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Abstract: Due to  their  advantages in  flexibility,  scalability,  survivability,  and cost-effectiveness,  drone swarms

have been increasingly used for reconnaissance tasks and have posed great challenges to their opponents on

modern  battlefields.  This  paper  studies  an  optimization  problem  for  deploying  air  defense  systems  against

reconnaissance  drone  swarms.  Given  a  set  of  available  air  defense  systems,  the  problem  determines  the

location  of  each air  defense system in  a  predetermined region,  such that  the  cost  for  enemy drones to  pass

through  the  region  would  be  maximized.  The  cost  is  calculated  based  on  a  counterpart  drone  path  planning

problem. To solve this adversarial problem, we first propose an exact iterative search algorithm for small-size

problem  instances,  and  then  propose  an  evolutionary  framework  that  uses  a  specific  encoding-decoding

scheme  for  large-size  problem  instances.  We  implement  the  evolutionary  framework  with  six  popular

evolutionary  algorithms.  Computational  experiments  on  a  set  of  different  test  instances  validate  the

effectiveness of our approach for defending against reconnaissance drone swarms.
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1    Introduction

With  the  rapid  improvement  of  functionality  and
performance,  drones,  i.e.,  Unmanned  Aerial  Vehicles
(UAVs),  have  been  widely  used  in  various
applications, especially in areas that are too dangerous
or  inaccessible  to  humans[1],  e.g.,  disaster  sites  and
battlefields.  By  dynamically  grouping  a  number  of

drones  that  interact  with  one  another  to  complete
common  tasks  cooperatively  and  autonomously,  a
drone  swarm  can  have  significantly  higher  flexibility,
scalability,  survivability,  and  cost-effectiveness  than
the  simple  accumulation  of  individual  drones[2].  In
recent  years,  drone  swarms  have  demonstrated  great
superiority  in  modern  battlefields,  such  as  in  Syria,
Nagorno-Karabakh, and Ukraine.

The  development  of  military  attack  and  defense
technologies  is  similar  to  the  relationship  between  a
spear  and  a  shield.  The  aforementioned  advantages  of
the “spears”  of  drone  swarms  have  posed  great
challenges  to  the “shields”  of  their  opponents,  who
need to protect against the invasion of drone swarms by
reducing their mission capabilities as much as possible.
However,  current  research on countermeasures against
drone  swarms,  such  as  Global  Positioning  System
(GPS)  spoofing,  electromagnetic  interference,  false
target jamming[3, 4], and anti-aircraft weapons[5], is still
limited  and  relatively  simple.  Compared  to  these
spoofing  and  interference  measures,  anti-aircraft
weapons  are  more  active  and  aggressive  in  causing
damage to drones and are, therefore, more appealing to
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the  opponents  of  drones.  However,  the  flexibility  and
survivability  of  drone  swarms  make  it  difficult  or
impossible  for  a  single  air  defense  system  to  bring
substantial  damage to  a  swarm at  a  time.  Typically,  if
one  or  several  drones  are  damaged  by  an  attack  from
the  air  defense  system,  the  remaining  drones  can
quickly  escape  from  the  attack  area  and  reform  the
swarm that  still  has  a  majority  of  the  original  mission
capability.  Therefore,  how  to  deploy  available  air
defense  systems  to  effectively  defend  against  drone
swarms  is  a  challenging  problem,  which  is  important
for the safety and security of the defending side.

In  this  paper,  we  study  an  optimization  problem for
deploying  air  defense  systems  against  enemy
reconnaissance drone swarms. Given a set of available
air  defense  systems,  the  problem  determines  the
location of each air defense system in a predetermined
region  where  a  reconnaissance  drone  swarm  will  pass
through. Whenever the swarm is threatened/attacked by
an air defense system, it  replans the path to the target,
as illustrated by the flowchart in Fig. 1. Therefore, we
need  to  optimize  the  deployment  of  air  defense
systems, such that the cost for the enemy drone swarm
to  pass  through  the  region  will  be  maximized.  We
calculate  the  cost  based  on  a  counterpart  drone  path
planning  problem.  To  solve  this  adversarial  problem,
we  first  present  an  iterative  search  algorithm,  which
can  produce  exact  optimal  solutions  to  small-size
problem  instances;  then,  we  propose  an  evolutionary

framework  for  obtaining  optimal  or  near-optimal
solutions  to  large-size  instances.  We  implement  the
evolutionary  framework  with  six  popular  evolutionary
algorithms,  namely  Genetic  Algorithm  (GA)  with
variable  mutation  rate[6],  adaptive  Particle  Swarm
Optimization (PSO) using comprehensive learning and
self-adaptive  parameters[7],  Ecogeography-Based
Optimization (EBO)[8], Quantum-inspired Tabu Search
(QTS)[9],  dual-strategy  Differential  Evolution  (DE)[10],
and  Water  Wave  Optimization  (WWO)[11].  We
conducted  computational  test  on  a  set  of  problem
instances,  the  results  of  which  validate  the
effectiveness  of  the  method  for  defending  against
reconnaissance  drone  swarms.  Among  the  six
algorithms,  EBO and  WWO exhibit  more  competitive
performance  than  the  other  ones.  The  main
contributions of this work can be stated as follows:

●  It  presents  a  problem  of  deploying  air  defense
systems  against  drone  swarms,  which,  to  our  best
knowledge, has not been addressed before.

●  It  proposes  an  exact  iterative  algorithm  and  an
evolutionary framework with operators adapted for the
problem,  which  are  efficient  for  solving  small-  and
large-size problem instances, respectively.

● It conducts tests to validate the effectiveness of the
proposed  approach  for  improving  the  defensive
abilities against reconnaissance drone swarms.

In  the  remainder  of  this  paper,  Section  2  reviews
related  work,  Section  3  formulates  the  air  defense
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Fig. 1    Basic flow of the invading drone swarm and the opponent for defending against the swarm.
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system  deployment  optimization  problem  based  on  a
basic  drone path planning problem, Section 4 presents
the exact iterative search algorithm, Section 5 describes
the  evolutionary  framework  and  its  typical
implementations,  Section 6 presents the computational
experiments,  and  finally  Section  7  concludes  this
paper.

