
 

Gaussian Process Based Modeling and Control of Affine Systems
with Control Saturation Constraints

Shulong Zhao, Qipeng Wang, Jiayi Zheng, and Xiangke Wang*

Abstract: Model-based  methods  require  an  accurate  dynamic  model  to  design  the  controller.  However,  the

hydraulic parameters of nonlinear systems, complex friction, or actuator dynamics make it challenging to obtain

accurate  models.  In  this  case,  using  the  input-output  data  of  the  system  to  learn  a  dynamic  model  is  an

alternative  approach.  Therefore,  we  propose  a  dynamic  model  based  on  the  Gaussian  process  (GP)  to

construct systems with control constraints. Since GP provides a measure of model confidence, it can deal with

uncertainty.  Unfortunately,  most  GP-based  literature  considers  model  uncertainty  but  does  not  consider  the

effect  of  constraints  on  inputs  in  closed-loop  systems.  An  auxiliary  system  is  developed  to  deal  with  the

influence of the saturation constraints of input. Meanwhile, we relax the nonsingular assumption of the control

coefficients to construct the controller. Some numerical results verify the rationality of the proposed approach

and compare it with similar methods.
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1    Introduction

In  recent  years,  how  to  better  construct  the  model  of
the  controlled  system has  been  a  hot  issue.  Relatively
generic  and  simplified  models  can  only  be  helpful  at
specific operating points, and modeling errors can lead
to  control  performance  degradation.  However,
relatively  complex  and  accurate  models  may  contain
more  varying  forms  and  stricter  conditions  of
applications,  which  could  be  more  detrimental  to  the
application of controllers.

The  presence  of  uncertainty  greatly  increases  the
difficulty  of  modeling.  Uncertainty  in  a  closed-loop
system  can  come  from  many  sources,  such  as  noise
from  the  measurement  sensor,  random  characteristics
inside  the  system,  interference  from  the  external
environment,  perturbation  of  model  parameters,  etc.

During controller designing, every uncertainty must be
addressed in a targeted manner, which is very complex
and unrealistic.

In the field of uncertain compensation or estimation,
popular  choices  are  neural  networks  (NN)[1–3],  fuzzy
systems[4, 5],  or  other  computational  intelligence
methods,  which  need  to  predetermine  the  system
structure  and  optimize  the  parameters.  However,
selecting a suitable procedure in advance and avoiding
the  risk  of  overfitting  is  the  biggest  challenge  those
methods face.

Gaussian process (GP) is a non-parametric modeling
technique  based  on  Bayesian  inference[6].  GP
regression  provides  an  incremental  joint  probability
distribution  based  on  input-output  data.  To  overcome
the  problem  of  overfitting,  Ref.  [7]  proposed  a  novel
method  of  recognition  of  nonlinear  systems  based  on
GP. In addition, a Matlab toolbox for GP-based system
identification was presented in Ref.  [8].  However,  this
work did not give a detailed solution to uncertainty. To
this  end,  Gijsberts  and  Metta[9] introduced  a  method
based  on  GP  and  established  a  high-fidelity  flight
dynamics  model.  To  better  compensate  for  the  impact
of  uncertainty,  the  latest  research  is  divided  into  the
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following four types.
(1)  Traditional  modeling  method.  The  model

structure  is  fixed,  and  there  is  a  risk  of  overfitting.
Through  the  combination  of  fuzzy  logic  and
observer[10], a more effective feedback tracking control
method is obtained[11].

(2)  Based  on  the  assumption  of  bounded  modeling
error[12],  a  robust  control  method  ensures  the  stability
of  the  closed-loop system.  However,  the  inappropriate
parameters introduced by these assumptions will cause
the controller to be relatively conservative.

(3) Optimal control adapts the dynamic programming
control  output  through  online  optimization  by
incorporating  uncertainty  into  the  constraints[13, 14].
However,  the  stability  and  convergence  analysis  of
these methods are relatively lacking.

(4)  Combined  modeling  and  control[15–18].  The
Bayesian process can be used to build a non-parametric
model offline or online to approximate the real physical
model.

It  should  be  noted  that  the  above  studies  only
partially  consider  controller  design  under  input
constraints. In the research of robot control, the control
Lyapunov  function  (CLF)  is  widely  used  to  deal  with
control constraints[19].  The work of combining GP and
CLF was first proposed in Ref. [20]. Then, in Ref. [21],
a  composite  kernel  was  proposed  to  incorporate  CLF
into  minimum  norm  optimization.  Reference  [22]
proposed  a  CLF  based  on  uncertainty  and  used  the
knowledge of model fidelity to avoid uncertain regions.

