

Intelligent Optimization Under Multiple Factories: Hybrid Flow
Shop Scheduling Problem with Blocking Constraints

Using an Advanced Iterated Greedy Algorithm

Yong Wang, Yuting Wang*, Yuyan Han*, Junqing Li, Kaizhou Gao, and Yusuke Nojima

Abstract: The distributed hybrid flow shop scheduling problem (DHFSP), which integrates distributed

manufacturing models with parallel machines, has gained significant attention. However, in actual scheduling,

some adjacent machines do not have buffers between them, resulting in blocking. This paper focuses on

addressing the DHFSP with blocking constraints (DBHFSP) based on the actual production conditions. To

solve DBHFSP, we construct a mixed integer linear programming (MILP) model for DBHFSP and validate its

correctness using the Gurobi solver. Then, an advanced iterated greedy (AIG) algorithm is designed to

minimize the makespan, in which we modify the Nawaz, Enscore, and Ham (NEH) heuristic to solve blocking

constraints. To balance the global and local search capabilities of AIG, two effective inter-factory neighborhood

search strategies and a swap-based local search strategy are designed. Additionally, each factory is mutually

independent, and the movement within one factory does not affect the others. In view of this, we specifically

designed a memory-based decoding method for insertion operations to reduce the computation time of the

objective. Finally, two shaking strategies are incorporated into the algorithm to mitigate premature

convergence. Five advanced algorithms are used to conduct comparative experiments with AIG on 80 test

instances, and experimental results illustrate that the makespan and the relative percentage increase (RPI)

obtained by AIG are 1.0% and 86.1%, respectively, better than the comparative algorithms.

Key words: blocking; distributed hybrid flow shop; neighborhood search; iterated greedy algorithm

1 Introduction

With the increased market competition, the traditional
single-factory production model is no longer sufficient
to meet market demands. Instead, a novel distributed
manufacturing model has received widespread
attention[1]. This decentralized manufacturing model
offers many advantages such as improving efficiency,

reducing costs, and shortening manufacturing cycle
times. Due to the fact that the distributed permutation
flow shop scheduling problem (DPFSP) simultaneously
considers factories allocation and job arrangement, that
is, jobs first are allocated for different factories and
then scheduled within each factory in a reasonable
manner, the DPFSP is significantly more complex than

 Yong Wang, Yuting Wang, and Yuyan Han are with the School of Computer Science, Liaocheng University, Liaocheng 252000, China.

E-mail: wy_sulis@163.com; wangyuting@lcu-cs.com; hanyuyan@lcu-cs.com.
 Junqing Li is with the School of Computer Science, Shandong Normal University, Jinan 252000, China. E-mail: lijunqing@lcu-cs.com.
 Kaizhou Gao is with the Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau 999078, China.

E-mail: gaokaizhou@lcu-cs.com.
 Yusuke Nojima is with the Department of Computer Science and Intelligent Systems, Osaka Prefecture University, Osaka 599-8531,

Japan. E-mail: nojima@cs.osakafu-u.ac.jp.
 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Xinyu Li.
 Manuscript received: 2023-06-07; revised: 2023-07-04; accepted: 2023-07-12

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 02/06 pp 282−306
Volume 3, Number 4, December 2023
DOI: 10 .23919 /CSMS.2023 .0016

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

the general permutation flow shop scheduling problem
(PFSP)[2].

Additionally, to adjust variations in production speed
and enhance productivity, some factories have
integrated parallel machines into their production
processes. This production model gives rise to a hybrid
flow shop scheduling problem (HFSP). By
incorporating parallel machines, HFSP allows for the
simultaneous processing of multiple jobs, resulting in a
significant boost in productivity, and is widely used in
steelmaking, electronic production, the chemical
industry, etc.[3–5] Given the increasing collaboration
between enterprises and the trend towards intelligent
manufacturing, the advantages of HFSP and DPFSP
have been integrated to create a new scheduling
problem called the distributed HFSP (DHFSP).
Undoubtedly, DHFSP holds greater practical
significance[6].

The DHFSP can be approximated as parallel factory
scheduling, where each factory represents an HFSP.
Recently, some intelligent optimization methods have
been employed to solve DHFSP, i.e., multi-
neighborhood iterated greedy algorithm[6], artificial bee
colony (ABC) algorithm[7], bi-population cooperative
memetic algorithm[8], and so on. However, in some
production scenarios, jobs may be blocked on a
machine because of cost or storage space limitations,
impeding their transition to the next stage of
processing. Consequently, DHFSP has been extended
to a more complex variant known as the DHFSP with
blocking constraints (DBHFSP). DBHFSP needs to
solve the following issues: allocating a factory,
assigning a suitable machine for each job, and
scheduling the sequence of the jobs. Notably, DBHFSP
is significantly more complex than DHFSP, more
closely aligned with actual production processes, and
hence more deserving of our attention and study.

In practical production scenarios, the occurrence of a
blocking state can have significant negative
consequences on the completion time and overall
productivity. Therefore, it is crucial to thoroughly
analyze the challenges and risks associated with the
DBHFSP before devising suitable strategies. Some of
the potential challenges should be considered: (1)
Blocked jobs need to wait until the machine is idle
before they can continue processing, which causes
additional delays and affects the completion time of the
jobs. (2) Poor job allocation strategies may create
imbalances between factories, resulting in more
instances of blocking. (3) Job blocking can increase the

risk of the solution getting stuck in a local optimum,
making it necessary to develop effective strategies to
minimize blocking time.

Based on the above motivations, we know that it is
crucial to select an appropriate algorithm and do some
adjustments tailored to the properties of the DBHFSP.
Through comparisons with various intelligent
optimization algorithms[7–11], we observe that the
iterated greedy algorithm (IGA) demonstrates
superiority in some scheduling problems[12–14]. The
structure of IGA is simple and easy to be implemented.
Therefore, we develop an advanced IGA (AIG) method
to minimize the makespan by reducing the blocking
time. The contributions of our work are listed.

(1) We build a mixed integer linear programming
(MILP) model for DBHFSP and use the Gurobi solver
to prove its validity. Under the search framework of
IGA, we design the AIG algorithm based on problem
characteristics and provide the optimization gap for
MILP and AIG.

(2) Two inter-factory neighborhood search strategies
and a swap-based local search strategy are proposed to
balance the global and local search capabilities of AIG,
respectively.

(3) To prevent premature convergence, two shaking
strategies are proposed.

(4) Extensive simulation experiments are conducted
on 80 test instances and compared against five
optimization algorithms to showcase the superiority of
AIG in optimizing DBHFSP.

The paper is structured as follows. Section 2 offers a
review of previous studies on the subject. Section 3
outlines the mathematical model of DBHFSP and
presents a simple example for better understanding.
Section 4 provides detailed information about the AIG
algorithm. The experimental results and their analysis
are presented in Section 5. Finally, Section 6 provides a
summary and suggests potential directions for future
research.

2 Literature Review

According to our best knowledge, the DBHFSP is
rarely reported in the literature. Consequently, we
conduct a comprehensive review of the most relevant
research work in the literature, including the DPFSP,
HFSP, DHFSP, and IGA.

2.1 Distributed permutation flow shop scheduling
problem

DPFSP has been the subject of much research in the

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 283

manufacturing industry. A hybrid estimation of
distribution algorithm (EDA) was proposed, which
combines the advantages of the memetic algorithm to
solve DPFSP[15]. To accelerate the iteration speed of
IGA, Ruiz et al.[13] designed an enhanced IGA to
optimize the DPFSP, resulting in improving
computational efficiency and enhancing solution
quality. Moreover, Wang et al.[16] designed a hybrid
discrete cuckoo search algorithm to address DPFSP,
which has been demonstrated to be effective in
optimizing this problem. Shao et al.[17] made notable
contributions to optimizing the makespan in the DPFSP
by developing three advanced iterated greedy
algorithms that leverage the problem characteristics.
For distributed assembly no-idle PFSP, a cooperative
water wave optimization method was proposed to
optimize assembly completion time[18]. Reference [19]
focused on the energy-aware scheduling problem and
proposed a cooperative memetic algorithm to address
DPFSP. To reduce energy consumption and makespan
in distributed no-wait PFSP, Zhao et al.[20] developed a
Q-learning driven cooperative metaheuristic algorithm.
The aforementioned studies have been effective in
solving the distributed scheduling problem. However,
they did not consider the presence of parallel machines.
Incorporating parallel machines can significantly
increase production speed by enabling multiple jobs to
be processed simultaneously.

2.2 Hybrid flow shop scheduling problem

HFSP is a composite problem that encompasses both
the parallel machine and the PFSP. The solution to
HFSP involves two sub-problems: assigning the
available machines to the jobs and sequencing the jobs.
To optimize the HFSP with makespan as the objective,
Pan et al.[21] designed a discrete ABC algorithm, which
has been demonstrated to be effective in several
studies. To optimize the HFSP on identical parallel
machines, Wang et al.[22] developed an enhanced EDA,
which combines local and global search strategies to
improve the solution quality. To minimize energy
consumption for green production, Li et al.[23]

developed a two-level imperialistic competitive
algorithm to optimize HFSP. Considering the impact of
the human factor in HFSP, Marichelvam et al.[9]

applied an enhanced particle swarm optimization
(PSO) algorithm and proved its effectiveness
experimentally. In addition, to cope with real-time
scheduling in manufacturing systems, Wu et al.[24]

proposed a gene expression programming real-time

scheduling method to solve the real-time HFSP. While
the studies mentioned above have effectively addressed
the HFSP problem, they did not consider the blocking
constraints and the manufacturing mode of multi-
factory processing. However, with the increasing
demand for multi-factory production in the market, it
has become an inevitable trend to consider these factors
in the optimization process.

2.3 Distributed hybrid flow shop scheduling
problem

Due to the rapid economic development, HFSP within
a single factory is no longer sufficient to meet the
production demands of modern enterprises, which
leads to the emergence of DHFSP. However, DHFSP is
more challenging than HFSP. We note the following
studies. To tackle the challenging DHFSP with
multiprocessor tasks, an improved IGA was proposed
by Ying and Lin[25]. Shao et al.[6] modeled DHFSP
according to its characteristics and proposed a multi-
neighborhood IGA. Xi and Lei[26] studied fuzzy
distributed two-stage HFSP and introduced a Q-
learning-based teaching-learning optimization method
for makespan optimization. For multi-objective fuzzy
DHFSP with due date, a co-evolutionary algorithm
combining EDA and IGA features was developed by
Zheng et al.[27] Jiang et al.[28] studied DHFSP with
multiprocessor tasks and designed a decomposition-
based multi-objective optimization method. For
energy-aware DHFSP optimization, a reinforcement
learning strategy and a cooperative memetic algorithm
were proposed[29]. Similarly, to reduce energy
consumption, Pan et al.[30] studied the scheduling
problem of distributed energy-efficient parallel
machines and proposed a knowledge-based two-
population optimization algorithm. Shao et al.[31]

investigated DHFSP with energy and labor-aware and
proposed a hybrid memetic algorithm by combining the
advantages of network optimization and memetic
algorithm. The above research effectively solved the
problems of parallel machines and multiple factory
processing. However, they did not consider the
blocking constraint. In the real world, there are many
applications for train track scheduling[32], ship
manufacturing[33], and concrete blocks[34]. It is
important to develop new algorithms and strategies that
can handle these additional constraints and
complexities to further improve the efficiency and
effectiveness of production systems in various
industries.

 284 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

We note the following studies on blocking
constraints. Han et al.[35] extended the PFSP model to
include blocking constraints and setup time and
designed a discrete multi-objective optimization
(DEMO) algorithm to optimize energy consumption.
To optimize the setup time and the blocking constraint
of HFSP, Aqil and Allali[36] presented two meta-
heuristic algorithms. Han et al.[37] embedded the
learning mechanism into the IGA and studied the
DPFSP with blocking constraints. Shao et al.[1]

analyzed the properties of distributed fuzzy PFSP with
blocking constraints and designed some effective
heuristic and meta-heuristic methods. Aiming at the
blocking constraint and energy consumption in HFSP,
an enhanced IGA was employed to optimize HFSP[38].
Recently, Zhao et al.[39, 40] focused on multi-objective
distributed blocking PFSP and proposed two multi-
objective algorithms: Pareto-based discrete Jaya
algorithm and hyper-heuristic with Q-learning
algorithm. The above studies demonstrate that blocking
constraints have been explored by researchers and
highlight the significance of considering blocking
constraints in scheduling problems. Therefore, it is
important to investigate the DHFSP with blocking to
address real-world challenges and improve production
efficiency.

2.4 Iterated greedy algorithm

IGA has been widely employed in PFSP due to its
simplicity and efficient performance[12]. Fernandez-
Viagas et al.[41] investigated PFSP with total tardiness
as the optimization objective and designed eight
different variants of IGA to address this problemx.
Wang et al.[42] focused on the PFSP with mixed no-
wait constraint and developed an improved IGA to
adapt to the problem characteristics. To solve DPFSP,
Han et al.[43] designed an effective IGA based on
single-job and job-block swapping strategies. To solve
the DPFSP with blocking constraints (DBFSP), Chen
et al.[44] introduced a novel population-based IG
(PBIG) that integrates the strengths of population
search methods and IGA. Qin et al.[38] improved the
IGA by proposing a special substitution strategy to
handle HFSP with blocking constraints. In addition, for
DHFSP, Qin et al.[45] analyzed the influence of
heterogeneous factories and blocking constraints and
designed a collaborative IGA (CIG) to address DHFSP.