2    Related Work

p

The considered air defense system deployment problem
can be classified as a facility location problem which is
known  to  be  NP-hard[12].  Exact  algorithms  are  only
applicable  to  small-size  instances[13, 14].  Many  recent
studies  have  been  conducted  on  heuristic  and
evolutionary  algorithms  for  finding  near-optimal
solutions.  Teran-Somohano  and  Smith[15] used  a  bi-
objective  evolutionary  strategy  algorithm  to  solve  a
semi-obnoxious  and  multiple  capacitated  facility
location  problem  that  often  arises  in  public  planning.
Zheng  et  al.[16] presented  a  master-slave  evolutionary
algorithm for  a  problem of  integrated  civilian-military
emergency  supply  pre-positioning.  Wang  et  al.[17]

presented  a  dual-population  evolutionary  algorithm  to
solve a facility location problem with two objectives on
reliability  and  coverage  under  the  uncertainty  of
facilities.  Vansia  and  Dhodiya[18] utilized  non-
dominated sorting genetic algorithm and modified self-
adaptive  multi-population  elitism  Jaya  algorithm
for  a  multi-objective  transportation- -facility  location
problem that minimizes the overall transportation time,
cost  of  transportation,  and  carbon  emission.  Zhang
et  al.[19] proposed  an  enhanced  group  theory  based
evolutionary  algorithm  to  solve  the  uncapacitated
facility  location  problem.  Eriskin  et  al.[20] studied  a
robust  multi-objective  model  for  the  location  of
hospitals  during pandemics.  Karatas  et  al.[21] surveyed
the facility location models and solution techniques for
military organizations.

The  present  problem  aims  to  maximize  the
effectiveness  of  defense  against  enemy targets.  In  this
sense,  the  problem is  similar  to  a  subclass  of  Weapon
Target  Assignment  (WTA)  problems[22] that  aim  to
maximize the total expected damage or total cost of the
targets.  Observing  that  exact  algorithms[23, 24] are  only
applicable  to  small-size  WTA  instances,  most  recent
research  efforts  have  been  devoted  to  heuristic  and
metaheuristic  algorithms,  including  very large
neighborhood  search[23, 25],  ant  colony
optimization[26, 27], GA[28], PSO[29], eminent domain[30],
etc.,  to  efficiently  solve  medium- and large-size  WTA

instances.  Moreover,  our  problem  considers  that  a
drone  swarm can  dynamically  reform and  replan  after
being attacked and hence is closer to dynamic WTA[31]

which  uses  a  sequence  of  decisions  to  tackle  the
dynamic change of targets and is  much more complex
than its static counterpart[32, 33].

Although  there  are  many  research  work  on  general
WTA problems, studies focusing on air defense system
deployment  are  relatively  limited.  Han  and  Shi[34]

proposed  a  simulated  annealing  algorithm  for
optimizing  the  deployment  of  air  defense  missile
systems,  where  the  combat  effectiveness  of  defense
systems  is  evaluated  based  on  the  stochastic  service
system  theory.  Wang  and  Guo[35] studied  the
disposition of air defense systems at the company level
in  two  scenarios:  one  using  a  single  system to  protect
multiple  targets,  and  the  other  using  multiple  systems
to  protect  a  single  target.  They  developed  linear
programming  and  dynamic  programming  methods  to
solve  the  problems.  Yu  et  al.[36] proposed  an  artificial
neural  network  approach  to  weapon  system
configuration,  which first  uses a backtracking network
to  approximate  the  system  effectiveness,  and  then
translates  the  problem  to  the  traveling  salesman
problem  which  is  solved  by  Hopfield  network.  Wang
and  Pan[37] considered  an  air  defense  disposition
problem  with  uncertainties  and  risks  measured  by
fuzzy  entropy,  and  they  presented  a  hybrid  intelligent
algorithm for  the problem. Han et  al.[38] proposed two
air  defense  system  configuration  models  based  on
integer programming, one for firing range covering and
the other for firing angle covering, and they proved that
the  layout  solution  obtained  with  the  firing  angle
concept is more efficient.

Currently,  few  studies  have  been  conducted  on  air
defense  system  deployment  against  drone  swarms,
which  is  much  more  difficult  than  traditional  anti-
aircraft  air  defense  system  deployment  because  drone
swarms  are  much  more  flexible  in  reforming  and
replanning  than  traditional  aircraft.  To  explore  drone
vulnerability  to  deceptive  GPS signals,  Kerns  et  al.[39]

established  necessary  conditions  for  drone  capture  via
GPS  spoofing  and  explored  the  spoofer’s  range  of
possible post-capture control  over drones.  Considering
a  problem of  using  a  team of  mini  drones  acting  as  a
cooperative defensive system against enemy unmanned
aerial  systems,  Castrillo  et  al.[5] studied  sensing,
mitigation,  and  command  and  control  technologies  to
realize  such  a  defense  system.  Su  et  al.[40] studied  a
problem of false target jamming against  UAVs, where
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each  false  target  jamming  solution  is  evaluated  based
on  its  adversarial  effects  on  possible  UAV  detection
solutions. To the best of our knowledge, the problem of
air  defense  system  deployment  against  drone  swarms
has not been addressed before.

3    Problem Formulation

In  this  section,  we  formulate  the  air  defense  system
deployment  optimization  problem,  which  aims  to
maximize the cost for enemy reconnaissance drones to
pass through a predetermined region. We first describe
a  basic  drone  path  planning  problem  from  the
viewpoint  of  the  holders  of  drones,  and  then  describe
the adversarial defense problem from the viewpoint of
the opponents of drones.