Inspired by Refs. [20–23], we use the GP to learn the
uncertainty  of  the  nonlinear  system.  Combining  the
characteristics  of  the  variance  function,  we  cleverly
propose  an  auxiliary  system  to  deal  with  input
saturation  constraints.  Based  on  the  above  results  and
their limitations, contributions include:

(1)  To  our  knowledge,  it  is  the  first  time  that  a  GP
based  adaptive  controller  for  multiple-input  multiple-
output (MIMO) nonlinear systems with input saturation
constraint  is  considered.  A  novel  control  law  with  an
auxiliary  system  is  introduced  to  handle  the  influence
of input saturation effectively.

gi(x)(2)  The  condition  that  control  matrix  is
invertible is relaxed by using the spectral radius of the
control coefficient matrix. In contrast to Refs. [23, 24],
it  is  no  longer  necessary  to  assume  that  the  control
matrix is strictly positive definite. Unlike Ref. [21], the
direction (sign)  of  the  control  matrix  does  not  need to
be obtained in advance.

In n×n E(·)
cov(·)

N(m(·),k(x, x′)) m(·)
k(x, x′) M ∈ Rm×m

v ∈ Rm ∥M∥2 = tr(MTM) ∥v∥2 = vTv
vc ≜ diag{|v1|c, |v2|c, . . . , |vm|c}sign(v) sign(·)

M ≻ 0
λmin(M)

Notations:  represents the  identity matrix, 
stands  for  the  expectation  of  the  variable,  and 
expresses  the  variance  of  the  variable.  The  Gaussian
density  is represented by the mean 
and  the  covariance .  Given  a  matrix 
and  a  vector , , ,  and

,  where 
represents  the  sign  function.  indicates M is  a
positive  definite  matrix  and  denotes  the
minimum eigenvalue of M.

2    Problem Formulation

2.1    Gaussian process

m(x) : Rn 7→ R
k(x, x′) : Rn×Rn 7→ R+0

Gaussian  process  (GP)  is  a  prevalent  method  in
machine  learning.  It  is  a  stochastic  process  composed
of the mean function  and the covariance
function [25].  A  known  function
f(x) described as a GP can be written as
 

f (x) ∼ GP(m(x),k(x, x′)) (1)

D
To show the process of GP regression, we assume a

training dataset  = {X, Y} consisting of N inputs X =
{x(1), x(2),  …, x(N)}  and N outputs Y =  {y(1), y(2),  …,
y(N)}, which consists of noisy observations y(i) = f(x(i)) +
ς.  To  estimate  the y* at  a  given  test  input x∗,  we  can
obtain that
 (

Y
y∗

)
∼ GP

((
m(X)
m (x∗)

)
,

(
K(X,X)+σ2

N IN K (X, x∗)
K (x∗,X) k (x∗, x∗)

))
(2)

σ2
Nwhere  denotes  measurement  noise,  and K is  the

covariance  matrix.  The  Bayesian  formula  is  employed
to  get  a  posterior  conditional  probability  distribution.
Moreover, the posterior probability obeys the Gaussian
distribution.  The  mean  function  and  covariance
function are defined as
 

m(y∗) = m(x∗)+K(x∗,X)(K(X,X)+σ2
N IN)−1(Y −m(X)),

cov(y∗) = k(x∗, x∗)−K(x∗,X)(K(X,X)+σ2
N IN)−1K(X, x∗)

(3)

k(x, x′)Usually,  adopts square exponential function:
 

k(x, x′|θ) = νexp(− 1
2 (x− x′)TΩ−1(x− x′)) (4)

Ω−1 = diag{ω1,ω2, . . . ,ωN} ωi =
1
λ2

i

θ =

{ν,Ω,σ2
N}

where , ,  and 
 represents  hyperparameters  that  need  to  be

optimized by maximizing the log-likelihood function:
 

log(p(Y |X, θ)) = −1
2

YTK−1Y − 1
2

log |K| − N
2

log(2π)
(5)
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2.2    System model

In this section, we consider the nonlinear system:
 

ẋi = fi(xi)+ (gi(xi)+∆gi(xi))xi+1+di,
. . .
ẋn = fn(xn)+ (gn(xn)+∆gn(xn))sat(u)+dn,
y = x1