According to the above literature, IGA shows good
performance in solving the flow shop scheduling
problem. (1) As mentioned in Ref. [43], compared with

other swarm intelligence algorithms, IGA is a very
simple and easily understandable algorithm with strong
local search ability. (2) Reference [44] took full
advantage of the extensibility of IGA, added a
population-based search method to it, and proposed a
PBIG to solve DBFSP. The test of 720 instances proves
that PBIG is superior to the existing algorithms. (3)
Recently, a collaborative IGA was designed in Ref.
[45] based on the characteristics of DHFSP, and the
performance of the algorithm was improved by the
coevolution of two solutions. By comparing it with five
other advanced algorithms, the effectiveness of CIG
was validated. Based on the above analysis, we select
IGA to solve DBHFSP.

Although IGA has good performance in solving
scheduling problems, it also has some limitations, such
as weak global search ability, poor solution diversity,
and a tendency to converge prematurely. To overcome
its limitations and improve its performance for
DBHFSP, a customized strategy will be designed based
on the problem characteristics. The local search ability
of the IGA is strong, but the diversity is poor.
Therefore, we design two inter-factory neighborhood
search strategies, which can enhance the collaboration
between factories. Additionally, we design a swap-
based local strengthening strategy that enables the
algorithm to explore the local neighborhood more
thoroughly. Finally, we also propose two shaking
strategies that help to prevent premature convergence.

3 Problem Statement

3.1 Problem definition

J F
f (f = 1,2, ...,F) S

s
Ms (Ms ⩾ 1)

p j,s

j s

DBHFSP is described as follows. A job set containing
 jobs is to be assigned to factories for processing.

For any Factory , there are identical
processing stages, each processing stage contains

 parallel machines, and the number of
parallel machines in at least one stage is to be greater
than or equal to 2. In addition, there is no intermediate
buffer between any adjacent stages. To better visualize
the multi-factory production process, an example of a
two-factory production is given in Fig. 1. Factory 1 and
Factory 2 are the same and have the same machines in
each processing stage, and the job can be processed in
any factory. We use to denote the processing time
of job at stage .

Otherwise, the discussion of DBHFSP is based on
the following assumptions:

(1) At time 0, all jobs and machines are available for

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 285

processing.
(2) Once a job is allocated for a factory, it cannot be

changed to a different factory midway.
(3) Each machine can only process one job at a time,

and each job can only be processed by one machine at
a time.

(4) All jobs should be processed continuously
without any interruptions or preemptions.

(5) Each job follows a predetermined sequence of
processing stages and cannot skip any stage or finish
early.

(6) There exist no intermediate buffers between
adjacent stages.

DBHFSP involves three interconnected sub-
problems: determining the assignment of each job to a
specific factory, assigning a machine for each job in
each factory, and sequencing the jobs in each machine.
And the mathematical model of DBHFSP is given
based on the above assumptions and Ref. [46].

3.2 Mathematical model

Notations:
J : Number of jobs.
F : Number of factories.
S : Number of stages in each factory.
j j ∈ {1,2, ..., J}: Index of jobs, .
f f ∈ {1,2, ...,F}: Index of factories, .
s s ∈ {1,2, ...,S }: Index of stages, .
M f ,s s f: Number of machines at stage in Factory .
m s m ∈

{
1,2, ...,M f ,s

}
: Index of machines at stage , .

L: A big positive integer.
p j,s j s: Processing time of job at stage .
Decision variables:
Cmax : Makespan.
C j,s j s: Completion time of job at stage .
D j,s j s: Departure time of job at stage . It refers to

the time that the job leaves stage s after finishing
processing.

x f , j j
f

: Decision variables, 1, if job is processed in
Factory ; 0, otherwise.

y f ,s, j,m j
m s f

: Decision variables, 1, if job is processed on
machine at stage in Factory ; 0, otherwise.

z f ,s, j, j′ j
j′ s f

: Decision variables, 1, if job is at any
position before job at stage in Factory ; 0,
otherwise.

Constraints:

Minimize Cmax (1)

F∑
f=1

x f , j = 1,∀ j ∈ {1,2, ..., J} (2)

M f ,s∑
m=1

y f ,s, j,m = x f , j, ∀ f ∈ {1,2, ...,F} ,

∀ j ∈ {1,2, . . . , J} ,∀s ∈ {1,2, . . . ,S }

(3)

z f ,s, j, j′ + z f ,s, j′, j ⩽ 1,∀ f ∈ {1,2, ...,F} ,
∀s ∈ {1,2, ...,S } , ∀ j, j′ ∈ {1,2, ..., J} , j < j′ (4)

z f ,s, j, j′ + z f ,s, j′, j ⩾ y f ,s, j,m+ y f ,s, j′,m−1,
∀ f ∈ {1,2, . . . ,F} ,∀s ∈ {1,2, . . . ,S } ,
∀ j, j′ ∈ {1,2, . . . , J} , j < j′,∀m ∈

{
1,2, ...,M f ,s

}
(5)

C j,s ⩾ p j,s,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S } (6)

C j′,s ⩾ D j,s+ p j′,s+
(
y f ,s, j,m+ y f ,s, j′,m+ z f ,s, j, j′ −3

)
×

L,∀ j, j′ ∈ {1,2, ..., J} , j , j′,∀ f ∈ {1,2, ...,F} ,
∀s ∈ {1,2, ...,S } ,∀m ∈

{
1,2, ...,M f ,s

}
(7)

C j,s+1 = D j,s+ p j,s+1,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S −1}
(8)

D j,s ⩾C j,s,∀ j ∈ {1,2, ..., J} ,∀s ∈ {1,2, ...,S } (9)

M1 M2 M3

M1 M2

M1 M2 M3

Stage 1

Stage 2

Stage 3

Factory 1

M2 M1 M2 M3

M1 M2

M1 M2 M3

Stage 1

Stage 2

Stage 3

Factory 2

M2

Fig. 1 Example of isomorphic factories.

 286 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

Cmax ⩾ D j,S ,∀ j ∈ {1,2, ..., J} (10)

f

f z f ,s, j, j′

z f ,s, j′, j j j′

j
j′ s

f z f ,s, j, j′ z f ,s, j′, j

j s

j s

j
s

Formula (1) is the makespan objective. Constraint (2)
ensures that each job is allocated for only one factory.
For Factory , Constraint (3) enforces that a job is
allocated to only one machine at a given stage. In
Factory , Constraint (4) guarantees only one of
and can be 1 if and are processed at the
same stage. Constraint (5) guarantees that if both jobs
and are processed on the same machine at stage in
Factory , either or must be 1 and the
other must be 0. Constraint (6) enforces that the
processing time of job at stage is smaller than its
completion time. Constraint (7) ensures that there
exists no overlap in the processing of jobs on the same
machine at the same stage. Constraint (8) states that the
completion time of job at stage is equal to the
processing time plus its departure time at the previous
stage. Constraint (9) ensures that no job leaves stage

 before it is completed. Constraint (10) guarantees that
the makespan is not smaller than the time required for
all jobs to complete the processing.

3.3 Example

F = 2 S = 2 M1,1 = 2 M1,2 = 2 M2,1 = 2 M2,2 = 2
J = 6

We give an example to illustrate the problem. Let
, , , , , ,

and . Table 1 gives the processing time of the job
at each stage. Processing time uses integers (1, 2, 3, ...)
to represent the length of time without units. We use
the Gurobi solver to run this small-scale instance and
find the smallest makespan. The optimal solution is
x1,3 = x1,4 = x1,6 = x2,1 = x2,2 = x2,5 = 1, y1,1,3,2 = y1,1,4,1 =
y1,1,6,1 = y1,2,3,2 = y1,2,4,2 = y1,2,6,1 = y2,1,1,2 = y2,1,2,1 =
y2,1,5,1 = y2,2,1,1 = y2,2,2,2 = y2,2,5,2 = 1, z1,1,6,4 = z1,2,3,4 =
z2,1,5,2 = z2,2,5,2 = 1. Therefore, the job scheduling

{6,3,4} {5,2,1}

samb b-th
a-th

sequences in Factories 1 and 2 are and ,
respectively. The makespan is 38. The running result is
shown in Fig. 2, where represents the
machine on the stage. The gray part represents the
blocking time.

4 AIG Algorithm for DBHFSP

For DBHFSP, it is essential to consider three sub-
problems, i.e., allocating an appropriate factory and an
appropriate machine for each job and sequencing the
jobs. Although the basic IGA is known for its simple
structure, flexibility, and few parameters, it is also
prone to get trapped in local optima. Considering the
coupled features of DBHFSP and the limitations of the
basic IGA, we have designed the proposed AIG
algorithm.

CriticalFactory_ExtractInsert
CriticalFactory_Swap

In Algorithm 1, first, we design an improved version
of the NEH2[47] method, which considers the discrete
characteristics of DBHFSP and utilizes a first-stage
processing time descending scheme for solution
initialization (see Line 1). Inside the while loop,
two neighborhood search strategies,

 (see Line 5) and
 (see Line 7), are randomly used

Table 1 Processing time for six jobs.

Job No.
Processing time

Stage 1 Stage 2
1 18 20
2 11 14
3 9 15
4 17 12
5 5 15
6 6 20

s2m2 j3
j6

j4
j3

j6

j4

0 2 4 6 8 10 12 14 16 18
Time

20 22 24 26 28 30 32 34 36 38

(b) Factory 2

(a) Factory 1

s2m1

s1m2

s1m1

s2m2 j5
j1

j2

j1
j5

j2

0 2 4 6 8 10 12 14 16 18
Time

20 22 24 26 28 30 32 34 36 38

s2m1

s1m2

s1m1

Fig. 2 Scheduling Gantt chart for the instance.

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 287

GreedSwap

to perform neighborhood perturbation between a
critical factory and a non-critical factory. By utilizing
these two neighborhood structures, our algorithm can
enhance the collaboration between different factories.
Second, the AIG algorithm incorporates the
destruction-reconstruction (DR) strategy (Line 10) to
introduce diversity into the solutions. Then a local
search based on swap operator, denoted as
(see Line 14), is employed to further enhance the
quality of the solution. Finally, to further prevent the

Shake_DoubleInsert
Shake_Swap

algorithm from being trapped in local optima, we
employ two shaking strategies, and

 (see Lines 21 and 23), to slightly perturb
the current solution and escape stagnation.

4.1 Analysis and representation of solution

π =
{
π1,π2, ...,π f , ...,πF

}
π f f
f

π f =

{
π f1 ,π f2 , ...,π fη f

}
π f j j

f , j = 1,2, ...,η f

π = {π1,π2} = {{6,5,8,1} , {2,7,4,3}}

We first choose a suitable encoding strategy to
represent the solution of DBHFSP. Considering the
multi-factory environment of DBHFSP, this paper uses
a multiple permutation based encoding method[48]. The
solution can be expressed as ,
where represents the order of jobs in Factory . For
each , the sequence of jobs is denoted as

, where represents the -th job
in Factory . For example, a solution

, which indicates that
jobs 6, 5, 8, and 1 are allocated for Factory 1, and jobs
2, 7, 4, and 3 are allocated for Factory 2.

f

π f =

{
π f1 ,π f2 , ...,π fη f

}
f

j ∈
{
1,2, ...,η f

}
S f

s Ms
[
j
]

j fc[j],s
fmts,m

m∗

s
C f

max f

The purpose of decoding is to compute the objective
value. For example, a sequence of jobs in Factory is

, where the job in is denoted as
. There are processing stages in , and

each stage has parallel machines. represents
the index of the -th job. represents the
completion time of the job and represents the
idle time of a machine at a specific stage. is denoted
as the machine with the earliest idle time at stage .
The makespan for Factory is calculated as
follows:

C f
max = 0 (11)

fc[j],0 = 0, j = 1,2, ...,η f (12)

fmts,m = 0, s = 1,2, ...,S ,m = 1,2, ...,Ms (13)

m∗ = arg min
m=1,2,...,Ms

{
fmts,m

}
, s = 1,2, . . . ,S (14)

fc[j],s =max
{
fmts,m∗ , fc[j],s−1

}
+ p j,s,

j = 1,2, ...,η f , s = 1,2, ...,S (15)

fmts,m∗ =

fc[j],s+1− p[j],s+1, s = 1,2, ...,S −1;

fc[j],s, s = S
(16)

C f
max =max

{
C f

max, fmts,m
}
, s = S ,m = 1,2, ...,Ms (17)

π = {π1, π2} π1 = {6, 3, 4} π2 = {5, 1, 2}
c6 = 26 c3 = 24

c4 = 36 c5 = 20 c1 = 38 c2 = 34 C1
max =max{0, 26,

According to Section 3.2, the solution is expressed as
, where and . The

completion time for each job is , ,
, , , and .