3.1    Drone path planning

n
Ψ = {ψ1,ψ2, . . . ,ψn}
ψi

(xi,yi,zi) (1 ⩽ i ⩽ n)
P = {S ,P1,P2, . . . ,T }

S
{P1,P2, . . . } ⊆Ψ T

S = P0 T = PnP

nP T
S P

First consider the basic drone path planning problem in
three-dimensional  space[41, 42],  where  a  swarm  of
drones  needs  to  traverse  a  predetermined  region.
According to the terrain of the region, a total number 
of  waypoints  are  marked,  where
each waypoint  is characterized by three-dimensional
coordinates  . The aim of the problem
is to find a path  that starts from the
entry  point ,  passes  through  a  subset  of  waypoints

,  and  finally  reaches  an  exit  point ,
such that the total cost of the path is minimized. For the
convenience of expression, we denote , ,
where  is the number of waypoints (including  but
excluding ) on the path . Here, we measure the cost
of a path based on the following four criteria:

S
T

● Length  of  the  path: The  longer  the  path,  the
higher the cost. We calculate the length cost as the ratio
of the total length to the Euclidean distance between 
and ,
 

L(P) =
1
|S ,T |

nP−1∑
i=0

|Pi,Pi+1| (1)

(zmax− zmin)

● Height  of  the  path: The  higher  the  path,  the
higher  the  cost.  This  is  because  flying  at  a  low  flight
height  can  improve  the  reconnaissance  efficiency  and
reduce  the  risk  of  being  discovered.  We  calculate  the
height  cost  as  the  ratio  of  the  total  height  to

,  and the difference between the maximum
height and minimum height is as follows:
 

H(P) =
1

zmax− zmin

nP−1∑
i=0

(z (Pi,Pi+1)− zmin) (2)

z(Pi,Pi+1)
[Pi,Pi+1]

Pi Pi+1

Ne

Ne

where  denotes  the  average  flight  height  of
the  segment .  For  a  simple  straight  segment,
the height can be directly calculated as the mean of the
heights  of  and  .  For  a  segment  comprising
complex  parts,  the  height  can  be  obtained  by  equally
dividing  the  segment  into  a  sufficient  number  of
parts and calculating the mean of the heights of the 
parts.

ω̂

● Excessive  horizontal  rotation  of  the  path: If  a
horizontal  rotation  angle  is  larger  than  a  predefined
threshold ,  the  drones  need to  decelerate  to  facilitate
the  change  of  direction  and  then  re-accelerate  to  the
normal  speed,  which  would  reduce  the  flight
efficiency.  We  calculate  the  excessive  horizontal
rotation cost as follows:
 

R(P) =
1

nPω̂

nP−2∑
i=0

max
(
ω (Pi,Pi+1,Pi+2)− ω̂,0) (3)

ω (Pi,Pi+1,Pi+2)
(Pi,Pi+1) (Pi+1,Pi+2)

where  denotes  the  horizontal  angle
between segments  and .

θ̂

● Excessive vertical inclination angle of the path:
If  an  inclination  angle  is  larger  than  a  predefined
threshold , the drones need to slow down to facilitate
climbing  and  descending  and  then  re-accelerate  to  the
normal  speed,  which  would  reduce  the  flight
efficiency.  We  calculate  the  excessive  inclination  cost
as follows:
 

S (P) =
1

nPθ̂

nP−2∑
i=0

max
(
θ (Pi,Pi+1,Pi+2)− θ̂,0) (4)

θ (Pi,Pi+1,Pi+2)
(Pi,Pi+1) (Pi+1,Pi+2)

where  denotes  the  vertical  angle
between segments  and .

The  objective  function  of  drone  path  planning  is
defined as the weighted sum of the above costs,
 

min C(P) = L(P)+wHH(P)+wRR(P)+wS S (P) (5)

wH wR wS

wH

wR+wS = 1−wH

wR wS

where , , and  are the importance weights of the
height  cost,  excessive  horizontal  rotation  cost,  and
excessive  inclination  cost,  respectively.  As  the  weight
of the length cost is explicitly one, we suggest that 
can be set  to approximately 0.5, ,  and

 can be smaller than  because horizontal rotation is
typically simpler than vertical inclination.

3.2    Air  defense  system  deployment  against
reconnaissance drone swarms

P∗

m

First,  we  assume  that  the  holder  of  reconnaissance
drones  can  always  obtain  the  optimal  path  that
minimizes  the  objective  of  Eq.  (5).  Given  a  set  of 
available  air  defense  systems,  the  air  defense  system
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rd

P∗

deployment  optimization  problem  is  to  determine  the
location  of  each  air  defense  system  in  the
predetermined  region,  such  that  the  total  cost  for  the
enemy  drone  swarm  to  pass  through  the  region  under
the  anti-drone  threat  is  maximized.  Each  air  defense
system can automatically detect  any drone entering its
defense range (within a predefined radius ). If two or
more  drones  enter  simultaneously,  we assume that  the
system  can  shoot  down  at  least  one  drone.  It  is  also
assumed  that  the  maximum  height  of  the  drones  is  in
the  attack  range  of  air  defense  systems,  while  the
drones  cannot  attack  the  defense  systems.  Under  the
above  assumptions,  if  there  is  only  one  enemy  drone,
we  can  simply  place  an  air  defense  system  at  any
suitable  position  on .  However,  for  a  drone  swarm,
whenever  the  first  drone  is  intercepted  by  the  air
defense  system,  the  remaining drones  have  abilities  to
bypass the system.

A1

P∗

P∗

Let  be the position of the first air defense system
for  intercepting  the  drones  along  the  path .  As
illustrated in Fig. 2a, the first drone is intercepted at the
intersection of  and the circumference of the defense

A1

S 1 T
S 1 ∆d

S 1

T
A1

range of . Afterward, the swarm replans its path from
the new starting point  to the entry point , where the
distance  between  and  the  intersection  is  (which
is  typically  set  as  the  average  interval  among  the
drones in the swarm). However, the new path from 
to  should  try  to  avoid  passing  through  the  defense
range  of .  To  reflect  this,  we  add  a  new  fire  threat
cost to the drone path as follows:
 

E1(P) =
1
|S ,T |

nP−1∑
i=0

Λ1(Pi,Pi+1) (6)

Λ1(Pi,Pi+1)
(Pi,Pi+1) A1

where  denotes the length of the part of the
segment  that is in the defense range of .

Consequently,  the  objective  function  of  drone  path
replanning  after  being  intercepted  by  the  first  air
defense  system should  incur  the  fire  threat  cost  in  the
following:
 

min C1(P) =C(P)+wE E1(P) (7)

wE

wE

where  is  the  importance  weight  of  the  fire  threat
cost.  Note  that  when  we  set  to  a  sufficiently  large
value, the path will not be allowed to enter the defense
range.