(6)

xi ∈ Rm, i = 1,2, . . . ,n
xi = [x1, x2, . . . , xi] ∈ Rm×i fi ∈ Rm

sat(u) ∈ Rm

gi ∈ Rm×m

∆gi ∈ Rm×m

di ∈ Rm

y ∈ Rm

where  represents  the  state  vectors
and ;  expresses
unknown  dynamics  functions;  means  the
input  vectors;  indicates  known  control
matrices  and  indicates  unknown
perturbations  of  control  matrices;  means
unknown  disturbances;  and  means  output
vector.

fi di

sat(ui)

In  system  (6),  we  employ  GPs  to  estimate  the
unknown  dynamics  and  external  disturbances .
Further,  the  control  input  of  the  system  satisfies  the
input saturation constraint, and the saturation  can
be described as
 

sat (ui) =
{

sign(ui)uimax, |ui| ⩾ uimax;
ui, |ui| < uimax

(7)

uimax

ui

sat(ui) i = 1,2, . . . ,m
∥sat(u)∥ ⩽ umax

φ(u) =
[φ(u1),φ(u2), . . . ,φ(um)]T

where  is a known constant. In the actual controller
design  process,  it  is  possible  that  the  ideal  input  is
larger than the practical input ( ), and

.  Then,  there  will  be  a  certain  deviation
between the ideal input and the practical input. In fact,
saturated  nonlinearity  can  be  approximated  by  some
smoothing  functions.  As  cited  in  Ref.  [26], 

 and
 

φ(ui) = uimax tanh(
ui

uimax
) = uimax

e

ui

uimax − e
−

ui

uimax

e

ui

uimax + e
−

ui

uimax

(8)

∆u = sat(u)−φ(u) ∥∆u∥ ⩽ ϵmHere, we define  and .
Some  necessary  assumptions  and  lemmas  are  given

first to facilitate the control law design.

fi

∥ fi∥2k < B

Assumption  1　 The  unmodeled  parts  of  the
nonlinear  system, ,  have  a  bounded  reproducing
kernel  Hilbert  space  (RKHS)  norm B with  a  certain
kernel  (such  as  squared  exponential  (SE)  kernel),

.

Φ̃x

m(x) x
P{∥m(x)− f (x)∥ ⩽ βΣ(x|DN)} ⩾ (1−δ) x ∈ DN

δ ∈ (0,1) Σ(x|DN)

Lemma  1 (Ref.  [27],  Theorem  6)  A  standard
Gaussian process trains and learns the data of a certain
system .  The  error  between  the  prediction  output

 and  the  true  value  at  point  is  bounded  by
,  for  and  a

probability ,  where  is  the  standard

x βdeviation at point  and  is defined as
 

β =

√
2B+300γ log3(

N +1
δ

) (9)

γwhere  represents the maximum information gain and
 

γ = max
x1,x2,...,xN+1∈X

1
2 log |IN +σ

−2
N K(x, x′)| (10)

γ j

γ j

There  is  a  quasilinear  relationship  between  the
maximum  information  gain  and  the  amount  of
training  data.  As  cited  in  Ref.  [27],  can  be
approximated to a constant value with the training data
increasing.  Here,  we  keep  the  number  of  training  sets
constant.

Assumption 2　 It  is  assumed that  system (6)  has  a
nominal model:
 

ẋi = f̂i(xi)+ (gi(xi)+∆gi(xi))xi+1+di (11)

which can be used to generate suitable training data.
gi

gi

ςi > 0
∥gi(xi)∥ ⩽ ςi,∀xi ∈ Ωi Ωi

Assumption  3　For  a  known  control  matrix ,  we
do not require absolute invertibility of .  Instead,  it  is
assumed  that  there  is  a  constant  such  that

 with compact subset  containing
the origin.

x1d ∥x(i)
1d∥ ⩽ oi oi > 0

Assumption  4　The  desired  state  of  the  system  is
. We assume  for .

i = 1,2, . . . ,n
ιi ⩾ 0 ∥∆gi(xi)∥ ⩽ ιi

Assumption 5　For ,  there  exist  known
constants  such that .

