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Abstract: Trackless  rubber-tyerd  vehicles  are  the  core  equipment  for  auxiliary  transportation  in  inclined-shaft

coal  mines,  and  the  rationality  of  their  routes  plays  the  direct  impact  on  operation  safety  and  energy

consumption. Rich studies have been done on scheduling rubber-tyerd vehicles driven by diesel oil, however,

less works are for electric trackless rubber-tyred vehicles. Furthermore, energy consumption of vehicles gives

no consideration on the impact of complex roadway and traffic rules on driving, especially the limited cruising

ability of electric trackless rubber-tyred vehichles (TRVs). To address this issue, an energy consumption model

of an electric trackless rubber-tyred vehicle is formulated, in which the effects from total mass, speed profiles,

slope  of  roadways,  and  energy  management  mode  are  all  considered.  Following  that,  a  low-carbon  routing

model  of  electric  trackless  rubber-tyred  vehicles  is  built  to  minimize  the  total  energy  consumption  under  the

constraint  of  vehicle  avoidance,  allowable  load,  and  endurance  power.  As  a  problem-solver,  an  improved

artificial bee colony algorithm is put forward. More especially, an adaptive neighborhood search is designed to

guide employed bees to select appropriate operator in a specific space. In order to assign onlookers to some

promising  food  sources  reasonably,  their  selection  probability  is  adaptively  adjusted.  For  a  stagnant  food

source,  a  knowledge-driven  initialization  is  developed  to  generate  a  feasible  substitute.  The  experimental

results  on  four  real-world  instances  indicate  that  improved  artificial  bee  colony  algorithm (IABC)  outperforms

other  comparative  algorithms  and  the  special  designs  in  its  three  phases  effectively  avoid  premature

convergence and speed up convergence.
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1    Introduction

In  the  construction  and  production  phases  of  a  coal
mine,  a  large  amount  of  materials,  such  as  sand,
cement,  bolt-mesh,  and  so  on,  need  to  be  carried  by
auxiliary  transportation  system  from  the  ground  to

specific place underground, especially the moving face.
Trackless  rubber-tyred  vehicles  (TRVs),  as  the
commonly-used  transport  equipment,  are  widely
applied  in  inclined-shaft  coal  mines  due  to  good
adaptability  and  high  flexibility[1].  However,  complex
roadway  network  and  road  condition  underground, 
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such as diverse slope and uneven surface, easily result
in  low  efficiency  and  high  carbon  emission  of  TRVs,
even  traffic  accidents[2, 3].  Thus,  it  is  of  extraordinary
significance to develop high-efficiency, energy-saving,
and safe routing technique for TRVs.

Until  now,  most  of  TRVs  are  driven  by  diesel  oil,
causing strong vibration, loud noise, and high-pollution
exhaust  emission.  To  address  the  issue,  Yan  et  al.[4]

introduced a kind of tubular sandwiched engine mount in
TRVs, producing good vibration-reducing performance.
Bao  et  al.[2] analyzed  the  dynamics  of  TRVs  and
summarized  the  characterizing  parameters  that
influence driving stability. Liu et al.[5] investigated the
diffusion  properties  of  particulate  matter  emitted  by
TRVs  via  numerical  simulations  and  field
measurements,  and  then  optimized  ventilation  rate  to
reduce  the  exhaust  emissions.  Du[6] designed  an  anti-
collision  device  for  TRVs,  with  the  purpose  of
guaranteeing  the  safe  and  efficient  underground
auxiliary  transportation.  Though  the  above  techniques
provide  the  obvious  improvement  on  the  driving
performance  of  TRVs,  the  inherent  drawbacks  caused
by diesel oil based power supply can not be overcome
fully.  With  the  development  of  electrically-driven
technique,  electric  trackless  rubber-tyred  vehicles
(ETRVs)  have  the  advantages  of  light  vibration,  low
noise,  and  zero  exhaust,  becoming  a  promising
problem-solver for low-carbon production[7−9].

Except  for  power  supply  of  TRVs,  the  inefficient
routing is another factor that may result in high energy
consumption, large loss of transportation capacity, and
long  waiting  time,  even  safety  accidents.  To  improve
routing  efficiency,  Cai[10] constructed  a  TRV
information system for underground transportation and
gave the driving rules. Similarly, Han[11] introduced the
intelligent  dispatching  system  for  TRVs,  in  which  the
precise  positioning  method  and  the  regulation  of
underground  traffic  were  given.  In  the  above-
mentioned systems, an efficient platform of high-speed
information interaction is provided for TRVs, however,
the  global  routing  of  TRVs  that  is  mainly  done  in
manual  mode  can  obtain  the  satisfied  but  suboptimal
dispatching  scheme.  To  automatically  generate  a
routing  scheme,  Zhou  et  al.[12] regarded  the  minimum
driving distance as an objective and then formulated its
mathematic model with the capacity constraint. Genetic
algorithm was  adopted  as  a  problem-solver.  However,
the model is too simple to fully describe the necessary
limitation  and  regulation  of  auxiliary  transportation  in

practical scenario. In a roadway network underground,
roads  may  have  various  slopes,  which  cannot  be
accurately  reflected  by  Euclidean-based  driving
distance.  Being  different  from  it,  energy  consumption
of  TRVs  has  a  direct  relationship  with  road  condition
and  driving  mode,  thus  providing  more  reliable
indicator  for  evaluating  a  routing  scheme.  In  addition,
except  for  the capacity,  power supply of  TRVs is  also
limited.  More  especially,  ETRVs  cannot  be  charged
underground  because  all  charging  stations  are  located
in  pitheads.  It  is  also  noted  that  vehicles  passing  over
each  other  is  risky  and  even  forbidden  due  to  poor
vision  and  narrow  roads.  The  specific  limitations  of
vehicle  avoidance  and  explosion-proof  charging  make
it  much  harder  to  achieve  the  optimal  routing  for
ETRVs.

This  issue  is  essentially  the  specific  electric  vehicle
routing problem (EVRP). Rich studies have been done
on finding the optimal routing scheme for conventional
EVRP.  CPLEX[13, 14],  liner  programming[15],  and
branch-and-price  algorithm[16],  as  exact  optimization
techniques,  can  obtain  satisfied  but  local  optimal
solution.  With  the  development  of  intelligence
optimization methods, variable neighborhood search[17],
genetic  algorithm[18],  ant  colony  optimization[19],  and
artificial  bee  colony  algorithm  (ABC)[20] have  been
employed to achieve the optimal routing scheme within
acceptable  computational  time.  Among them, artificial
bee  colony algorithm inspired  by  bee  colony behavior
has simpler structure with few parameters and thus has
been  widely  applied  in  solving  combinatorial
optimization  problems,  such  as  traveling  salesman
problem[21], arc routing problem[22], and vehicle routing
problem[23, 24].  Although  many  problem-specific
operators have been designed to enhance the ability of
exploration and exploitation for ABC, their limitations
will  be  exposed  on  solving  other  problems  due  to  no
free lunch theorems[25].

To  address  the  above  issues,  low-carbon  routing
problem  of  ETRVs  (LRPETRV)  is  formulated,  in
which the total energy consumption of ETRVs is taken
as  the  optimized  objective  and  the  constraints  of  load
capacity,  cruising  ability,  and  vehicle  avoidance  are
considered.  Following  that,  an  improved  ABC  with
three  effective  strategies  is  proposed  for  solving
LRPETRV,  with  the  purpose  of  speeding  up
convergence  and  enhancing  solving  accuracy.  The
main  contributions  of  this  paper  are  summarized  as
follows.
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(1)  To  formulate  a  realistic  mathematical  model  of
the  LRPETRV,  the  objective  function  is  obtained  via
the  energy  consumption  estimation  considering  road
slope,  vehicle  load,  and  driving  state,  and  the
limitations  from  load  capacity,  cruising  ability,  and
vehicle avoidance are taken into account.

