
 

Iϵ+LGEA: A Learning-Guided Evolutionary Algorithm Based on Iϵ+
Indicator for Portfolio Optimization

Feng Wang*, Zilu Huang, and Shuwen Wang

Iϵ+

Iϵ+ Iϵ+ Iϵ+

Iϵ+

Iϵ+

Abstract: Portfolio  optimization  is  a  classical  and  important  problem in  the  field  of  asset  management,  which

aims to achieve a trade-off  between profit  and risk.  Previous portfolio optimization models use traditional risk

measurements such as variance, which symmetrically delineate both positive and negative sides and are not

practical  and  stable.  In  this  paper,  a  new  model  with  cardinality  constraints  is  first  proposed,  in  which  the

idiosyncratic volatility factor is used to replace traditional risk measurements and can capture the risks of the

portfolio  in  a  more  accurate  way.  The  new  model  has  practical  constraints  which  involve  the  sparsity  and

irregularity  of  variables  and  make  it  challenging  to  be  solved  by  traditional  Multi-Objective  Evolutionary

Algorithms  (MOEAs).  To  solve  the  model,  a  Learning-Guided  Evolutionary  Algorithm  based  on  indicator

( LGEA)  is  developed.  In LGEA,  the  indicator  is  incorporated  into  the  initialization  and  genetic

operators to guarantee the sparsity of solutions and can help improve the convergence of the algorithm. And a

new constraint-handling  method  based  on  indicator  is  also  adopted  to  ensure  the  feasibility  of  solutions.

The  experimental  results  on  five  portfolio  trading  datasets  including  up  to  1226  assets  show  that LGEA

outperforms some state-of-the-art MOEAs in most cases.

Key words: portfolio  optimization; evolutionary  algorithm; sparse  solution  space; indicator-based  Evolutionary

Algorithm (EA)

1    Introduction

The portfolio  selection  is  a  significant  and  established
issue  in  financial  practice.  In  the  previous  research,
technical  analysis  is  used  to  optimize  portfolio
decisions. It has been proved that the technical analysis
performs  well  in  developed  countries[1].  However,  the
Chinese stock market is semi-efficient so the technical
analysis  only  includes  past  information  and  has

nonsustainable  meanings  in  the  real  world[2].
Therefore,  it  is  necessary  to  replace  technical  analysis
with others.

Markowitz proposed a classical  methodology,  and it
maximizes  the  mean  return  while  minimizes  the
variance  of  the  portfolio,  which  is  also  called  mean-
variance model.  However,  the mean-variance model is
not flawless. Variance is an indicator that measures the
total  risks  of  a  portfolio,  symmetrically  delineating
both  positive  and  negative  sides.  However,  in  the
practical  world,  people  are  more  afraid  of  downside
fluctuations  rather  than  the  upside.  Variance  ignores
this  important  feature  and  loses  the  accurate  meaning
of risk in the real world[3]. Then Salehpoor and Molla-
Alizadeh-Zavardehi[4] started  to  use  semi-variance,
Mean  Absolute  Deviation  (MAD),  and  skewness  to
manage the asymmetric nature of risk, which suit better
for  the  continuous  situations.  Therefore,  another
measurement  of  risk  called  idiosyncratic  volatility  in
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finance is considered.
Idiosyncratic  volatility  was  proposed  to  be  the  most

efficient indicator to capture the unsystematic risk and
illustrate  the  uncertainty  that  only  belongs  to  the
company itself.  A controversial  fact  is  discovered that
stocks with higher return performance also have lower
idiosyncratic volatility. Based on the flaws of previous
risk  indicators  and  economic  rationale  behind
idiosyncratic  volatility,  a  model  is  developed  that
replaces  the  traditional  risk  measurements  such  as
variance and semi-variance with idiosyncratic volatility
to construct a more stable and practical portfolio in the
volatile  market.  In  this  paper,  a  momentum-volatility
model  is  developed  with  cardinality  constraints  that
considers  the  whole  volatility  impact  on  the  market.
Due to  the  sparsity  and irregularity  of  the  variables  in
the  novel  model,  it  is  difficult  for  typical  Multi-
Objective  Evolutionary  Algorithms (MOEAs)  to  solve
it.

Portfolio  optimization  is  a  large-scale  optimization
problem.  This  kind  of  problem  is  currently  being
addressed  by  numerous  intelligent  optimization
methods  based  on  reinforcement  learning[5].  To  solve
the  complex  optimization  problem,  Wang  et  al.[6]

suggested a reinforcement learning level based particle
swarm optimization technique. To break the issue into
a  few  low-dimensional  subproblems,  Sun  et  al.[7]

suggested  using  a  random  grouping  technique.  In
addition,  more  and  more  intelligent  optimization
algorithms are being proposed[8−10].