Algorithm 1　AIG algorithm
π dInput:　An empty solution , and is the number of jobs to be

extracted in DR
πbestOutpu:　

π = NEH2_FSD(π) πtemp = π πbest = π1　 , , and
2　While (stop time is not reached) do

r = rand(0, R)3　　 　　%% R is a parameter
r = 04　　If ()

πtemp = CriticalFactory_ExtractInsert
(
πtemp,d

)
5　　　

6　　Else

πtemp = CriticalFactory_Swap
(
πtemp

)
7　　　

8　　End If
f = 1 F9　　For to

π
temp′

f DR
(
π

temp
f ,d

)
10　　　 =

Cmax

(
π

temp′

f

)
<Cmax

(
πtemp

)
11　　　If ()

π
temp
f = π

temp′

f12　　　　

13　　　End If

π
temp
f = GreedSwap

(
π

temp
f

)
14　　　

15　　End For

Cmax
(
πtemp

)
<Cmax

(
πbest
)

16　　If ()
πbest = πtemp17　　　

18　　Else
r′ = rand(0,1)19　 　　

r′ = 020　 　　If ()

πtemp = Shake_DoubleInsert
(
πtemp

)
21　　　　

22　　　Else

πtemp = Shake_Swap
(
πtemp

)
23　　　　

24　　　End If

Cmax
(
πtemp

)
<Cmax

(
πbest
)

25　　　If ()
πbest = πtemp26　　　　　

27　　　Else
πtemp = πbest28　　　　　

29　　　End If
30　　End If
31　End While

 288 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

36} = 36 C2
max =max {0, 34, 38} = 38

Cmax =max
{
C1

max,C
2
max

}
=

max {36, 38} = 38

, . Therefore, the
makespan of this example is

.
For DBHFSP, each factory is mutually independent,

and the movement within one factory does not affect
the others. Thus, we can obtain the following
characteristics of DBHFSP:

Characteristic 1. Exchanging two jobs between
different factories does not affect the completion time
of other factories; exchanging two jobs within the same
factory does not change the completion time of other
factories.

Characteristic 2. When deleting a job from one
factory and reinserting it into another factory, it does
not affect the completion time of other factories;
similarly, deleting a job from one position and
reinserting it into another position within the same
factory does not change the completion time of other
factories.

p∗

p∗

Characteristic 3. Inserting a job into position in
the job sequence does not affect the completion time of
jobs before position .

j∗

p∗ p
fc[j],m fmts,m

p∗

These characteristics are obvious and can help the
algorithm reduce computation time when exploring the
neighborhood. Additionally, based on Characteristic 3,
we specifically designed a memory-based decoding
method for insertion operations. The job to insert is
and the position to insert is . is a position of the
job sequence. The information of and
before position is known. The calculation formula is
as follows:

m∗ = arg min
m=1,2,...,Ms

{
fmts,m

}
, s = 1,2, ...,S (18)

j =
 j∗, p = p∗;

p−1, p , p∗,

p = p∗, p∗+1, ...,η f ,η f +1 (19)

fc[j],s =max
{
fmts,m∗ , fc[j],s−1

}
+ p j,s,

s = 1,2, ...,S (20)

fmts,m∗ =

fc[j],s+1− p[j],s+1, s = 1,2, ...,S −1;

fc[j],s, s = S
(21)

4.2 Initialization strategy

A suitable initialization strategy is crucial for achieving
good performance in optimization algorithms. The
NEH2 heuristic method has proven to be effective in
solving DPFSP[47]. NEH2 follows several key steps.
Firstly, a seed sequence is generated by sorting the jobs

F
F

according to the descending order of the total
processing time across all stages. Then the first jobs
from the seed sequence are allocated to factories,
ensuring that each factory receives at least one job.
Finally, the rest ones are iteratively inserted into the
location with the minimal completion time across all
factories. However, if some jobs with large processing
time in the first stage are put into the same factory, it
can lead to an imbalance of the completion time
between factories and may increase the blocking times.
To illustrate this situation, we give an example
including 8 jobs, 2 stages, and 2 factories. There are
two parallel machines at each stage. Table 2 lists the
processing time of the jobs. Figure 3a shows the
scheduling sequence generated using NEH2. In Fig. 3a ,
although NEH2 can assign jobs to individual factories
according to the total processing time, it may still
generate long blocking time. Reducing the blocking
time for each factory and avoiding blocking
concentrated in one factory help to reduce the
completion time.

According to the problem characteristics of DBHFSP
and combined with the advantages of NEH2, this paper
designs an improved NEH2 initialization method with
the first stage processing time descending order
(NEH2_FSD). NEH2_FSD first sorts the jobs
according to the descending order of their first-stage
processing time and then assigns one job to each
factory. The rest ones are assigned to each factory
using the same approach as NEH2. Figure 3b shows the
scheduling sequence generated using NEH2_FSD. The
makespan in Fig. 3a is 12 and the makespan in
Fig. 3b is 10. From Fig. 3b we can see that using the
NEH2_FSD strategy avoids blocking to be
concentrated in one factory. The proposed initialization
method is shown in Algorithm 2.

In NEH2_FSD, all jobs are first sorted according to

Table 2 Processing time for eight jobs.

Job No.
Processing time

Stage 1 Stage 2
1 4 1
2 3 4
3 5 1
4 2 6
5 1 5
6 3 5
7 2 4
8 3 4

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 289

Πpermutation

F

BestPos

the descending order of their processing time at the
first stage, forming a sequence, (see Line 1).
Allocate the first jobs in the sequence for each
factory separately and ensure that each factory has a
job (see Lines 2−5). This is followed by the NEH2
process, which arranges the rest jobs (see Line 6).
These jobs are inserted into the position with

the smallest maximum completion time among all
factories (see Lines 9−12). Repeat this process until all
jobs have been inserted.

4.3 Inter-factory neighborhood search strategy

CriticalFactory_
ExtractInsert CriticalFactory_Swap

IGA is often employed to PFSP owing to its
uncomplicated structure and excellent local search
capability. However, considering the multi-factory
feature of DBHFSP, it is crucial to boost the global
search performance of IGA. The effectiveness of the
current solution enhancement heavily relies on the
neighborhood structure. To enhance the exploration of
algorithms, we introduce two inter-factory
neighborhood search strategies, i.e.,

 and . These two
neighborhood search strategies are performed across
factories to effectively improve the global search
capability of the algorithm through the collaboration
between factories.

CriticalFactory_ExtractInsert
fmax

fmin

job

fmax π
temp
fmax
= π

temp
fmax
\job job
BestPos fmin

 is shown in Algorithm 3.
First, a critical factory that is a factory with the
maximum makespan and that is a factory with the
minimum makespan are found. Subsequently, the is
randomly selected in fmax (see Lines 5 and 6) and
removed from (). Finally, is
inserted into the best location, , of (see
Lines 8 and 9).

CriticalFactory_SwapThe process of is similar to that

0 2 4 6 8

S2
M1

S1
M1

M2

6

Factory 1

73

7

6 3

3

3 8

9

0 2 4 6

5

Factory 2

4

2
2

1

4

5 2

Blocking time

Blocking time

4

4

8
M2

S2
M1

S1
M1

M2

M2
S2

M1

S1
M1

M2

M2

S2
M1

S1
M1

M2

M2

1

1

83

7
8 10 12

8

8
2

8

6

12

(a) NEH2
Time Time

Time Time
0 2 4 6 8

6

Factory 1

7 3

7

6

3

3

2 5

0 2 4 6

5

Factory 2

4

2
1

4

5 2

Blocking time

Blocking
time

4

8

1

1

7
8 10

8

8
2

6

Blocking
time

10

9

6

(b) NEH2_FSD

3 7 8

6 101

2 6 10

983 6 101

2 7 8

Fig. 3 Gantt chart of solutions obtained by NEH2 and NEH2_FSD.

NEH2_FSD (π)Algorithm 2　
π

Πpermutation
Input:　An empty solution and a sequence of jobs

πOutput:　

ΠPermutation = DescendSort
(
p j,0
)

j ∈ {1,2, ..., J}1　 ,
f = 1 F2　For to

ϖ f = Π
Permutation
f f

f
3　　 %% job in the queue is
scheduled to the Factory

ΠPermutation = ΠPermutation\ΠPermutation
f4　　

5　End For

ΠPermutation = DescendSort
(∑S

s=1 p j,s
)

6　
j = F +1 J7　For to

job = ΠPermutation
j8　　

f = 1 F9　　For　 to
BestPos

f
10　　　Obtain the best position with minimal
makespan in Factory

job BestPos π f11　　　Insert into position of
12　　End For
13　End For

 290 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

CriticalFactory_ExtractInsert
fmax fmin

job1 job2 fmin fmax

Cmax

fmax

fmin

of . (1) Find the two
factories and with the maximum and
minimum completion time, respectively. (2) Randomly
select and from and , respectively,
and swap them. (3) Execute the acceptance criterion. If

 becomes smaller, the swap is kept. (4) Repeat
Step (2) until all jobs in are tried to exchange with
jobs in .

4.4 Destruction-reconstruction

d

π
temp
f ΠDes

π
temp
f

ΠDes
j ΠDes

π
temp
f

BestPos

ΠDes π
temp
f

The DR operator can improve the diversity of solutions
by largely disturbing the current solution. Thus, this
paper designs a new DR strategy inside the factory, as
shown in Algorithm 4. In the destruction phase, a
certain number of jobs are randomly deleted from

and placed into (see Line 4). The remaining
jobs compose of (see Line 5). In the
reconstruction phase, we extract a job from
and reinsert it into all locations in . Then find the
position, , with the smallest makespan (see
Lines 8 and 9). Repeat the above insertion process until
all jobs of are inserted into .

4.5 Inner-factory local search strategy

To strengthen the development of algorithms and
explore the solution space inside the factory, a swap-
based local strengthening strategy is designed. The
reason why the swap operator is adopted as the local
search strategy is that its time complexity is lower than
the insertion. Under the same running time, the swap is
executed more frequently than the insertion, allowing

GreedSwap

the algorithm to explore the solution space more
extensively. Therefore, this paper develops a swap-
based local strengthening strategy, ,
presented in Algorithm 5.

GreedSwap swap
(
π

temp
fi
,π

temp
f j

)
π

temp
fi

π
temp
f j

π
temp′

f π
temp′

f

π
temp′

f π
temp
f π

temp′

f

π
temp
f

In , the function refers

to exchange jobs and , and obtain a new

sequence (see Line 3). Subsequently, is

evaluated. If is better than , then is

instead of (see Lines 4−8).

CriticalFactory_ExtractInsert
(
πtemp, d

)
Algorithm 3　

πtemp dInput:　 and
πtempOutput:　

i = 1 d/21　For to
f = 1 F2　　For to

fmax fmin3　　　Find and
4　　End For

pt = rand
(
1,πtemp

fmax

)
5　　

job pt π
temp
fmax

6　　 = the -th job in

π
temp
fmax
= π

temp
fmax
\job7　　

BestPos Cmax
π

temp
fmin

8　　Find the position with the minimum in

job BestPos π
temp
fmin

9　　Insert into position of
10　End For

DR
(
π

temp
f , d

)
Algorithm 4　

π
temp
f dInput:　 ,

π
temp
fOutput:　

ΠDes = ∅ ΠDes1　 %% is a partial collection of jobs
ΠDes.size < d2　While ()

pt = rand
(
1,πtemp

f .size
)

3　　

π
temp
fpt

π
temp
f ΠDes4　　Extract from and put it into

π
temp
f = π

temp
f \πtemp

fpt
5　　

6　End While
j = 1 d7　For to

job = ΠDes
j8　　

BestPos Cmax
π

temp
f

9　　Find the position with the minimum in

job BestPos π
temp
f10　　Insert into position of

11　End For

GreedSwap
(
π

temp
f

)
Algorithm 5　

π
temp
fInput:　

π
temp
fOutput:　

i = 1 π
temp
f .size1　For to

j = i+1 π
temp
f .size2　　For to

π
temp′

f = swap
(
π

temp
fi
,π

temp
f j

)
3　　　

Cmax

(
π

temp′

f

)
<Cmax

(
π

temp
f

)
4　　　If ()

π
temp
f = π

temp′

f5　　　　

6　　　Else

π
temp′

f = π
temp
f7　　　　

8　　　End If
9　　End For
10　End For

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 291

4.6 Shaking strategy

Shake_DoubleInsert
Shake_Swap

Shake_DoubleInsert

When the local search fails to improve the current
solution, shaking strategies are utilized to generate new
neighborhoods and escape local optima. To suit the
characteristics of DBHFSP, two shaking strategies are
proposed in this paper, i.e., inter-factory double
insertion and inter-factory swap

. Furthermore, to increase the opportunity
of exploring the solution space, the shaking procedure
terminates as soon as a new and improved solution is
obtained. Algorithm 6 gives the process of

.
f1 f2

π
temp′

f1pt1
π

temp′

f2pt2

f1 f2 π
temp′

f1pt1

π
temp′

f2pt2

π
temp′

f1pt1
BestPos1 π

temp′

f2

π
temp′

f2pt2
BestPos2 π

temp′

f1

πtemp′ πtemp′

πtemp πtemp πtemp′

πtemp′

πtemp

Firstly, two factories and are randomly chosen.
Then jobs and are randomly selected from

 and , respectively (see Lines 2−4). Remove

and from their respective factories (see Lines 3

and 4). Next, insert into of , and

insert into of (see Lines 5−8).
After the above insertion, a new complete solution

 is formed. If is better than the original
, then will be updated with , and the

whole function ends (see Lines 9−11); otherwise,
is updated with (see Lines 12 and 13).

