6,4 = z1,2,3,4 =
z2,1,5,2 = z2,2,5,2 =  1.  Therefore,  the  job  scheduling

{6,3,4} {5,2,1}

samb b-th
a-th

sequences in Factories 1 and 2 are  and ,
respectively. The makespan is 38. The running result is
shown  in Fig.  2,  where  represents  the 
machine on the  stage. The gray part represents the
blocking time.

4    AIG Algorithm for DBHFSP

For  DBHFSP,  it  is  essential  to  consider  three  sub-
problems, i.e., allocating an appropriate factory and an
appropriate  machine  for  each  job  and  sequencing  the
jobs.  Although  the  basic  IGA  is  known  for  its  simple
structure,  flexibility,  and  few  parameters,  it  is  also
prone  to  get  trapped  in  local  optima.  Considering  the
coupled features of DBHFSP and the limitations of the
basic  IGA,  we  have  designed  the  proposed  AIG
algorithm.

CriticalFactory_ExtractInsert
CriticalFactory_Swap

In Algorithm 1, first, we design an improved version
of  the  NEH2[47] method,  which  considers  the  discrete
characteristics  of  DBHFSP  and  utilizes  a  first-stage
processing  time  descending  scheme  for  solution
initialization  (see  Line  1).  Inside  the  while  loop,
two  neighborhood  search  strategies,

 (see  Line  5)  and
 (see  Line  7),  are  randomly  used

 

Table 1    Processing time for six jobs.

Job No.
Processing time

Stage 1 Stage 2
1 18 20
2 11 14
3 9 15
4 17 12
5 5 15
6 6 20

 

s2m2 j3
j6

j4
j3

j6

j4

0 2 4 6 8 10 12 14 16 18
Time

20 22 24 26 28 30 32 34 36 38

(b) Factory 2

(a) Factory 1

s2m1

s1m2

s1m1

s2m2 j5
j1

j2

j1
j5

j2

0 2 4 6 8 10 12 14 16 18
Time

20 22 24 26 28 30 32 34 36 38

s2m1

s1m2

s1m1

 
Fig. 2    Scheduling Gantt chart for the instance.
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GreedSwap

to  perform  neighborhood  perturbation  between  a
critical  factory  and  a  non-critical  factory.  By  utilizing
these  two  neighborhood  structures,  our  algorithm  can
enhance  the  collaboration  between  different  factories.
Second,  the  AIG  algorithm  incorporates  the
destruction-reconstruction  (DR)  strategy  (Line  10)  to
introduce  diversity  into  the  solutions.  Then  a  local
search based on swap operator,  denoted as 
(see  Line  14),  is  employed  to  further  enhance  the
quality  of  the  solution.  Finally,  to  further  prevent  the

Shake_DoubleInsert
Shake_Swap

algorithm  from  being  trapped  in  local  optima,  we
employ two shaking strategies,  and

 (see  Lines  21 and 23),  to  slightly  perturb
the current solution and escape stagnation.

4.1    Analysis and representation of solution

π =
{
π1,π2, ...,π f , ...,πF

}
π f f
f

π f =

{
π f1 ,π f2 , ...,π fη f

}
π f j j

f , j = 1,2, ...,η f

π = {π1,π2} = {{6,5,8,1} , {2,7,4,3}}

We  first  choose  a  suitable  encoding  strategy  to
represent  the  solution  of  DBHFSP.  Considering  the
multi-factory environment of DBHFSP, this paper uses
a multiple permutation based encoding method[48]. The
solution  can  be  expressed  as ,
where  represents the order of jobs in Factory . For
each ,  the  sequence  of  jobs  is  denoted  as

, where  represents the -th job
in  Factory .  For  example,  a  solution

,  which indicates that
jobs 6, 5, 8, and 1 are allocated for Factory 1, and jobs
2, 7, 4, and 3 are allocated for Factory 2.

f

π f =

{
π f1 ,π f2 , ...,π fη f

}
f

j ∈
{
1,2, ...,η f

}
S f

s Ms
[
j
]

j fc[ j],s
fmts,m

m∗

s
C f

max f

The purpose of decoding is to compute the objective
value. For example, a sequence of jobs in Factory  is

, where the job in  is denoted as
. There are  processing stages in , and

each  stage  has  parallel  machines.  represents
the  index  of  the -th  job.  represents  the
completion  time  of  the  job  and  represents  the
idle time of a machine at a specific stage.  is denoted
as  the  machine  with  the  earliest  idle  time  at  stage .
The  makespan  for  Factory  is  calculated  as
follows:
 

C f
max = 0 (11)

 

fc[ j],0 = 0, j = 1,2, ...,η f (12)
 

fmts,m = 0, s = 1,2, ...,S ,m = 1,2, ...,Ms (13)
 

m∗ = arg min
m=1,2,...,Ms

{
fmts,m

}
, s = 1,2, . . . ,S (14)

 

fc[ j],s =max
{
fmts,m∗ , fc[ j],s−1

}
+ p j,s,

j = 1,2, ...,η f , s = 1,2, ...,S (15)
 

fmts,m∗ =

fc[ j],s+1− p[ j],s+1, s = 1,2, ...,S −1;

fc[ j],s, s = S
(16)

 

C f
max =max

{
C f

max, fmts,m
}
, s = S ,m = 1,2, ...,Ms (17)

π = {π1, π2} π1 = {6, 3, 4} π2 = {5, 1, 2}
c6 = 26 c3 = 24

c4 = 36 c5 = 20 c1 = 38 c2 = 34 C1
max =max{0, 26,

According to Section 3.2, the solution is expressed as
, where  and . The

completion  time  for  each  job  is , ,
, , , and . 

 

Algorithm 1　AIG algorithm
π dInput:　An empty solution , and  is the number of jobs to be

extracted in DR
πbestOutpu:　

π = NEH2_FSD(π) πtemp = π πbest = π1　 , , and 
2　While (stop time is not reached) do

r = rand(0, R)3　　  　　%% R is a parameter
r = 04　　If ( )

πtemp = CriticalFactory_ExtractInsert
(
πtemp,d

)
5　　　

6　　Else

πtemp = CriticalFactory_Swap
(
πtemp

)
7　　　

8　　End If
f = 1 F9　　For  to 

π
temp′

f DR
(
π

temp
f ,d

)
10　　　 =

Cmax

(
π

temp′

f

)
<Cmax

(
πtemp

)
11　　　If ( )

π
temp
f = π

temp′

f12　　　　

13　　　End If

π
temp
f = GreedSwap

(
π

temp
f

)
14　　　

15　　End For

Cmax
(
πtemp

)
<Cmax

(
πbest
)

16　　If ( )
πbest = πtemp17　　　

18　　Else
r′ = rand(0,1)19　 　　

r′ = 020　 　　If ( )

πtemp = Shake_DoubleInsert
(
πtemp

)
21　　　　

22　　　Else

πtemp = Shake_Swap
(
πtemp

)
23　　　　

24　　　End If

Cmax
(
πtemp

)
<Cmax

(
πbest
)

25　　　If ( )
πbest = πtemp26　　　　　

27　　　Else
πtemp = πbest28　　　　　

29　　　End If
30　　End If
31　End While
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36} = 36 C2
max =max {0, 34, 38} = 38

Cmax =max
{
C1

max,C
2
max

}
=

max {36, 38} = 38

, .  Therefore,  the
makespan of this example is 

.
For DBHFSP, each factory is  mutually independent,

and  the  movement  within  one  factory  does  not  affect
the  others.  Thus,  we  can  obtain  the  following
characteristics of DBHFSP:

Characteristic  1. Exchanging  two  jobs  between
different  factories  does  not  affect  the  completion  time
of other factories; exchanging two jobs within the same
factory  does  not  change  the  completion  time  of  other
factories.