Iϵ+

Many  MOEAs  have  been  proposed  to  solve  the
Portfolio Optimization Problems (POPs)[3].  In order to
solve the POPs with various risk metrics, Kaucic et al.[11]

proposed  a  novel  version  of  the  NSGA-II  and  the
SPEA2.  This  kind  of  method  focuses  on  the  risk
measures  of  the  POPs.  Based  on  the  new  NBI-style
Tchebycheff technique, Zhang et al.[12] suggested using
MOEA/D to solve the POPs with inconsistently scaled
objectives. This kind of method focuses on the scale of
the  POPs.  A  five-objective  assistant  reference  point
guided  evolutionary  algorithm  was  presented  by  Ma
et  al.[13] for  the  fuzzy portfolio  selection.  This  kind of
method focuses on the objective of the POPs. However,
few  scholars  use  indicators  to  solve  the  POPs.  In  this
paper,  an  indicator  is  used  to  guide  the  evolution  to
guarantee  the  sparsity  of  the  solutions  and  can  help
improve  the  algorithm’s  convergence.  Since  the 
indicator  can  accurately  assess  the  solution’s
convergence[14] and it is also parameterless with a low

Iϵ+

computational cost which is suitable to solve the POPs,
in  this  paper,  the  indicator  is  used  to  guide  the
evolution.

To summarize, the major contributions are concluded
as follows.

●  A novel  portfolio  optimization  model  is  proposed
to  replace  traditional  risk  measurements  with
idiosyncratic  volatility  factors.  It  can  capture  the  risks
of  the  portfolio  in  a  more  accurate  way  which  makes
the model more practical and stable.

Iϵ+ Iϵ+
Iϵ+

Iϵ+

● A Learning-Guided Evolutionary Algorithm based
on  indicator  ( LGEA)  is  developed  to  solve  the
new  portfolio  optimization  model.  The  indicator
which is parameterless with a low computational cost is
incorporated into initialization and genetic operators to
ensure  the  solution’s  sparsity.  In  addition,  a  new
constraint-handling  method  based  on  the  indicator
is adopted to guarantee the feasibility of the solutions.

Iϵ+
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● To show the efficiency of the proposed LGEA,
extensive  experimental  tests  are  conducted  on  five
portfolio datasets and show that LGEA outperforms
in most cases.

Iϵ+

The  remainder  is  organized  as  follows.  Section  2
introduces  the  new  momentum-volatility  model.
Section  3  details  the LGEA.  The  experimental
studies are presented in Section 4. Section 5 concludes
our work.

2    Momentum-Volatility Portfolio
Optimization Model

This  section  introduces  the  related  assumptions  and
notations,  the  classical  portfolio  model,  and  our  new
model.

2.1    Assumption and notation

Here are some basic assumptions.
● Transaction costs are zero.
● This  portfolio  that  we create  is  not  time-changing

and dynamic.
The following notations are defined as follows:

i = 1,2, ...,n● : index of assets,
wi i● : weighting of stock ,
MOMi,t i t● : cumulative return of stock  at time ,
ri,t i t● : return of stock  at time ,
MKTt● : excess market return at time t,
SMBt● : size factor at time t,
HMLt● : value factor at time t,
αi● : intercept of asset i in the regression,
εi,t● : idiosyncratic volatility for asset i at time t,
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pi● : price of stock i.

2.2    Classical model

The  most  classical  portfolio  optimization  model  was
proposed  by  Markowitz.  The  traditional  POPs  can  be
expressed mathematically as follows:
 

max R =
N∑

i=1

wiri (1)

 

min V =
N∑

i=1

w2
i Vari (2)

 

s.t.
N∑

i=1

wi = 1 (3)

ri i Vari

i wi i
V

i

where  is the return of stock ,  is the variance of
stork , and  is the weight that stock  takes up in that
portfolio. R is the sum return of this portfolio.  is the
total variance of this portfolio that includes  stocks.

However,  the  risk  measurement,  variance,  is  very
sensitive to one single movement in the solution space.
Furthermore,  it  measures  risk  symmetrically,  which  is
not true for the real-world situation.