Shake_SwapFor the strategy, the steps are given.

f1 f2

π
temp′

f1pt1
π

temp′

f2pt2

f1 f2 π
temp′

f1pt1

π
temp′

f2pt2
πtemp′ Cmax

(
πtemp′

)
<

Cmax
(
πtemp) πtemp = πtemp′

Firstly, two factories and are randomly chosen.
Secondly, jobs and are randomly chosen

from and , respectively. Thirdly, swap and

 to form a new solution, . If
, then . Otherwise, skip to the

first step until the end of the loop.

5 Simulation Experiments and Analysis

We have conducted a series of simulation experiments
to comprehensively demonstrate the performance of
AIG. Since DBHFSP is a relatively new research topic,
it is important to prove the feasibility of the proposed
model through small-scale examples. Additionally, we
will use analysis of variance (ANOVA) to optimize the
parameters of the proposed algorithm. Subsequently,
the performance of each ingredient in the proposed
algorithm will be evaluated and tested. Finally, we will
verify the comprehensive effectiveness of AIG by
comparing it with some related algorithms.

5.1 Experimental setup

F S J
F ∈ {2, 3, 4, 5} S ∈ {3, 5, 8, 10} J ∈ {100, 200, 300,
400, 500} F ×S × J

TimeLimit =
F ×S × J× t t

Following Ref. [45], 80 medium and large test
instances are formed by combining , , and , where

, , and
. Each combination is considered as

an instance that is executed independently 20 times to
reduce the influence of randomness in all simulation
experiments. The processing time of each job is
uniformly distributed between [1, 99], and the number
of machines is obtained within [1, 5] for each instance.
To guarantee the fairness of experimental results, the
same stop running time is set as

 for all algorithms, where is the control
parameter for the effective running time and is set to 3
and 5. Moreover, all algorithms are written in visual
studio 2019 C++ and executed on a PC with an Intel(R)
Core i7 processor running at 3.60 GHz and 32.0 GB
RAM.

To clearly and intuitively reflect the search results of
each algorithm, the relative percentage increase (RPI)
is employed as an evaluation metric. RPI measures the
disparity between the makespan of an algorithm and
the best one found so far. RPI evaluation indicator is
defined by the following formula:

RPI = (ci− cmin)/cmin×100 (22)
ci

th
cmin

where represents an average of the makespan
generating by the i- algorithm after independently
running 20 times. represents the minimum

Shake_DoubleInsert
(
πtemp

)
Algorithm 6　

πtemp πtemp′ = πtempInput:　 ,
πtempOutput:　

i = 1 J/F1　For to
f1 = rand(1,F) f2 = rand(1,F) f2 , f12　　 , //

pt1 = rand
(
1,πtemp′

f1

)
job1 = π

temp′

f1pt1
π

temp′

f1
= π

temp′

f1
\πtemp′

f1pt1
3　　 , ,

pt2 = rand
(
1,πtemp′

f2

)
job2 = π

temp′

f2pt2
π

temp′

f2
= π

temp′

f2
\πtemp′

f2pt2
4　　 , ,

BestPos1 Cmax π
temp′

f2
5　　Find with the minimal in

job1 BestPos1 π
temp′

f2
6　　Put into of

BestPos2 Cmax π
temp′

f1
7　　Find with the minimal in

job2 BestPos2 π
temp′

f1
8　　Put into position of

Cmax
(
πtemp′

)
<Cmax

(
πtemp

)
9　　If ()

πtemp = πtemp′10　　　

11　　　Break　　　%% Ending the cycle
12　　Else

πtemp′ = πtemp13　　　

14　　End If
15　End For

 292 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

makespan found by all algorithms. In addition, an
average RPI (ARPI) of 80 different test instances is
calculated. A smaller RPI or ARPI indicates better
algorithm performance.

5.2 Validation of MILP model

TimeLimit = F ×S × J×3

To verify the accuracy of the proposed MILP model,
12 small scale instances are selected and solved using
Gurobi. The stop running time of Gurobi and AIG are
3600 s and , respectively. For
AIG, each instance is independently executed 20 times,
and the makespan value reported in Table 3 is the
average makespan after independently running 20
times. For the Gurobi solver, the Gap value is 0,
indicating that the optimal solution has been obtained.
The instances and code for model validation can be
found on GitHub (https://github.com/nideluckily/
DBHFSP_MILP.git).

2×8×2 2×8×3 2×8×4
2×13×2 2×13×3 2×13×4 2×18×2 2×18×3

2×18×4

2×22×2 2×22×3
2×22×4

In Table 3, MILP can obtain the best makespan on
small-scale instances, i.e., , , ,

, , , , ,
and instances. In 7 out of 12 instances, the
MILP model achieves better makespan values than
AIG, indicating its superior performance on small-scale
instances. However, as the instance size increases, AIG
performs better than the Gurobi solver in obtaining
makespan values, i.e., , , and

. Furthermore, the running time of AIG is
significantly lower than that of the Gurobi solver,
indicating that AIG can efficiently handle large-scale
instances. Therefore, it can be concluded that AIG is a
better choice for solving large-scale and complex
problems compared to the Gurobi solver.

5.3 Parameters calibration

d R
The AIG algorithm involves calibration of two
parameters: and (the upper bound of the random
number when choosing a neighborhood search
strategy). The sensitivity of these two parameters is
tested using Taguchi experimental method.

d ∈ {2,3,4,5,6} R ∈ {2,3,4,5,6}
5×5 = 25

2×100×3 2×300×8 3×200×5 3×400×10 4×
400×3 4×500×5 5×200×8 5×500×10

There are 5 levels for each parameter, i.e.,
 and . Thus, we obtain

 combinations by orthogonal table, and their
orthogonal table is shown in Table 4. We randomly
selected eight instances with a relatively large span to
ensure the comprehensiveness of the experiment, i.e.,

, , , ,
, , , and . Based

on the RPI values obtained from the experiments, the
trends of the factor levels are plotted to analyze their
impact on the performance of AIG, i.e., Fig. 4.

d = 5
d

d

d

R

R = 0

According to Fig. 4, the ARPI value is minimized
when , indicating that AIG performs the best
under this parameter setting. As increases beyond 5,
ARPI also increases. This may be because a larger
value can lead to the destruction of near-optimal
solutions, wasting more time and reducing AIG’s
efficiency. Conversely, setting too small may result
in an insufficient degree of job sequence disturbance,
leading to less exploration of the search space. Another
parameter, , is used to control the selection of the
inter-factory strategies. Considering that the
completion time of each factory should be relatively
even in the late iteration, we expect more swap
operators to be used to maintain the balance between
factories (the insertion operator is only used when

). Figure 4 shows that AIG performs the best

Table 3 Experimental result of MILP and AIG.

F × J×S
MILP AIG

Makespan Time (s) Gap (%) Makespan Time (s)
2×8×2 65 0.05 0 65 0.04
2×8×3 117 0.04 0 117 0.06
2×8×4 112 0.96 0 124 0.08
2×13×2 97 2.60 0 99 0.06
2×13×3 141 25.52 0 142 0.08
2×13×4 166 24.10 0 170 0.11
2×18×2 149 3600 23.49 150 0.08
2×18×3 164 3600 20.12 169 0.11
2×18×4 175 3600 16.57 176 0.16
2×22×2 166 3600 50 165 0.09
2×22×3 195 3600 42.05 194 0.14
2×22×4 221 3600 27.15 217 0.19

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 293

R = 5when .

d

Table 5 displays the ARPI values and significance
levels of the two parameters with Delta measuring the
performance based on the disparity between the
maximum and minimum ARPI across the five levels. A
significant effect of the parameter is indicated by a
larger Delta or a smaller Rank indicator. From Table 5,

 has a large impact on the algorithm, while the

R d

d = 5 R = 5
d = 5 R = 5

difference between the Delta values of and is not
significant. From the average RPI values given in
Table 5, it can be seen that the AIG has the best
performance when and . According to the
above analysis, we set and .

5.4 Evaluation of initialization methods

To improve the convergence performance of AIG, an
appropriate initialization strategy is crucial. The NEH2
heuristic, which has been widely utilized in solving
DPFSP and has undergone numerous enhancements,
can generate high-quality initial solutions. In this
paper, we modify NEH2 according to the specific
characteristics of DBHFSP to further enhance its
performance. We develop an NEH2_FSD initialization
method by combining NEH2 and the first stage
processing time descending priority rule. Further, we
compare the proposed initialization strategy with
NEH2. The interval plot of the experimental results is
shown in Fig. 5.

From Fig. 5, the interval of NEH2_FSD is lower than
that of NEH2, and the two intervals do not overlap,
suggesting that the algorithm can generate better initial
solutions using NEH2_FSD. This improvement is
attributed to the use of the first-stage processing time
descending priority rule to mitigate the impact of

Table 4 Orthogonal table and response values.

Combination No.
Parameter

ARPI
d R

1 2 2 0.810 388
2 2 3 0.824 091
3 2 4 0.749 053
4 2 5 0.769 257
5 2 6 0.775 704
6 3 2 0.774 233
7 3 3 0.755 607
8 3 4 0.707 455
9 3 5 0.721 388
10 3 6 0.729 333
11 4 2 0.735 936
12 4 3 0.703 336
13 4 4 0.663 382
14 4 5 0.694 982
15 4 6 0.672 266
16 5 2 0.740 136
17 5 3 0.721 102
18 5 4 0.667 080
19 5 5 0.611 030
20 5 6 0.684 753
21 6 2 0.790 138
22 6 3 0.728 888
23 6 4 0.705 961
24 6 5 0.686 460
25 6 6 0.637 642

0.800

d R

0.775

0.750

AR
PI

0.725

0.700

0.800

0.775

0.750

AR
PI

0.725

0.700

2 3 4

(a) (b)

5 6 2 3 4 5 6

Fig. 4 Taguchi analysis for the AIG calibration.

Table 5 ARPI response values of each parameter.

Level
ARPI

d={2, 3, 4, 5, 6} R={2, 3, 4, 5, 6}
1 0.7857 0.7702
2 0.7376 0.7466
3 0.6940 0.6986
4 0.6848 0.6966
5 0.7098 0.6999

Delta 0.1009 0.0735
Rank 1 2

Note: When Level=1, d=2 and R=2. When Level=2, d=3 and
R=3. When Level=3, d=4 and R=4. When Level=4, d=5 and
R=5. When Level=5, d=6 and R=6.

NEH2 NEH2_FSD
0.19
0.24
0.29
0.34
0.39

0.44
0.49

R
PI

Fig. 5 RPI-based confidence intervals for different
initialization methods.

 294 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

blocking constraints and balance the completion time
of individual factories. In conclusion, to ensure
efficient convergence and obtain high-quality solutions
rapidly, we adopt NEH2_FSD as the initialization
method.

5.5 Performance analysis for the proposed
components of AIG

This section presents four groups of simulation
experiments aiming at demonstrating the effectiveness
of the four main components. These components
include the proposed decoding strategy, the inter-
factory neighborhood search strategies, the different
local search strategies, and the shaking methods.
5.5.1 Evaluation of memory-based decoding strategy
In Section 4, we propose a memory-based decoding
strategy, which can help the algorithm save time for
more iterations and can explore the neighborhood
structure more deeply. To verify its effectiveness, the
performance of AIG with the memory-based decoding
method is compared to AIG with the normal decoding
strategy. The confidence intervals of the experimental
results are presented in Fig. 6.

From Fig. 6, the memory-based decoding interval is
lower than the ordinary decoding interval, and the two
intervals do not overlap. The results indicate that the
memory-based decoding strategy outperforms the
normal decoding strategy in solving DBHFSP. The
reason may be that the memory-based decoding
strategy can reduce unnecessary computation, facilitate
deeper exploration of neighborhoods, and increase the
possibility of discovering better solutions. Therefore,
we use memory-based decoding for DBHFSP.
5.5.2 Evaluation of inter-factory neighborhood

search strategies
Considering the multi-factory feature of DBHFSP, we
develop two cross-factory neighborhood search
strategies. They help algorithms explore wider
neighborhood structures while enhancing the
connections among factories. These strategies include

an insertion-based approach and a swap-based
approach. In addition, considering that a single
neighborhood search may not significantly affect the
algorithm’s global search ability, we employ a hybrid
approach of the two inter-factory neighborhood search
strategies. To demonstrate the excellence of the
neighborhood search strategy, we conducted three sets
of experiments: one with only insertion-based
neighborhood search, one with only swap-based
neighborhood search, and one with hybrid
neighborhood search.