(2)  To  solve  LRPETRV  efficiently,  a  strategy  of
adaptive  neighborhood  search  is  developed  in
employed  bee  phase  to  select  suitable  operator  by
evaluating their contribution to evolution, the onlooker
phase  adopts  the  adaptive  selection  probability
considering both the quality and evolution efficiency of
solutions to avoid the waste of computational cost, and
a knowledge driving initialization strategy is  proposed
in  scout  phase  to  overstep  the  local  extremum  and
improve convergence efficiency.

The remainder of this paper is organized as follows.
Section 2 introduces various variants of EVRP and the
optimization  methods.  Section  3  describes  the
LRPETRV  in  detail  and  presents  its  mathematical
model.  Section  4  describes  the  detail  of  the  proposed
improved  artificial  bee  colony  algorithm  (IABC)  for
solving LRPETRV. The experimental studies are given
in Section 5. Section 6 draws conclusions and provides
the future research direction.

2    Related Work

This  section  provides  a  comprehensive  discussion  of
previous work on TRV routing problem and EVRP, as
well  as studies on artificial  bee colony algorithms that
are typical problem-solvers for VRPs.

Trackless  rubber-tyred  vehicles  are  the  core
equipment  of  auxiliary  transportation  system  in  an
inclined-shaft  coal  mine.  The  rationality  of  their
routing plays a direct impact on the total transportation
efficiency.  Rich  studies  have  been  done  on  TRVs
routing  optimization.  Zhang[26] designed  a  TRV
dispatching platform to  find  an  optimal  route  with  the
shortest distance, with the purpose of reducing resource
waste. Considering poor vision and narrow roads, Zhou
et al.[12] took the shortest path and the least number of
meeting  vehicles  as  optimization  objectives  and  then
built  the mathematic  model  of  TRVs routing problem.
However,  the  above  models  give  no  consideration  to
the impact of complex road condition and traffic rules
on  TRV  driving.  In  a  roadway  network  with  various
slopes,  Euclidean-based  driving  distance  cannot
effectively  evaluate  a  routing  scheme.  Moreover,
vehicles  passing  over  each  other  may  have  a  collision

and  even  be  forbidden  in  a  narrow  roadway.  More
especially,  scheduling  ETRVs  meets  the  extra
constraint  due  to  the  explosion-proof  requirement  and
power  limitation.  But  there  is  a  lack  of  the  related
investigation on routing problem for ETRVs.

Low-carbon routing problem of ETRVs is essentially
an  electrical  vehicle  routing  problem  (EVRP)  in  a
specific  scenario.  With  the  increasing  application  of
electric  vehicles,  EVRP  has  been  drawing  much
attention,  and  many  valuable  works  have  been  put
forward to find the optimal driving route under various
objectives  and  constraints.  The  commonly-used
optimizations  objectives  contain  transportation  time,
energy  consumption,  and  traveling  distance  and
cost[27].  The  constraints  are  normally  derived  from
time,  capacity,  and  power  limitation.  Ferro  et  al.[28]

focused  on  time-of-use  energy  prices  and  took  energy
and  distances  cost  as  the  optimization  objective  for
EVRP.  For  EVRP  with  multi-depots,  time  windows,
and  nonlinear  charging  time,  Karakatič[29] optimized
the order of visiting service nodes and charging station,
as well as charge time, with the purpose of minimizing
the  total  transportation  time that  is  the  sum of  driving
time,  waiting  time,  and  recharging  time.  Considering
the  effects  of  environmental  factors  on  energy
consumption,  Yi  and  Bauer[30] proposed  a  stochastic
energy  aware  routing  framework  for  electric  vehicles
with  the  goal  of  finding  the  optimal  route  having  the
minimum  expectation  of  energy  consumption.  From
low  carbon  perspective,  Zhu  et  al.[31] formulated  a
multi-depot  capacitated  electric  vehicle  routing
problem  to  a  single-objective  optimization,  in  which
client  demand  is  two-dimensional  weighted  items  and
the  transportation  distance  is  the  objective.  Under
different  recharging  modes,  EVRP  with  partial  or  full
recharging[13, 32, 33] are  investigated.  Especially,  the
former  has  a  significant  flexibility  with  regard  to
recharging  time.  As  we  know,  battery  swap  is  a
promising  alternative  to  recharging  battery  due  to  its
convenience  and  concurrent  recharging  mode.  The
battery  can  be  recharged  as  electrical  load  is  lower,
cutting the cost[34]. Thus, the detours of taxi driving to
battery  swapping  stations[35] were  regarded  as  a  new
routing problem for electric vehicles. Taking the siting
of  recharging  or  battery  swap  station  into  account,
bilevel  optimization  problem  integrating  site  selection
and  routing  is  developed[36−38].  However,  most  of
studies  focused  on  EVRPs  on  the  ground  rather  than
underground,  especially  coal  mines  with  narrow
roadways and explosion-proof restriction.
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No  matter  which  kinds  of  EVRPs,  energy
consumption  is  an  essential  issue  that  has  a  direct
impact  on  the  route  and  its  feasibility[39].  Generally,
energy  consumption  of  an  electrical  vehicle  is
calculated  by  linear  deterministic  functions.
Almouhanna et al.[40] estimated energy consumption by
scaling  a  consuming  rate  for  a  given  distance.  For  an
EVRP  with  load-dependent  discharge  and  non-liner
recharging,  Kancharla  and  Ramadurai[41] formulated
load-dependent  discharging  to  a  linear  function  with
variable  weight.  Similarly,  traveling  distance,  driving
speed,  load,  and  time  are  also  be  regarded  as  the
variables  in  the  liner  functions  for  calculating  energy
consumption.  However,  they  are  too  simple  to
accurately  formulate  energy  consumption  in  complex
transportation environment. To address the issue, Basso
et  al.[42] considered  the  speed  profile  and  road
topography  and  then  formulated  a  non-linear  function
of energy consumption for  EVRP. Perger  and Auer[43]

analyzed  the  influence  of  road  topography,  battery
degradation,  and  additional  loads  on  the  total  energy
consumption  and  modeled  them  to  a  non-linear
objective.  Moreover,  stochastic  functions and machine
learning have been introduced to  calculate  and predict
energy  consumption  in  different  transportation
instances[44−46].  Intuitively,  non-liner  deterministic
functions  or  prediction  methods  may  have  higher
requirements  for  computational  cost  and  data.  For  an
ETRV,  the  driving  modes  for  roadways  with  various
slopes may be different, which requires various power.
In  this  case,  a  linear  deterministic  function  cannot
calculate  the  total  energy  consumption  accurately.
Thus,  formulating  a  more  precise  model  for  energy
consumption of a practical ETRV is necessary.