Characteristic  2. When  deleting  a  job  from  one
factory  and  reinserting  it  into  another  factory,  it  does
not  affect  the  completion  time  of  other  factories;
similarly,  deleting  a  job  from  one  position  and
reinserting  it  into  another  position  within  the  same
factory  does  not  change  the  completion  time  of  other
factories.

p∗

p∗

Characteristic  3. Inserting a  job into position  in
the job sequence does not affect the completion time of
jobs before position .

j∗

p∗ p
fc[ j],m fmts,m

p∗

These  characteristics  are  obvious  and  can  help  the
algorithm reduce computation time when exploring the
neighborhood. Additionally, based on Characteristic 3,
we  specifically  designed  a  memory-based  decoding
method for insertion operations. The job to insert is 
and  the  position  to  insert  is .  is  a  position  of  the
job  sequence.  The  information  of  and 
before position  is known. The calculation formula is
as follows:
 

m∗ = arg min
m=1,2,...,Ms

{
fmts,m

}
, s = 1,2, ...,S (18)

 

j =
 j∗, p = p∗;

p−1, p , p∗,

p = p∗, p∗+1, ...,η f ,η f +1 (19)
 

fc[ j],s =max
{
fmts,m∗ , fc[ j],s−1

}
+ p j,s,

s = 1,2, ...,S (20)
 

fmts,m∗ =

fc[ j],s+1− p[ j],s+1, s = 1,2, ...,S −1;

fc[ j],s, s = S
(21)

4.2    Initialization strategy

A suitable initialization strategy is crucial for achieving
good  performance  in  optimization  algorithms.  The
NEH2  heuristic  method  has  proven  to  be  effective  in
solving  DPFSP[47].  NEH2  follows  several  key  steps.
Firstly, a seed sequence is generated by sorting the jobs

F
F

according  to  the  descending  order  of  the  total
processing time across all stages. Then the first  jobs
from  the  seed  sequence  are  allocated  to  factories,
ensuring  that  each  factory  receives  at  least  one  job.
Finally,  the  rest  ones  are  iteratively  inserted  into  the
location  with  the  minimal  completion  time  across  all
factories. However, if some jobs with large processing
time in  the  first  stage  are  put  into  the  same factory,  it
can  lead  to  an  imbalance  of  the  completion  time
between factories and may increase the blocking times.
To  illustrate  this  situation,  we  give  an  example
including  8  jobs,  2  stages,  and  2  factories.  There  are
two  parallel  machines  at  each  stage. Table  2 lists  the
processing  time  of  the  jobs. Figure  3a shows  the
scheduling sequence generated using NEH2. In Fig. 3a ,
although NEH2 can assign jobs  to  individual  factories
according  to  the  total  processing  time,  it  may  still
generate  long  blocking  time.  Reducing  the  blocking
time  for  each  factory  and  avoiding  blocking
concentrated  in  one  factory  help  to  reduce  the
completion time.

According to the problem characteristics of DBHFSP
and combined with the advantages of NEH2, this paper
designs  an  improved  NEH2 initialization  method  with
the  first  stage  processing  time  descending  order
(NEH2_FSD).  NEH2_FSD  first  sorts  the  jobs
according  to  the  descending  order  of  their  first-stage
processing  time  and  then  assigns  one  job  to  each
factory.  The  rest  ones  are  assigned  to  each  factory
using the same approach as NEH2. Figure 3b shows the
scheduling sequence generated using NEH2_FSD. The
makespan  in Fig.  3a is  12  and  the  makespan  in
Fig.  3b is  10.  From Fig.  3b we  can  see  that  using  the
NEH2_FSD  strategy  avoids  blocking  to  be
concentrated in one factory. The proposed initialization
method is shown in Algorithm 2.

In  NEH2_FSD,  all  jobs  are  first  sorted  according to
 

Table 2    Processing time for eight jobs.

Job No.
Processing time

Stage 1 Stage 2
1 4 1
2 3 4
3 5 1
4 2 6
5 1 5
6 3 5
7 2 4
8 3 4
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Πpermutation

F

BestPos

the  descending  order  of  their  processing  time  at  the
first stage, forming a sequence,  (see Line 1).
Allocate  the  first  jobs  in  the  sequence  for  each
factory  separately  and  ensure  that  each  factory  has  a
job  (see  Lines  2−5).  This  is  followed  by  the  NEH2
process,  which  arranges  the  rest  jobs  (see  Line  6).
These  jobs  are  inserted  into  the  position  with

the  smallest  maximum  completion  time  among  all
factories (see Lines 9−12). Repeat this process until all
jobs have been inserted.

4.3    Inter-factory neighborhood search strategy

CriticalFactory_
ExtractInsert CriticalFactory_Swap

IGA  is  often  employed  to  PFSP  owing  to  its
uncomplicated  structure  and  excellent  local  search
capability.  However,  considering  the  multi-factory
feature  of  DBHFSP,  it  is  crucial  to  boost  the  global
search  performance  of  IGA.  The  effectiveness  of  the
current  solution  enhancement  heavily  relies  on  the
neighborhood structure.  To enhance the exploration of
algorithms,  we  introduce  two  inter-factory
neighborhood  search  strategies,  i.e., 

 and .  These  two
neighborhood  search  strategies  are  performed  across
factories  to  effectively  improve  the  global  search
capability  of  the  algorithm  through  the  collaboration
between factories.

CriticalFactory_ExtractInsert
fmax

fmin

job

fmax π
temp
fmax
= π

temp
fmax
\job job
BestPos fmin

 is shown in Algorithm 3.
First,  a  critical  factory  that  is  a  factory  with  the
maximum makespan and  that is a factory with the
minimum makespan are found. Subsequently, the  is
randomly  selected  in fmax (see  Lines  5  and  6)  and
removed  from ( ).  Finally,  is
inserted  into  the  best  location, ,  of  (see
Lines 8 and 9).

CriticalFactory_SwapThe process of  is similar to that
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Fig. 3    Gantt chart of solutions obtained by NEH2 and NEH2_FSD.

 

NEH2_FSD (π)Algorithm 2　
π

Πpermutation
Input:　An empty solution  and a sequence of jobs

πOutput:　

ΠPermutation = DescendSort
(
p j,0
)

j ∈ {1,2, ..., J}1　 ,
f = 1 F2　For  to 

ϖ f = Π
Permutation
f f

f
3　　  %% job  in the queue is
scheduled to the Factory 

ΠPermutation = ΠPermutation\ΠPermutation
f4　　

5　End For

ΠPermutation = DescendSort
(∑S

s=1 p j,s
)

6　
j = F +1 J7　For  to 

job = ΠPermutation
j8　　

f = 1 F9　　For　  to 
BestPos

f
10　　　Obtain the best position  with minimal
makespan in Factory 

job BestPos π f11　　　Insert  into position  of 
12　　End For
13　End For
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CriticalFactory_ExtractInsert
fmax fmin

job1 job2 fmin fmax

Cmax

fmax

fmin

of .  (1)  Find  the  two
factories  and  with  the  maximum  and
minimum completion time, respectively. (2) Randomly
select  and  from  and ,  respectively,
and swap them. (3) Execute the acceptance criterion. If

 becomes  smaller,  the  swap  is  kept.  (4)  Repeat
Step (2) until all jobs in  are tried to exchange with
jobs in .

4.4    Destruction-reconstruction

d

π
temp
f ΠDes

π
temp
f

ΠDes
j ΠDes

π
temp
f

BestPos

ΠDes π
temp
f

The DR operator can improve the diversity of solutions
by  largely  disturbing  the  current  solution.  Thus,  this
paper designs a new DR strategy inside the factory, as
shown  in  Algorithm  4.  In  the  destruction  phase,  a
certain  number  of  jobs  are  randomly  deleted  from

and placed into  (see Line 4). The remaining
jobs  compose  of  (see  Line  5).  In  the
reconstruction phase, we extract a job  from 
and reinsert it into all locations in . Then find the
position, ,  with  the  smallest  makespan  (see
Lines 8 and 9). Repeat the above insertion process until
all jobs of  are inserted into .

4.5    Inner-factory local search strategy

To  strengthen  the  development  of  algorithms  and
explore  the  solution  space  inside  the  factory,  a  swap-
based  local  strengthening  strategy  is  designed.  The
reason  why  the  swap  operator  is  adopted  as  the  local
search strategy is that its time complexity is lower than
the insertion. Under the same running time, the swap is
executed  more  frequently  than  the  insertion,  allowing

GreedSwap

the  algorithm  to  explore  the  solution  space  more
extensively.  Therefore,  this  paper  develops  a  swap-
based  local  strengthening  strategy, ,
presented in Algorithm 5.

GreedSwap swap
(
π

temp
fi
,π

temp
f j

)
π

temp
fi

π
temp
f j

π
temp′

f π
temp′

f

π
temp′

f π
temp
f π

temp′

f

π
temp
f

In ,  the  function  refers

to  exchange  jobs  and ,  and  obtain  a  new

sequence (see  Line  3).  Subsequently, is

evaluated.  If  is  better  than ,  then  is

instead of (see Lines 4−8).