2.3    New momentum-volatility model

The  traditional  measure  of  the  risk  loses  accurate
meaning  of  risk  in  the  real  world.  The  idiosyncratic
volatility  can  capture  the  unsystematic  risk  and
illustrate  the  uncertainty  that  only  belongs  to  the
company  itself.  In  addition,  the  average  return  is
replaced  with  the  cumulative  return  (momentum)  to
reflect  historical  information  in  our  model.  Hence,  a
new momentum-volatility model is proposed which can
help  make  the  portfolio  model  more  applicable.  The
absolute momentum is defined as follows:
 

MOMi,t = pi,t−l

K∏
i=0

(1+ ri,t−l) (4)

pi,t i t l

ri,t−l i t− l
l

i
t

where  is  the  price  of  stock  at  time ,  is  the
lagging  time  periods  (months)  of  holding  this  stock,
and  is the return rate of stock  at time  (lagging
 months).  In  the  objective  functions,  the  averaged

momentum factor is adopted for stock  over a specific
period .  In  this  step,  the  stock  is  eliminated  with
negative absolute momentum.

The  calculation  of  the  idiosyncratic  volatility  metric
is  shown  as  follows.  Since  it  is  the  unsystematic  risk
for  each  stock,  it  is  required  to  filter  out  the  common
systematic risk. By extracting the variance of residuals
from  the  Fama-French  model[15],  the  idiosyncratic

uncertainty  can  be  captured.  First,  the  Fama-French
model  is  implemented  for  each  stock.  The  regression
on the Fama-French three factors equation of each asset
is provided as follows:
 

r1,t = α1+β1,MKTMKTt+

β1,SMBSMBt +β1,HMLHMLt +ε1,t,

r2,t = α2+β2,MKTMKTt+

β2,SMBSMBt +β2,HMLHMLt +ε2,t,

r3,t = α3+β3,MKTMKTt+

β3,SMBSMBt +β3,HMLHMLt +ε3,t,

...

rN,t = αN +βN,MKTMKTt+

βN,SMBSMBt +βN,HMLHMLt +εN,t

(5)

By  adding  them  up  with  certain  weights,  the  sum
residual of this whole portfolio can be obtained.
 

rp,t =

N∑
i=1

wiαi+

N∑
i=1

wiβi,MKTMKTt+

N∑
i=1

wiβi,SMBSMBt+

N∑
i=1

wiβi,HMLHMLt+

N∑
i=1

wiεi,t (6)

N∑
i=1

wiεi,t

t

where  stands  for  the  total  idiosyncratic

volatility for the portfolio at time .
The momentum-volatility model is built as follows:

 

max F1(t,r(t)) =
N∑

i=1

wiMOMi,t (7)

 

min F2(t) =
N∑

i=1

w2
i Var2(εi,t) (8)

 

s.t.
N∑

i=1

wi = 1 (9)

 

N∑
i=1

si = K (10)

 

li ⩽ wi ⩽ hi (11)
 

si ∈ {0,1} (12)

MOMi,t iwhere  is  the  cumulative  return  of  stock ,  a
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Var(εi,t)

SMBt HMLt

MKTt

i wi

li hi si

i
i

description  of  the  absolute  momentum  factor. 
is  the  residual  term  of  the  regression  on  size  factor

,  value  factor ,  and  market  return  term
. The cardinality limitation is shown in Eq. (10),

where K is the total number of assets held. The ratio of
stock  is  defined as  in  Formula  (11),  and the  floor
and ceiling restrictions are  and , respectively. If  is
1, it indicates that stock  has been selected. Otherwise,
the stock  is not chosen.

As mentioned above, the momentum-volatility model
includes  inequality  constraints  such  as  Formula  (11)
and equality constraints such as Eq. (10) which involve
the  sparsity  and  irregularity  of  variables  and  make  it
challengeable to be solved by traditional MOEAs.

3    Iϵ+LGEA

Iϵ+

Iϵ+
Iϵ+

The new population initialization and genetic operators
incorporate the  indicator to guarantee the sparsity of
the  solutions  and  potentially  enhance  algorithm
convergence.  The  constraint-handling  methods  based
on the  indicator are adopted to ensure the feasibility
of  the  solutions.  Hence, LGEA  can  handle  the
momentum-volatility model effectively.

3.1    Framework of Iϵ+LGEA

Iϵ+
Score

The  flowchart  of  the  proposed LGEA  is  shown  in
Fig. 1. Firstly, a population is initialized and the 

Iϵ+
N

Iϵ+

of each asset is obtained based on  indicator which is
shown in Algorithm 1. Next  offsprings are generated
with  new  genetic  operators  which  is  shown  in
Algorithms  2 and 3.  Then  the  constraint-handling
method  based  on  indicator  is  adopted  to  make  the
offspring  solutions  feasible  which  is  shown  in
Algorithm 4. After then, the parent population is joined
with  the  offspring  population.  The  solutions  will
survive  to  the  following  generation  baed  on
environmental selection.