Assumption  6　 The  deviation  between  the  ideal
control input and the practical control input is bounded,
such that
 

∥sat(u)−u∥ ⩽ µ (12)

µ > 0where  is an unknown constant.
Remark 1   Assumption  1  and  Lemma 1  mean  that

the  unknown  nonlinear  part  of  the  system  can  be
estimated by a GP, and the estimation error is bounded.
Assumption 3 is reasonable for most nonlinear systems,
and  the  boundedness  of  the  known control  matrix  can
be  well  guaranteed.  Assumption  4  means  that  all
derivatives of the desired state of the system exist and
are  bounded.  Assumption  5  means  that  the  perturbed
part  of  the  control  matrix  is  also  bound.  For  many
practical  systems,  unbounded  disturbances  or
unbounded  control  matrices  are  difficult  to  control.
Assumption  6  means  the  expected  control  input  is
bound  since  the  state  errors  are  bounded  in  our
controller design process (see Theorem 1). In addition,
Assumption 6 is common in many works, such as Refs.
[26, 28].
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gi

∆gi

gi

gi ∥gi∥

Remark  2    (Singularity  problem) In  Refs.
[21−23, 29],  the  control  matrix  is  assumed  to  be
invertible.  However,  this  is  very  difficult  for  many
practical nonlinear systems. Especially when there is a
time-varying  control  matrix  perturbation ,
the  invertibility  of  is  more  difficult  to  ensure  in
advance. In this paper, we no longer require the control
matrix  to  be  invertible,  but  only  ensure  that  is
bounded,  which  is  very  useful  for  most  nonlinear
systems.

g ∈ Rm×m

ϱ(g) ζ > 0
g+ (ϱ(g)+ ζ)Im ϱ(gi) ϱ(gi) ⩽ ρi

gi(xi)+
(ρi+ϖi)Im ϖi > 0

Lemma 2 (Ref. [28])   For a square matrix 
with spectral  radius ,  is  a  constant,  such that

 is  non-singular.  satisfies .
Therefore,  it  can  be  directly  obtained  that 

 are nonsingular for .

3    Main Work

In  this  section,  we  employ  an  auxiliary  system  to
handle  input  saturation.  Combined  with  the  excellent
estimation performance of the GP, the adaptive control
law of the MIMO system is finally obtained.

e1 = x1− x1d e2 = x2− ν1 ν1 ∈ Rm

e1

Step  1    For  system  (6),  we  select  the  error
 and ,  where  is  the

virtual  control  input,  which  will  be  defined  later.
Differentiating  to obtain 

ė1 = f1(x1)+g1(x1)(e2+ ν1)+∆g1(x1)x2+d1− ẋ1d
(13)

Choose the candidate Lyapunov function 

V∗1 =
1
2

eT
1 e1 (14)

Differentiating it can obtain
 

V̇∗1 =eT
1 f1(x1)+ eT

1 g1(x1)(e2+ ν1)+

eT
1∆g1(x1)x2+ eT

1 d1− eT
1 ẋ1d ⩽

eT
1 f̄1(x1)+ eT

1 g1(x1)(e2+ ν1)+

ι1∥e1∥∥x2∥− eT
1 ẋ1d

(15)

f̄1(x1) = f1(x1)+d1where .
Design the virtual control input as

 

ν1 =[g1(x1)+ (ρ1+ϖ1)Im]−1(−K1e1− ˆ̄f1(x1)+ ẋ1d)
(16)

K1 ∈ Rm×m K1−
1
2

Im ≻ 0 ˆ̄f1(x1)where  and ,  is  estimated
by a Gaussian process.

Substituting Eq. (16) into Eq. (15) yields
 

V̇∗1 ⩽ eT
1 f̄1(x1)+ eT

1 [g1(x1)+ (ρ1+ϖ1)Im−

(ρ1+ϖ1)Im](e2+ ν1)+ ι1∥e1∥∥x2∥− eT
1 ẋ1d ⩽

eT
1 f̃1(x1)+ eT

1 g1(x1)e2− eT
1 K1e1+

ι1∥e1∥∥x2∥− (ρ1+ϖ1)eT
1ν1

(17)

f̃1(x1) = f̄1(x1)− ˆ̄f1(x1)

−eT
1 K1e1

ι1∥e1∥∥x2∥− (ρ1+ϖ1)eT
1ν1

where . The first term on the right
side of  Eq.  (17)  is  the Gaussian estimation error  term,
the  second  will  be  eliminated  in  the  iterative  process,
and  the  third  term  is  negative  definite.  The
remaining  terms  will  be
subtly handled in the stability analysis.