P(1)

A2

P(1)

A2 P(2)

S 2 T

A1 A2

Let  be the new path that minimizes the updated
objective  of  Eq.  (7),  and  be  the  position  of  the
second  air  defense  system,  which  should  be  on  path

.  Similarly,  after  the  swarm  enters  the  defense
range of , it should replan the path  from the new
starting point  to the entry point , and the new path
should try to avoid passing through the defense ranges
of  and , as illustrated in Fig. 2b.

j
P( j−1)

S j T

j 1 ⩽ j ⩽ m

By analog,  after  placing  the -th  air  defense  system
on  the  path ,  the  drone  swarm  replans  the  path
from the new starting point  to the entry point , and
the path should consider  the fire  threat  cost  caused by
the previous  air defense systems ( ),
 

E j(P) =
1
|S ,T |

nP−1∑
i=0

Λ j (Pi,Pi+1) (8)

Λ j (Pi,Pi+1)
(Pi,Pi+1)

A1,A2, . . . ,A j j

where  denotes the length of the part of the
segment  that  is  in  the  defense  range  of  any
one of . The objective function of the -th
path replanning is
 

min C j(P) =C(P)+wE E j(P) (9)

m {A1,A2, . . . ,Am}
m

From  the  viewpoint  of  the  opponent  of  the  drone
swarm, the air defense system deployment optimization
problem  is  to  determine  positions   in
the region to place the  air defense systems, such that
the total cost of the paths planned and replanned by the

 

S

T
(a) Path replanning after the first interception by A1

(b) Path replanning after the second interception by A2

A1
P* Δd

Δd

Δd

P(1)

S1

S

T

A1
P*

P(1)

S1

A2 S2

P(2)

 
Fig. 2    Illustration of the path replanning of a drone swarm
after being intercepted by air defense systems. Solid (black)
line:  original  path;  dash  (green)  line:  first  replanned  path;
dotted (blue) line: second replanned path; red circle: defense
range.
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drone swarm is maximized,
 

max f (A) =C(P∗[S ,S 1])+
m−1∑
j=1

C j(P( j)[S j,S j+1])+C(P(m)[S m,T ]) (10)

P [S j,S j+1] S j

S j+1 P P( j) = argminP∈PAT H(S j,T ) C j(P)
PAT H(S j,T ) S j T

where  represents the partial path from  to
 in the path , , and

 is the set of all paths from  to .

Ω
Ω1

A1

Ω Ω2

A2 Ω1

Ω Ω j

j 1 ⩽ j ⩽ m−1

In practice, some areas are not suitable for deploying
air  defense  systems  due  to  terrain  constraints.  We  use

 to denote the union of all  positions that are suitable
for  placing  air  defense  systems,  to  denote  the
remaining  suitable  positions  after  placing  the  first  air
defense  system  (by  removing  the  defense  range  of 
from ),  to denote the remaining suitable positions
after  placing  the  first  two  air  defense  systems  (by
removing the defense range of  from ), and so on.
Consequently,  the  feasible  region  for  placing  air
defense  systems  is  at  first  and  updated  to  after
placing the first  systems ( ).

4    Exact Iterative Search Algorithm

(m−1)
Am m

P(m−1)

P(m−1)

P(m)

To  solve  the  above  air  defense  system  deployment
problem, we first propose an iterative search algorithm
for  finding  the  exact  optimal  solution  to  the  problem.
Suppose  that  the  previous  air  defense  systems
have  been  placed,  the  position  of  the -th  air
defense system should be determined according to  the
second last  replanned path  of  the drone swarm,
aiming  at  maximizing  the  cost  of  and  the  last
replanned path ,
 

max f (Am) =Cm−1(P(m−1)[S m−1,S m])+

Cm(P(m)[S m,T ]) (11)

Am Ωm−1

P(m−1)

FindA (m, P(m−1),Ωm−1)
Am

The position  belongs to set , and its defense
range should intersect  with the path .  Therefore,
the  procedure  for  determining
the  position  can  be  described  by Algorithm  1 that

Φ(A)

A

iteratively  tests  all  possible  positions,  where 
denotes  the  defense  range  of  the  air  defense  system
placed at the position .

(m−2)
Am−1

(m−1)

Next,  suppose  that  the  previous  air  defense
systems  have  been  placed.  The  position  of  the

-th  air  defense  system  should  be  determined  to
maximize the value of the following function:
 

max f (Am−1) =Cm−2(P(m−2)[S m−2,S m−1])+

Cm−1(P(m−1)[S m−1,S m])+Cm(P(m)[S m,T ]) (12)

FindA (m−1, P(m−2),Ωm−2)
Am−1

P(m−1) Am−1

FindA (m, P(m−1),Ωm−1)
Am Am−1 P(m)

The  procedure  for
determining  the  position  is  described  in
Algorithm  2,  which  has  a  framework  similar  to
Algorithm 1 in that each possible position is tested. The
difference is that,  when evaluating the fitness function
value  for  each  candidate  position,  we  not  only  replan
the  drone  path  from  ,  but  also  call  the
procedure  to  find  the  optimal
position  after  and therefore replan .

Am−2,Am−3, . . .

FindA (1, P∗,Ω) A1

By  analogy,  we  can  derive  the  procedures  for
determining  the  positions  in  a  reverse
manner,  and  finally  obtain  the  procedure

 for  determining  the  position  of  for
minimizing the original objective function of Eq. (10),
as  shown  in Algorithm  3,  which  is  an  exact
optimization  algorithm  for  solving  this  air  defense
system deployment problem.

FindA (1, P∗,Ω)
FindA (2, P(1),Ω1)

FindA (3, P(2), Ω2) . . . , FindA (m, P(m−1), Ωm−1)
m {A1,A2, . . . ,Am}

N Ω

As  illustrated  in Fig.  3,  will
iteratively  call  the  sub-procedures ,

, ,  and
finally obtain all  positions  for placing
the air defense systems. Let  be the cardinality of .
The  worst  time  complexity  of  the  exact  optimization
algorithm is
 

O
(
C(N,m)O(A⋆)

)
=

O
(
N(N −1)(N −2) · · · (N −m+1)O(A⋆)

)
,

 

Algorithm 1　FindA (m, P (m−1), Ωm−1)

1 Let V = null, V = 0;
2 for each A∈Ωm−1 do
3 if Φ (A) ∩ P(m−1) ≠ ∅ then
4 Call A★ algorithm to replan the drone path P (m);
5 Evaluate f (A) according to Eq. (11);
6 if f (A) > V then
7
8

9 return Am

Am ← A;
V ← f (A);