 

CriticalFactory_ExtractInsert
(
πtemp, d

)
Algorithm 3　

πtemp dInput:　  and 
πtempOutput:　

i = 1 d/21　For  to 
f = 1 F2　　For  to 

fmax fmin3　　　Find  and 
4　　End For

pt = rand
(
1,πtemp

fmax

)
5　　

job pt π
temp
fmax

6　　 = the -th job in 

π
temp
fmax
= π

temp
fmax
\job7　　

BestPos Cmax
π

temp
fmin

8　　Find the position  with the minimum  in

job BestPos π
temp
fmin

9　　Insert  into position  of 
10　End For

 

DR
(
π

temp
f , d

)
Algorithm 4　

π
temp
f dInput:　 , 

π
temp
fOutput:　

ΠDes = ∅ ΠDes1　  %% is a partial collection of jobs
ΠDes.size < d2　While ( )

pt = rand
(
1,πtemp

f .size
)

3　　

π
temp
fpt

π
temp
f ΠDes4　　Extract  from  and put it into 

π
temp
f = π

temp
f \πtemp

fpt
5　　

6　End While
j = 1 d7　For  to 

job = ΠDes
j8　　

BestPos Cmax
π

temp
f

9　　Find the position  with the minimum  in

job BestPos π
temp
f10　　Insert  into position  of 

11　End For

 

GreedSwap
(
π

temp
f

)
Algorithm 5　

π
temp
fInput:　

π
temp
fOutput:　

i = 1 π
temp
f .size1　For  to 

j = i+1 π
temp
f .size2　　For  to 

π
temp′

f = swap
(
π

temp
fi
,π

temp
f j

)
3　　　

Cmax

(
π

temp′

f

)
<Cmax

(
π

temp
f

)
4　　　If ( )

π
temp
f = π

temp′

f5　　　　

6　　　Else

π
temp′

f = π
temp
f7　　　　

8　　　End If
9　　End For
10　End For
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4.6    Shaking strategy

Shake_DoubleInsert
Shake_Swap

Shake_DoubleInsert

When  the  local  search  fails  to  improve  the  current
solution, shaking strategies are utilized to generate new
neighborhoods  and  escape  local  optima.  To  suit  the
characteristics  of  DBHFSP,  two shaking  strategies  are
proposed  in  this  paper,  i.e.,  inter-factory  double
insertion  and  inter-factory  swap

.  Furthermore,  to  increase  the  opportunity
of  exploring the solution space,  the shaking procedure
terminates  as  soon  as  a  new and  improved  solution  is
obtained.  Algorithm  6  gives  the  process  of

.
f1 f2

π
temp′

f1pt1
π

temp′

f2pt2

f1 f2 π
temp′

f1pt1

π
temp′

f2pt2

π
temp′

f1pt1
BestPos1 π

temp′

f2

π
temp′

f2pt2
BestPos2 π

temp′

f1

πtemp′ πtemp′

πtemp πtemp πtemp′

πtemp′

πtemp

Firstly, two factories  and  are randomly chosen.
Then jobs  and are randomly selected from

 and , respectively (see Lines 2−4). Remove 

and  from  their  respective  factories  (see  Lines  3

and 4).  Next,  insert  into  of ,  and

insert  into  of  (see  Lines  5−8).
After  the  above  insertion,  a  new  complete  solution

 is  formed.  If  is  better  than  the  original
,  then  will  be  updated  with ,  and  the

whole function ends (see Lines 9−11); otherwise, 
is updated with  (see Lines 12 and 13).

Shake_SwapFor  the  strategy,  the  steps  are  given.

f1 f2

π
temp′

f1pt1
π

temp′

f2pt2

f1 f2 π
temp′

f1pt1

π
temp′

f2pt2
πtemp′ Cmax

(
πtemp′

)
<

Cmax
(
πtemp) πtemp = πtemp′

Firstly,  two  factories  and  are  randomly  chosen.
Secondly,  jobs  and  are  randomly  chosen

from  and ,  respectively.  Thirdly,  swap  and

 to form a new solution, .  If 
,  then .  Otherwise,  skip  to  the

first step until the end of the loop.

5    Simulation Experiments and Analysis

We have conducted a series of simulation experiments
to  comprehensively  demonstrate  the  performance  of
AIG. Since DBHFSP is a relatively new research topic,
it  is  important  to  prove  the  feasibility  of  the  proposed
model  through small-scale  examples.  Additionally,  we
will use analysis of variance (ANOVA) to optimize the
parameters  of  the  proposed  algorithm.  Subsequently,
the  performance  of  each  ingredient  in  the  proposed
algorithm will be evaluated and tested. Finally, we will
verify  the  comprehensive  effectiveness  of  AIG  by
comparing it with some related algorithms.

5.1    Experimental setup

F S J
F ∈ {2, 3, 4, 5} S ∈ {3, 5, 8, 10} J ∈ {100, 200, 300,
400, 500} F ×S × J

TimeLimit =
F ×S × J× t t

Following  Ref.  [45],  80  medium  and  large  test
instances are formed by combining , , and , where

, , and 
. Each combination  is considered as

an instance that  is  executed independently  20 times to
reduce  the  influence  of  randomness  in  all  simulation
experiments.  The  processing  time  of  each  job  is
uniformly distributed between [1, 99], and the number
of machines is obtained within [1, 5] for each instance.
To  guarantee  the  fairness  of  experimental  results,  the
same  stop  running  time  is  set  as 

 for  all  algorithms,  where  is  the  control
parameter for the effective running time and is set to 3
and  5.  Moreover,  all  algorithms  are  written  in  visual
studio 2019 C++ and executed on a PC with an Intel(R)
Core  i7  processor  running  at  3.60  GHz  and  32.0  GB
RAM.

To clearly and intuitively reflect the search results of
each  algorithm,  the  relative  percentage  increase  (RPI)
is employed as an evaluation metric. RPI measures the
disparity  between  the  makespan  of  an  algorithm  and
the  best  one  found  so  far.  RPI  evaluation  indicator  is
defined by the following formula:
 

RPI = (ci− cmin)/cmin×100 (22)
ci

th
cmin

where  represents  an  average  of  the  makespan
generating  by  the i-  algorithm  after  independently
running  20  times.  represents  the  minimum
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makespan  found  by  all  algorithms.  In  addition,  an
average  RPI  (ARPI)  of  80  different  test  instances  is
calculated.  A  smaller  RPI  or  ARPI  indicates  better
algorithm performance.

5.2    Validation of MILP model

TimeLimit = F ×S × J×3

To  verify  the  accuracy  of  the  proposed  MILP  model,
12  small  scale  instances  are  selected  and solved using
Gurobi.  The stop running time of Gurobi and AIG are
3600 s and ,  respectively.  For
AIG, each instance is independently executed 20 times,
and  the  makespan  value  reported  in Table  3 is  the
average  makespan  after  independently  running  20
times.  For  the  Gurobi  solver,  the  Gap  value  is  0,
indicating that  the optimal  solution has been obtained.
The  instances  and  code  for  model  validation  can  be
found  on  GitHub  (https://github.com/nideluckily/
DBHFSP_MILP.git).

2×8×2 2×8×3 2×8×4
2×13×2 2×13×3 2×13×4 2×18×2 2×18×3

2×18×4

2×22×2 2×22×3
2×22×4

In Table  3,  MILP  can  obtain  the  best  makespan  on
small-scale  instances,  i.e., , , ,

, , , , ,
and  instances.  In  7  out  of  12  instances,  the
MILP  model  achieves  better  makespan  values  than
AIG, indicating its superior performance on small-scale
instances. However, as the instance size increases, AIG
performs  better  than  the  Gurobi  solver  in  obtaining
makespan  values,  i.e., , ,  and

.  Furthermore,  the  running  time  of  AIG  is
significantly  lower  than  that  of  the  Gurobi  solver,
indicating  that  AIG  can  efficiently  handle  large-scale
instances. Therefore, it can be concluded that AIG is a
better  choice  for  solving  large-scale  and  complex
problems compared to the Gurobi solver.

5.3    Parameters calibration

d R
The  AIG  algorithm  involves  calibration  of  two
parameters:  and  (the  upper  bound  of  the  random
number  when  choosing  a  neighborhood  search
strategy).  The  sensitivity  of  these  two  parameters  is
tested using Taguchi experimental method.

d ∈ {2,3,4,5,6} R ∈ {2,3,4,5,6}
5×5 = 25

2×100×3 2×300×8 3×200×5 3×400×10 4×
400×3 4×500×5 5×200×8 5×500×10

There  are  5  levels  for  each  parameter,  i.e.,
 and .  Thus,  we  obtain

 combinations  by  orthogonal  table,  and  their
orthogonal  table  is  shown  in Table  4.  We  randomly
selected  eight  instances  with  a  relatively  large  span to
ensure  the  comprehensiveness  of  the  experiment,  i.e.,

, , , , 
, , , and . Based

on  the  RPI  values  obtained  from  the  experiments,  the
trends  of  the  factor  levels  are  plotted  to  analyze  their
impact on the performance of AIG, i.e., Fig. 4.

d = 5
d

d

d

R

R = 0

According  to Fig.  4,  the  ARPI  value  is  minimized
when ,  indicating  that  AIG  performs  the  best
under this parameter setting. As  increases beyond 5,
ARPI  also  increases.  This  may  be  because  a  larger 
value  can  lead  to  the  destruction  of  near-optimal
solutions,  wasting  more  time  and  reducing  AIG’s
efficiency.  Conversely,  setting  too  small  may  result
in  an  insufficient  degree  of  job  sequence  disturbance,
leading to less exploration of the search space. Another
parameter, ,  is  used  to  control  the  selection  of  the
inter-factory  strategies.  Considering  that  the
completion  time  of  each  factory  should  be  relatively
even  in  the  late  iteration,  we  expect  more  swap
operators  to  be  used  to  maintain  the  balance  between
factories  (the  insertion  operator  is  only  used  when

). Figure  4 shows  that  AIG  performs  the  best
 

Table 3    Experimental result of MILP and AIG.