EVRP  is  a  classical  NP-hard  problem,  and  it  is
impracticable  to  test  all  possible  solutions  due  to  the
unaffordable  computational  cost  and  time[47].
Approximate  methods are  usually  used as  an effective
problem-solver for EVRPs. For time-dependent EVRP
with  congestion  tolls,  Zhang  et  al.[48] proposed  an
allocating  mechanism  of  recharging  amounts  and  an
adaptive  large  neighborhood  search  heuristic  with  an
adjusting strategy of visit-beginning time. Considering
both  the  uncertainty  of  customer  demand  and  the
weight-related  energy  consumption,  Shen  et  al.[49]

formulated  a  robust  optimization  model  based  on  a
route-related  uncertain  set  and  developed  an  adaptive
large  neighborhood  search  to  solve  it.  Zhou  et  al.[13]

presented  a  modified  variable  neighborhood  search
with  a  greedy  algorithm  to  solve  EVRP  with  partial

recharge  and  vehicle  recycling.  This  method  can  save
cost  effectively  on  real-world  instances.  Granada-
Echeverri  et  al.[50] employed  an  iterated  local  search
technique  to  solve  EVRP  with  backhauls,  and
individuals  are  initialized  by  auxiliary  graph  based
encoding  to  ensure  their  feasibility.  Though
neighborhood  search  based  algorithms  have  achieved
good performance on EVRP, their  performance highly
depends  on  the  characteristics  of  a  real-world  routing
problem.  Moreover,  the  algorithm  performance  is
sensitive  to  the  quality  of  initial  solution[19].  With  the
development  of  swam  intelligent  optimization
algorithms  and  the  wider  application  to  combinatorial
optimization,  more  and  more  studies  introduced  them
to  solve  EVRPs.  Zhu  et  al.[51] designed  an  improved
neighbor routing method for EVRP with time window,
and adaptive probability of crossover and mutation was
introduced to elitist genetic algorithm, with the purpose
of speeding up convergence. Zhang et al.[52] employed
ant colony algorithm as problem-solver for EVRP and
designed  the  benchmark  instances  for  comparison  of
algorithm performance. Zhou and Tan[53] developed an
improved discrete cuckoo search algorithm for solving
a  large-scale  EVRP  with  the  siting  of  battery  swap
stations.  Although  it  has  been  proved  that  swarm
intelligent  optimization  is  a  promising  solver  for
EVRP,  there  lacks  the  studies  on  low-carbon  routing
problem  of  ETRVs.  The  exiting  algorithms  show  a
strong ability of  exploration and exploitation for some
specific  problems,  owing  to  their  problem-specific
operators, which has obvious limitations on addressing
a new problem.

Inspired  by  foraging  behavior  of  honeybee  swarm,
ABC  was  first  proposed  by  Karaboga[54],  in  which
three search phases, including employed bee, onlooker,
and  scout  phase,  are  designed.  With  its  wide
application  in  knapsack  problem[55−57],  parameter
optimization[58, 59],  path  planing[60−62],  and  machine
scheduling[63, 64],  it  has been proved to be a promising
solver  for  routing  problems.  Pandiri  and  Singh[65]

developed  a  neighboring  solution  generation  and
improved  scout  phase  of  ABC  to  solve  the  colored
traveling  salesman  problem  effectively.  Considering
the  different  roles  of  employed  bees  and  onlookers,
Karaboga  and  Gorkemli[66] gave  a  new  definition  for
the foraging behavior of onlookers and proposed quick
ABC for solving the traveling salesman problem (TSP).
For the reverse logistics location and routing problem,
Guo  and  Zhang[67] proposed  a  discrete  ABC  with
greedy  adjustment  strategy.  Lei  et  al.[68] designed  an
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effective  evaluation  mechanism  to  dynamically
determine employed bee and onlooker swarm, and then
variable  neighborhood  descent  was  introduced  in
employed bee and onlooker phases.  To solve the team
orienteering problem, Trachanatzi  et  al.[69] presented a
distance  related  ABC  based  on  a  novel
encoding/decoding  method.  It  is  worth  noting  that  the
encoding  scheme  and  the  operators  in  three  phases  of
ABC need to be specially designed for different routing
problems,  with  the  purpose  of  improving  algorithm
performance.

3    Description  of  Low-Carbon  Routing
Problem for ETRVs

For  electric  trackless  rubber-tyred  vehicles  in  a  coal
mines,  finding  their  optimal  routes  to  carry  the
materials  from  the  ground  to  the  destinations  with
minimum  energy  consumption  under  the  limited
capacity  and  power  supply  is  essentially  single-
objective  optimization  problem  with  constraints.  How
to  rationally  evaluate  energy  consumption  during  the
driving process and formulate the routing model is the
basis of problem-solver.

3.1    Model  formulation  for  low-carbon  single-
objective routing problem

To  formulate  the  problem  more  rationally,  some
hypotheses are given in terms of the actual scenario. In
a coal mine, all ETRVs start and end the transportation
tasks  at  only  one  ground  depot,  in  which  sufficient
charging  stations  locate.  The  charging  time  is
negligible  and  the  battery  for  each  ETRV  is  full.  No
matter  which  kinds  of  materials,  only  their  mass  are
considered. All  materials are stored nearby the ground
depot  for  loading,  and  their  unloading  time  at  each
service  node  is  fixed.  The  chambers  for  vehicle
avoidance  are  located  at  the  junction  linking  two
sections of roadway.

S = {s1,

s2, . . . , si, . . . , sN}

Qmi, i = 1, 2, . . . , N

G = (V,A)
V = {s0}∪S A = {(si, s j)|si ∈ V, s j ∈ V, i , j}

(si, s j)
si s j

Suppose that transportation tasks are distributed at N
service  nodes  underground,  represented  by 

,  and  completed  by K homogeneous
ETRVs with the same load Q and battery capacity B. In
each service node, the quantity of material that needs to
be  unloaded  is  known  in  advance  and represented  by

,  and  its  service  time  is  ST.  All
service  nodes  and  the  ground  depot  compose  of  the
nodes  for  a  transportation  network ,  denoted
as .  forms  the
arcs  in G,  and  each  arc  corresponds  to  a  path
from  to .  It  is  worthy  noting  that  a  path  may

L = {l1, l2, . . . , lp, . . . , lM} lp lq
rpq, lp ∈ L, lq ∈ L, p < q

si s j m
(si, s j) = {si, . . . , lp, lq, . . . , s j}

rpq tpq ti j =
∑

tpq

(si, s j)

contain  more  than  one  roadway.  All  roadways  are
connected  via M linking  nodes,  represented  by

. A roadway between  and  is
described  by .  Based  on  this,  a
path  from  to  passing  roadway  is  denoted  as

.  Assume  that  the  driving
time  of  a  sub-path  is ,  indicates  the
driving  time  of  the  path .  Taking  the  economic
and  environmental  performances  of  trackless  rubber-
tyred  vehicles  underground  into  account,  their  low
carbon  routing  problem  can  be  formulated  into  the
following single-objective constraint  optimization one.
Intuitively, an optimal routing scheme has the minimal
total energy consumption.
 

min F =
K∑

k=1

N∑
i=0

N∑
j=0

ek
i jx

k
i j (1)

ek
i j

(si, s j)

xk
i j = 1

si s j

where  is  energy  consumed  by  the k-th  ETRV
traveling  the  path ,  which  depends  on  the  load,
road  condition,  and  driving  speed.  The  detailed
evaluation  method  is  demonstrated  in  Section  3.2.

 indicates the k-th ETRV drives from the service
node  to  and performs their transportation tasks.

According  to  the  operation  regulation  in  coal  mines
and  practical  distribution  of  roadway  networks,  low-
carbon routing of ETRVs must satisfy six constraints as
follows.

Constraint  (1): Two trackless  rubber-tyred vehicles
cannot pass through a roadway in the opposite direction
at the same time.
 

T k
pq∩T g

qp = ∅,∀k, g ∈ {1,2, . . . ,K} (2)

T k
pq T g

qp

rpq

where  and  are the time intervals of the k-th and
g-th ETRVs passing through , respectively.