 
 

 

1 Let Am−1 = null, V = 0;
2 for each A ∈ Ωm−2 do
3 if Φ (A) ∩ P(m−2) ≠ ∅ then
4 Call A★ algorithm to replan the drone path P (m−1);

5
Call FindA (m, P(m−1), Ωm−1) to determine the subsequent 

Am and P(m);
6 Evaluate f (A) according to Eq. (12);
7 if f (A) > V then
8
9

10 return Am−1

Algorithm 2　FindA (m−1, P (m−2), Ωm−2)

Am−1 ← A;
V ← f (A);
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O(A⋆) A⋆

O(N2)

n

T

where  denotes  the  time  complexity  of  the 
algorithm  (typically  does  not  exceed ).
Nevertheless,  in  practice,  the  number  of  points  that
intersect the designated paths with the circumference of
defense  ranges  is  usually  much  smaller  than .
Moreover,  with the progress of drone path replanning,
the new starting point continually becomes closer to the
exit point , and therefore the length of new replanned
paths continuously becomes shorter. Consequently, the
average  time  complexity  of  the  algorithm  is  not  so
high.

5    Evolutionary Algorithm

N m
As  the  running  time  of  the  above  exact  optimization
algorithm  increases  exponentially  with  and  ,  it  is
only  suitable  for  situations  where  the  region  is
relatively small and the number of air defense systems
is also not large. Otherwise, the running time would be
unacceptable.  To  solve  large-size  instances  of  the
problem,  we  propose  an  evolutionary  framework  that
evolves  a  population  of  candidate  solutions  to  search

m
N

for  optimal  or  near-optimal  solutions.  Note  that
although  this  problem determining  positions  among

 candidates  can  be  regarded  as  a  multi-knapsack
problem,  existing  evolutionary  algorithms  for  the
multi-knapsack problem are  not  efficient  because  they
often  test  many  candidate  positions  that  are  unable  or
inefficient to intercept drones.

m
x = {x1, x2, . . . , xm}
xi

To  efficiently  solve  the  air  defense  system
deployment  problem,  we  design  a  specific  encoding
and decoding scheme.  Each solution to the problem is
encoded  as  an -dimensional  real-valued  vector

,  where  the  value  of  each  component
 is  in  the  range  of  [0,  1].  The  solution  decoding

procedure consists of the following steps:

P∗

S

Step  1: Find  out  the  set  of  all  candidate  positions
whose  defense  range  intersects  with  the  path ,  and
sort  these positions in  order  of  their  intersections with
the  path  from  front  to  back  (i.e.,  the  closer  the
intersection to the starting point , the higher the rank;

N1

k N1x1 k
Step 2: Let  be the number of candidate positions

and  be  the  integer  closest  to ;  take  the -th
candidate position to place the first air defense system;

j = 1Step 3: Let ;
P( j) A jStep 4: Replan the drone path  based on ;

P( j)
Step  5: Find  out  the  set  of  all  candidate  positions

whose  defense  range  intersects  with  the  path ,  and
sort  these positions in  order  of  their  intersections with
the path from front to back;

N j+1

k N j+1x j+1

k j

Step  6: Let   be  the  number  of  candidate
positions and  be the integer closest  to ;  take
the -th candidate position to place the -th air defense
system;

j = j+1 j > mStep  7: Set  ;  if ,  then  stop;  otherwise,
go to Step 4.

The  above  scheme  encodes  the  position  of  each  air
defense  system as  the  rank  of  its  intersection  with  the
path  of  the  drone  swarm  to  relate  the  position  to  the
anti-drone task. The use of real-valued encoding makes
it  easy  to  adapt  existing  evolutionary  algorithms  for
continuous optimization to our problem.

In  the  following  subsections,  we  use  GA[6],  PSO[7],
EBO[8], QTS[9], DE[10], and WWO[11] to implement the
framework.

5.1    GA with variable mutation rate

xc

xb xa xb r

GA performs a stochastic search based on the principle
of genetic crossover and mutation. On the basis of the
above  encoding/decoding  scheme,  we  use  the  breeder
crossover operation[43] that generates offsprings  and

 from two parents  and  as follows (where  is a

 

1 Let A1 = null, V = 0;
2 for each A ∈ Ω do
3 if Φ (A) ∩ P* ≠ ∅ then
4 Call A★ algorithm to replan drone path P (1);
5 Call FindA (2, P (1), Ω1) to determine the subsequent

{A2, A3,…, Am} and {P (2), P (3),…,P (m)};
6 Evaluate f (A) according to Eq. (10);
7 if f (A) > V then
8
9

10 return A1

Algorithm 3　FindA (1, P*, Ω)

A1 ← A;
V ← f (A);

 
 

 

FindA (1, P*, Ω)

FindA (2, P(1), Ω1)

FindA (m−1, P(m−2), Ωm−2)

FindA (m, P(m−1), Ωm−1)

. . . . . . 

 
Fig. 3    Recursive invocation of the sub-procedure FindA( ).
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1 ⩽ j ⩽ mrandom value uniformly distributed in [0, 1], ): 

xc
j = rxa

j + (1− r)xb
j ,

xd
j = (1− r)xa

j + rxb
j (13)

rm(x)
x

Another  key  difference  of  our  algorithm  from
classical  GA  is  that  it  uses  a  variable  mutation  rate

 calculated as inversely proportional to the fitness
of solution  as follows (such that low-fitness solutions
are  changed  greatly  while  high-fitness  solutions  are
more stable):
 

rm(x) =
f (x)
fmax

rmax
m (14)

fmax

rmax
m

where  denotes  the  maximum  objective  function
value  in  the  population,  and  is  a  parameter
controlling  the  maximum  mutation  rate.  The  mutation
is conducted by randomly setting each dimension in the
value range.

rc rand (0,1)

O(mN3)
G

NP

O(1.5GNPmN3)

Algorithm  4 presents  the  pseudo-code  of  the  GA,
where  is the crossover rate, and  produces a
random value uniformly distributed in [0, 1]. The time
complexity  of  the  fitness  evaluation  is .  The
average  mutation  rate  is  expected  to  be  0.5.  Let  be
the  maximum  number  of  generations  and  be  the
population size; the average time complexity of the GA
is .