Figure 7 demonstrates that the insertion operator is
better than the swap operator. Moreover, the hybrid
neighborhood search strategy by combining both
insertion and swap operators outperforms the
individual insertion and swap operators by a significant
margin. This observation demonstrates the
effectiveness of our hybrid neighborhood search
strategy. By enhancing the collaboration among the
factories, the strategy generates a more diverse set of
neighborhoods, which in turn increases the probability
of finding high-quality solutions.
5.5.3 Evaluation of local search strategies within the

factory
The insertion operator can effectively reinforce the
current solution in the IG algorithm. However, to
accelerate the perturbation of job sequence and mitigate
the effect of blocking constraints, we propose a swap-
based local search strategy with lower time complexity.
We test the performance of the insertion operator
(AIG_insert), the swap operator (AIG_swap), and the
no-perturbation strategy (AIG_No) under the same
experimental condition. The experimental results are
illustrated in Fig. 8. Figure 8 displays the confidence
intervals to provide a more intuitive comparison.

In Fig. 8, the performance is greatly reduced when
there is no local search strategy in AIG, which reflects
the necessity of the local search strategy. Meanwhile,
Fig. 8 indicates that the swap operator outperforms the
insertion operator evidenced by the smaller RPI value.

Memory-based
decoding

Normal
decoding

0.15

0.25

0.35

0.45

0.55

0.65

R
PI

Fig. 6 RPI-based confidence intervals for different
decoding methods.

Hybrid Insertion Swap
0.19

0.29

0.39

0.49

0.59

R
PI

Fig. 7 RPI-based confidence intervals for different inter-
factory neighborhood search strategies.

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 295

It can be attributed to the fact that the algorithm
utilizing the swap operator has more iterations than the
insertion operator for the same termination time, which
can enhance AIG’s exploitation capabilities and help it
explore deeper neighborhoods. On this basis, the
algorithm can find more promising solutions. Based on
the results, we adopt the swap-based local search
strategy to obtain more potential solutions.
5.5.4 Evaluation of shaking methods
In DBHFSP, since there are multiple factories, the job
sequence in each factory may reach a local optimum
prematurely due to local search, leading to suboptimal
solutions. To address this issue, we design two shaking
strategies, i.e., inter-factory double insertion and inter-
factory swap. To prove the effectiveness of these
shaking strategies, AIG with a hybrid strategy (both
shaking strategies are used) (AIG_hybrid), AIG with
single insertion operator (AIG_insert), AIG with single
swap operator (AIG_swap), and AIG without shaking
strategy (AIG_No) are tested under the same
experimental condition.

In Fig. 9, the RPI value of the algorithm without the
shaking strategy is larger than the other three, which
demonstrates that the shaking strategies are effective.
In addition, among the three algorithms using the
shaking strategy, it can be found that the algorithm
with a hybrid strategy is better than the other two
strategies. The hybrid strategy is effective due to its

ability to increase the algorithm’s diversity, explore
more unknown neighborhoods, and facilitate the
discovery of better solutions.

(PN −PY)/PN ×100% PY PN

From Sections 5.5.1 to 5.5.4, it can be observed that
the algorithm components designed in this paper can
improve the performance of the algorithm and find
better solutions. We calculate the percentage of
performance improvement for each component using
the formula , where and
represent the average RPI values of AIG with and
without the proposed component, respectively.
Through calculations, the percentage of improvement
provided by the memory-based decoding strategy is
54%, the inter-factory neighborhood search strategy is
43%, the local search strategy is 62%, and the shaking
strategy is 18%. Therefore, based on the above results,
the local search strategy has the highest impact,
followed by the memory-based decoding strategy, the
inter-factory neighborhood search strategy, and the
shaking strategy.

5.6 Performance verification of all comparative
algorithms

To assess the effectiveness of AIG, AIG is compared
with five advanced algorithms in this section, i.e.,
CIG[45], discrete differential evolution (DDE)
algorithm[10], evolutionary algorithm (EA)[11], multi-
neighborhood IGA (MN_IG)[1], and DPSO[9]. EA and
DDE are two types of swarm intelligence algorithms,
which have good global search ability and can improve
the diversity of solutions. These algorithms have been
proven effective in solving DPFSP and DBFSP,
respectively. DPSO is a classic swarm intelligence
algorithm, which outperforms other comparative
algorithms in solving HFSP. MN_IG is an IGA with a
multi-neighborhood search structure, which balances
exploitation and exploration abilities. MN_IG has
demonstrated good performance in solving the DBFSP.
Additionally, CIG is a recently proposed algorithm
specifically designed for solving the DHFSP with
blocking constraints, which is same as our research
topic. The above five comparative algorithms have
shown good performance in solving related problems.
Among five algorithms, the problems solved by EA,
DDE, and MN_IG are very similar to our problem
except for not considering hybrid flow shop. For
experimental fairness, we have blended strategies
related to hybrid flow shop into EA, DDE, and MN_IG
to fit our problem. Similarly, we have improved DPSO
by considering the distributed environment. Therefore,

AIG_insert AIG_No AIG_swap
0.1

0.3

0.5

0.7

0.9

1.1

R
PI

Fig. 8 RPI-based confidence intervals for different local
search strategies within the factory.

AIG
_N

o

AIG
_h

yb
rid

AIG
_in

se
rt

AIG
_s

wap
0.32

0.37

0.42

0.47

0.52

0.57

R
PI

Fig. 9 RPI-based confidence intervals for different shaking
strategies.

 296 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

t = 3 t = 5

it is appropriate to choose them as comparison
algorithms. The parameters of all comparison
algorithms are set to the values recommended in the
original literature and given in Table 6. We conducted
extensive experiments in advance for each parameter
setting and performed sensitivity analysis on the
parameters that have a significant impact on the
algorithm, as shown in Section 5.3. The remaining
parameters are set according to empirical guidelines.
All algorithms are performed under the termination
conditions of and . More profoundly, to
visually demonstrate the convergence of all algorithms,
the confidence intervals of test algorithms are given in
Figs. 10 and 11.

In Tables 7 and 8, AIG demonstrates excellent
performance in solving 80 instances of different sizes
(the best values are bolded). AIG obtains 76 best

t = 3

(PCom−PAIG)/PCom×100% PCom

PAIG

t = 5

minimal makespan (MIN) when , followed by CIG
(4), EA (2), DDE (0), MN_IG (0), and DPSO (0).
Meanwhile, AIG obtains the best minimal makespan in
77 instances, followed by EA (3) and CIG (1), and the
number of the best values for DDE, MN_IG, and
DPSO are all 0. We calculate the percentage of AIG’s
superiority over other comparison algorithms using the
formula , where and

 represent the MIN or RPI values of the
comparison algorithm and AIG, respectively. For the
minimum makespan, AIG outperforms CIG, DDE, EA,
MN_IG, and DPSO by 0.34%, 1.27%, 0.73%, 1.36%,
and 1.05%, respectively. For the RPI, the percentages
of AIG outperforming other comparison algorithms are
75%, 88%, 82%, 91%, and 86%, respectively. In
addition, AIG obtains the maximum number of best
makespan and RPI values when (see Table 8). In

Table 6 Parameter configurations of the comparison algorithms.

Algorithm Population size Number of destruction jobs Mutation rate Crossover rate Temperature coefficient
CIG − 6 − − −
DDE 30 − 0.6 0.1 −
EA 5 − − − −

MN_IG − 4 − − 0.4
DPSO 100 − − − −

AIG CIG DDE DPSO EA MN_IG
Algorithm

−0.1

0.4

0.9

1.4

1.9

2.4

2.9

R
PI

F

0

1

2

3

4

R
PI

2 3 4 5

AIG
CIG
DDE
DPSO
EA
MN_IG

(a) (b)
Fig. 10 Confidence intervals of all algorithms when t = 3.

AIG CIG DDE DPSO EA MN_IG
Algorithm

−0.1

0.4

0.9

1.4

1.9

2.4

2.9

R
PI

F

0

1

2

3

4

R
PI

2 3 4 5

(a) (b)

AIG
CIG
DDE
DPSO
EA
MN_IG

Fig. 11 Confidence intervals of all algorithms when t = 5.

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 297

t= 3Table 7 Experimental results of all comparison algorithms when .

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
2×100×3 2560 0.54 2594 1.42 2600 1.56 2594 1.33 2615 2.32 2594 1.33
2×100×5 1375 0.32 1386 1.05 1400 1.82 1389 1.19 1401 2.75 1393 1.61
2×100×8 2765 0.60 2794 1.05 2801 1.30 2794 1.05 2836 2.99 2794 1.06
2×100×10 2979 0.26 3003 0.88 3028 1.64 3003 0.81 3019 1.73 3003 0.88
2×200×3 2460 0.55 2486 1.75 2582 4.96 2550 4.28 2573 4.90 2582 4.96
2×200×5 4795 0.12 4813 0.41 4826 0.65 4812 0.35 4844 1.06 4812 0.36
2×200×8 6072 0.41 6117 1.53 6456 6.32 6266 3.64 6295 4.20 6375 5.26
2×200×10 5340 0.09 5351 0.21 5370 0.56 5351 0.22 5373 0.71 5351 0.23
2×300×3 3771 0.07 3775 0.19 3783 0.32 3775 0.18 3789 0.81 3776 0.19
2×300×5 8168 0.11 8175 0.12 8217 0.60 8179 0.17 8248 1.19 8191 0.49
2×300×8 4365 0.44 4403 2.21 4635 6.19 4564 5.17 4573 5.23 4615 5.87
2×300×10 8215 0.19 8234 0.24 8234 0.23 8234 0.23 8242 0.49 8234 0.23
2×400×3 2745 0.74 2788 3.29 2937 6.99 2932 6.81 2944 7.62 2937 6.99
2×400×5 10 421 0.06 10 434 0.19 10 451 0.29 10 432 0.16 10 455 0.45 10 448 0.28
2×400×8 5323 0.06 5325 0.18 5330 0.13 5328 0.09 5345 0.47 5330 0.13
2×400×10 10 274 0.04 10 277 0.05 10 291 0.17 10 277 0.06 10 278 0.32 10 291 0.17
2×500×3 12 160 0.03 12 166 0.05 12 168 0.07 12 166 0.05 12 207 0.40 12 166 0.05
2×500×5 12 864 0 12 864 0 12 873 0.07 12 864 0.01 12 884 0.16 12 864 0.01
2×500×8 12 816 0.17 12 805 0.49 12 981 1.37 12 904 0.93 12 862 0.67 12 957 1.29
2×500×10 13 099 0.34 13 066 0.40 13 259 1.48 13 162 1.13 13 312 2.06 13 259 1.48
3×100×3 1804 0.30 1813 0.58 1877 4.05 1823 1.22 1855 3.33 1835 1.86
3×100×5 1801 0.14 1800 0.30 1853 2.94 1811 0.84 1834 2.78 1829 1.84
3×100×8 1965 0.26 1975 1.45 2049 4.27 1989 1.66 2020 3.38 2014 2.95
3×100×10 2302 0.69 2311 1.71 2449 6.39 2340 2.18 2413 5.56 2397 4.81
3×200×3 3318 0.28 3339 0.66 3347 0.87 3336 0.54 3374 1.75 3336 0.58
3×200×5 1238 0.21 1248 1.63 1318 6.46 1296 5.28 1295 5.46 1311 6.17
3×200×8 3455 0.30 3484 1.05 3512 1.65 3486 0.98 3525 2.37 3490 1.25
3×200×10 3445 0.05 3448 0.17 3451 0.17 3447 0.07 3469 1.57 3448 0.15
3×300×3 1702 0.16 1705 0.51 1727 1.47 1715 0.95 1719 1.32 1720 1.10
3×300×5 5608 0.06 5619 0.21 5622 0.25 5617 0.17 5656 0.92 5620 0.22
3×300×8 5058 0.04 5061 0.17 5079 0.42 5061 0.06 5084 0.60 5061 0.09
3×300×10 5223 0.16 5241 0.50 5263 0.77 5238 0.37 5283 1.26 5246 0.49
3×400×3 2255 0.19 2269 1.35 2305 2.22 2301 2.15 2299 2.23 2305 2.22
3×400×5 6837 0.02 6848 0.18 6850 0.19 6846 0.14 6897 0.93 6850 0.19
3×400×8 6991 0.01 6998 0.20 7006 0.21 6997 0.12 7026 0.80 7002 0.19
3×400×10 7224 0.33 7225 0.31 7271 0.75 7217 0.07 7260 0.71 7227 0.22
3×500×3 8279 0.05 8289 0.17 8295 0.19 8287 0.10 8326 0.57 8287 0.12
3×500×5 8608 0.08 8623 0.28 8639 0.36 8621 0.16 8651 0.53 8624 0.20
3×500×8 8887 0.09 8904 0.21 8906 0.21 8899 0.14 8939 0.61 8900 0.17
3×500×10 8626 0.04 8633 0.11 8634 0.09 8630 0.06 8647 0.29 8634 0.09
4×100×3 1171 0 1173 0.22 1176 0.43 1172 0.09 1203 3.09 1174 0.36
4×100×5 721 0.75 731 1.64 749 3.88 733 1.91 757 6.77 747 3.83
4×100×8 1387 0.25 1394 0.87 1396 0.65 1389 0.14 1428 3.07 1392 0.59
4×100×10 1396 0.72 1426 2.79 1458 4.44 1415 1.65 1432 3.07 1428 2.51
4×200×3 2512 0.07 2520 0.42 2533 0.84 2518 0.25 2554 1.71 2520 0.36
4×200×5 2478 0.36 2491 0.52 2498 0.81 2490 0.49 2537 2.38 2493 0.64

(to be continued)

 298 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

summary, AIG is better than the other comparison
algorithms. The reason may be that our inter-factory
perturbation strategies generate more neighborhood
structures and hopefully find more approximate
solutions. Furthermore, the local search strategy in the
factory can strengthen the development of the
algorithm, which can better solve DBHFSP.