1 < i ⩽ n−1
ei+1 = xi+1− νi νi ∈ Rm

ei

Step i ( )  We  define  the  error  as
,  where  is  the  virtual  control

input,  which will  be defined later.  Considering system
(6) and the derivation of , we obtain
 

ėi = fi(xi)+gi(xi)(ei+1+ νi)+∆gi(xi)xi+1+di− ν̇i−1
(18)

Choose the Lyapunov function candidate:
 

V∗i =
1
2

eT
i ei (19)

V∗iThe differential of  can be obtained:
 

V̇∗i =eT
i fi(xi)+ eT

i gi(xi)(ei+1+ νi)+

eT
i ∆gi(xi)xi+1+ eT

i di− eT
i ν̇i−1 ⩽

eT
i f̄i(xi)+ eT

i gi(xi)(ei+1+ νi)+

ιi∥ei∥∥xi+1∥− eT
i ν̇i−1

(20)

f̄i(xi) = fi(xi)+diwhere .
The virtual control input is selected as

 

νi = [gi(xi)+ (ρi+ϖi)Im]−1·

(−gT
i−1(xi−1)ei−1−Kiei− ˆ̄fi(xi)+ ν̇i−1)

Ki ∈ Rm×m Ki−
1
2

Im ≻ 0 ˆ̄fi(xi)where  and ,  and  is
estimated by a Gaussian process.

Similar with Eq. (16) and Formula (17), we obtain
 

V̇∗i ⩽ eT
i f̃i(xi)+ eT

i gi(xi)ei+1−
eT

i gT
i−1(xi−1)ei−1− eT

i Kiei+

ιi∥ei∥∥xi+1∥− (ρi+ϖi)eT
i νi

(21)

The augmented Lyapunov function candidate is
 

Vi = Vi−1+V∗i (22)

Viand the time derivative of  is given by
 

V̇i ⩽
i∑

j=1
eT

j f̃ j(x j)+ eT
i gi(xi)ei+1−

i∑
j=1

eT
j K je j+

i∑
j=1
ι j∥e j∥∥x j+1∥−

i∑
j=1

(ρ j+ϖ j)eT
j ν j

(23)

en = xn− νn−1−η η

en

Step n  Inspired by the design ideas of the auxiliary
system in Ref. [24], we define ,  is an
auxiliary signal, and we can obtain the time derivative
of  as 
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ėn = fn(xn)+gn(xn)sat(u)+∆gn(xn)sat(u)+
dn− ν̇n−1− η̇

(24)

According  to  the  previous  form  of  the  smooth
function  approximating  the  saturation  function,  it  can
be known that
 

sat(u) = φ(u)+∆u (25)

the auxiliary system is designed as
 

η̇ = [gn(xn)+ (ρn+ϖn)Im](φ(u)−u)− kaη (26)

ka > 0where .
From Eqs. (6), (24), and (26), we obtain

 

ėn = f̄n(xn)+gn(xn)sat(u)+ kaη−
[gn(xn)+ (ρn+ϖn)Im](φ(u)−u)+
∆gn(xn)sat(u)− ν̇n−1

(27)

f̄n(xn) = fn(xn)+dnwhere .
The Lyapunov function is considered as

 

V∗n =
1
2

eT
n en (28)

V∗nThe differentiation of  can be expanded as
 

V̇∗n = eT
n f̄n(xn)− eT

n ν̇n−1+ kaeT
nη+

eT
n [gn(xn)+ (ρn+ϖn)Im](sat(u)−φ(u))−

(ρn+ϖn)eT
n Imsat(u)+ eT

n∆gn(xn)sat(u)+

eT
n [gn(xn)+ (ρn+ϖn)Im]u

(29)

Choose the virtual control law as
 

u = [gn(xn)+ (ρn+ϖn)Im]−1·

(−gT
n−1(xn−1)en−1−Knen− ˆ̄fn(xn)+

ν̇n−1− kaη−
enH(ei, xi, νi)
ϑTϑ+ eT

n en
)

(30)

Kn ∈ Rm×m K1−
1
2

Im ≻ 0where  and , and
 

H(ei, xi, νi) = −(ρn+ϖn)eT
n Imsat(u)+

n−1∑
j=1
ι j∥e j∥∥x j+1∥+ ιn∥en∥umax−

n−1∑
j=1

(ρ j+ϖ j)eT
j ν j+

eT
n [gn(xn)+ (ρn+ϖn)Im](sat(u)−φ(u))

(31)

ϑ ϑand  is  an  auxiliary  system.  The  adaptive  laws  for 
are designed as
 

ϑ̇ =

 −
ϑH(ei, xi, νi)
ϑTϑ+ eT

n en
− kbϑ, ∥en∥ ⩾ µn;