5.2    Adaptive comprehensive learning PSO

xi

vi

PSO[44] associates  each  solution  (particle)  with  a
velocity vector  of the same dimensionality, which is

used to move the solution at each iteration,
 

xi, j = xi, j+ vi, j (15)

pbesti

gbest

In the classical PSO, each velocity vector is adjusted
by learning from both the personal historical best 
of the current solution and the global best  of the
whole  population.  Comprehensive  learning  PSO[45]

improves  the  classical  PSO  by  utilizing  all  other
particles’ historical  best  to update the velocity of each
particle, such that the information of different particles
is exchanged more thoroughly,
 

vi, j = wvi, j+ c× rand (0,1)(pbesti′, j− xi, j) (16)

pbesti′

j
pbesti′, j pbesti′

w c

The  exemplar  solution  is  randomly  selected
based  on  a  learning  probability  at  each  dimension ,
and  is the corresponding component of .

 and  are two control parameters. We also adaptively
adjust the values of the two parameters according to the
evolutionary  states,  i.e.,  the  improvement  of  each
individual and the whole population over iterations[7].

O(GNPmN3)

Algorithm 5 presents the pseudo-code of the adaptive
comprehensive  learning  PSO  algorithm  for  the
problem. The average time complexity of the algorithm
is .

5.3    EBO

x rµ(x)
rν(x)

EBO  is  an  extended  version  of  Biogeography-Based
Optimization (BBO)[46], which associates each solution

 with an immigration rate  and an emigration rate
 as follows:

 

rµ(x) =
fmax− f (x)+ ϵ
fmax− fmin+ ϵ

,

rν(x) =
f (x)− fmin+ ϵ

fmax− fmin+ ϵ
(17)

 

Algorithm 4　GA for the air defense system deployment
optimization problem

1 Randomly initialize a population of NP solutions;
2 while the stop condition is not met do
3 Create an empty offspring population;
4 while the offspring population size is smaller than

NP do
5 Use roulette-wheel selection to randomly select two

solutions xa and xb from the current population;
6 if rand (0,1) < rc then
7 Use crossover to produce two offsprings xc and xd

according to Eq. (13);
8 Calculate rm (xa) and rm (xb) according to Eq. (14);

9 if rand (0,1) < rm (xa) then
10 Mutate xa;

11 if rand (0,1) < rm (xb) then
12 Mutate xb;

13 Add xa and xb to the offspring population;

14 Set the current population to the offspring population;

15 return the best known solution found
 
 

 

Algorithm 5　PSO for the air defense system deployment
optimization  problem.

1 Randomly initialize a population of NP solutions;
2 while the stop condition is not met do
3 for all xi in the population do
4 for j =1 to m do
5 Select an exemplar pbesti;
6 Update vi, j according to Eq. (16);

7 for j = 1 to m do
8 Update xi, j according to Eq. (15);

9 Update the control parameters;

10 return the best known solution found
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fmin

ϵ

where  is the minimum objective function values in
the  population,  and  is  a  small  positive  number  to
avoid division by zero.

x

x′ x′ x

Compared  to  the  basic  BBO,  EBO  employs  a  local
neighborhood  structure[47] and  differentiates  local
migration  and  global  migration.  Local  migration  sets
the current dimension of the immigrating solution  by
blending  with  the  corresponding  dimension  of  the
emigrating  solution ,  where  is  a  neighbor  of 
selected  with  a  probability  proportional  to  the
emigrating rate. The corresponding dimention x'j of the
emigrating solution x' is as follows:
 

x j = x j+ rand (0,1)(x′j− x j) (18)

x′

x x′ x
x

Global migration selects two emigrating solutions 
and ", where  is from the neighboring solutions of ,
and '' is from the non-neighboring solutions. A global
migration  operation  is  performed  according  to  the
fitness  comparison  of  the  two  emigrating  solutions  as
follows:
 

x j =

{
x′j+ rand (0,1)(x′′j − x j), f (x′) > f (x′′);
x′′j + rand (0,1)(x′j− x j), f (x′) < f (x′′) (19)

η

Whether  a  migration  operation  is  a  local  or  global
migration is  determined by a  parameter  that  linearly
decreases with iteration, such that global migration has
a  high  probability  in  early  stages  for  diversifying  the
search,  whereas  local  migration  is  more  probable  in
later stages for improving solution accuracy.

O(GNPmN3)

Algorithm  6 presents  the  pseudo-code  of  the  EBO
algorithm,  the  time  complexity  of  which  is

.

5.4    QTS

Q

Tabu  search[48] is  an  extension  of  basic  local  search
using  short-term  memory  to  save  recently  obtained
local  optimal  solutions  to  avoid  repeated  searches.
QTS[9] introduces quantum-inspired bits and gates into
the  algorithm  to  suppress  premature  convergence  and
better  balance  exploration  and  exploitation.  The  QTS
algorithm  first  initializes  a  quantum  matrix  to
represent  the  solution,  and  then  continually  performs
neighborhood search by measuring the quantum matrix
several  times.  The  neighboring  solutions  are  further
improved by entanglement and local search. The search
procedure continues until the stop condition is satisfied.
The quantum matrix is also iteratively updated to push
new  solutions  toward  the  current  best  solution  while
keeping away the current worst.

O(tmaxNbmN3) Nb

Algorithm  7 presents  the  pseudo-code  of  the  QTS
algorithm,  the  time  complexity  of  which  is

, where  is the neighborhood size.

5.5    Dual-strategy differential evolution

DE  is  a  simple  but  fast  evolutionary  algorithm  that
evolves  solutions  according  to  the  difference  between
them[49].  At  each  iteration,  a  mutation  vector  is
produced  for  each  solution  by  adding  the  difference
between two randomly selected solutions to a third one;
a  trial  vector  is  then  produced by the  crossover  of  the
solution and its mutation vector; finally, the better one
between the  solution and the  trial  vector  is  chosen for
the next generation.