3.2    Population initialization

W W

A  hybrid  representation  is  used  to  solve  portfolio
optimization.  The  solution X is  composed  of  the  real
vector  and the binary vector B.  denotes the weight
of  the  associated  asset. B determines  whether  the
associated  asset  is  chosen  or  not.  The  final  decision
variables of X are obtained via normalization, i.e.,
 

Xi = 0, if Bi = 0;

Xi = liBi+
WiBi

D∑
i=1

WiBi

1− D∑
i=1

liBi

, otherwise (13)

 

Algorithm 1　Initialization (N, K)
1: Input: N (population size), K (max cardinality), and D←
number of assets;

Score2: Output: P (initial population) and  (score of decision
variables);

B← D×D3:  identity matrix;
W ← D×D4:  identity matrix;
Q← i i

W
5:  A population whose -th solution is generated by the -th
rows of  and B according to Eq. (13);

B← N ×D6:  matrix of zeros;
W ←7:  Uniformly randomly generate the decision variables of

　N solutions;
i = 1 N8: for  to  do

j = 1 rand()×K9:　　for  to  do
[m,n]←10:　　　  Randomly select two decision variables;

Scorem > Scoren11:　　　if  then
m i12:　　　　Set the -th element in the -th binary vector in B

　　　　　 to 1;
13:　　　else

n i14:　　　　Set the -th element in the -th binary vector in B
　　　　　 to 1;
15:　　　end if
16:　　end for
17: end for

i18: P← A population whose -th solution is generated by the
　  i-th rows of W and B according to Eq. (13);

Score19: return P and 
 

 

Begin

Population initialization

Regeneration by genetic
operators

Constraint handing method

Environmental selection based on
crowding distance

t=t+1

t<tmax?
Yes

No

End 
Iϵ+Fig. 1    Flowchart of LGEA.
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Iϵ+ W

where  is  a  small  predefined  lower  limit  of  the
portfolio  optimization.  In LGEA,  and B are
initialized and evolved by various methods.

Iϵ+
Algorithm Q

W i
i Iϵ+

Q Iϵ+
Score S

Scorei i
i

Scorei i
i

Iϵ+ Score

The population initialization of LGEA is outlined
in  1.  Firstly,  the  population  with D
solutions is generated, where D indicates the number of
assets. The variables in  and B are set to 0, and the -th
variable  of  the -th  solution  is  set  to  1.  Then,  the 
indicator of population  is calculated.  indicator is
regarded as the  of the asset represented as . The

 of  the -th  decision  variable  indicates  the
probability  of  the -th  asset  should  be  selected.  A
smaller  of  the -th  decision  variable  means  a
lower probability that the -th asset should be selected.
The  indicator and corresponding  are defined as
 

Iϵ+(x,y) =min
ϵ

( fi(x)− ϵ ⩽ fi(y), i ∈ (1,2, ...,m)) (14)
 

S (x) =
∑

y∈Q,y,x

−eIϵ+(x,y)/0.05 (15)

Every variable in B is set to 0, and every variable in

W
rand()×K

Score rand()

[0,1]

 is set to a random value for each solution in P. Then,
using a binary tournament selection method, 
variables  are  chosen  from B and  set  to  1  according  to
the  of the decision variables, where  stands
for  a  random  number  with  uniform  distribution  in  the
range .  It  can guarantee that the solutions that are
generated are feasible.

An example of initializing the population is shown in
Fig. 2. Assuming that the number of initial assets is 5,
the  initialization  will  generate  five  individuals P1−P5,

 

Algorithm 2　Crossover (P', Score)
P′ Score score1: Input:  (a set of parents) and  (  of decision

　variables);
O2: Output:  (a set of offsprings by crossover);

O← ∅3: ;
P′4: while  is not empty do

[p,q]←5:　  Randomly select two parents from P';
P′← P′ \ {p,q}6:　 ;
o.B← p.B p.B p7:　 ; //  denotes the binary vector B of solution 

rand() < 0.58:　if  then
[m,n]←

p.B∩q.B̄
9:　　  Randomly select two decision variables from the
　　　nonzero elements in ;

Scorem < Scoren10:　　if  then
m o.B11:　　　Set the -th element in  to 0;

12:　　else
n o.B13:　　　Set the -th element in  to 0;

14:　　end if
15:　else

[m,n]←
p.B̄∩q.B

16:　　  Randomly select two decision variables from
　　　 the zero elements in ;

Scorem > Scoren17:　　if  then
m o.B18:　　　Set the -th element in  to 1;

19:　　else
n o.B20:　　　Set the -th element in  to 1;

21:　　end if
22:　end if

O← O∪{o}23:　
24: end while

O25: return 
 

 

Algorithm 3　Mutation (O)
O1: Input:  (a set of offsprings by crossover);