0, ∥en∥ < µn

(32)

kb > 0 µn > 0where  and  are constants.
µn

µn ϑ

Remark  3    The  parameter  needs  to  be  cleverly
designed.  The  actual  control  output  is  associated  with
the initial state of the system, error magnitude, etc. The
role of  here is: (1) The adaptive update law of  will
not  have  singular  values  with  a  denominator  of  0.  (2)

um

en µn

To  ensure  that  the  control  input  is  less  than  when
the tracking error  is less than . That is, there is no
input saturation.

||en|| < µn

µn θ

The following Theorem 1 will prove that if ,
it will never escape from , thus the adaptive rate of 
will not cause buffeting.

To  draw  the  controller  design  process  and
conclusions,  we  give  the  main  results  for  the  adaptive
controller  of  system  (6)  in  Theorem  1.  The  proof  of
Theorem 1 is given in the Appendix.

fi di

(1−δ)n xi

ei η ϑ

e1

(1−δ)n

Theorem  1　Considering  the  nonlinear  system  (6)
with input saturation constraint (7), unknown functions

 and  disturbances  are  estimated  by  Gaussian
processes.  Under  Assumptions  1−6,  the  control  law
(30),  and  parameter  updated  law (32),  the  closed-loop
system is semi-globally stable with probability at least

 for  all .  The  following  conclusions  are
obtained: (1) All of the states , , and  are bounded;
(2)  The  tracking  error  converges  to  a  small  region
near the origin with probability at least .

fi

g+ (ϱ(g)+ ζ)Im

Remark  4    The  main  idea  of  the  algorithm  can  be
divided as  three  parts.  First,  GP models  are  studied to
estimate  the  unknown dynamic functions .  Then,  the
backstepping technique is used in the design of control
law while an invertible control matrix  is
put forward to address the singular problem. Finally, an
auxiliary  system  (adaptive  law)  is  designed  to
compensate for input saturation. The design process of
the controller is shown in Fig. 1.

4    Validation

A  numerical  example  of  an  MIMO  nonlinear  system
with  input  saturation  is  implemented  in  this  section.
We demonstrate that GP can estimate the uncertainty of
the  system  well.  Meanwhile,  an  unmodeled  dynamic
compensation is gradually introduced, and the tracking
error  will  gradually  decrease.  The  tracking
performance of the proposed method is compared with
that of Ref. [24] as well.
 

GP
X*

fi(X*)
fi(xi)
^

fn(xn)
^

xd vi

d

dSystem Virtual
controller

Auxiliary
system

Auxiliary
system

Controller Saturation

sat(u)u−
+

H(ei,xi,vi),θ

vi,vn−1
·

η

 
Fig. 1    Design process of the controller.
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An MIMO nonlinear  system with input  saturation is
considered:
 

ẋ1 = f1(x1)+ (g1(x1)+∆g1(x1))x2+d1,

ẋ2 = f2(x2)+ (g2(x2)+∆g2(x2))sat(u)+d2,

y = x1

(33)

where
 

x1 = [x11, x12]T, x2 = [x21, x22]T,

f1(x1) =
[
0.2sin(x11)cos(x12)

0.2x11x12

]
,

g1(x1) =
[
1.2+g11 −2

5 1.3+g12

]
,

g11 = cos(x11) sin(x12),
g12 = −cos(x12) sin(x11),

∆g1(x1) =
[
0.2sin(x11) 0

0 0.1cos(x12)

]
,

f2(x2) =
[
−x12x21
2x11x22

]
,

g2(x2) =
[
0.2+g21 0.3− sin(x22)
sin(x22) −0.2+ cos(x21)

]
,

g21 = cos(x21) sin(x22),

∆g2(x2) =
[
0.12cos(x11x21) 0.11cos(x11x21)
0.15sin(x11x21) 0.13cos(x21x22)

]
,

d1 =

[
0.21cos2(x12)+0.04sin(0.3x12t)
0.12sin2(x11)+0.03sin(0.2x11t)

]
,

d2 =

[
0.13sin2(x21)+0.05sin(0.2x21t)
0.11cos2(x22)+0.21sin(0.3x22t)

]
.

g2

g2

It  is  worth  noting  that  is  bounded  rather  than
invertible.  It  will  be  a  challenge  for  the  design  of
control law in Ref. [24], where  needs to be invertible.