F × J×S
MILP AIG

Makespan Time (s) Gap (%) Makespan Time (s)
2×8×2 65 0.05 0 65 0.04
2×8×3 117 0.04 0 117 0.06
2×8×4 112 0.96 0 124 0.08
2×13×2 97 2.60 0 99 0.06
2×13×3 141 25.52 0 142 0.08
2×13×4 166 24.10 0 170 0.11
2×18×2 149 3600 23.49 150 0.08
2×18×3 164 3600 20.12 169 0.11
2×18×4 175 3600 16.57 176 0.16
2×22×2 166 3600 50 165 0.09
2×22×3 195 3600 42.05 194 0.14
2×22×4 221 3600 27.15 217 0.19

  Yong Wang et al.:   Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 293

 



R = 5when .

d

Table  5 displays  the  ARPI  values  and  significance
levels of  the two parameters with Delta measuring the
performance  based  on  the  disparity  between  the
maximum and minimum ARPI across the five levels. A
significant  effect  of  the  parameter  is  indicated  by  a
larger Delta or a smaller Rank indicator. From Table 5,

 has  a  large  impact  on  the  algorithm,  while  the

R d

d = 5 R = 5
d = 5 R = 5

difference between the  Delta  values  of  and  is  not
significant.  From  the  average  RPI  values  given  in
Table  5,  it  can  be  seen  that  the  AIG  has  the  best
performance  when  and .  According  to  the
above analysis, we set  and .

5.4    Evaluation of initialization methods

To  improve  the  convergence  performance  of  AIG,  an
appropriate initialization strategy is crucial. The NEH2
heuristic,  which  has  been  widely  utilized  in  solving
DPFSP  and  has  undergone  numerous  enhancements,
can  generate  high-quality  initial  solutions.  In  this
paper,  we  modify  NEH2  according  to  the  specific
characteristics  of  DBHFSP  to  further  enhance  its
performance. We develop an NEH2_FSD initialization
method  by  combining  NEH2  and  the  first  stage
processing  time  descending  priority  rule.  Further,  we
compare  the  proposed  initialization  strategy  with
NEH2.  The interval  plot  of  the  experimental  results  is
shown in Fig. 5.

From Fig. 5, the interval of NEH2_FSD is lower than
that  of  NEH2,  and  the  two  intervals  do  not  overlap,
suggesting that the algorithm can generate better initial
solutions  using  NEH2_FSD.  This  improvement  is
attributed  to  the  use  of  the  first-stage  processing  time
descending  priority  rule  to  mitigate  the  impact  of

 

Table 4    Orthogonal table and response values.

Combination No.
Parameter

ARPI
d R

1 2 2 0.810 388
2 2 3 0.824 091
3 2 4 0.749 053
4 2 5 0.769 257
5 2 6 0.775 704
6 3 2 0.774 233
7 3 3 0.755 607
8 3 4 0.707 455
9 3 5 0.721 388
10 3 6 0.729 333
11 4 2 0.735 936
12 4 3 0.703 336
13 4 4 0.663 382
14 4 5 0.694 982
15 4 6 0.672 266
16 5 2 0.740 136
17 5 3 0.721 102
18 5 4 0.667 080
19 5 5 0.611 030
20 5 6 0.684 753
21 6 2 0.790 138
22 6 3 0.728 888
23 6 4 0.705 961
24 6 5 0.686 460
25 6 6 0.637 642

 

0.800

d R

0.775

0.750

AR
PI

0.725

0.700

0.800

0.775

0.750

AR
PI

0.725

0.700

2 3 4

(a) (b)

5 6 2 3 4 5 6

 
Fig. 4    Taguchi analysis for the AIG calibration.

 

Table 5    ARPI response values of each parameter.

Level
ARPI

d={2, 3, 4, 5, 6} R={2, 3, 4, 5, 6}
1 0.7857 0.7702
2 0.7376 0.7466
3 0.6940 0.6986
4 0.6848 0.6966
5 0.7098 0.6999

Delta 0.1009 0.0735
Rank 1 2

Note: When Level=1, d=2 and R=2. When Level=2, d=3 and
R=3. When Level=3, d=4 and R=4. When Level=4, d=5 and
R=5. When Level=5, d=6 and R=6.
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Fig. 5    RPI-based  confidence  intervals  for  different
initialization methods.
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blocking  constraints  and  balance  the  completion  time
of  individual  factories.  In  conclusion,  to  ensure
efficient convergence and obtain high-quality solutions
rapidly,  we  adopt  NEH2_FSD  as  the  initialization
method.

5.5    Performance  analysis  for  the  proposed
components of AIG

This  section  presents  four  groups  of  simulation
experiments  aiming  at  demonstrating  the  effectiveness
of  the  four  main  components.  These  components
include  the  proposed  decoding  strategy,  the  inter-
factory  neighborhood  search  strategies,  the  different
local search strategies, and the shaking methods.
5.5.1    Evaluation of memory-based decoding strategy
In  Section  4,  we  propose  a  memory-based  decoding
strategy,  which  can  help  the  algorithm  save  time  for
more  iterations  and  can  explore  the  neighborhood
structure  more  deeply.  To  verify  its  effectiveness,  the
performance of  AIG with the memory-based decoding
method is compared to AIG with the normal decoding
strategy.  The  confidence  intervals  of  the  experimental
results are presented in Fig. 6.

From Fig.  6,  the memory-based decoding interval  is
lower than the ordinary decoding interval, and the two
intervals  do  not  overlap.  The  results  indicate  that  the
memory-based  decoding  strategy  outperforms  the
normal  decoding  strategy  in  solving  DBHFSP.  The
reason  may  be  that  the  memory-based  decoding
strategy can reduce unnecessary computation, facilitate
deeper  exploration  of  neighborhoods,  and  increase  the
possibility  of  discovering  better  solutions.  Therefore,
we use memory-based decoding for DBHFSP.
5.5.2    Evaluation  of  inter-factory  neighborhood

search strategies
Considering  the  multi-factory  feature  of  DBHFSP,  we
develop  two  cross-factory  neighborhood  search
strategies.  They  help  algorithms  explore  wider
neighborhood  structures  while  enhancing  the
connections  among  factories.  These  strategies  include

an  insertion-based  approach  and  a  swap-based
approach.  In  addition,  considering  that  a  single
neighborhood  search  may  not  significantly  affect  the
algorithm’s  global  search  ability,  we  employ  a  hybrid
approach of the two inter-factory neighborhood search
strategies.  To  demonstrate  the  excellence  of  the
neighborhood search strategy, we conducted three sets
of  experiments:  one  with  only  insertion-based
neighborhood  search,  one  with  only  swap-based
neighborhood  search,  and  one  with  hybrid
neighborhood search.

Figure  7 demonstrates  that  the  insertion  operator  is
better  than  the  swap  operator.  Moreover,  the  hybrid
neighborhood  search  strategy  by  combining  both
insertion  and  swap  operators  outperforms  the
individual insertion and swap operators by a significant
margin.  This  observation  demonstrates  the
effectiveness  of  our  hybrid  neighborhood  search
strategy.  By  enhancing  the  collaboration  among  the
factories,  the  strategy  generates  a  more  diverse  set  of
neighborhoods,  which in turn increases the probability
of finding high-quality solutions.
5.5.3    Evaluation of  local  search strategies within the

factory
The  insertion  operator  can  effectively  reinforce  the
current  solution  in  the  IG  algorithm.  However,  to
accelerate the perturbation of job sequence and mitigate
the effect  of  blocking constraints,  we propose a swap-
based local search strategy with lower time complexity.
We  test  the  performance  of  the  insertion  operator
(AIG_insert),  the  swap  operator  (AIG_swap),  and  the
no-perturbation  strategy  (AIG_No)  under  the  same
experimental  condition.  The  experimental  results  are
illustrated  in Fig.  8. Figure  8 displays  the  confidence
intervals to provide a more intuitive comparison.