Constraint (2): The total load brought by an ETRV
must be within its maximum allowable one.
 

N∑
i=1

Qmixk
i j < Q, ∀s j ∈ V, k ∈ {1,2, . . . ,K} (3)

Constraint  (3): The  battery  capacity  of  an  ETRV
satisfies the need for completing its transportation task
and returning to the ground depot.
 

N∑
i=0

N∑
j=0

ek
i jx

k
i j < B, ∀i , j, k ∈ {1,2, . . . ,K} (4)

Constraint  (4): The  time  of  ETRVs  reaching  or
leaving a service node is feasible.
 

τkj ⩾ τ
k
i + (ti j+ST)xk

i j, ∀(si, s j) ∈ A, k ∈ {1,2, . . . ,K} (5)
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τkq ⩾ τ
k
p+ tpqxk

i j, ∀lp, lq ∈ (si, s j), k ∈ {1,2, . . . ,K} (6)

τki τkp
si

lp

where  and  represent  the  time  of  the k-th  ETRV
arriving at  the i-th  service node  and the p-th  linking
node , respectively.

Constraint  (5): Each  service  node  can  only  be
visited once.
 

K∑
k=1

N∑
j=0

xk
i j = 1, ∀s j ∈ V (7)

Constraint (6): The number of ETRVs reaching and
leaving a service node must be the same.
 

K∑
k=1

N∑
i=0

xk
i j =

K∑
k=1

N∑
g=0

xk
jg, ∀s j ∈ V (8)

3.2    Calculation  of  energy  consumption  for  the
ETRV

rpq dpq θpq

vpq

vL

The energy consumption of an ETRV for completing a
transportation  task  depends  on  its  total  mass,  speed
profiles,  slope  of  roadways,  and  energy  management
mode[42].  Suppose  that  the  length  and  slope  of  a
roadway  are  and ,  respectively.  ETRVs can
pass through this roadway with the maximal allowable
driving  speed,  represented  by .  For  two  roadways
connecting each other, their direction, slope, pavement
roughness,  and  speed  limitation  exist  significant
differences. Thus, an ETRV must slow down and pass
through  the  linking  node  connecting  the  above  two
roadways  with  the  low  driving  speed,  denoted  as ,
with  the  purpose  of  avoiding  hitting  the  side  wall  of
roadways.

vpq vL
vL vpq

a

Without  loss  of  generality,  an  ETRV  can  drive  by
two speed levels  in  a  roadway,  namely  and .  To
speed  up  from  to ,  an  ETRV  adopts  a  fixed
accelerated  speed ,  and  vice  versa.  Thus,  the  driving
mode of an ETRV can be partitioned into three phases,
i.e.,  acceleration,  steady-speed,  and  speed  reduction.
The  corresponding  energy  consumption  varies  each
other and is evaluated as follows.

In  the  accelerating  phase,  the  speed  of  an  ETRV
increases over time.
 

v(t) =
{

at, lp ∈ {l0, si}, i = 1,2, . . . ,N;
vL+at, else (9)

 

ta =
vpq− vL

a
(10)

ta Mpq

rpq

PM(t)

where  is time-consumption in this phase. Denote 
as  the  total  mass  of  an  ETRV when  it  passes ,  and
the instantaneous mechanical power  is calculated

according to its longitudinal dynamics[70].
 

PM(t) = aMpqv(t)+Mpqgv(t) sinθpq+

Mpqgv(t)Cr cosθpq+0.5CdFAρv(t)3 (11)

ρ

Cr Cd

PM(t) ta
eM1

where g is  the  gravitational  constant  and  is  the  air
density.  and  are the rolling resistance coefficient
and air drag coefficient, respectively. FA represents the
frontal area of an ETRV. By integrating  in , the
mechanical energy  is obtained.
 

eM1 =
1

3600

w ta

0
PM(t)dt =

1
3600

v2
pq− v2

L
2a

Mpq(a+gsinθpq+

gCr cosθpq+0.5CdFAρ
v2

pq+ v2
L

2Mpq
)

(12)

eM1

It is worth noting that the powertrain is regenerating
electric energy to battery as  is negative. Otherwise,
the  powertrain  is  in  the  mode  of  traction.  Considering
the electricity consumption of auxiliary devices and the
energy loss in battery and powertrain, the total electric
energy  consumption  in  this  phase  is  achieved  as
follows:
 

e1 =


eM1

η1η2
+PAta, eM1 ⩾ 0;

eM1η1η2η3+PAta, eM1 < 0
(13)

η1 η2 η3

PA

where , ,  and  are  the  efficiency  for  mechanical
transmission, motor, and energy recovery, respectively.

 represents  the  extra  electrical  power  consumed  by
auxiliary devices.

eM2

e2

Similarly,  the  mechanical  energy  and  electric
energy  consumption  of  the  ETRV  in  steady-speed
phase are calculated as follows:
 

eM2 =
1

3600
(dpq−

v2
pq− v2

L
a

)(Mpqgsinθpq+

MpqgCr cosθpq+0.5CdFAρv2
pq)

(14)

 

e2 =


eM2

η1η2
+PA

dpqa− (v2
pq− v2

L)

avpq
, eM2 ⩾ 0;

eM2η1η2η3+PA
dpqa− (v2

pq− v2
L)

avpq
, eM2 < 0

(15)

eM3

e3

The  mechanical  energy  and  electric  energy
consumption  of the ETRV in speed reduction phase
are achieved.
 

eM3 =
1

3600

v2
pq− v2

L

2a
Mpq(−a+gsinθpq+

gCr cosθpq+0.5CdFAρ
v2

pq+ v2
L

2Mpq
)

(16)
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e3 =


eM3

η1η2
+PA

vpq− vL

a
, eM3 ⩾ 0;

eM3η1η2η3+PA
vpq− vL

a
, eM3 < 0

(17)

rpq

Based  on  them,  the  electrical  energy  consumed  by
the k-th  ETRV  passing  through  is  the  sum  in  all
driving phases.
 

ek
pq = e1+ e2+ e3 (18)

si s j

ek
pq

For  the k-th  ETRV,  its  total  electric  energy
consumption for driving from  to  is the cumulative
sum of .
 

ek
i j =

∑
lp,lq∈(si,s j)

ek
pqxk

i j (19)

4    Improved ABC for Solving LRPETRV

To  find  the  optimal  feasible  route  for  ETRVs,  an
improved artificial bee colony algorithm is put forward.
As the pseudocode listed in Algorithm 1, a population
is first  initialized (Line 2).  After evaluating the fitness
value  and  calculating  constraint  violation  of  each
individual  (Lines  3  and  4),  three  phases  of  IABC,
including  adaptive  neighborhood  search,  onlooker
phase  with  adaptive  selection  probability,  and
knowledge-driven  scout  phase,  are  executed
sequentially to update the population (Lines 7−9). First,
an  operator  pool  containing  three  kinds  of
neighborhood search operations is constructed, and the
contribution  of  each  operator  is  evaluated
quantitatively  by  the  performance  improvement  of
offspring.  Based  on  their  historical  and  current
contribution,  an  employed  bee  selects  the  most
appropriate  one  by  the  roulette  wheel  to  realize  the

effective  local  search.  Second,  adaptive  selection
probability  is  defined  to  evaluate  each  individual  in
terms  of  its  performance  and  contribution  to  the
evolution, with the purpose of improving the evolution
efficiency.  Third,  a  knowledge-driven  initialization
strategy  is  put  forward  to  produce  a  new  individual
instead of the local optimum.