Dual-strategy DE[10] uses multiple sub-populations of
 

Algorithm 6　EBO for the air defense system deployment
optimization problem

1 Randomly initialize a population of NP solutions;
2 while the stop condition is not met do
3 for all xi in the population do
4 for j = 1 to m do
5 if rand (0, 1) > rμ (x) then
6 continue; //skip migration
7 Select a neighbor x′ based on rμ (x′);
8 if rand (0, 1) < η then
9 Perform local migration according to Eq. (18);

10 else
11 Select a non-neighbor x″ based on rμ (x″)
12 Perform global migration according to Eq. (19);

13 if the migrated solution is better then
14 Use the migrated solution to replace the original

one;

15 Update the parameter η;
16 return the best known solution found
 
 

 

Algorithm 7　QTS for the air defense system deployment
optimization problem
1 Let t = 0, and initialize a quantum matrix Q;
2 while the stop condition is not met do
3 Produce a neighborhood set by measuring of Q (t);
4 for all x in the neighborhood set do
5 Bound x in the feasible domain and evaluate f (x);
6 Perform both the dimension entanglement and the order

entanglement;
7 Perform local search on the best solution x* by bit reversal;
8 Perform entanglement local search on x* by multiple bit

reversal;
9 Update x* and the worst solution x†;

10 if x* is not updated within a predefined number of iterations
then

11 Apply a quantum NOT gate;
12 t ← t+1;
13 Update Q (t) based on x*, x†, and quantum MOVE gate;

14 return x*
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solution.  In  each  sub-population,  the  solutions  are
sorted in decreasing order of fitness, and the following
DE/rand/1  mutation  scheme is  applied  to  the  first  half
of the solutions:
 

vi = xr1 +F(xr2 − xr3 ) (20)

r1 r2 r3

F
where , ,  and  are  three  random  indices  in  the
population,  and  is  a  control  parameter  called  the
scale factor.

The following DE/lbest/1 mutation scheme is applied
to the second half of the solutions:
 

vi = xlbest +F(xr1 − xr2 ) (21)

xlbestwhere  denotes the current best solution in the sub-
population.

O(GMNS mN3) NS

Algorithm  8 presents  the  pseudo-code  of  the  dual-
strategy DE algorithm, the time complexity of which is

,  where  denotes  the  size  of  sub-
populations.

5.6    WWO

x λ(x)
Inspired  by  the  shallow  water  wave  theory,  WWO
assigns  each  solution  with  a “wavelength”  ,
whose  value  is  initialized  as  0.5  and  updated  as
inversely proportional to the solution fitness as follows:
 

λ(x) = λ(x)α−( f (x)− fmin+ϵ)/( fmax− fmin+ϵ) (22)

αwhere  is a control parameter set to 1.0026.

x′ x
λ(x)

At each iteration, WWO uses a propagation operation
to produce an offspring  for each solution  within a
search range proportional to  as follows:

 

x′j = x j+ rand (−1,1)λ(x)L j (23)

L j jwhere  denotes  the  search  range  of  the -th
dimension (1 for all dimensions of our problem). In this
way,  high  (low)  fitness  solutions  have  small  (large)
search  ranges  to  balance  global  and  local  search.  The
better  one  between  the  original  solution  and  its
offspring will be selected into the population.

x∗ kN

j

WWO  also  performs  a  breaking  operation  on  each
newly  found  best  solution  by  generating 
neighboring  solutions,  each  at  a  distinct  randomly
selected dimension  as follows:
 

x′j = x∗j +N(0,1)βL j (24)

N(0,1)
β

x∗ x∗

where  generates  a  Gaussian  random  number
with  mean  0  and  standard  deviation  1,  and  is  a
control  parameter  set  to  0.002.  The  best  neighbor,  if
better than , will replace  in the population.

Nmax
P Nmin

P

We use a variable population size[50],  which linearly
decreases from  to  (two control parameters).
The size reduction is performed by removing the worst
solution from the population.

O(G(NP+KN)mN3) NP = (Nmax
P +Nmin

P )/2

Algorithm 9 presents  the  pseudo-code  of  the  WWO
algorithm.  The  time  complexity  of  the  algorithm  is

, where .

6    Computational Experiment

The  experiments  were  conducted  on  eight  test

 

Algorithm 8　Dual-strategy DE for the air defense system
deployment optimization problem

1 Randomly initialize a population of solutions;
2 while the stop condition is not met do
3 Cluster the population into M sub-populations;
4 for all sub-population do
5 for all x in the sub-population do
6 if x is inferior then
7 Perform mutation according to Eq. (20);

8 else
9 Perform mutation according to Eq. (21);

10 for all offspring u do
11 if u is better than the nearest parent then
12 Replace the nearest parent with u;

13 for all solution x do
14 if x stays for a predefined number η of iterations then
15 Reinitialize x;

16 return the best known solution found
 
 

 

Algorithm 9　WWO for the air defense system deployment
optimization problem

1 Randomly initialize a population of NP solutions;
2 Let x* be the best-known solution in the population;
3 while the stop condition is not met do
4 Calculate the wavelengths of all solutions according to

Eq. (22);
5 for all x in the population do
6 Produce an offspring x′ according to Eq. (23);
7 if f (x′) > f (x) then
8 x ← x′;
9 if f (x) > f (x*) then

10 x* ← x;
11 for k =1 to kN do
12 Produce a neighbor x′ according to

Eq. (24);
13 if f (x′) > f(x*) then
14 x* ← x′;

15 Update the population size NP (decrease NP by
eliminating the worst solution);

16 return x*
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instances,  which  were  constructed  based  on  four
selected  maps  with  different  topographic  features  in
South East China. Table 1 presents the basic features of
the instances, including the regional area (2nd column),
number  of  waypoints  (3rd  column),  number  of
available air defense systems (4th column), and number
of  drones  in  the  swarm  (5th  column).  The  important
weights , , and  in the objective function of Eq.
(5) and  in Eq. (9) were set to 0.5, 0.2, 0.3, and 1.0,
respectively.

A⋆

P∗

For each test  instance,  we first  use the  algorithm
to  plan  the  path  of  the  drone  swarm and  calculate  the
cost  of  the  path  without  interception  of  air  defense
systems. Next, we try to use the exact Iterative Search
algorithm  (IS)  to  solve  the  instance  (until  its  running
time  exceeds  12  hours).  Afterward,  we  use  the  six
evolutionary  algorithms,  i.e.,  GA,  PSO,  EBO,  QTS,
DE,  and  WWO,  to  solve  the  instance,  each  being
repeated  30  times.  The  control  parameters  of  each
evolutionary algorithm were tuned on the whole set of
instances.  The  stop  condition  of  the  evolutionary
algorithms was set in such a way that the running time
reached 30 min.