In Fig.  8,  the  performance  is  greatly  reduced  when
there is no local search strategy in AIG, which reflects
the  necessity  of  the  local  search  strategy.  Meanwhile,
Fig. 8 indicates that the swap operator outperforms the
insertion operator evidenced by the smaller RPI value.
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Fig. 6    RPI-based  confidence  intervals  for  different
decoding methods.
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Fig. 7    RPI-based  confidence  intervals  for  different  inter-
factory neighborhood search strategies.
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It  can  be  attributed  to  the  fact  that  the  algorithm
utilizing the swap operator has more iterations than the
insertion operator for the same termination time, which
can enhance AIG’s exploitation capabilities and help it
explore  deeper  neighborhoods.  On  this  basis,  the
algorithm can find more promising solutions. Based on
the  results,  we  adopt  the  swap-based  local  search
strategy to obtain more potential solutions.
5.5.4    Evaluation of shaking methods
In DBHFSP, since there are multiple factories,  the job
sequence  in  each  factory  may  reach  a  local  optimum
prematurely due to local search,  leading to suboptimal
solutions. To address this issue, we design two shaking
strategies,  i.e.,  inter-factory double insertion and inter-
factory  swap.  To  prove  the  effectiveness  of  these
shaking  strategies,  AIG  with  a  hybrid  strategy  (both
shaking  strategies  are  used)  (AIG_hybrid),  AIG  with
single insertion operator (AIG_insert), AIG with single
swap  operator  (AIG_swap),  and  AIG  without  shaking
strategy  (AIG_No)  are  tested  under  the  same
experimental condition.

In Fig. 9, the RPI value of the algorithm without the
shaking  strategy  is  larger  than  the  other  three,  which
demonstrates  that  the  shaking  strategies  are  effective.
In  addition,  among  the  three  algorithms  using  the
shaking  strategy,  it  can  be  found  that  the  algorithm
with  a  hybrid  strategy  is  better  than  the  other  two
strategies.  The  hybrid  strategy  is  effective  due  to  its

ability  to  increase  the  algorithm’s  diversity,  explore
more  unknown  neighborhoods,  and  facilitate  the
discovery of better solutions.

(PN −PY )/PN ×100% PY PN

From Sections 5.5.1 to 5.5.4, it can be observed that
the  algorithm  components  designed  in  this  paper  can
improve  the  performance  of  the  algorithm  and  find
better  solutions.  We  calculate  the  percentage  of
performance  improvement  for  each  component  using
the  formula ,  where  and 
represent  the  average  RPI  values  of  AIG  with  and
without  the  proposed  component,  respectively.
Through  calculations,  the  percentage  of  improvement
provided  by  the  memory-based  decoding  strategy  is
54%,  the  inter-factory neighborhood search strategy is
43%, the local search strategy is 62%, and the shaking
strategy is 18%. Therefore, based on the above results,
the  local  search  strategy  has  the  highest  impact,
followed  by  the  memory-based  decoding  strategy,  the
inter-factory  neighborhood  search  strategy,  and  the
shaking strategy.

5.6    Performance  verification  of  all  comparative
algorithms

To  assess  the  effectiveness  of  AIG,  AIG  is  compared
with  five  advanced  algorithms  in  this  section,  i.e.,
CIG[45],  discrete  differential  evolution  (DDE)
algorithm[10],  evolutionary  algorithm  (EA)[11],  multi-
neighborhood  IGA  (MN_IG)[1],  and  DPSO[9].  EA  and
DDE  are  two  types  of  swarm  intelligence  algorithms,
which have good global search ability and can improve
the  diversity  of  solutions.  These  algorithms have been
proven  effective  in  solving  DPFSP  and  DBFSP,
respectively.  DPSO  is  a  classic  swarm  intelligence
algorithm,  which  outperforms  other  comparative
algorithms in solving HFSP. MN_IG is an IGA with a
multi-neighborhood  search  structure,  which  balances
exploitation  and  exploration  abilities.  MN_IG  has
demonstrated good performance in solving the DBFSP.
Additionally,  CIG  is  a  recently  proposed  algorithm
specifically  designed  for  solving  the  DHFSP  with
blocking  constraints,  which  is  same  as  our  research
topic.  The  above  five  comparative  algorithms  have
shown  good  performance  in  solving  related  problems.
Among  five  algorithms,  the  problems  solved  by  EA,
DDE,  and  MN_IG  are  very  similar  to  our  problem
except  for  not  considering  hybrid  flow  shop.  For
experimental  fairness,  we  have  blended  strategies
related to hybrid flow shop into EA, DDE, and MN_IG
to fit our problem. Similarly, we have improved DPSO
by considering the distributed environment.  Therefore,
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Fig. 8    RPI-based  confidence  intervals  for  different  local
search strategies within the factory.
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Fig. 9    RPI-based confidence intervals for different shaking
strategies.
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t = 3 t = 5

it  is  appropriate  to  choose  them  as  comparison
algorithms.  The  parameters  of  all  comparison
algorithms  are  set  to  the  values  recommended  in  the
original literature and given in Table 6. We conducted
extensive  experiments  in  advance  for  each  parameter
setting  and  performed  sensitivity  analysis  on  the
parameters  that  have  a  significant  impact  on  the
algorithm,  as  shown  in  Section  5.3.  The  remaining
parameters  are  set  according  to  empirical  guidelines.
All  algorithms  are  performed  under  the  termination
conditions  of  and .  More  profoundly,  to
visually demonstrate the convergence of all algorithms,
the confidence intervals of test algorithms are given in
Figs. 10 and 11.

In Tables  7 and 8,  AIG  demonstrates  excellent
performance  in  solving  80  instances  of  different  sizes
(the  best  values  are  bolded).  AIG  obtains  76  best

t = 3

(PCom−PAIG)/PCom×100% PCom

PAIG

t = 5

minimal makespan (MIN) when , followed by CIG
(4),  EA  (2),  DDE  (0),  MN_IG  (0),  and  DPSO  (0).
Meanwhile, AIG obtains the best minimal makespan in
77 instances, followed by EA (3) and CIG (1), and the
number  of  the  best  values  for  DDE,  MN_IG,  and
DPSO are all 0. We calculate the percentage of AIG’s
superiority over other comparison algorithms using the
formula ,  where  and

 represent  the  MIN  or  RPI  values  of  the
comparison  algorithm  and  AIG,  respectively.  For  the
minimum makespan, AIG outperforms CIG, DDE, EA,
MN_IG,  and  DPSO by  0.34%,  1.27%,  0.73%,  1.36%,
and  1.05%,  respectively.  For  the  RPI,  the  percentages
of AIG outperforming other comparison algorithms are
75%,  88%,  82%,  91%,  and  86%,  respectively.  In
addition,  AIG  obtains  the  maximum  number  of  best
makespan and RPI values when  (see Table 8). In

 

Table 6    Parameter configurations of the comparison algorithms.

Algorithm Population size Number of destruction jobs Mutation rate Crossover rate Temperature coefficient
CIG − 6 − − −
DDE 30 − 0.6 0.1 −
EA 5 − − − −

MN_IG − 4 − − 0.4
DPSO 100 − − − −
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Fig. 10    Confidence intervals of all algorithms when t = 3.
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Fig. 11    Confidence intervals of all algorithms when t = 5.
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t= 3Table 7    Experimental results of all comparison algorithms when .