f̄11, f̄12, f̄21 f̄22

Ωx11 ×Ωx12 = [−1,1]× [−1.5,1.5], Ωx11 ×Ωx12 = [−1,1]
[−1.5,1.5], Ωx12 ×Ωx21 = [−1.5,1.5]× [−0.3,0.3]
Ωx11 ×Ωx22 = [−1,1]× [−0.5,0.5]

To estimate  the  values  of ,  and ,  3600
training  inputs  are  equally  distributed  on  the  set

×
,  and

,  respectively,  since  the
desired trajectory is bound.

f̄11, f̄12, f̄21 f̄22

Figure 2 demonstrates the estimated errors of the GP
model  with  respect  to ,  and .  It  can  be
noted  that  all  errors  are  bounded  in  the  simulation
duration.  It  guarantees  that  the  tracking  error  will

exponentially  converge  to  the  region  calculated  in
Formula (A4), which will be shown in the Appendix.

In  the  simulation,  the  reference  trajectory  is
described as
 

x11d = 0.5[sin(1.5t)+ sin(0.5t)],
x12d = 0.8sin(t)+0.5sin(0.5t).

According  to  the  previous  control  design  (16),  (26),
and (30)−(32), the proposed controllers are designed as
 

ν1 = [g1+ (ρ1+ϖ1)I2]−1(−K1e1− ˆ̄f1+ ẋ1d),
η̇ = −kaη+ [g2+ (ρ2+ϖ2)I2](φ(u)−u),

 

H = −(ρ2+ϖ2)eT
2 I2sat(u)+ ι1∥e1∥∥x2∥+

ι2∥e2∥umax− (ρ1+ϖ1)eT
1ν1+

eT
2 [g2+ (ρ2+ϖ2)I2](sat(u)−φ(u)),

ϑ̇ =

 −
ϑH

ϑTϑ+ eT
2 e2
− kbϑ,∥e2∥ ⩾ 0.1;

0,∥e2∥ < 0.1;

u = [g2+ (ρ2+ϖ2)I2]−1(−gT
1 e1−K2e2− ˆ̄f2+

ν̇1− kaη−
e2H

ϑTϑ+ eT
2 e2

).

u1max = 1.5,u2max = 2,
ka = 1, kb = 0.1, K1 = diag{5,10}, K2 = {10,5}, ρ1 =

0, ρ2 = 0.1 ϖ1 =ϖ2 = 0, ι1 = ι2 = 0.2, x11(0) = 1
x12(0) =1

The parameter values are set to 
 diag

 , ,  and
.

ka kb

ϖi µn

Though  the  parameters  of  the  proposed  method  are
well  designed  in  advance,  there  is  some  guidance  on
selecting  the  parameters.  First,  choosing  two  adaptive
gains,  and ,  is  crucial.  Too large a  parameter  will
cause  the  control  law  to  oscillate,  and  too  small  a
parameter will  increase the convergence time. Second,
the smaller the  and , the smaller the system error.

At  the  same  time,  the  controllers  in  Ref.  [24]  are
designed as
 

ᾱ1 = κ1e
1
2
1 + c1e3

1+ e1+
σ̂e1Ψ

T
1 Ψ1

2a2
1

,

ᾱ2 = κ2e
1
2
2 + c2e3

2+ (I2+
1
2

g2
2)e2+gT

1 e1+η+

σ̂e2Ψ
T
2 Ψ2

2a2
2

,

η̇ = −η+g2(φ(u)−u),
˙̂σ = λτ2− r1σ̂−

r2

λ
σ̂3,

τ2 =
(
∥e1∥2ΨT

1 Ψ1/2a2
1

)
+

(
∥e2∥2ΨT

2 Ψ2/2a2
2

)
,

αi = −g−1
i

ei∥ᾱi∥2√
∥ei∥2∥ᾱi∥2+ l2i

, i = 1,2,

u = α2,
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Fig. 2    Prediction errors of GP model.
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Ψ1 Ψ2where  and  are calculated via neural network.
u1max = 1.5,u2max = 2

c1 = c2 = 1,a1 = a2 = 40, κ1 = diag{15,15} κ2 = diag{2,2}
l1 = l2 = 0.35,r1 = r2 = 0.1,ϖ1 =ϖ2 = 0,λ = 0.01 x11(0) =
1, x12(0) = 1

The  parameters  are  set  to ,
, ,

, 
 and .

g2

Figure 3 shows the tracking performance of proposed
method  (solid  line)  compared  with  that  in  Ref.  [24]
(dashed  line).  It  is  obvious  that  the  tracking  errors  in
the  proposed  method  are  minor.  It  is  noted  that  the
parameters  in  Ref.  [24]  are  selected  carefully,
otherwise  will be singular and the controller in Ref. [24]
will be out of work.

u
sat(u)

Figures 4 and 5 display the desired control signals 
(dashed line) and saturation inputs  (solid line) in
the  proposed  method  and  the  method  in  Ref.  [24],
respectively.  The  saturation  of  control  inputs  is
presented  in  the  simulation  duration  and  the
performance of the proposed method is smoother.