4.1    Encoding and decoding

Xi = {0,sn1, . . . ,sn j1 ,0,sn j1+1, . . . ,sn j1+ j2 ,

0, . . . 0,sn j1+ j2+···+ jK−1+1, . . . ,sn j1+ j2+···+ jK ,0}

∑K
k=1 jk = N

A  solution  for  LRPETRV  is  encoded  by  the  integer
vector,  namely 

, .  The service
nodes assigned to each ETRV are arranged in a specific
service order and segmented with the ones for another
ETRV by “0”. The first and last “0” denotes the depot.
Because  all  service  nodes  must  be  visited  by  at  least
one  ETRV, .  Thus,  the  length  of  an
individual is K+N+1.

0→ 6→ 3→ 7→ 0 0→ 8→ 5→ 1→ 2→ 0
0→ 4→ 9→ 10→ 0

In  order  to  conveniently  evaluate  the  fitness  value
and  constraint  violation,  an  individual  is  decoded  as
follows.  Taking  an  LRPETRV  with  3  ETRVs,  10
service  nodes,  and  1  depot  as  an  example,  a  solution
represented by {0,6,3,7,0,8,5,1,2,0,4,9,10,0} is decoded
to  sub-routes  for  three  ETRVs.  They  are

, ,  and
.  More  specifically,  an  ETRV

leaves depot to complete the transportation tasks of the
6th,  3rd,  and  7th  service  nodes  in  turn  and  return  to
depot finally.

4.2    Adaptive  neighborhood  search  for  employed
bees

In  the  original  ABC,  employed  bees  seek  better  food
sources by the specific neighborhood search strategy in
terms  of  the  fitness  values.  Though  this  operation
contributes  to  the  fast  convergence,  the  solutions  may
fall  into  the  infeasible  search  space  due  to  the
constraints  of  LRPETRV.  To  effectively  exploit  the
feasible  region,  an  adaptive  neighborhood  search
(ANS)  is  put  forward.  Three  kinds  of  neighborhood
search  operators  are  introduced  to  form  a  pool.  Each
operator is synthetically evaluated by fitness value and
constraint  violation of  the generated solution.  The one
finding the best solutions has the highest probability to
be  adopted  in  the  next  iteration.  This  mechanism
adaptively  adjusts  neighborhood  search  operators  in
terms of  their  contribution for  a  specific  search space,
improving the exploitation efficiency.

Ns = (Ns1,Ns2,Ns3)Define  as  a  pool  of  common
neighborhood search operators[71],  and their details are

 

Algorithm 1　Improved artificial bee colony algorithm

Cmax
Input：population size PS, the maximum termination iteration
Maxgen, and the maximum number of invalid search 
Output：The optimal feasible solution

1: gen = 0 φo = 1 Ci = 0, , ;
2: Initialize a population X;

3: F(Xi)Evaluate ;

4: CVh(Xi)Calculate  for all constraints;
5: gen ⩽MaxgenWhile 

6: gen← gen+1　 ;

7: (X,Ci,φo)← EBP-ANS(X,Ci,Cmax,φo)　 ;

8: (X,Ci)← OP-ASP(X,Ci,Cmax)　 ;

9: (X,Ci)← KSP(X,Ci,Cmax)　 ;
10: End while
11: Return the optimal feasible solution in X
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illustrated as follows.
Ns1● :  Swapping  operation  is  employed,  in  which

two  service  nodes  in Xi are  randomly  selected  and
exchanged each other.

Ns2● : A section of an individual is selected, and all
service nodes in this section are rearranged in a reverse
order. We call this reversing operation.

Ns3● :  A service  node  is  relocated  to  another  locus,
termed as inserting operation.

Intuitively,  each  operator  exploits  its  neighborhood
with different granularity and intensity, thus, makes the
offspring  escaping  from  the  infeasible  search  space,
and  improves  its  fitness  to  a  various  extent.  To
quantitatively  evaluate  the  contribution  of  each
operator  on  the  evolution,  a  comprehensive  score  is
defined  to  measure  the  improvement  on  fitness  value
and constraint violation.
 

Cso = CsFo +CsCVo , o = 1,2,3 (20)

Xi Xnew
i

CsFo CsCVo

Xi

Xnew
i

Let  be  an  individual  and  be  its  offspring
generated by a  selected neighborhood search operator.

 and  are  evaluated  by  the  degrees  of
improving  fitness  and  meeting  constraints  between 
and ,  respectively.  Apparently,  the  neighborhood
search  operator  producing  the  offspring  with  better
fitness  value  and  smaller  constraint  violation  is
assigned  the  higher  scores.  For  the  selected  operator,
the  sign  function  is  employed  to  measure  the
improvement  on  fitness  value  and  constraint  violation
between  parents  and  offspring.  It  is  worth  noting  that
the  comprehensive  scores  of  unselected  ones  are  not
updated and keep their original values.
 

CsFo = sgn(F(Xi)−F(Xnew
i )) (21)

 

CsCVo =

3∑
h=1

sgn(CVh(Xi)−CVh(Xnew
i )) (22)

 

CV1(Xi) =
K−1∑
k=1

K∑
g=k+1

max{0,
M∑

p=1

M∑
q=1,p,q

VMkg
pq},

CV2(Xi) =
K∑

k=1

max{0,
N∑

i=1

Qmi x
k
i j−Q},

CV3(Xi) =
K∑

k=1

max{0,
N∑

i=0

N∑
j=0,i, j

ek
i jx

k
i j−B}

(23)

CV1(Xi) CV2(Xi) CV3(Xi)

VMkg
pq=

{
0, T k

pq∩T g
qp = ∅

1, other ,∀k,g∈{1,2, . . . ,K}

where , ,  and  represent  the
constraint  violation  of  vehicle  avoidance,  allowable
load,  and  endurance  power,  respectively.  And

. Based on

φo,o = 1,2,3 w

Cso

the  above  comprehensive  score  of  each  neighborhood
search  operator,  its  total  contribution  during  the
evolution is the sum of all historical scores, represented
by .  Denote  as  the  weight  of  the
historical contribution, and the comprehensive score of
each  neighborhood  search  operator  in  current
generation is emphasized by assigning a larger weight.
According to Eqs. (21) and (22),  varies from −4 to
4.  To  facilitate  calculating  the  selection  probability  in
the  roulette  wheel  method,  total  contribution  is
obtained as follows:
 

φo =
∑

gen−1

wφgen−1
o + (1−w)(Csgen

o +4) (24)

Nso PnoDefine the probability of selecting  as , and the
roulette wheel selection is introduced to seek the most
appropriate  neighborhood  search  operator  for  an
employed bee.
 

Pno =
φo∑3
i=1φi

(25)

Xnew
i

Xi

Xi

Then, the offspring  is generated by the selected
neighborhood search operator on . Only the offspring
that  is  superior  to  its  parent  on  fitness  value  or
feasibility will be retained instead of . That is,
 

Xi =



Xi,
(
F(Xi) ⩽ F(Xnew

i ),CVh(Xi) = 0,CVh(Xnew
i ) = 0,

∀h
)∪  3∑

h=1

sgn(CVh(Xi)−CVh(Xnew
i )) ⩽ 0

 ;
Xnew

i ,
(
F(Xi) > F(Xnew

i ),CVh(Xi) = 0,CVh(Xnew
i ) = 0,

∀h
)∪  3∑

h=1

sgn(CVh(Xi)−CVh(Xnew
i )) > 0


(26)

The pseudocode of employed bee phase with ANS is
shown in Algorithm 2.