O2: Output:  (a set of offsprings by mutaion);
rand() < 0.53: if  then

[m,n]←
o.B

4:　　  Randomly select two decision variables from the
　　　nonzero elements in ;

Scorem < Scoren5:　　if  then
m o.B6:　　　Set the -th element in  to 0;

7:　　else
n o.B8:　　　Set the -th element in  to 0;

9:　　end if
10: else

[m,n]←
o.B̄

11:　　  Randomly select two decision variables from
　　　 the nonzero elements in ;

Scorem > Scoren12:　　if  then
m o.B13:　　　Set the -th element in  to 1;

14:　　else
n o.B15:　　　Set the -th element in  to 1;

16:　　end if
17: end if

o.W ←
p.W q.W

18:  Perform simulated binary crossover and polynomial
　   mutation based on  and ;

O← O∪{o}19: 
O20: return 

 

 

Algorithm 4　Constraint-handling (P, Score, K)
Score score1: Input: P (combined population),  (  of decision

　 variables), and K (max cardinality);
2: Output: P (repaired population);

N←3:  the size of P;
i = 14: for  to N do

Bi > K5:　if sum of  then
Score6:　　sort the  of the selected asset;

score7:　　keep only the K largest  of selected asset to 1 and set
　　   all surplus asset to 0;
8:　end if
9: end for
10: P← A population whose i-th solution is generated by the
　  i-th rows of W and B according to Eq. (13);
11: return P
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the  binary  vectors  of  these  five  individuals  are  the
identity matrix of , and then the -th individual will
be  calculated.  The  indicator  represents  its  score,
which represents the probability of the -th asset being
selected. The higher the score, the more likely the asset
will  be  selected.  For  example,  the  indicator  of P1
individual  represents  the  probability  of  the -th  asset
being  selected.  Initialization  can  help  ensure  the
sparsity of the initial population.

3.3    Genetic operators

Algorithms
o p q

o p

p.B∩q.B̄ score

score

The genetic  operators  include  crossover  and  mutation.
It is provided in  2 and 3. In order to produce
an offspring , two parents  and  are initially chosen
at random from P. When B of  and  are equal, one of
the  following  two  operations  is  carried  out  with  the
same  probability:  binary  tournament  selection  is  used
to  choose  a  variable  from  the  nonzero  variables  in

 based  on  the  of  the  decision  variables
(Lines  9−15  in  Algorithm  2),  and  changing  this
component  of  an  offspring’s B to  0;  or  binary
tournament selection is used to choose a variable from
the  nonzero  variables  in B based  on  the  of  the
decision  variables  (Lines  16−23  in  Algorithm  2),  and
changing this component of an offspring’s B to 1.

The crossover process is shown in Fig. 3. “Parent 1”
and “Parent 2” represent two randomly selected parent

individuals, and the black dotted box indicates that the
selected  assets  of  the  two  parent  individuals  are  the
same,  which  are  directly  inherited  by  the  offspring
individual “Offspring”.  And  then  randomly  select  two
of  the  non-zero  assets,  that  is,  the  third  asset  and  the
sixth asset in Fig. 3 (shown by the red arrow in Fig. 3),
and  the  indicator  of  the  smaller  one  is  set  to  0.
Assuming the indicator of the sixth asset is smaller, the
sixth  asset  of  offspring  individuals  is  0,  and  the  third
asset  is  1.  Randomly  select  two  assets  in  the  zero
elements,  that  is,  the second asset  and the fourth asset
in Fig.  3 (shown  by  the  black  arrow  in Fig.  3).
Assuming  the  indicator  of  the  fourth  asset  is  larger,
then the  fourth  asset  of  offspring  individuals  is  1,  and
the second asset is 0.

The mutation process  is  shown in Fig.  4.  Randomly
select two assets among the non-zero elements, that is,
the third asset and the fourth asset in Fig. 4 (shown by
the  red  arrow  in Fig.  4),  and  set  the  asset  whose
indicator is smaller to 0. Randomly select two assets in
the  zero  element,  that  is,  the  second  decision  variable
and the sixth decision variable in Fig. 4 (shown by the
black  arrow  in  the Fig.  4),  and  set  the  asset  whose
indicator is larger to 1.

o

o.B score

score
o.B̄

B of  is  mutated by any of  the next  two operations
with  the  same  probability  after  crossover:  using  a
binary tournament to select a variable from the nonzero
variables  in  based  on  the  of  the  decision
variables  (Lines  3−9  in  Algorithm  3),  and  setting  this
element  to  0;  or  choosing  an  element  through  binary
tournament  selection  with  the  of  the  decision
variables  from the  nonzero  items  in  (Lines  10−16
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Fig. 2    Initial population example.
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Fig. 3    Crossover example.
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in  Algorithm  3),  and  setting  this  element  to  1.  The
same  operators  used  in  many  MOEAs[16, 17] currently
are used to construct  of .