The confidence intervals of all algorithms are
presented in Figs. 10 and 11. In Fig. 10a, AIG has the

smallest confidence interval, indicating that the overall
performance of AIG outperforms CIG, EA, DPSO,
DDE, and MN_IG. Meanwhile, in Fig. 10b, the curve
of AIG is less undulating and smoother than other
algorithms, which proves that the convergence ability
of AIG is strong and its performance is stable.
Similarly, in Fig. 11, AIG demonstrates superior
performance compared to the other algorithms. This
finding provides evidence to support the assertion that

t= 3Table 7 Experimental results of all comparison algorithms when .
(continued)

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
4×200×8 2707 0.22 2725 0.66 2725 0.66 2724 0.66 2749 1.77 2725 0.66
4×200×10 1607 0.52 1642 3.07 1707 6.22 1668 4.47 1670 4.73 1687 5.50
4×300×3 1266 0.30 1285 1.99 1307 3.24 1301 3.05 1301 3.71 1307 3.24
4×300×5 3845 0.27 3867 0.96 3951 2.76 3911 2.08 3902 1.97 3950 2.75
4×300×8 3937 0.10 3946 0.33 3951 0.36 3947 0.27 4000 1.80 3951 0.36
4×300×10 4224 0.08 4238 0.60 4271 1.11 4235 0.33 4269 1.16 4250 0.72
4×400×3 4938 0.21 4954 0.38 4959 0.43 4952 0.29 5009 1.45 4954 0.36
4×400×5 5183 0.11 5196 0.44 5215 0.62 5193 0.22 5221 1.10 5215 0.62
4×400×8 5389 0.22 5442 1.18 5482 1.73 5468 1.60 5476 2.21 5482 1.73
4×400×10 5400 0.07 5421 0.49 5438 0.70 5416 0.34 5445 1.15 5438 0.70
4×500×3 2168 0.38 2186 2.58 2256 4.06 2243 3.70 2241 4.01 2256 4.06
4×500×5 2343 0.51 2405 4.80 2504 6.87 2484 6.41 2470 6.23 2504 6.87
4×500×8 3665 0.57 3723 3.23 3889 6.11 3852 5.32 3822 4.89 3876 5.96
4×500×10 6467 0.25 6475 0.42 6498 0.63 6457 0.15 6509 0.96 6498 0.63
5×100×3 932 0.11 936 0.71 941 0.97 933 0.15 981 5.67 937 0.73
5×100×5 590 0.51 596 1.63 613 3.90 602 2.47 616 7.15 613 3.90
5×100×8 1124 0.23 1134 1.39 1137 1.16 1126 0.27 1190 6.07 1134 1.09
5×100×10 1369 0.20 1392 1.99 1452 6.06 1409 3.20 1440 6.36 1440 5.65
5×200×3 2090 0.03 2093 0.30 2098 0.38 2091 0.05 2142 2.49 2092 0.21
5×200×5 683 0.76 686 1.67 713 4.39 711 4.16 718 5.97 713 4.39
5×200×8 2303 0.11 2311 0.46 2322 0.83 2307 0.21 2363 2.83 2311 0.50
5×200×10 2236 0.22 2249 0.88 2265 1.30 2246 0.55 2291 2.59 2254 0.92
5×300×3 3053 0.16 3062 0.33 3067 0.46 3058 0.19 3097 1.45 3061 0.33
5×300×5 1672 0.23 1684 1.23 1723 3.05 1717 2.80 1738 4.35 1723 3.05
5×300×8 3277 0.02 3286 0.50 3290 0.40 3283 0.25 3329 1.95 3290 0.40
5×300×10 3369 0.16 3423 1.94 3454 2.52 3417 1.69 3448 2.75 3454 2.52
5×400×3 4040 0.14 4051 0.32 4054 0.35 4049 0.23 4101 1.54 4051 0.32
5×400×5 2224 0.06 2249 2.28 2349 5.62 2320 4.78 2329 5.02 2349 5.62
5×400×8 4088 0.18 4106 0.72 4134 1.13 4102 0.44 4136 1.33 4134 1.13
5×400×10 4284 0.06 4295 0.55 4314 0.70 4291 0.26 4341 1.50 4305 0.57
5×500×3 5160 0.16 5202 1.13 5289 2.50 5255 2.09 5264 2.09 5289 2.50
5×500×5 5020 0.02 5023 0.18 5032 0.24 5022 0.05 5053 0.79 5026 0.17
5×500×8 5256 0.04 5264 0.21 5271 0.29 5258 0.08 5287 0.73 5265 0.22
5×500×10 5404 0.10 5409 0.23 5446 0.78 5410 0.20 5457 1.10 5446 0.78

Mean 4352 0.23 4367 0.92 4408 1.93 4384 1.28 4412 2.48 4398 1.69
Percentage (%) − − 0.34 75 1.27 88 0.73 82 1.36 91 1.05 86

Note: Percentage means the percentage of AIG better than other comparison algorithms.

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 299

t= 5Table 8 Experimental results of all comparison algorithms when .

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
2×100×3 2558 0.45 2594 1.50 2600 1.64 2594 1.41 2615 2.40 2594 1.41
2×100×5 1370 0.53 1386 1.42 1400 2.19 1388 1.55 1401 3.12 1393 1.87
2×100×8 2765 0.58 2794 1.05 2801 1.30 2794 1.05 2836 2.99 2794 1.05
2×100×10 2979 0.21 3003 0.88 3028 1.64 3003 0.81 3019 1.73 3003 0.87
2×200×3 2460 0.41 2480 1.51 2582 4.96 2559 4.26 2573 4.90 2582 4.96
2×200×5 4793 0.12 4813 0.45 4826 0.69 4812 0.40 4844 1.10 4812 0.40
2×200×8 6044 0.55 6114 1.61 6456 6.82 6203 3.31 6295 4.69 6375 5.63
2×200×10 5340 0.07 5351 0.21 5370 0.56 5351 0.21 5373 0.71 5351 0.22
2×300×3 3771 0.07 3775 0.17 3783 0.32 3776 0.17 3789 0.81 3776 0.19
2×300×5 8168 0.08 8175 0.10 8217 0.60 8175 0.13 8248 1.19 8191 0.47
2×300×8 4365 0.05 4386 1.30 4635 6.19 4553 5.08 4573 5.23 4608 5.75
2×300×10 8215 0.19 8234 0.24 8234 0.23 8234 0.23 8242 0.49 8234 0.23
2×400×3 2739 0.61 2788 3.24 2937 7.23 2930 7.02 2944 7.86 2937 7.23
2×400×5 10 421 0.06 10 433 0.15 10 451 0.29 10 435 0.18 10 455 0.45 10 446 0.27
2×400×8 5323 0.06 5325 0.09 5330 0.13 5328 0.09 5345 0.47 5330 0.13
2×400×10 10 271 0.04 10 277 0.08 10 291 0.19 10 277 0.11 10 278 0.35 10 289 0.19
2×500×3 12 160 0.03 12 166 0.05 12 168 0.07 12 166 0.05 12 207 0.40 12 166 0.05
2×500×5 12 863 0.01 12 864 0.01 12 873 0.08 12 864 0.01 12 884 0.16 12 864 0.02
2×500×8 12 810 0.12 12 805 0.49 12 981 1.37 12 907 0.90 12 862 0.67 12 957 1.29
2×500×10 13 076 0.21 13 066 0.40 13 259 1.48 13 195 1.10 13 312 2.06 13 259 1.48
3×100×3 1797 0.50 1807 0.85 1877 4.45 1809 1.21 1855 3.73 1833 2.20
3×100×5 1801 0.24 1798 0.31 1853 3.06 1812 0.98 1834 2.89 1829 1.90
3×100×8 1956 0.55 1974 1.80 2049 4.75 1982 1.68 2020 3.85 2014 3.29
3×100×10 2300 0.75 2295 1.00 2449 6.71 2333 2.38 2413 5.88 2397 4.95
3×200×3 3318 0.28 3338 0.64 3347 0.87 3336 0.55 3374 1.75 3336 0.58
3×200×5 1227 0.9 1240 1.76 1318 7.42 1292 5.77 1295 6.41 1311 7.04
3×200×8 3455 0.28 3483 0.99 3512 1.65 3485 0.93 3525 2.37 3490 1.12
3×200×10 3445 0.05 3448 0.15 3451 0.17 3447 0.06 3469 1.57 3448 0.14
3×300×3 1702 0.14 1705 0.46 1727 1.47 1712 0.79 1719 1.32 1717 1.06
3×300×5 5603 0.10 5619 0.29 5622 0.34 5617 0.25 5656 1.01 5619 0.30
3×300×8 5058 0.04 5061 0.17 5079 0.42 5061 0.06 5084 0.60 5061 0.08
3×300×10 5222 0.10 5238 0.51 5263 0.79 5237 0.34 5283 1.28 5242 0.47
3×400×3 2253 0.12 2262 0.95 2305 2.31 2302 2.23 2299 2.32 2305 2.31
3×400×5 6834 0.05 6846 0.20 6850 0.23 6846 0.18 6897 0.97 6848 0.23
3×400×8 6985 0.05 6998 0.23 7006 0.30 6997 0.18 7026 0.89 7002 0.28
3×400×10 7224 0.32 7225 0.32 7271 0.78 7215 0.07 7260 0.74 7227 0.21
3×500×3 8279 0.03 8288 0.14 8295 0.19 8287 0.10 8326 0.57 8287 0.11
3×500×5 8607 0.07 8623 0.26 8639 0.37 8621 0.20 8651 0.54 8623 0.20
3×500×8 8887 0.08 8904 0.20 8906 0.21 8899 0.14 8939 0.61 8900 0.16
3×500×10 8613 0.12 8633 0.26 8634 0.24 8630 0.22 8647 0.44 8633 0.24
4×100×3 1171 0 1173 0.22 1176 0.43 1172 0.09 1203 3.09 1173 0.26
4×100×5 721 0.42 731 1.58 749 3.88 731 1.58 757 6.77 746 3.63
4×100×8 1387 0.25 1394 0.87 1396 0.65 1389 0.14 1428 3.07 1392 0.59
4×100×10 1385 1.36 1426 3.61 1458 5.27 1416 2.44 1432 3.88 1428 3.21
4×200×3 2512 0.07 2519 0.39 2533 0.84 2518 0.25 2554 1.71 2520 0.36

(to be continued)

 300 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

the proposed AIG is suited to solve DBHFSP.

2×100×3 3×400×10 4×300×8 5×500×3

Meanwhile, to concretely illustrate the superiority of
AIG, simulation experiments are conducted on four
randomly selected instances with different scales, i.e.,

, , , and .
Figure 12 shows the box plot drawn from the
experimental results. From the box plots of the four
instances, it is evident that AIG is better than the other

3×400×10 4×300×8 5×500×3

algorithms significantly in terms of makespan. And the
results obtained by AIG are very stable for three
instances of , , and ,
which indicates that the convergence of AIG is also
outstanding.