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
2×100×3 2560 0.54 2594 1.42 2600 1.56 2594 1.33 2615 2.32 2594 1.33
2×100×5 1375 0.32 1386 1.05 1400 1.82 1389 1.19 1401 2.75 1393 1.61
2×100×8 2765 0.60 2794 1.05 2801 1.30 2794 1.05 2836 2.99 2794 1.06
2×100×10 2979 0.26 3003 0.88 3028 1.64 3003 0.81 3019 1.73 3003 0.88
2×200×3 2460 0.55 2486 1.75 2582 4.96 2550 4.28 2573 4.90 2582 4.96
2×200×5 4795 0.12 4813 0.41 4826 0.65 4812 0.35 4844 1.06 4812 0.36
2×200×8 6072 0.41 6117 1.53 6456 6.32 6266 3.64 6295 4.20 6375 5.26
2×200×10 5340 0.09 5351 0.21 5370 0.56 5351 0.22 5373 0.71 5351 0.23
2×300×3 3771 0.07 3775 0.19 3783 0.32 3775 0.18 3789 0.81 3776 0.19
2×300×5 8168 0.11 8175 0.12 8217 0.60 8179 0.17 8248 1.19 8191 0.49
2×300×8 4365 0.44 4403 2.21 4635 6.19 4564 5.17 4573 5.23 4615 5.87
2×300×10 8215 0.19 8234 0.24 8234 0.23 8234 0.23 8242 0.49 8234 0.23
2×400×3 2745 0.74 2788 3.29 2937 6.99 2932 6.81 2944 7.62 2937 6.99
2×400×5 10 421 0.06 10 434 0.19 10 451 0.29 10 432 0.16 10 455 0.45 10 448 0.28
2×400×8 5323 0.06 5325 0.18 5330 0.13 5328 0.09 5345 0.47 5330 0.13
2×400×10 10 274 0.04 10 277 0.05 10 291 0.17 10 277 0.06 10 278 0.32 10 291 0.17
2×500×3 12 160 0.03 12 166 0.05 12 168 0.07 12 166 0.05 12 207 0.40 12 166 0.05
2×500×5 12 864 0 12 864 0 12 873 0.07 12 864 0.01 12 884 0.16 12 864 0.01
2×500×8 12 816 0.17 12 805 0.49 12 981 1.37 12 904 0.93 12 862 0.67 12 957 1.29
2×500×10 13 099 0.34 13 066 0.40 13 259 1.48 13 162 1.13 13 312 2.06 13 259 1.48
3×100×3 1804 0.30 1813 0.58 1877 4.05 1823 1.22 1855 3.33 1835 1.86
3×100×5 1801 0.14 1800 0.30 1853 2.94 1811 0.84 1834 2.78 1829 1.84
3×100×8 1965 0.26 1975 1.45 2049 4.27 1989 1.66 2020 3.38 2014 2.95
3×100×10 2302 0.69 2311 1.71 2449 6.39 2340 2.18 2413 5.56 2397 4.81
3×200×3 3318 0.28 3339 0.66 3347 0.87 3336 0.54 3374 1.75 3336 0.58
3×200×5 1238 0.21 1248 1.63 1318 6.46 1296 5.28 1295 5.46 1311 6.17
3×200×8 3455 0.30 3484 1.05 3512 1.65 3486 0.98 3525 2.37 3490 1.25
3×200×10 3445 0.05 3448 0.17 3451 0.17 3447 0.07 3469 1.57 3448 0.15
3×300×3 1702 0.16 1705 0.51 1727 1.47 1715 0.95 1719 1.32 1720 1.10
3×300×5 5608 0.06 5619 0.21 5622 0.25 5617 0.17 5656 0.92 5620 0.22
3×300×8 5058 0.04 5061 0.17 5079 0.42 5061 0.06 5084 0.60 5061 0.09
3×300×10 5223 0.16 5241 0.50 5263 0.77 5238 0.37 5283 1.26 5246 0.49
3×400×3 2255 0.19 2269 1.35 2305 2.22 2301 2.15 2299 2.23 2305 2.22
3×400×5 6837 0.02 6848 0.18 6850 0.19 6846 0.14 6897 0.93 6850 0.19
3×400×8 6991 0.01 6998 0.20 7006 0.21 6997 0.12 7026 0.80 7002 0.19
3×400×10 7224 0.33 7225 0.31 7271 0.75 7217 0.07 7260 0.71 7227 0.22
3×500×3 8279 0.05 8289 0.17 8295 0.19 8287 0.10 8326 0.57 8287 0.12
3×500×5 8608 0.08 8623 0.28 8639 0.36 8621 0.16 8651 0.53 8624 0.20
3×500×8 8887 0.09 8904 0.21 8906 0.21 8899 0.14 8939 0.61 8900 0.17
3×500×10 8626 0.04 8633 0.11 8634 0.09 8630 0.06 8647 0.29 8634 0.09
4×100×3 1171 0 1173 0.22 1176 0.43 1172 0.09 1203 3.09 1174 0.36
4×100×5 721 0.75 731 1.64 749 3.88 733 1.91 757 6.77 747 3.83
4×100×8 1387 0.25 1394 0.87 1396 0.65 1389 0.14 1428 3.07 1392 0.59
4×100×10 1396 0.72 1426 2.79 1458 4.44 1415 1.65 1432 3.07 1428 2.51
4×200×3 2512 0.07 2520 0.42 2533 0.84 2518 0.25 2554 1.71 2520 0.36
4×200×5 2478 0.36 2491 0.52 2498 0.81 2490 0.49 2537 2.38 2493 0.64

(to be continued)
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summary,  AIG  is  better  than  the  other  comparison
algorithms.  The  reason  may  be  that  our  inter-factory
perturbation  strategies  generate  more  neighborhood
structures  and  hopefully  find  more  approximate
solutions. Furthermore, the local search strategy in the
factory  can  strengthen  the  development  of  the
algorithm, which can better solve DBHFSP.

The  confidence  intervals  of  all  algorithms  are
presented in Figs. 10 and 11. In Fig. 10a, AIG has the

smallest confidence interval, indicating that the overall
performance  of  AIG  outperforms  CIG,  EA,  DPSO,
DDE,  and  MN_IG.  Meanwhile,  in Fig.  10b,  the  curve
of  AIG  is  less  undulating  and  smoother  than  other
algorithms,  which  proves  that  the  convergence  ability
of  AIG  is  strong  and  its  performance  is  stable.
Similarly,  in Fig.  11,  AIG  demonstrates  superior
performance  compared  to  the  other  algorithms.  This
finding provides evidence to support  the assertion that

t= 3Table 7    Experimental results of all comparison algorithms when .
(continued)

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
4×200×8 2707 0.22 2725 0.66 2725 0.66 2724 0.66 2749 1.77 2725 0.66
4×200×10 1607 0.52 1642 3.07 1707 6.22 1668 4.47 1670 4.73 1687 5.50
4×300×3 1266 0.30 1285 1.99 1307 3.24 1301 3.05 1301 3.71 1307 3.24
4×300×5 3845 0.27 3867 0.96 3951 2.76 3911 2.08 3902 1.97 3950 2.75
4×300×8 3937 0.10 3946 0.33 3951 0.36 3947 0.27 4000 1.80 3951 0.36
4×300×10 4224 0.08 4238 0.60 4271 1.11 4235 0.33 4269 1.16 4250 0.72
4×400×3 4938 0.21 4954 0.38 4959 0.43 4952 0.29 5009 1.45 4954 0.36
4×400×5 5183 0.11 5196 0.44 5215 0.62 5193 0.22 5221 1.10 5215 0.62
4×400×8 5389 0.22 5442 1.18 5482 1.73 5468 1.60 5476 2.21 5482 1.73
4×400×10 5400 0.07 5421 0.49 5438 0.70 5416 0.34 5445 1.15 5438 0.70
4×500×3 2168 0.38 2186 2.58 2256 4.06 2243 3.70 2241 4.01 2256 4.06
4×500×5 2343 0.51 2405 4.80 2504 6.87 2484 6.41 2470 6.23 2504 6.87
4×500×8 3665 0.57 3723 3.23 3889 6.11 3852 5.32 3822 4.89 3876 5.96
4×500×10 6467 0.25 6475 0.42 6498 0.63 6457 0.15 6509 0.96 6498 0.63
5×100×3 932 0.11 936 0.71 941 0.97 933 0.15 981 5.67 937 0.73
5×100×5 590 0.51 596 1.63 613 3.90 602 2.47 616 7.15 613 3.90
5×100×8 1124 0.23 1134 1.39 1137 1.16 1126 0.27 1190 6.07 1134 1.09
5×100×10 1369 0.20 1392 1.99 1452 6.06 1409 3.20 1440 6.36 1440 5.65
5×200×3 2090 0.03 2093 0.30 2098 0.38 2091 0.05 2142 2.49 2092 0.21
5×200×5 683 0.76 686 1.67 713 4.39 711 4.16 718 5.97 713 4.39
5×200×8 2303 0.11 2311 0.46 2322 0.83 2307 0.21 2363 2.83 2311 0.50
5×200×10 2236 0.22 2249 0.88 2265 1.30 2246 0.55 2291 2.59 2254 0.92
5×300×3 3053 0.16 3062 0.33 3067 0.46 3058 0.19 3097 1.45 3061 0.33
5×300×5 1672 0.23 1684 1.23 1723 3.05 1717 2.80 1738 4.35 1723 3.05
5×300×8 3277 0.02 3286 0.50 3290 0.40 3283 0.25 3329 1.95 3290 0.40
5×300×10 3369 0.16 3423 1.94 3454 2.52 3417 1.69 3448 2.75 3454 2.52
5×400×3 4040 0.14 4051 0.32 4054 0.35 4049 0.23 4101 1.54 4051 0.32
5×400×5 2224 0.06 2249 2.28 2349 5.62 2320 4.78 2329 5.02 2349 5.62
5×400×8 4088 0.18 4106 0.72 4134 1.13 4102 0.44 4136 1.33 4134 1.13
5×400×10 4284 0.06 4295 0.55 4314 0.70 4291 0.26 4341 1.50 4305 0.57
5×500×3 5160 0.16 5202 1.13 5289 2.50 5255 2.09 5264 2.09 5289 2.50
5×500×5 5020 0.02 5023 0.18 5032 0.24 5022 0.05 5053 0.79 5026 0.17
5×500×8 5256 0.04 5264 0.21 5271 0.29 5258 0.08 5287 0.73 5265 0.22
5×500×10 5404 0.10 5409 0.23 5446 0.78 5410 0.20 5457 1.10 5446 0.78

Mean 4352 0.23 4367 0.92 4408 1.93 4384 1.28 4412 2.48 4398 1.69
Percentage (%) − − 0.34 75 1.27 88 0.73 82 1.36 91 1.05 86

Note: Percentage means the percentage of AIG better than other comparison algorithms.
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t= 5Table 8    Experimental results of all comparison algorithms when .