3.4    Constraint-handling  method  based  on Iϵ+
indicator

Bi i
Score

i
Score

Iϵ+
Score Scorei i

i

Score

The  process  of  the  constraint-handling  method  is
introduced in Algorithm 4. To begin with, calculate the
sum of the binary  of the -th solution. If the result is
larger than max cardinality K, then sort the  of the
selected asset in the -th solution. Then keep only the K
largest  of  the  selected  asset  to  1  and  label  all
surplus  asset  to  0.  Finally,  the  final  decision  variables
of X are obtained via normalization according to Eq. (13).

 indicator  can  evaluate  convergence  and  it  is
regarded as the  of the asset. The  of the -th
asset indicates the probability that the -th asset should
be  selected.  Hence,  the  constraint-handling  method
selects  the K largest  of  the  asset  to  improve  the
convergence.

An example of constraint handling is shown in Fig. 5.
Assuming  that  the  cardinality  constraint  is  3  and  the
selected  stocks  are  4,  which  exceed  the  cardinality
constraint,  so  a  stock  needs  to  be  discarded.  The
selected  stocks  are  sorted  according  to  the  score
corresponding  to  the  selected  stocks,  and  the  stocks

with  the  smallest  score  are  set  to  0.  Since  the  greater
the score of  stocks,  the greater  the potential  of  stocks.
When  the  number  of  selected  stocks  exceeds  the
number  of  cardinality  constraints,  the  stocks  with  the
least potential should be unselected.

4    Experimental Study

We  compared  the  proposed  method  to  four  MOEAs,
namely NSGA-II, MOEA/D, IBEA, and HypE, on five
well-known portfolio datasets. The evolutionary multi-
objective  optimization  platform  PlatEMO  is  used  for
all of the experiments[18].

4.1    Parameter settings and datasets

All compared algorithms have a population size of 100.
On  all  portfolio  datasets,  the  maximum  number  of
function evaluations is set to 30 000, and 30 independent
runs are carried out.

The  datasets  are  available  from  Wharton  Research
Data Services (WRDS). In the smallest instance of the
datasets,  there  are  22  assets,  and  in  the  greatest  case,
there are up to 1226 assets.  The details of the datasets
are introduced in Table 1.

4.2    Performance metrics

The  performance  metrics  of  Inverted  Generational
Distance (IGD) and Hypervolume (HV) are applied for
evaluating  the  results.  we  define  the  reference  set  for
each  instance  as  the  collection  of  non-dominated
solutions acquired from all comparison algorithm runs.

4.3    Experimental results on portfolio datasets

Iϵ+

Iϵ+

This  section  tests  the  effectiveness  of  the  algorithms
based  on  portfolio  data  from  five  distinct  financial
markets.  It  is  clear  from Tables  2 and 3 that  the  final
solutions  generated  by LGEA  are  superior  to  those
of other algorithms for all test problems. Especially on
NASDAQComp  and  SP500  datasets, LGEA  is
significantly  better  than  other  comparison  algorithms.
The  main  reason  is  that  the  number  of  stocks  in  the
NASDAQComp  and  SP500  datasets  exceeds  100,
which  leads  to  a  larger  scale  of  the  problem  and  a
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Fig. 5    Constraint handling example.

 

 

Table 1    Details of portfolio datasets.

Dataset Number of assets Cardinality K Time interval
DowJones 22 5 Jan 2000−Aug 2020

Industries49 49 12 Jan 2000−Aug 2020
NASDAQ 100 82 20 Jan 2000−Aug 2020

NASDAQComp 1226 300 Jan 2000−Aug 2020
SP500 386 100 Jan 2000−Aug 2020
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sparser solution space. Other algorithms cannot handle
large-scale  sparse  optimization  problems  well.  This
also  further  verifies  that  special  initialization  methods
and  genetic  operators  in LGEA  can  effectively
guarantee the performance of the algorithm and ensure
the sparsity of the solutions.

Iϵ+

In Fig. 6, the final solution sets for the 30 runs of five
POPs  are  presented  together  with  the  median  HV
values. Figure  6 demonstrates  that LGEA  has  little
better  convergence  than  other  techniques  but  obtains
the best diversity and uniformity on most POPs.