In addition, to show the convergence ability of AIG
more intuitively and enrich the experiments, we also
randomly chose four test instances of different sizes,

t= 5Table 8 Experimental results of all comparison algorithms when .
(continued)

F × J×S
AIG CIG DDE EA MN_IG DPSO

MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI MIN RPI
4×200×5 2478 0.36 2491 0.52 2498 0.81 2490 0.48 2537 2.38 2493 0.62
4×200×8 2707 0.22 2725 0.66 2725 0.66 2724 0.64 2749 1.77 2725 0.66
4×200×10 1607 0.36 1633 2.73 1707 6.22 1656 4.17 1670 4.73 1687 5.33
4×300×3 1266 0.30 1284 1.75 1307 3.24 1304 3.08 1301 3.71 1307 3.24
4×300×5 3843 0.27 3865 0.97 3951 2.81 3911 2.16 3902 2.02 3950 2.81
4×300×8 3935 0.13 3946 0.38 3951 0.41 3945 0.29 4000 1.85 3951 0.41
4×300×10 4224 0.08 4238 0.58 4271 1.11 4234 0.40 4269 1.16 4243 0.66
4×400×3 4938 0.19 4954 0.38 4959 0.43 4952 0.30 5009 1.45 4953 0.33
4×400×5 5183 0.11 5196 0.39 5215 0.62 5193 0.20 5221 1.10 5212 0.61
4×400×8 5389 0.18 5441 1.11 5482 1.73 5450 1.32 5476 2.21 5482 1.73
4×400×10 5400 0.06 5420 0.46 5438 0.70 5414 0.35 5445 1.15 5438 0.70
4×500×3 2168 0.18 2186 1.77 2256 4.06 2242 3.71 2241 4.01 2249 3.99
4×500×5 2339 0.50 2391 3.51 2504 7.05 2483 6.58 2470 6.41 2503 7.05
4×500×8 3665 0.47 3717 2.31 3889 6.11 3851 5.27 3822 4.89 3876 5.95
4×500×10 6467 0.20 6467 0.18 6498 0.60 6459 0.07 6509 0.93 6495 0.59
5×100×3 928 0.43 936 1.14 941 1.40 932 0.54 981 6.12 937 1.14
5×100×5 590 0.47 596 1.63 613 3.90 599 2.07 616 7.15 613 3.90
5×100×8 1124 0.16 1134 1.39 1137 1.16 1124 0.23 1190 6.07 1134 1.05
5×100×10 1369 0.20 1374 1.43 1452 6.06 1403 3.11 1440 6.36 1440 5.55
5×200×3 2090 0.02 2093 0.30 2098 0.38 2091 0.05 2142 2.49 2092 0.24
5×200×5 683 0.20 686 1.38 713 4.39 709 3.98 718 5.97 713 4.39
5×200×8 2298 0.25 2311 0.64 2322 1.04 2305 0.39 2363 3.05 2311 0.71
5×200×10 2236 0.22 2249 0.87 2265 1.30 2246 0.48 2291 2.59 2249 0.81
5×300×3 3053 0.16 3061 0.32 3067 0.46 3058 0.17 3097 1.45 3061 0.31
5×300×5 1667 0.38 1677 1.03 1723 3.36 1714 3.00 1738 4.67 1723 3.36
5×300×8 3270 0.20 3286 0.69 3290 0.61 3282 0.42 3329 2.17 3290 0.61
5×300×10 3369 0.16 3418 1.76 3454 2.52 3421 1.78 3448 2.75 3454 2.52
5×400×3 4040 0.14 4051 0.32 4054 0.35 4049 0.22 4101 1.54 4051 0.32
5×400×5 2221 0.14 2249 2.06 2349 5.76 2328 5.01 2329 5.16 2349 5.76
5×400×8 4088 0.14 4106 0.57 4134 1.13 4101 0.40 4136 1.33 4125 1.08
5×400×10 4284 0.06 4295 0.43 4314 0.70 4291 0.28 4341 1.50 4305 0.57
5×500×3 5160 0.16 5202 1.13 5289 2.50 5253 2.09 5264 2.09 5289 2.50
5×500×5 5020 0.02 5023 0.15 5032 0.24 5021 0.04 5053 0.79 5025 0.14
5×500×8 5256 0.04 5264 0.21 5271 0.29 5258 0.05 5287 0.73 5265 0.22
5×500×10 5404 0.09 5405 0.21 5446 0.78 5414 0.25 5457 1.10 5446 0.78

Mean 4350 0.23 4365 0.86 4408 2 4382 1.31 4412 2.56 4397 1.74
Percentage (%) − − 0.34 73 1.3 89 0.73 82 1.4 91 1.07 87

Note: Percentage means the percentage of AIG better than other comparison algorithms.

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 301

2×100×3 3×200×5 4×400×8 5×300×10i.e., , , , and
to plot the evolutionary curves of all algorithms.
Figure 13 shows the details of the evolutionary curves.
The X-axis denotes the time taken by the algorithm to
complete its evolutionary process, while the Y-axis
represents the corresponding makespan generated by
the algorithm. In Fig. 13, AIG obtains the lowest
convergence curve with a good degree of convergence.
AIG can explore more neighborhood structures by
using inter-factory neighborhood search strategies and
local search strategy, which increases the chances of
finding better solutions. Moreover, AIG demonstrates
the ability to find better solutions and show better
convergence curves when solving different test
instances. Therefore, we can believe that AIG has the
ability to solve DBHFSP effectively.

5.7 Friedman test

The simulation results are analyzed to determine if
there are significant differences in the overall
distributions of the compared methods[49]. Initially, it is
assumed that there are no significant differences
between methods. If p value is less than 0.05, this
assumption is considered rejected, and there are
significant differences among the comparative
methods. Conversely, if the p value is greater than or
equal to 0.05, the assumption is deemed acceptable,

t = 3
t = 5

α = 0.050

t = 3
t = 5

indicating that no significant differences are found
among the compared methods. Tables 9 and 10 provide
the statistical results of 80 instances when and

, respectively. The Friedman test yielded a p value
of 0.000, which is below the significance level

. This demonstrates that compared algorithms
have significant differences. AIG algorithm achieved
the lowest rank values of 1.08 and 1.08 for and

, respectively, indicating its superior performance
over other algorithms. Moreover, AIG exhibits the
smallest maximum RPI value of 0.76, the smallest
mean RPI value of 0.23, and the smallest standard
deviation of 0.20, further highlighting its superior
performance over other algorithms. To sum up, AIG is
a very suitable algorithm for solving DBHFSP.

6 Conclusion and Future Work

Considering the constraints in actual production, this
paper focuses on the DBHFSP. The primary objective
is to optimize the makespan of all factories. The
proposed approach is an AIG algorithm, which
demonstrates effective performance in solving
DBHFSP. First, we establish the MILP model of
DBHFSP and validate its correctness using the Gurobi
solver. Second, we design two cross-factory
neighborhood search strategies to enhance
collaboration between factories and explore a wider

AIG CIG
DDE EA

MN_IG
DPSO AIG CIG

DDE EA

MN_IG
DPSO

AIG CIG
DDE EA

MN_IG
DPSOAIG CIG

DDE EA

MN_IG
DPSO

2570

Algorithm Algorithm

Algorithm Algorithm

(a) F×J×S=2×100×3 (b) F×J×S=3×400×10

(c) F×J×S=4×300×8 (d) F×J×S=5×500×3

2580
2590
2600
2610
2620
2630
2640

M
ak

es
pa

n

7230

7240

7250

7260

7270

7280

7290

M
ak

es
pa

n

4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4270

M
ak

es
pa

n

1700

1710

1720

1730

1740

1750

1760

M
ak

es
pa

n

Fig. 12 Box plots of all comparison algorithms.

 302 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

range of neighborhoods. Furthermore, the swap-based
local perturbation strategy enables quick changes to the

job sequence, thereby reducing computation time and
increasing the chances of exploring the search space

0 200 400 600
Running time (ms) Running time (ms)

Running time (ms)
Running time (ms)

(a) F×J×S=2×100×3 (b) F×J×S=3×200×5

(c) F×J×S=4×400×8 (d) F×J×S=5×300×10

800 1000 1200
2585

2590

2595

2600

2605

2610

2615
M

ak
es

pa
n

AIG
CIG
DDE
EA
MNIG
DPSO

AIG
CIG
DDE
EA
MNIG
DPSO

AIG
CIG
DDE

EA
MNIG
DPSO

AIG
CIG
DDE
EA
MNIG
DPSO

0 500 1000 1500 2000 2500
3430

3435

3440

3445

3450

3455

3460

3465

3470

M
ak

es
pa

n

0 1000 2000 3000 4000 5000 6000
5270

5280

5290

5300

5310

5320

5330

M
ak

es
pa

n

0
50

0
10

00
15

00
20

00
25

00
30

00
35

00
40

00
45

00
3160

3170

3180

3190

3200

3210

3220

M
ak

es
pa

n

Fig. 13 Evolution curve of all the comparison algorithms.

t= 3Table 9 Statistical results obtained by Friedman test when (α=0.050).

Algorithm Rank CN Min Max Mean Standard deviation
AIG 1.08 80 0.00 0.76 0.23 0.20
CIG 2.95 80 0.00 4.80 0.92 0.92
DDE 4.98 80 0.07 7.00 1.93 2.08
EA 2.46 80 0.00 6.81 1.28 1.68

MN_IG 5.55 80 0.16 7.62 2.48 1.92
DPSO 3.99 80 0.01 7.00 1.69 1.96
p-value 0.000 − − − − −

Note: CN is the number of instances.

t= 5Table 10 Statistical results obtained by Friedman test when (α=0.050).

Algorithm Rank CN Min Max Mean Standard deviation
AIG 1.08 80 0.00 1.357 0.23 0.23
CIG 2.92 80 0.00 3.61 0.86 0.80
DDE 5.04 80 0.07 7.42 2.01 2.17
EA 2.48 80 0.00 7.02 1.31 1.70

MN_IG 5.56 80 0.16 7.86 2.56 1.99
DPSO 3.91 80 0.02 7.23 1.74 2.01
p-value 0.000 − − − − −

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 303

more thoroughly, ultimately leading to improved
algorithmic performance. Finally, to mitigate
premature convergence, we adopt two shaking
strategies to increase the diversity of solutions. The
experimental results in Section 5 demonstrate that AIG
is significantly more effective in solving DBHFSP than
the other five compared algorithms.

Although AIG shows promising performance in
solving DBHFSP, there are still many challenges to be
investigated. Firstly, considering energy consumption
or electricity cost as the primary optimization objective
can be a valuable extension in line with sustainability
goals. Secondly, incorporating practical production
constraints such as machine breakdowns and uncertain
due dates would make the problem more realistic and
applicable to real-world scenarios. Finally, we can
explore multi-objective optimization methods to
simultaneously optimize multiple objectives, such as
energy consumption, delivery time, and total delay
time.

Acknowledgment

This work was jointly supported by the National
Natural Science Foundation of Shandong Province
(No. ZR2023MF022); National Natural Science
Foundation of China (Nos. 61973203, 62173216, and
62173356); and Guangyue Youth Scholar Innovation
Talent Program Support from Liaocheng University
(No. LCUGYTD2022-03).

References

 Z. Shao, W. Shao, and D. Pi, Effective heuristics and
metaheuristics for the distributed fuzzy blocking flow-
shop scheduling problem, Swarm Evol. Comput., vol. 59,
p. 100747, 2020.

[1]

 Q. -K. Pan, L. Gao, L. Wang, J. Liang, and X. -Y. Li,
Effective heuristics and metaheuristics to minimize total
flowtime for the distributed permutation flowshop
problem, Expert Syst. Appl., vol. 124, pp. 309–324, 2019.

[2]

 Y. -D. Kim, S. -O. Shim, B. Choi, and H. Hwang,
Simplification methods for accelerating simulation-based
real-time scheduling in a semiconductor wafer fabrication
facility, IEEE Trans. Semicond. Manuf., vol. 16, no. 2, pp.
290–298, 2003.

[3]

 M. K. Marichelvam, T. Prabaharan, and X. S. Yang, A
discrete firefly algorithm for the multi-objective hybrid
flowshop scheduling problems, IEEE Trans. Evol.
Comput., vol. 18, no. 2, pp. 301–305, 2014.

[4]

 K. Peng, Q. -K. Pan, L. Gao, B. Zhang, and X. Pang, An
improved artificial bee colony algorithm for real-world
hybrid flowshop rescheduling in steelmaking-refining-
continuous casting process, Comput. Ind. Eng., vol. 122,

[5]

pp. 235–250, 2018.
 W. Shao, Z. Shao, and D. Pi, Modeling and multi-
neighborhood iterated greedy algorithm for distributed
hybrid flow shop scheduling problem, Knowl. Based Syst.,
vol. 194, p. 105527, 2020.

[6]

 Y. Li, X. Li, L. Gao, and L. Meng, An improved artificial
bee colony algorithm for distributed heterogeneous hybrid
flowshop scheduling problem with sequence-dependent
setup times, Comput. Ind. Eng., vol. 147, p. 106638, 2020.

[7]

 J. -J. Wang and L. Wang, A bi-population cooperative
memetic algorithm for distributed hybrid flow-shop
scheduling, IEEE Trans. Emerg. Top. Comput. Intell., vol.
5, no. 6, pp. 947–961, 2021.

[8]

 M. K. Marichelvam, M. Geetha, and Ö. Tosun, An
improved particle swarm optimization algorithm to solve
hybrid flowshop scheduling problems with the effect of
human factors–a case study, Comput. Oper. Res., vol. 114,
p. 104812, 2020.

[9]

 G. Zhang, K. Xing, and F. Cao, Discrete differential
evolution algorithm for distributed blocking flowshop
scheduling with makespan criterion, Eng. Appl. Artif.
Intell., vol. 76, pp. 96–107, 2018.

[10]

 V. Fernandez-Viagas, P. Perez-Gonzalez, and J. M.
Framinan, The distributed permutation flow shop to
minimise the total flowtime, Comput. Ind. Eng., vol. 118,
pp. 464–477, 2018.

[11]

 R. Ruiz and T. Stützle, A simple and effective iterated
greedy algorithm for the permutation flowshop scheduling
problem, Eur. J. Oper. Res., vol. 177, no. 3, pp.
2033–2049, 2007.