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
2×100×3 2558 0.45 2594 1.50 2600 1.64 2594 1.41 2615 2.40 2594 1.41
2×100×5 1370 0.53 1386 1.42 1400 2.19 1388 1.55 1401 3.12 1393 1.87
2×100×8 2765 0.58 2794 1.05 2801 1.30 2794 1.05 2836 2.99 2794 1.05
2×100×10 2979 0.21 3003 0.88 3028 1.64 3003 0.81 3019 1.73 3003 0.87
2×200×3 2460 0.41 2480 1.51 2582 4.96 2559 4.26 2573 4.90 2582 4.96
2×200×5 4793 0.12 4813 0.45 4826 0.69 4812 0.40 4844 1.10 4812 0.40
2×200×8 6044 0.55 6114 1.61 6456 6.82 6203 3.31 6295 4.69 6375 5.63
2×200×10 5340 0.07 5351 0.21 5370 0.56 5351 0.21 5373 0.71 5351 0.22
2×300×3 3771 0.07 3775 0.17 3783 0.32 3776 0.17 3789 0.81 3776 0.19
2×300×5 8168 0.08 8175 0.10 8217 0.60 8175 0.13 8248 1.19 8191 0.47
2×300×8 4365 0.05 4386 1.30 4635 6.19 4553 5.08 4573 5.23 4608 5.75
2×300×10 8215 0.19 8234 0.24 8234 0.23 8234 0.23 8242 0.49 8234 0.23
2×400×3 2739 0.61 2788 3.24 2937 7.23 2930 7.02 2944 7.86 2937 7.23
2×400×5 10 421 0.06 10 433 0.15 10 451 0.29 10 435 0.18 10 455 0.45 10 446 0.27
2×400×8 5323 0.06 5325 0.09 5330 0.13 5328 0.09 5345 0.47 5330 0.13
2×400×10 10 271 0.04 10 277 0.08 10 291 0.19 10 277 0.11 10 278 0.35 10 289 0.19
2×500×3 12 160 0.03 12 166 0.05 12 168 0.07 12 166 0.05 12 207 0.40 12 166 0.05
2×500×5 12 863 0.01 12 864 0.01 12 873 0.08 12 864 0.01 12 884 0.16 12 864 0.02
2×500×8 12 810 0.12 12 805 0.49 12 981 1.37 12 907 0.90 12 862 0.67 12 957 1.29
2×500×10 13 076 0.21 13 066 0.40 13 259 1.48 13 195 1.10 13 312 2.06 13 259 1.48
3×100×3 1797 0.50 1807 0.85 1877 4.45 1809 1.21 1855 3.73 1833 2.20
3×100×5 1801 0.24 1798 0.31 1853 3.06 1812 0.98 1834 2.89 1829 1.90
3×100×8 1956 0.55 1974 1.80 2049 4.75 1982 1.68 2020 3.85 2014 3.29
3×100×10 2300 0.75 2295 1.00 2449 6.71 2333 2.38 2413 5.88 2397 4.95
3×200×3 3318 0.28 3338 0.64 3347 0.87 3336 0.55 3374 1.75 3336 0.58
3×200×5 1227 0.9 1240 1.76 1318 7.42 1292 5.77 1295 6.41 1311 7.04
3×200×8 3455 0.28 3483 0.99 3512 1.65 3485 0.93 3525 2.37 3490 1.12
3×200×10 3445 0.05 3448 0.15 3451 0.17 3447 0.06 3469 1.57 3448 0.14
3×300×3 1702 0.14 1705 0.46 1727 1.47 1712 0.79 1719 1.32 1717 1.06
3×300×5 5603 0.10 5619 0.29 5622 0.34 5617 0.25 5656 1.01 5619 0.30
3×300×8 5058 0.04 5061 0.17 5079 0.42 5061 0.06 5084 0.60 5061 0.08
3×300×10 5222 0.10 5238 0.51 5263 0.79 5237 0.34 5283 1.28 5242 0.47
3×400×3 2253 0.12 2262 0.95 2305 2.31 2302 2.23 2299 2.32 2305 2.31
3×400×5 6834 0.05 6846 0.20 6850 0.23 6846 0.18 6897 0.97 6848 0.23
3×400×8 6985 0.05 6998 0.23 7006 0.30 6997 0.18 7026 0.89 7002 0.28
3×400×10 7224 0.32 7225 0.32 7271 0.78 7215 0.07 7260 0.74 7227 0.21
3×500×3 8279 0.03 8288 0.14 8295 0.19 8287 0.10 8326 0.57 8287 0.11
3×500×5 8607 0.07 8623 0.26 8639 0.37 8621 0.20 8651 0.54 8623 0.20
3×500×8 8887 0.08 8904 0.20 8906 0.21 8899 0.14 8939 0.61 8900 0.16
3×500×10 8613 0.12 8633 0.26 8634 0.24 8630 0.22 8647 0.44 8633 0.24
4×100×3 1171 0 1173 0.22 1176 0.43 1172 0.09 1203 3.09 1173 0.26
4×100×5 721 0.42 731 1.58 749 3.88 731 1.58 757 6.77 746 3.63
4×100×8 1387 0.25 1394 0.87 1396 0.65 1389 0.14 1428 3.07 1392 0.59
4×100×10 1385 1.36 1426 3.61 1458 5.27 1416 2.44 1432 3.88 1428 3.21
4×200×3 2512 0.07 2519 0.39 2533 0.84 2518 0.25 2554 1.71 2520 0.36

(to be continued)
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the proposed AIG is suited to solve DBHFSP.

2×100×3 3×400×10 4×300×8 5×500×3

Meanwhile, to concretely illustrate the superiority of
AIG,  simulation  experiments  are  conducted  on  four
randomly  selected  instances  with  different  scales,  i.e.,

, , ,  and .
Figure  12 shows  the  box  plot  drawn  from  the
experimental  results.  From  the  box  plots  of  the  four
instances, it is evident that AIG is better than the other

3×400×10 4×300×8 5×500×3

algorithms significantly in terms of makespan. And the
results  obtained  by  AIG  are  very  stable  for  three
instances  of , ,  and ,
which  indicates  that  the  convergence  of  AIG  is  also
outstanding.