4.4    Effect of different components

Iϵ+
Iϵ+

Iϵ+
Iϵ+

It  is  noted  that  the  initialization  and  genetic  operators
in LGEA  are  inspired  by  SparseEA[19].  To  study
whether  the  number  of LGEA  components  has  an
influence  on  the  improvement  of  performance,
different  experiments  are  designed  by  combining
different  components  of LGEA.  For  a  simpler
description,  we  name  the  two  major  components 

Iϵ+
Iϵ+ i

Q i

Iϵ+

indicator  computation  and  constraint-handling  method
based  on  indicator  as C1 and C2,  respectively. C1
means  that  we  employ  the  indicator  of  the -th
solution  in  as  the  score  of  the -th  asset. C1+C2
means that we also employ the new constraint-handling
method, so the complete LGEA is C1+C2.

Iϵ+To testify the effectiveness of the proposed LGEA
more comprehensively, we compare SparseEA, C1, and
C1+C2 for  fairness.  HV-metric  values  and  IGD-metric
values of the final solutions for five portfolio selection
problems are shown in Tables 4 and 5, respectively.

i Q i
i

On  the  most  of  the  test  problems,  it  is  clear  from
Table  4 that  the  final  solutions  provided  by C1 are
superior  to  SparseEA  in  terms  of  HV-metric. Table  5
reveals  that,  for  all  test  problems  except  the
NASDAQ100 problem, the final solutions generated by
C1 are superior to SparseEA in terms of IGD-metric. It
can be explained that the non-dominated front number
of the -th solution in  is the score of the -th asset in
SparseEA. The non-dominated front number of the -th

 

Table 2    HV metric’s mean and standard deviation values obtained by the comparing algorithms.

Dataset
HV metric’s mean (standard deviation value)

NSGA-II MOEA/D IBEA HypE Iϵ+LGEA

DowJones
4.0382×103

(2.83)−
3.6812×103

(5.29×102)−
4.0365×103

(4.93)−
3.3656×103

(9.37×101)−
4.0439×103

(1.03)

Industries49
1.5627×105

(3.27×102)−
1.5426×105

(2.21×103)−
1.5666×105

(8.04×102)−
1.0075×105

(5.03×103)−
1.5729×105

(6.73×101)

NASDAQ100
7.6840×104

(5.76×102)−
7.5004×104

(3.20×103)−
7.7324×104

(2.71×102)−
4.2257×104

(2.49×103)−
7.7881×104

(3.39×101)

NASDAQComp
2.5033×1012

(7.29×1011)−
1.0280×1012

(5.56×1011)−
2.7547×1012

(3.53×1011)−
1.2620×1011

(1.08×1010)−
2.8274×1012

(8.86×108)

SP500
2.7683×104

(1.16×103)−
2.6191×104

(2.43×103)−
2.8447×104

(2.67×102)−
1.6084×104

(7.52×102)−
2.8953×104

(3.53×101)
+/− / ≈ 0/5/0 0/5/0 0/5/0 0/5/0 –

Iϵ+
Note: Symbols “+”, “−”, and “≈” indicate that the result by another MOEA is significantly better, significantly worse, and statistically
similar to that obtained by LGEA, respectively.
 

 

Table 3    IGD metric’s mean and standard deviation values obtained by the comparing algorithms.

Dataset
IGD metric’s mean (standard deviation value)

NSGA-II MOEA/D IBEA HypE Iϵ+LGEA

DowJones 1.8384
(7.91×10−2)≈

2.0004×101

(3.83×101)−
2.0630

(6.33×10−2)−
1.5783×102

(1.25×101)−
1.8195

(5.57×10−2)

Industries49 2.6175
(1.20×10−1)−

2.1094×101

(3.45)−
2.9128

(6.49×10−1)−
4.0055×102

(2.96×101)−
2.3799

(8.99×10−2)

NASDAQ100 4.9032
(3.19×10−1)−

9.9617
(4.57)−

6.0687
(2.59×10−1)−

5.8094×102

(5.98)−
4.4690

(2.48×10−1)

NASDAQComp
1.3520×107

(2.92×107)−
6.9734×107

(2.20×107)−
3.0845×106

(1.41×107)−
7.8548×107

(1.43×103)−
6.2253×105

(2.99×104)

SP500 3.4997
(3.96)−

2.9591×101

(2.94×101)−
3.4989

(5.35×10−1)−
1.9364×102

(2.37)−
1.4261

(1.01×10−1)
+/− / ≈ 0/4/1 0/5/0 0/5/0 0/5/0 –

Iϵ+
Note: Symbols “+”, “−”, and “≈” indicate that the result by another MOEA is significantly better, significantly worse, and statistically
similar to that obtained by LGEA, respectively.
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Iϵ+ Iϵ+
i i

asset  may be the  same as  the -th  asset.  Hence,  it  can
not  distinguish  the  potentiality  of  different  assets
comprehensively.  However, LGEA employs  the 
indicator  of  the -th  solution  as  the  score  of  the -th

Iϵ+asset.  The  indicator can distinguish the potentiality
of different assets.