4.3    Adaptive selection probability for onlooker

In  onlooker  phase,  the  individual  selected  by  roulette
wheel  is  exploited  by  local  search  strategy.  The  ones
with  better  fitness  values  are  assigned  to  higher
selection  probability  and  followed  with  more
onlookers.  However,  too  many  onlookers  fall  into  an
infeasible  search  space,  which  may  dedicate  to  the
evolution to a lesser extent.

To  improve  the  evolution  efficiency,  an  adaptive
selection  probability  is  defined  to  evaluate  each
individual more rationally.
 

P j =
1
4
ε j

 1
/

F(X j)∑PS
i=1 1/F(Xi)

+

3∑
h=1

1
/

(CVh(X j)+δh)∑PS
i=1 1/ (CVh(Xi)+δh)


(27)
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δh

∀Xi ∈ PS,CVh(Xi) , 0 δh

where  is  a  positive number to ensure the feasibility
of  the  equation  as  constraint  violation  equal  to  zero.
Assume  that ,  is  defined  as
follows:
 

δh =

 1,
∑PS

i=1
CVh(Xi) = 0;

0.1min
i

CVh(Xi), other
(28)

ε j

C j X j

Cmax

ε j

In  Eq.  (27),  is  a  factor  to  adjust  the  selection
probability  adaptively.  In  general,  an  individual  that
maintains  the  dominance  continuously  may  be  a  local
optima. To avoid consuming more computation cost on
it, its selection probability shall be reduced to a certain
extent. Denote  as the times that  is not replaced by
its  offspring  and  as  a  preset  threshold.  If
Cj > Cmax, Xj is  regarded  as  a  local  optimum  and
impossible  to  be  selected  as  a  parent  in  neighborhood
search  operator,  thus, εj =  0.  As Cj∈[0,Cmax),  the
selection  probability  of Xj becomes  smaller  with  the
increase  of Cj.  Based  on  this,  is  calculated  as
follows:
 

ε j =

 1−
(

C j
Cmax

)(Cmax−C j)
, C j ⩽Cmax;

0, other
(29)

Then, an individual is selected by roulette wheel for
exploitation  in  terms  of  its  probability  after
normalization. The pseudocode of onlooker phase with
adaptive selection probability is listed in Algorithm 3.

4.4    Knowledge-driven scout phase

Escaping from the local optimum is the main task for a

scout.  Generally,  a  new  individual  is  generated
randomly  to  replace  the  stagnant  one,  which
contributes  to  a  good  diversity  for  the  population.
However,  the  new  one  may  be  infeasible  for  an
optimization  problem  with  constraint,  thus  providing
the  useless  information  for  the  evolution  and  slowing
down the convergence.

Xik = {sn j1+ j2+···+ jk−1+1,sn j1+ j2+···+ jk−1+2, . . . ,

sn j1+ j2+···+ jk }

snl,snl+1, . . . ,snl+m

∀

To  address  the  issue,  a  knowledge-driven
initialization  strategy  is  put  forward  to  produce  a  new
individual instead of the local optimum. Assuming that
the  segment  corresponding  to  the  service  order  of  the
k-th ETRV is 

 and  there are K segments  in  a  solution.
Knowledge  refers  to  a  segment  that  appears  at  the
higher  frequency  among  individuals,  represented  by
{ }.  Its  implicit  information  may
provide valuable guidance for producing a feasible and
superior  individual[72].  During  the  evolution,  all
segments  in  feasible Xi satisfying h,  CVh(Xi)=0  are
extracted  from  the  current  population,  and  the  high-
frequency  ones  are  retained  as  knowledge  by  frequent
pattern  mining.  The  segment  that  has  the  highest
frequency  is  then  selected  as  the  most  valuable
knowledge  to  form  a  new  individual.  In  order  to
guarantee  the  diversity,  the  rest  service  nodes  are
randomly  assigned.  If  the  new  one  dissatisfies  any
constraint,  the  repair  operator[73] is  carried  on  to  split
the  permutation  of  other  nodes  into  a  set  of  routes
based  on  constraints  and  obtain  a  feasible  one  finally.
The  psseudocode  of  knowledge-driven  scout  phase  is
listed in Algorithm 4.

5    Simulation Results and Discussion

To  verify  the  rationality  of  improved  artificial  bee

 

Algorithm 2　Employed bee phase with ANS (EBP-ANS)
φo Ci CmaxInput：X, , , 
φo CiOutput：X, , 

1: PSFor i = 1 to 
2:     For o = 1 to 3
3: Pno         Calculate  by Eq. (25);
4:     End for

5: Nso
Pno

    Select an operator  by the roulette wheel selection in
    terms of ;

6: Xnew
i Nso Xi    Produce  by  on ;

7: F(Xnew
i ) CVh(Xnew

i )    Evaluate  and ;
8: Cso Nso    Calculate  of ;
9: φo    Update ;
10: Xi    Update  by Eq. (26);
11: Xi← Xnew

i    If 
12: Ci← 0         ;
13:     Else
14: Ci←Ci +1         ;
15:      End if
16: End for
 

 

Algorithm 3　Onlooker phase with adaptive selection
probability (OP-ASP)

Ci CmaxInput：X, , 
CiOutput：X, 

1: PSFor i = 1 to 
2: X j P j      Select  by roulette wheel in terms of ;
3: Xnew

j X j      Produce  by neighborhood search on ;
4: F(Xnew

j ) CVh(Xnew
j )      Evaluate  and ;

5: X j      Update  by Eq. (26);
6: X j← Xnew

j      If 
7: C j← 0         ;
8:       Else
9: C j←C j +1         ;
10: End for
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colony algorithm proposed in the paper, three groups of
experiments  are  done  on  a  real-world  LRPETRV
derived  from  a  coal  mine  in  Shanxi  Province.  All
experiments are conducted on MATLAB R2018a with
Intel(R)  Core(TM)  i7-10750H  CPU  @2.60  GHz,
16.00 GB RAM. Each algorithm has been run 10 times
independently,  and  Wilcoxon  rank-sum  test  at  5%
significance  level  is  introduced  to  analyze  the
significant  difference  among  the  algorithm
performance.

5.1    Instance description and parameter setting

Figure  1 depicts  the  layout  of  all  roadways  in  a  real-

world LRPETRV. There are 36 sections of roadway in
the coal  mine,  and they are connected with each other
by  linking  nodes.  Each  roadway  has  its  special
gradient,  maximum allowable speed,  rolling resistance
coefficient,  and  length,  as  listed  in Table  1.  A  service
task  may  be  located  in  a  roadway  or  completed  in  a
linking  node.  Some  instant  using  material  will  be
transported  to  the  corresponding  operation  point
located  in  roadway,  while  some reusable  material  will
be  stored  in  storage  place  in  a  linking  node.  Each
service  task  is  denoted  as  a  service  node  labelled  by
“star” shown in Fig. 1, and its information on demand
and service time are listed in Table 2. According to the
number of service nodes online, four instances with 15,
20,  25,  and 30 service nodes,  respectively,  are  formed
for experimental analysis.

Cd

pA
η1 η2

η3

In  all  instances,  15  ETRVs  with  the  same
characteristics  are  employed  to  complete  the  service
tasks.  The  main  parameters  of  an  ETRV  are  listed  as
follows: mass is  9100 kg, maximum load Q=5000 kg,
battery  capacity B=128  000  W·h,  frontal  area FA=
3.37 m2, resistance coefficient of air =0.78, auxiliary
power =5  kW,  mechanical  transmission  efficiency

=0.95, motor efficiency =0.95, and energy recovery
efficiency =0.05.