[12]

 R. Ruiz, Q. -K. Pan, and B. Naderi, Iterated greedy
methods for the distributed permutation flowshop
scheduling problem, Omega, vol. 83, pp. 213–222, 2019.

[13]

 H. Öztop, M. F. Tasgetiren, D. T. Eliiyi, and Q. -K. Pan,
Metaheuristic algorithms for the hybrid flowshop
scheduling problem, Comput. Oper. Res., vol. 111, pp.
177–196, 2019.

[14]

 S. -Y. Wang and L. Wang, An estimation of distribution
algorithm-based memetic algorithm for the distributed
assembly permutation flow-shop scheduling problem,
IEEE Trans. Syst. Man Cybern.: Syst., vol. 46, no. 1, pp.
139–149, 2016.

[15]

 J. Wang, L. Wang, and J. Shen, A hybrid discrete cuckoo
search for distributed permutation flowshop scheduling
problem, in Proc. 2016 IEEE Congress on Evolutionary
Computation (CEC), Vancouver, Canada, 2016, pp.
2240–2246.

[16]

 W. Shao, D. Pi, and Z. Shao, Optimization of makespan
for the distributed no-wait flow shop scheduling problem
with iterated greedy algorithms, Knowl. Based Syst., vol.
137, pp. 163–181, 2017.

[17]

 F. Zhao, L. Zhang, J. Cao, and J. Tang, A cooperative
water wave optimization algorithm with reinforcement
learning for the distributed assembly no-idle flowshop
scheduling problem, Comput. Ind. Eng., vol. 153, p.
107082, 2021.

[18]

 J. -J. Wang and L. Wang, A cooperative memetic
algorithm with feedback for the energy-aware distributed
flow-shops with flexible assembly scheduling, Comput.

[19]

 304 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

Ind. Eng., vol. 168, p. 108126, 2022.
 F. Zhao, T. Jiang, and L. Wang, A reinforcement learning
driven cooperative meta-heuristic algorithm for energy-
efficient distributed no-wait flow-shop scheduling with
sequence-dependent setup time, IEEE Trans. Ind. Inf., vol.
19, no. 7, pp. 8427–8440, 2023.

[20]

 Q. -K. Pan, L. Wang, J. -Q. Li, and J. -H. Duan, A novel
discrete artificial bee colony algorithm for the hybrid
flowshop scheduling problem with makespan
minimisation, Omega, vol. 45, pp. 42–56, 2014.

[21]

 S. -Y. Wang, L. Wang, M. Liu, and Y. Xu, An enhanced
estimation of distribution algorithm for solving hybrid
flow-shop scheduling problem with identical parallel
machines, Int. J. Adv. Manuf. Technol., vol. 68, no. 9, pp.
2043–2056, 2013.

[22]

 M. Li, D. Lei, and J. Cai, Two-level imperialist
competitive algorithm for energy-efficient hybrid flow
shop scheduling problem with relative importance of
objectives, Swarm Evol. Comput., vol. 49, pp. 34–43,
2019.

[23]

 X. Wu, Z. Cao, and S. Wu, Real-time hybrid flow shop
scheduling approach in smart manufacturing environment,
Complex System Modeling and Simulation, vol. 1, no. 4,
pp. 335–350, 2021.

[24]

 K. -C. Ying and S. -W. Lin, Minimizing makespan for the
distributed hybrid flowshop scheduling problem with
multiprocessor tasks, Expert Syst. Appl., vol. 92, pp.
132–141, 2018.

[25]

 B. Xi and D. Lei, Q-learning-based teaching-learning
optimization for distributed two-stage hybrid flow shop
scheduling with fuzzy processing time, Complex System
Modeling and Simulation, vol. 2, no. 2, pp. 113–129,
2022.

[26]

 J. Zheng, L. Wang, and J. -J. Wang, A cooperative
coevolution algorithm for multi-objective fuzzy distributed
hybrid flow shop, Knowl. Based Syst., vol. 194, p. 105536,
2020.

[27]

 E. Jiang, L. Wang, and J. Wang, Decomposition-based
multi-objective optimization for energy-aware distributed
hybrid flow shop scheduling with multiprocessor tasks,
Tsinghua Science and Technology, vol. 26, no. 5, pp.
646–663, 2021.

[28]

 J. -J. Wang and L. Wang, A cooperative memetic
algorithm with learning-based agent for energy-aware
distributed hybrid flow-shop scheduling, IEEE Trans.
Evol. Comput., vol. 26, no. 3, pp. 461–475, 2022.

[29]

 Z. Pan, D. Lei, and L. Wang, A knowledge-based two-
population optimization algorithm for distributed energy-
efficient parallel machines scheduling, IEEE Trans.
Cybern., vol. 52, no. 6, pp. 5051–5063, 2022.

[30]

 W. Shao, Z. Shao, and D. Pi, A network memetic
algorithm for energy and labor-aware distributed
heterogeneous hybrid flow shop scheduling problem,
Swarm Evol. Comput., vol. 75, p. 101190, 2022.

[31]

 Q. Zhang and Z. Yu, Population-based multi-layer iterated
greedy algorithm for solving blocking flow shop
scheduling problem, (in Chinese), Comput. Integrated
Manufacturing Syst., vol. 22, no. 10, pp. 2315–2322, 2016.

[32]

 Y. Zheng, G. Mo, and J. Zhang, Blocking flow line[33]

scheduling of panel block in shipbuilding, (in Chinese),
Comput. Integrated Manufacturing Syst., vol. 22, no. 10,
pp. 2305–2314, 2016.
 V. Riahi, M. A. H. Newton, K. Su, and A. Sattar,
Constraint guided accelerated search for mixed blocking
permutation flowshop scheduling, Comput. Oper. Res.,
vol. 102, pp. 102–120, 2019.

[34]

 Y. Han, J. Li, H. Sang, Y. Liu, K. Gao, and Q. Pan,
Discrete evolutionary multi-objective optimization for
energy-efficient blocking flow shop scheduling with setup
time, Appl. Soft Comput., vol. 93, p. 106343, 2020.

[35]

 S. Aqil and K. Allali, Two efficient nature inspired meta-
heuristics solving blocking hybrid flow shop
manufacturing problem, Eng. Appl. Artif. Intell., vol. 100,
p. 104196, 2021.

[36]

 X. Han, Y. Han, B. Zhang, H. Qin, J. Li, Y. Liu, and D.
Gong, An effective iterative greedy algorithm for
distributed blocking flowshop scheduling problem with
balanced energy costs criterion, Appl. Soft Comput., vol.
129, p. 109502, 2022.

[37]

 H. -X. Qin, Y. -Y. Han, B. Zhang, L. -L. Meng, Y. -P. Liu,
Q. -K. Pan, and D. -W. Gong, An improved iterated
greedy algorithm for the energy-efficient blocking hybrid
flow shop scheduling problem, Swarm Evol. Comput., vol.
69, p. 100992, 2022.

[38]

 F. Zhao, H. Zhang, and L. Wang, A pareto-based discrete
jaya algorithm for multiobjective carbon-efficient
distributed blocking flow shop scheduling problem, IEEE
Trans. Ind. Inform., vol. 19, no. 8, pp. 8588–8599, 2023.

[39]

 F. Zhao, S. Di, and L. Wang, A hyperheuristic with Q-
learning for the multiobjective energy-efficient distributed
blocking flow shop scheduling problem, IEEE Trans.
Cybern., vol. 53, no. 5, pp. 3337–3350, 2023.

[40]

 V. Fernandez-Viagas, J. M. S. Valente, and J. M.
Framinan, Iterated-greedy-based algorithms with beam
search initialization for the permutation flowshop to
minimise total tardiness, Expert Syst. Appl., vol. 94, pp.
58–69, 2018.

[41]

 Y. Wang, X. Li, R. Ruiz, and S. Sui, An iterated greedy
heuristic for mixed no-wait flowshop problems, IEEE
Trans. Cybern., vol. 48, no. 5, pp. 1553–1566, 2018.

[42]

 X. Han, Y. Han, Q. Chen, J. Li, H. Sang, Y. Liu, Q. Pan,
and Y. Nojima, Distributed flow shop scheduling with
sequence-dependent setup times using an improved
iterated greedy algorithm, Complex System Modeling and
Simulation, vol. 1, no. 3, pp. 198–217, 2021.

[43]

 S. Chen, Q. -K. Pan, L. Gao, and H. -Y. Sang, A
population-based iterated greedy algorithm to minimize
total flowtime for the distributed blocking flowshop
scheduling problem, Eng. Appl. Artif. Intell., vol. 104, p.
104375, 2021

[44]

 H. -X. Qin, Y. -Y. Han, Y. -P. Liu, J. -Q. Li, and Q. -K.
Pan, A collaborative iterative greedy algorithm for the
scheduling of distributed heterogeneous hybrid flow shop
with blocking constraints, Expert Syst. Appl., vol. 201, p.
117256, 2022.

[45]

 L. Meng, K. Gao, Y. Ren, B. Zhang, H. Sang, and C.
Zhang, Novel MILP and CP models for distributed hybrid
flowshop scheduling problem with sequence-dependent

[46]

 Yong Wang et al.: Intelligent Optimization Under Multiple Factories: Hybrid Flow Shop Scheduling Problem … 305

setup times, Swarm Evol. Comput., vol. 71, p. 101058,
2022.
 B. Naderi and R. Ruiz, The distributed permutation
flowshop scheduling problem, Comput. Oper. Res., vol.
37, no. 4, pp. 754–768, 2010.

[47]

 B. Naderi and R. Ruiz, A scatter search algorithm for the[48]

distributed permutation flowshop scheduling problem,
Eur. J. Oper. Res., vol. 239, no. 2, pp. 323–334, 2014.
 J. -P. Huang, Q. -K. Pan, and L. Gao, An effective iterated
greedy method for the distributed permutation flowshop
scheduling problem with sequence-dependent setup times,
Swarm Evol. Comput., vol. 59, p. 100742, 2020.

[49]

Yong Wang received the BEng degree
from Liaocheng University, Liaocheng,
China in 2021. He is currently pursuing the
MSc degree at Liaocheng University,
Liaocheng, China. His current research
interests include intelligent optimization
and scheduling.

Yuting Wang received the master degree
in computer software and theory from
China University of Petroleum (Beijing) in
2005. Since 2013, he has been an associate
professor at the School of Computer
Science, Liaocheng University. He has
published more than 20 papers. His current
research interests include mathematical

modeling, intelligent optimization algorithms, and software
development technology.Yuyan Han received the MS degree from

Liaocheng University, Liaocheng, China in
2012 and the PhD degree in control theory
and control engineering from China
University of Mining and Technology,
Xuzhou, China in 2016. Since 2016, she
has been an associate professor at the
School of Computer Science, Liaocheng

University. She has authored over 30 refereed papers. Her
current research interests include evolutionary computation,
multiobjective optimization, and flowshop scheduling.

Junqing Li received the master degree in
computer science and technology from
Shandong Economic University,
Shandong, China in 2004 and the PhD
degree in system engineering from
Northeastern University, Shenyang, China
in 2016. Since 2004, he has been with the
School of Computer Science, Liaocheng

University. Since 2017, he has been with the School of
Computer Science, Shandong Normal University, where he
became a professor in 2017. His current research interests
include intelligent optimization and scheduling. He has authored
more than 70 refereed papers.

Kaizhou Gao received the BSc degree in
computer science and technology from
Liaocheng University, Liaocheng, China,
in 2005, the master degree in computer
science and application from Yangzhou
University, Yangzhou, China, in 2008, and
the PhD degree in artificial intelligence
and system engineering from Nanyang

Technological University (NTU), Singapore in 2016. From 2008
to 2012, he was at the School of Computer Science, Liaocheng
University, China. From 2012 to 2013, he was a research
associate at the School of Electronic and Electrical Engineering,
NTU, where he has been a research fellow from 2015 to 2018.
He is currently an assistant professor at the Macau Institute of
Systems Engineering, Macau University of Science and
Technology. His research interests include intelligent
computation, optimization, scheduling, and intelligent
transportation. He has published over 100 refereed papers. He is
an associate editor of Swarm and Evolutionary Computation,
IET Collaborative Intelligent Manufacturing, and The Chinese
Journal of Artificial Intelligence.

Yusuke Nojima received the BS and MS
degrees in mechanical engineering from
Osaka Institute of Technology, Osaka,
Japan in 1999 and 2001, respectively, and
the PhD degree in system function science
from Kobe University, Hyogo, Japan in
2004. Since 2004, he has been with Osaka
Prefecture University, Osaka, Japan, where

he is currently a professor at the Department of Computer
Science and Intelligent Systems. His research interests include
evolutionary fuzzy systems, evolutionary multiobjective
optimization, and parallel distributed data mining. He was a
guest editor for several special issues in international journals.
He was a task force chair on Evolutionary Fuzzy Systems in
Fuzzy Systems Technical Committee of IEEE Computational
Intelligence Society. He was an associate editor of IEEE
Computational Intelligence Magazine (2014−2019).

 306 Complex System Modeling and Simulation, December 2023, 3(4): 282−306