Iϵ+

Additionally,  to demonstrate the effectiveness of the
suggested  constraint-handling  approach, LGEA  is
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Fig. 6    Plots for five datasets.

 

 

Iϵ+Table 4    HV metric’s mean and standard deviation values determined by different components of LGEA.

Dataset
HV metric’s mean (standard deviation value)

SparseEA C1 C1 +C2

DowJones 4.0427×103(1.06)− 4.0427×103(1.23)− 4.0444×103(7.79×10−1)
Industries49 1.5719×105(7.68×101)− 1.5721×105(8.02×101)− 1.5726×105(6.53×101)

NASDAQ100 7.7822×104(4.55×101)− 7.7844×104(3.00×101)− 7.7874×104(2.57×101)
NASDAQComp ≈2.8275×1012(1.19×109) ≈2.8275×1012(1.37×109) 2.8271×1012(1.24×109)

SP500 2.8898×104(4.23×101)− ≈2.8948×104(2.99×101) 2.8962×104(2.94×101)
+/− / ≈ 0/4/1 0/3/2 –

Iϵ+
Note: Symbols “+”, “−”, and “≈” indicate that the result by another MOEA is significantly better, significantly worse, and statistically
similar to that obtained by LGEA, respectively.
 

 

Iϵ+Table 5    IGD metric’s mean and standard deviation values determined by different components of LGEA.

Dataset
IGD metric’s mean (standard deviation value)

SparseEA C1 C1 +C2

DowJones 1.9057(1.13×10−1)− ≈1.8810(7.61×10−2) 1.8396(7.84×10−2)
Industries49 3.4302(1.72×10−1)− 3.3666(1.30×10−1)− 3.2846(1.54×10−1)

NASDAQ100 ≈3.9519(1.87×10−1) ≈3.9643(1.76×10−1) 4.0081(2.21×10−1)
NASDAQComp ≈5.7228×105(2.42×104) ≈5.7196×105(3.19×104) 5.7124×105(2.20×104)

SP500 1.9736(1.01×10−1)− ≈1.9170(1.01×10−1) 1.8811(9.60×10−2)
+/− / ≈ 0/3/2 0/1/4 –

Iϵ+
Note: Symbols “+”, “−”, and “≈” indicate that the result by another MOEA is significantly better, significantly worse, and statistically
similar to that obtained by LGEA, respectively.
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compared with constraint-handling method in Ref. [20]
(C1)  and LGEA  (C1+C2).  It  is  clear  that  for  every
test  problem, C1+C2’s  final  solutions  are  superior  to
C1’s.  It  can  be  explained  that  the  constraint-handling
method  based  on  weight  keeps  only  the K largest
weight  of  the  selected  asset  to  1  and  set  all  surplus
assets to 0. The weight can not evaluate the potentiality
of  the  asset.  However,  a  constraint-handling  method
based on the  indicator can evaluate the convergence
of the solutions to select the promising assets.

Iϵ+

For  the  discussion  on  the  above  results,  in  general,
the proposed LGEA can help ensure the sparsity of
the  solutions  and  improve  the  convergence  of  the
algorithm.  Besides,  the  new  constraint-handling
method  performs  better  than  traditional  constraint-
handling methods.

5    Conclusion

Iϵ+

Iϵ+

Iϵ+

Iϵ+

In  this  paper,  a  novel  portfolio  optimization  model  is
developed,  which  can  help  capture  the  risks  of  the
portfolio  more  accurately.  To  deal  with  the  novel
portfolio  optimization,  a  learning-guided  evolutionary
algorithm  based  on  the  indicator  is  proposed  to
obtain  better  convergence  and  distributed  solutions.
The new population initialization and genetic operators
use  indicator which is parameterless and low time-
consuming  to  guide  the  evolutionary  process.  It  can
ensure the sparsity of the generated solutions and help
improve  the  convergence  of  the  algorithm.  The  new
constraint-handing  method  based  on  indicator  can
ensure  the  feasibility  of  the  generated  solutions.  The
performance  of  the  proposed  algorithm  is  superior  to
other  MOEAs  according  to  experimental  results  on  a
variety  of  portfolio  optimization  problems.  The

LGEA algorithm proposed  in  this  paper  focuses  on
solving the constrained portfolio optimization problem
with  two  objectives.  However,  there  are  still  some
portfolio  models  with  more  complex  constraints  and
more  objectives,  so  in  future  work,  we  will  further
study these more complex portfolio models to solve the
problem.
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