During  the  experiments,  four  commonly-used
population-based  intelligent  optimization  algorithms,
including  genetic  algorithm  (GA)[74],  particle  swarm
optimization  (PSO)[75],  ant  colony  optimization

 

Algorithm 4　Knowledge-driven scout phase (KSP)
CmaxInput: X, C, 

Output: X, C
1: PSFor i = 1 to 
2: Ci ⩾Cmax     If 

3:
∀X j ∈ X,∑

h

CVh(X j) = 0

        Extract all segments of feasible individuals     

;

4: {snl,snl+1, . . . ,

snl+m}
      Select  the  high-frequency  segment      

 by frequent pattern mining;

5: {sn1,

sn2, . . . ,snN }\{snl,snl+1, . . . ,snl+m}
     Arrange  the  remaining  nodes  in  random  order 

;

6:         Split the permutation of the remaining nodes based on
three constraints;

7: Xi        Obtain a feasible solution to replace 
8:       End if
9: End for
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Fig. 1    Layout of roadways in a real-world LRPETRV.
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(ACO)[76],  and  artificial  bee  colony  (ABC)[77],  are
selected  as  the  compared  problem-solvers.  To  ensure
the  fairness  of  comparison,  the  main parameters  of  all
comparative  algorithms  are  set  as  suggested  in  their
source  except  for  population  size  and  the  maximum
termination  iteration.  The  main  parameters  of  the
proposed  IABC  are  set  as  follows:  population  size
PS=50,  the  maximum  termination  iteration

Maxgen Cmax

w
=30,  the  threshold =8,  and  the  weight

=0.4.

5.2    Sensitivity  analysis  of  main  parameters  in
IABC

Cmax

Cmax

In IABC, the threshold  determines the maximum
number  of  neighborhood  search  on  a  food  source.  An
individual will be abandoned if its quality has not been
improved  by  consecutive  neighborhood  search,
which  plays  a  direct  impact  on  the  diversity  of
population and convergence.

Cmax

Cmax

Cmax

Cmax = 8
Cmax

Cmax

As  varies  from  4  to  12  every  1,  the  mean  of
objective  values  for  the  best  solutions  obtained  by
IABC is  normalized. Figure  2 depicts  mean of  energy
consumption after normalization under various  on
four  instances.  We  observe  from  the  curve  that  the
algorithm performance is sensitive to , and energy
consumption is the least as  for most instances.
Under too smaller , the exploitation on the current
food  source  is  insufficient,  slowing  down  the
convergence  speed.  With  the  increase  of ,  local
search for  a  food source becomes better,  however,  the
exploration may be weak, causing the risk of premature
convergence.

w

w

w = 0.4 w

 represents the weight of the historical contribution
for each neighborhood search operator in the employed
bee  phase.  As  varies  from 0.1  to  0.9  every  0.1,  the
mean  of  energy  consumption  after  normalization  for
the  optima  obtained  by  IABC  is  shown  in Fig.  3.
Apparently, the best algorithm performance is achieved
as , except for Instance 15. Under too smaller ,

 

Table 1    Characteristics of roadways.

Roadway No. Gradient
(°)

Maximum
allowable

speed (km/h)

Rolling
resistance
coefficient

Length
(m)

r1,2 −14 15 0.015 3348
r2,3 0 25 0.015 1800
r3,4 9 10 0.15 400
r4,5 7 10 0.015 1600
r5,6 7 10 0.015 600
r3,7 −7 15 0.015 1200
r7,8 −7 15 0.015 1000
r8,9 7 15 0.015 1600
r9,10 7 15 0.015 1600
r3,11 0 25 0.015 750
r11,12 9 10 0.015 1400
r12,13 7 10 0.015 1000
r11,14 −7 15 0.015 2000
r14,15 7 15 0.015 3200
r11,16 0 25 0.015 750
r16,17 7 10 0.015 600
r17,18 7 10 0.015 1600
r16,19 −7 15 0.015 2600
r19,20 7 15 0.015 2400
r16,21 0 25 0.015 750
r21,22 7 10 0.015 800
r22,23 7 10 0.015 1200
r21,24 −7 15 0.015 2000
r24,25 7 15 0.015 2800
r21,26 0 25 0.015 400
r26,27 −5 15 0.015 200
r27,28 −7 15 0.015 150
r28,29 7 10 0.15 2000
r28,30 −7 15 0.022 300
r30,31 −7 15 0.022 500
r31,32 0 25 0.022 300
r32,33 −5 15 0.022 200
r33,34 −7 15 0.022 1000
r34,35 −2 15 0.022 1200
r35,36 7 15 0.022 300
r36,37 1 15 0.011 800

 

 

Table 2    Information of service nodes.

Node No. Qmi (kg) ST (s) Node No. Qmi (kg) ST (s)
s1 100 90 s16 1000 90
s2 1100 90 s17 900 90
s3 700 90 s18 1500 90
s4 800 90 s19 700 90
s5 1400 90 s20 2000 90
s6 2100 90 s21 1000 90
s7 400 90 s22 800 90
s8 800 90 s23 1500 90
s9 100 90 s24 1000 90
s10 500 90 s25 2000 90
s11 600 90 s26 1000 90
s12 1200 90 s27 800 90
s13 1300 90 s28 1500 90
s14 1300 90 s29 1500 90
s15 2500 90 s30 2000 90
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w

the historical performance of operators plays a tiny role
in  their  selection.  On  the  contrary,  the  usability  of
operators  on the current  search space becomes less  on
larger .  During  the  evolution,  the  most  appropriated
operation  is  selected  by  trading  off  its  historical
contribution and current score.

5.3    Effectiveness of newly-designed strategies

In  three  phases  of  IABC,  we  designed  three  specific
strategies,  including  adaptive  neighborhood  search  for
employed  bees,  adaptive  selection  probability  for
onlookers,  and  knowledge-driven  initialization  for
scouts.  In  order  to  verify  their  effectiveness,  three
variants  of  IABC are  introduced.  IABC/ANS removes
adaptive  neighborhood  search  and  adopts  swapping

operator  in  employed  bee  phase.  IABC/ASP  sets  the
adaptive  factor  of  adaptive  selection  probability  for
onlookers to 1. IABC/KDI employs random generation
method  instead  of  a  knowledge-driven  initialization
strategy in scout phase.

The  mean  of  the  optima  obtained  by  IABC  and  its
variants on each instance and their significance test are
shown  in Table  3,  where “+” indicates  that  IABC  is
significantly  superior  to  other  variants  in  terms  of
Wilcoxon rank-sum test. Intuitively, IABC achieves the
most  competitive  solutions  on  all  instances  and  is
significantly  better  than  its  variants.  This  proves  that
three  newly-designed  strategies  are  helpful  to
effectively enhance the algorithm performance.

To  further  analyze  the  rationality  of  three  strategies
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CFig. 2    Mean of energy consumption after normalization obtained by IABC under different max on four instances.
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Table 3    Comparison of energy consumption obtained by IABC and its variants.

Problem
F (kW·h)

IABC/ANS IABC/ASP IABC/KDI IABC
Instance 15 248.40+ 256.87+ 252.11+ 242.35
Instance 20 388.76+ 407.98+ 393.18+ 379.47
Instance 25 522.95+ 546.01+ 539.93+ 505.08
Instance 30 663.19+ 695.11+ 698.94+ 653.56
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proposed  in  the  paper,  the  number  of  adopting  each
neighborhood  search  operator  during  the  evolution  on
all  instances  is  shown  in Fig.  4.  Apparently,  the  most
suitable  operator  for  neighbor  search  is  adaptively
adjusted in terms of its comprehensive performance.