In addition,  to  show the convergence ability  of  AIG
more  intuitively  and  enrich  the  experiments,  we  also
randomly  chose  four  test  instances  of  different  sizes,

t= 5Table 8    Experimental results of all comparison algorithms when .
(continued)

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
4×200×5 2478 0.36 2491 0.52 2498 0.81 2490 0.48 2537 2.38 2493 0.62
4×200×8 2707 0.22 2725 0.66 2725 0.66 2724 0.64 2749 1.77 2725 0.66
4×200×10 1607 0.36 1633 2.73 1707 6.22 1656 4.17 1670 4.73 1687 5.33
4×300×3 1266 0.30 1284 1.75 1307 3.24 1304 3.08 1301 3.71 1307 3.24
4×300×5 3843 0.27 3865 0.97 3951 2.81 3911 2.16 3902 2.02 3950 2.81
4×300×8 3935 0.13 3946 0.38 3951 0.41 3945 0.29 4000 1.85 3951 0.41
4×300×10 4224 0.08 4238 0.58 4271 1.11 4234 0.40 4269 1.16 4243 0.66
4×400×3 4938 0.19 4954 0.38 4959 0.43 4952 0.30 5009 1.45 4953 0.33
4×400×5 5183 0.11 5196 0.39 5215 0.62 5193 0.20 5221 1.10 5212 0.61
4×400×8 5389 0.18 5441 1.11 5482 1.73 5450 1.32 5476 2.21 5482 1.73
4×400×10 5400 0.06 5420 0.46 5438 0.70 5414 0.35 5445 1.15 5438 0.70
4×500×3 2168 0.18 2186 1.77 2256 4.06 2242 3.71 2241 4.01 2249 3.99
4×500×5 2339 0.50 2391 3.51 2504 7.05 2483 6.58 2470 6.41 2503 7.05
4×500×8 3665 0.47 3717 2.31 3889 6.11 3851 5.27 3822 4.89 3876 5.95
4×500×10 6467 0.20 6467 0.18 6498 0.60 6459 0.07 6509 0.93 6495 0.59
5×100×3 928 0.43 936 1.14 941 1.40 932 0.54 981 6.12 937 1.14
5×100×5 590 0.47 596 1.63 613 3.90 599 2.07 616 7.15 613 3.90
5×100×8 1124 0.16 1134 1.39 1137 1.16 1124 0.23 1190 6.07 1134 1.05
5×100×10 1369 0.20 1374 1.43 1452 6.06 1403 3.11 1440 6.36 1440 5.55
5×200×3 2090 0.02 2093 0.30 2098 0.38 2091 0.05 2142 2.49 2092 0.24
5×200×5 683 0.20 686 1.38 713 4.39 709 3.98 718 5.97 713 4.39
5×200×8 2298 0.25 2311 0.64 2322 1.04 2305 0.39 2363 3.05 2311 0.71
5×200×10 2236 0.22 2249 0.87 2265 1.30 2246 0.48 2291 2.59 2249 0.81
5×300×3 3053 0.16 3061 0.32 3067 0.46 3058 0.17 3097 1.45 3061 0.31
5×300×5 1667 0.38 1677 1.03 1723 3.36 1714 3.00 1738 4.67 1723 3.36
5×300×8 3270 0.20 3286 0.69 3290 0.61 3282 0.42 3329 2.17 3290 0.61
5×300×10 3369 0.16 3418 1.76 3454 2.52 3421 1.78 3448 2.75 3454 2.52
5×400×3 4040 0.14 4051 0.32 4054 0.35 4049 0.22 4101 1.54 4051 0.32
5×400×5 2221 0.14 2249 2.06 2349 5.76 2328 5.01 2329 5.16 2349 5.76
5×400×8 4088 0.14 4106 0.57 4134 1.13 4101 0.40 4136 1.33 4125 1.08
5×400×10 4284 0.06 4295 0.43 4314 0.70 4291 0.28 4341 1.50 4305 0.57
5×500×3 5160 0.16 5202 1.13 5289 2.50 5253 2.09 5264 2.09 5289 2.50
5×500×5 5020 0.02 5023 0.15 5032 0.24 5021 0.04 5053 0.79 5025 0.14
5×500×8 5256 0.04 5264 0.21 5271 0.29 5258 0.05 5287 0.73 5265 0.22
5×500×10 5404 0.09 5405 0.21 5446 0.78 5414 0.25 5457 1.10 5446 0.78

Mean 4350 0.23 4365 0.86 4408 2 4382 1.31 4412 2.56 4397 1.74
Percentage (%) − − 0.34 73 1.3 89 0.73 82 1.4 91 1.07 87

Note: Percentage means the percentage of AIG better than other comparison algorithms.
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2×100×3 3×200×5 4×400×8 5×300×10i.e., , , , and 
to  plot  the  evolutionary  curves  of  all  algorithms.
Figure 13 shows the details of the evolutionary curves.
The X-axis  denotes  the time taken by the algorithm to
complete  its  evolutionary  process,  while  the Y-axis
represents  the  corresponding  makespan  generated  by
the  algorithm.  In Fig.  13,  AIG  obtains  the  lowest
convergence curve with a good degree of convergence.
AIG  can  explore  more  neighborhood  structures  by
using  inter-factory  neighborhood  search  strategies  and
local  search  strategy,  which  increases  the  chances  of
finding  better  solutions.  Moreover,  AIG  demonstrates
the  ability  to  find  better  solutions  and  show  better
convergence  curves  when  solving  different  test
instances.  Therefore,  we  can  believe  that  AIG has  the
ability to solve DBHFSP effectively.

5.7    Friedman test

The  simulation  results  are  analyzed  to  determine  if
there  are  significant  differences  in  the  overall
distributions of the compared methods[49]. Initially, it is
assumed  that  there  are  no  significant  differences
between  methods.  If p value  is  less  than  0.05,  this
assumption  is  considered  rejected,  and  there  are
significant  differences  among  the  comparative
methods.  Conversely,  if  the p value  is  greater  than  or
equal  to  0.05,  the  assumption  is  deemed  acceptable,

t = 3
t = 5

α = 0.050

t = 3
t = 5

indicating  that  no  significant  differences  are  found
among the compared methods. Tables 9 and 10 provide
the  statistical  results  of  80  instances  when  and

, respectively. The Friedman test yielded a p value
of  0.000,  which  is  below  the  significance  level

. This demonstrates that compared algorithms
have  significant  differences.  AIG  algorithm  achieved
the  lowest  rank  values  of  1.08  and  1.08  for  and

,  respectively,  indicating  its  superior  performance
over  other  algorithms.  Moreover,  AIG  exhibits  the
smallest  maximum  RPI  value  of  0.76,  the  smallest
mean  RPI  value  of  0.23,  and  the  smallest  standard
deviation  of  0.20,  further  highlighting  its  superior
performance over other algorithms. To sum up, AIG is
a very suitable algorithm for solving DBHFSP.

6    Conclusion and Future Work

Considering  the  constraints  in  actual  production,  this
paper  focuses  on the  DBHFSP.  The primary objective
is  to  optimize  the  makespan  of  all  factories.  The
proposed  approach  is  an  AIG  algorithm,  which
demonstrates  effective  performance  in  solving
DBHFSP.  First,  we  establish  the  MILP  model  of
DBHFSP and validate its correctness using the Gurobi
solver.  Second,  we  design  two  cross-factory
neighborhood  search  strategies  to  enhance
collaboration  between  factories  and  explore  a  wider
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Fig. 12    Box plots of all comparison algorithms.
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range  of  neighborhoods.  Furthermore,  the  swap-based
local perturbation strategy enables quick changes to the

job  sequence,  thereby  reducing  computation  time  and
increasing  the  chances  of  exploring  the  search  space
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Fig. 13    Evolution curve of all the comparison algorithms.

 

t= 3Table 9    Statistical results obtained by Friedman test when  (α=0.050).

Algorithm Rank CN Min Max Mean Standard deviation
AIG 1.08 80 0.00 0.76 0.23 0.20
CIG 2.95 80 0.00 4.80 0.92 0.92
DDE 4.98 80 0.07 7.00 1.93 2.08
EA 2.46 80 0.00 6.81 1.28 1.68

MN_IG 5.55 80 0.16 7.62 2.48 1.92
DPSO 3.99 80 0.01 7.00 1.69 1.96
p-value 0.000 − − − − −

Note: CN is the number of instances.

 

t= 5Table 10    Statistical results obtained by Friedman test when  (α=0.050).

Algorithm Rank CN Min Max Mean Standard deviation
AIG 1.08 80 0.00 1.357 0.23 0.23
CIG 2.92 80 0.00 3.61 0.86 0.80
DDE 5.04 80 0.07 7.42 2.01 2.17
EA 2.48 80 0.00 7.02 1.31 1.70

MN_IG 5.56 80 0.16 7.86 2.56 1.99
DPSO 3.91 80 0.02 7.23 1.74 2.01
p-value 0.000 − − − − −
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more  thoroughly,  ultimately  leading  to  improved
algorithmic  performance.  Finally,  to  mitigate
premature  convergence,  we  adopt  two  shaking
strategies  to  increase  the  diversity  of  solutions.  The
experimental results in Section 5 demonstrate that AIG
is significantly more effective in solving DBHFSP than
the other five compared algorithms.

Although  AIG  shows  promising  performance  in
solving DBHFSP, there are still many challenges to be
investigated.  Firstly,  considering  energy  consumption
or electricity cost as the primary optimization objective
can  be  a  valuable  extension  in  line  with  sustainability
goals.  Secondly,  incorporating  practical  production
constraints such as machine breakdowns and uncertain
due  dates  would  make  the  problem more  realistic  and
applicable  to  real-world  scenarios.  Finally,  we  can
explore  multi-objective  optimization  methods  to
simultaneously  optimize  multiple  objectives,  such  as
energy  consumption,  delivery  time,  and  total  delay
time.
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