5    Conclusion

An  improved  Gaussian  process  for  modeling  and
control  of  an  affine  system  with  saturation  input  is
proposed  in  this  article  as  a  novel  concept.  The
presented  model  is  nonparametric  and  can  be
dynamically optimized globally. The Gaussian process
naturally  has  the  advantage  of  dealing  with  noise  and
uncertainty.  Through  specific  compensation  for
saturation  inputs,  the  tracking  error  is  reduced  and
asymptotically  converges  to  a  small  neighborhood.
With  the  help  of  an  auxiliary  design  system,  the
adaptive control method is proposed to improve control
performance. The proposed approach can also be useful
when the system has unmodeled dynamics.

Appendix

Proof of Theorem 1

∥en∥ ⩾ µn

Proof    For  system (6),  if  there  exists  input  saturation
constraint,  and .  The  augmented  Lyapunov
function candidate
 

Vn = Vn−1+V∗n +
1
2ϑ

Tϑ (A1)

VnThe time derivative of  is
 

V̇n = V̇n−1+ V̇∗n +ϑ
Tϑ̇ (A2)

VnSubstituting  Eq.  (30)  into  the  time  derivative  of ,
we obtain
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Fig. 3    Outputs x11 and x12 in proposed method and Ref. [24].
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Fig. 4    Desired  control  signals u (dashed  line)  and
saturation inputs sat(u) (solid line) in proposed method.
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Fig. 5    Desired  control  signals u (dashed  line)  and
saturation inputs sat(u) (solid line) in the method in Ref. [24].
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V̇n ⩽
n∑

j=1

eT
j f̃ j(x j)− (ρn+ϖn)eT

n Imsat(u)−
n∑

j=1

eT
j K je j+

n−1∑
j=1

ι j∥e j∥∥x j+1∥−
n−1∑
j=1

(ρ j+ϖ j)eT
j ν j+ eT

n ·

[gn(xn)+ (ρn+ϖn)Im](sat(u)−φ(u))+ eT
n∆gn(xn)sat(u)−

eT
n

enH(ei, xi, νi)
ϑTϑ+ eT

n en
+ϑTϑ̇ ⩽ −

n∑
j=1

eT
j (Ki−

1
2

Im)e j+

1
2

n∑
j=1

f̃ T
j (x j) f̃ j(x j)−

eT
n enH(ei, xi, νi)
ϑTϑ+ eT

n en
+ϑTϑ̇+

n−1∑
j=1

ι j∥e j∥∥x j+1∥+ ι2n∥en∥umax− (ρn+ϖn)eT
n Imsat(u)−

n−1∑
j=1

(ρ j+ϖ j)eT
j ν j+eT

n [gn(xn)+ (ρn+ϖn)Im]·

(sat(u)−φ(u)) = −
n∑

j=1

eT
j (Ki−

1
2

Im)e j+

1
2

n∑
j=1

f̃ T
j (x j) f̃ j(x j)+

ϑTϑH(ei, xi, νi)
ϑTϑ+ eT

n en
+ϑTϑ̇ =

−
n∑

j=1

eT
j (Ki−

1
2

Im)e j− kbϑ
Tϑ+

1
2

n∑
j=1

f̃ T
j (x j) f̃ j(x j) ⩽

−2χϑVn+Cϑ (A3)

χϑ =min{λmin(Ki−
1
2

Im),kb} (i = 1,2, . . . ,n) Cϑ =
1
2
∑n

j=1 f̃ T
j (x j) f̃ j(x j).

where , 

CϑInvoking Lemma 1, we also have that  is bounded
with  probability.  The  tracking  error  converges  to  the
region that
 

∥e1∥ ⩽
√

Cϑ
χϑ
+ (2Vn(0)− Cϑ

χϑ
)e−2χϑt (A4)

(1−δ)nwith probability at least .
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