Figure  5 depicts  the  number  of  effective
neighborhood  searches  (ENSs)  in  onlooker  phase
during the evolution of  IABC and IABC/ASP, as well
as  the  number  of  feasible  solutions  (FSs)  obtained  by
IABC  and  IABC/KDI  in  each  iteration.  The  so-called
effective neighborhood search in onlooker phase is that
a  new  individual  obtained  by  this  operator  has  less
energy  consumption  than  its  parent.  Intuitively,  the
number  of  ENSs  for  both  IABC  and  IABC/ASP
becomes  smaller  during  the  evolution.  In  the  early
stage  of  evolution,  IABC  significantly  performs  more
effective neighborhood searches than IABC/ASP on all

instance  and  achieves  the  competitive  search
efficiency.  Based  on  adaptive  selection  probability,
IABC  can  adjust  onlookers  searching  for  a  promising
food source rather than a local optima. Being different
from it, IABC/ASP determines the selection probability
according  to  the  quality  of  individuals  and  gives  no
consideration on the risk of trapping into local optimal.
Thus,  the  number  of  ENSs  for  IABC/ASP  decreases
quickly, easily causing premature convergence.

As shown in Fig. 5, the number of feasible solutions
increases  quickly  to  the  maximal  size  and  remains
stable  during  the  evolution  of  IABC.  On the  contrary,
IABC/KDI  produces  the  smaller  number  of  feasible
solutions  than  IABC  because  a  new  individual  is
generated  randomly,  which  slows  down  the
convergence. More especially, this divergence becomes
more significant with the increasing number of service
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Fig. 4    Number of selecting each neighborhood search operator during the evolution.
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nodes.  The  knowledge-driven  initialization  strategy
designed in IABC utilizes the valuable information and
a  repair  operator  to  produce  a  feasible  solution.  This
contributes  to  not  only  a  good  diversity  of  the
population, but also higher evolutionary efficiency.

5.4    Performance  comparison  among  various
algorithms

In this subsection, IABC is compared with four popular
swarm  intelligent  optimization  algorithms. Table  4

shows  statistical  results  obtained  by  different
algorithms.  In  10  times  of  experiments  for  each
algorithm on each instance,  the ratio of  the number of
experiments that achieve feasible solutions successfully
is counted and denoted as SR. Wilcoxon rank-sum test
is performed between the successful experiments of the
compared  algorithms  and  that  of  IABC,  where “+”
indicates  that  IABC  is  significantly  superior  to  the
comparative algorithms in terms of Wilcoxon rank-sum
test.
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Fig. 5    Number of ENSs in onlooker phase and FSs during the evolution.

 

 

Table 4    Comparison of the optimal solutions among different algorithms.

Problem
GA PSO ACO ABC IABC

F (kW·h) SR (%) F (kW·h) SR (%) F (kW·h) SR (%) F (kW·h) SR (%) F (kW·h) SR (%)
Instance 15 316.18+ 100 252.33+ 100 314.22+ 100 261.20+ 100 242.35 100
Instance 20 470.28+ 100 399.38+ 100 520.02+ 100 398.96+ 100 379.47 100
Instance 25 621.52+ 80 521.53+ 90 − 0 540.45+ 100 505.08 100
Instance 30 703.67+ 30 690.97+ 100 − 0 683.86+ 90 653.56 100
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We observe from Table 4 that IABC can successfully
obtain feasible solutions at each running and achieve the
superior  solution  on  each  instance.  Apparently,  IABC
provides  the  competitive  performance  due  to  three
newly-designed  strategies.  No  matter  which  kind  of
comparative  algorithm,  the  success  ratio  of  achieving
feasible  solutions  all  decreases  with  the  increasing
number of service nodes. Compared with GA and PSO,
ACO  shows  the  worst  performance  and  only  solves
Instance  15  and  Instance  20  due  to  its  strong
dependency  on  the  initial  pheromone  table.  In  large-
scale  instances,  the  fixed  number  of  ETRVs  completes
the  variable  service  tasks,  thus,  randomly  generating  a
feasible  solution  is  difficult,  forming  an  initial
population with worse quality.

0→ 1→ 6→ 3→ 12→ 9→ 8→ 0 0→ 7→
13→ 5→ 4→ 2→ 0 0→ 15→ 14→ 10→ 11→ 0

Furthermore, the best routes of ETRVs in 10 times of
experiments  for  IABC  on  each  instance  are  shown  in
Figs. 6−9. {0, 1, 6, 3, 12, 9, 8, 0, 7, 13, 5, 4, 2, 0, 15,
14, 10, 11, 0} is the optimal route obtained by IABC on
Instance  15,  in  which  three  ETRVs  are  employed  to
serve  15  service  nodes  and  the  sub-routes  for  each
ETRV  are , 

,  and  ,
as  shown  in Fig.  6.  Likewise,  the  optimal  routes
obtained by IABC on other three instances are {0,  18,

17, 4, 2, 1, 0, 3, 20, 19, 9, 8, 0, 15, 16, 0, 5, 6, 7, 0, 10,
14, 13, 11, 12, 0}, {0, 3, 19, 20, 4, 0, 6, 1, 0, 7, 8, 9, 5,
0, 10, 23, 18, 0, 15, 14, 11, 0, 2, 21, 0, 17, 13, 12, 0, 22,
16,  25,  24,  0},  and {0,  28,  30,  9,  10,  0,  23,  26,  18,  0,
11, 29, 25, 4, 0, 27, 19, 17, 5, 3, 7, 0, 2, 15, 14, 0, 24, 8,
21,  1,  20,  0,  16,  22,  6,  0,  12,  13,  0},  respectively.
Figures  7−9 depict  their  routes.  We  observe  from
Figs.  6−9 that  the  number  of  service  tasks  that  are
assigned to each ETRV is similar on Instance 15. With
the increasing number of service nodes, the amount of
tasks  served  by  ETRVs  are  quite  different  from  each
other.  Moreover,  various  ETRVs  may  share  the  same
segment or sub-segment in their routes due to the limit
of vehicle avoidance.

6    Conclusion

In  an  auxiliary  transportation  system  of  inclined-shaft
coal mines, there are some scenario-specific regulation
and  limitation  for  scheduling  ETRVs.  Taking
transportation  safety  and  efficiency  into  account,  we
formulate  a  low-carbon  ETRV  routing  to  single-
optimization  problem  with  constraints.  The
optimization  objective  focuses  on  the  total  energy
consumption  that  synchronously  reflects  the  economic
cost  and  carbon  emission.  More  especially,  energy
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Fig. 6    Optimal routes obtained by IABC on Instance 15.
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consumption  of  an  ETRV  driving  in  a  roadway  is
modeled  in  terms  of  its  load,  the  driving  mode,  and
road condition. Due to multiple constraints, seeking the
optimal  feasible  route  of  ETRVs  is  a  challenging
problem. To address the issue, an improved ABC with
three  newly-designed  strategies  is  put  forward.  The
statistical  experimental  results  on  four  practical
instances  show  that  IABC  is  superior  to  four
comparative  algorithms  on  convergence  and  success
rate.  More  especially,  both  adaptive  neighborhood
search and adaptive selection probability are helpful to
improve  search  efficiency.  Knowledge-driven
initialization  produces  more  diverse  and  feasible

individual  for  a  population.  Though  IABC  provides  a
promising  problem-solver  for  routing  ETRVs,
scheduling  heterogeneous  TRVs  that  have  various
power is our future work.
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Fig. 7    Optimal routes obtained by IABC on Instance 20.
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Fig. 8    Optimal routes obtained by IABC on Instance 25.
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Fig. 9    Optimal routes obtained by IABC on Instance 30.
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