C(P∗)

Figures 4–11 present the experimental results on the
eight  test  instances,  respectively.  In  each  figure,  the
dashed  line  denotes  the  path  cost  of  the  drone
swarm  without  considering  air  defense  systems,  and
each box plot  gives  the  median,  minimum,  maximum,
first  quartile  (25%,  denoted  by  Q1),  and  third  quartile
(75%, denoted by Q3) of the objective values obtained
by  the  corresponding  algorithm  over  the  30  runs.
Within the predefined time limit of 12 hours, the exact
IS algorithm only stops on the first  two instances,  and
therefore its results are only given in Figs. 4 and 5. The
results  showed  that  using  solutions  obtained  by  the
proposed algorithms to deploy air defense systems can
increase  the  path  cost  of  drone  swarms  to
500%−1100% of  the  original  cost  without  air  defense

systems, and the ratio increases with the instance size.
This  finding  demonstrates  that  the  proposed  method
can  effectively  deploy  air  defense  systems  to  defend
against  reconnaissance  drone  swarms  especially  in
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Fig. 4    Computational results on Instance 1.
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Fig. 5    Computational results on Instance 2.
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Fig. 6    Computational results on Instance 3.
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Fig. 7    Computational results on Instance 4.

 

 

Table 1    Basic features of the test instances.

Instance No. Area (km2) N m Number of drones
1 37.3 29 5 8
2 37.3 29 6 10
3 71.0 75 7 12
4 71.0 75 8 16
5 167.5 208 9 16
6 167.5 208 12 20
7 892.2 1333 16 36
8 892.2 1333 20 42
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large areas.
On  smallest-size  Instance  1,  five  evolutionary

algorithms (except GA) obtain the same median value,
which is the exact optimal objective value obtained by
IS  (but  the  computation  time  of  the  evolutionary
algorithms is much shorter than that of IS).  EBO, DE,
and WWO always obtain the optimal solution, whereas
the minimum values of PSO and QTS are smaller than
the optimal value, i.e., the two algorithms occasionally
fail to obtain the optimal solution. The median value of
GA  is  smaller  than  the  optimal  value,  although  its
maximum  value  is  the  optimal,  i.e.,  GA  occasionally
obtains the optimal solution, but fails to do so in most
cases.  On  Instance  2  where  the  region  is  the  same  as
that  of  Instance  1  but  the  numbers  of  waypoints,  air
defense systems, and drones are all larger than those of
Instance 1, WWO obtains the best median value, EBO,
DE,  and  WWO  occasionally  obtain  the  optimal
solution as IS, but GA, PSO, and QTS never do so.

On  the  remaining  larger-size  instances,  IS  cannot
obtain the optimal solution within 12 hours, indicating
that  the  exact  algorithm  can  only  solve  small-size
instances.  DE  obtains  the  best  median  value  on
Instance 4, and EBO obtains the best median values on
the other five instances.

We  conducted  a  nonparametric  Wilcoxon  rank  sum
test on the results of the six evolutionary algorithms to
evaluate their differences on each instance. The results
(all  at  a confidence level of 95%)  show that,  on either
Instance  1  or  Instance  2,  there  is  no  significant
difference  among the  results  of  PSO,  EBO,  QTS,  DE,
and WWO, and they are all significantly better than the
result of GA. On Instances 3 and 6, the result of EBO is
significantly  better  than  those  of  GA,  PSO,  and  QTS,
but it is not significantly different than those of DE and
WWO. On Instance 4, the result of DE is significantly
better  than  those  of  GA,  EBO,  and  QTS,  but  it  is  not
significantly  different  than  those  of  PSO  and  WWO.
On  Instances  5,  7,  and  8,  the  result  of  EBO  is
significantly  better  than  those  of  the  other  five
algorithms. Tables 2–7 present the statistical test results
on Instances 3–8, respectively, where “>” denotes that
the  result  of  the  algorithm  in  the  current  row  is
significantly better than that in the current column.

Table 8 presents the rank of the median value of each
algorithm  on  each  test  instance,  and Table  9 presents
the total  rank number (row 2),  the number of times of
obtaining the best median value (row 3, abbreviated to
“best”), and the number of times of being significantly
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Fig. 8    Computational results on Instance 5.
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Fig. 9    Computational results on Instance 6.

 

 

0

10

20

30

40

50

60

Algorithm

O
bj

ec
tiv

e 
fu

nc
tio

n

GA PSO EBO QTS DE WWO

Q1 Min Median Max Q3

 
Fig. 10    Computational results on Instance 7.

 

 

0

10

20

30

40

50

60

Algorithm

O
bj

ec
tiv

e 
fu

nc
tio

n

GA PSO EBO QTS DE WWO

Q1 Min Median Max Q3

 
Fig. 11    Computational results on Instance 8.

 

  Ning Li et al.:   Optimization of Air Defense System Deployment Against Reconnaissance Drone Swarms 113

 



better  than  other  algorithms  (row  4,  abbreviated
to“significantly  better”)  over  all  eight  instances.  EBO
exhibits  the best  overall  performance,  WWO performs
the second best, and GA performs the worst because it
is  easily  trapped  in  local  optima,  given  that  its
crossover  operator  is  relatively  weak  in  global  search.
QTS only performs better than GA, as its neighborhood
search mechanism is not also inefficient in searching a
large-size  solution  space.  PSO’s  particle  motion
mechanism  makes  it  converge  fast  to  some  good
solutions  on  small-size  instances,  but  often  leads  to
premature  convergence  on  large-size  instances.  The
differential  crossover  operator  and  multi-population
strategy  make  DE  more  suitable  for  searching  large-
size  solution  spaces  than  small-size  ones.  The
integration of  global  and local  migrations in  EBO and
the  wavelength-based  propagation  in  WWO  can
achieve  a  quite  good  balance  between  global  search
and local search, which is the main reason why the two
algorithms  exhibit  good  performance  on  the  test
instances.  Comparatively,  the  migration  mechanism

 

Table 2    Statistical test results on Instance 3 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − − − −
PSO − − − − − −
EBO > > − > − −
QTS > − − − − −
DE > > − − − −

WWO > > − > − −
 

 

Table 3    Statistical test results on Instance 4 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − − − −
PSO > − − − − −
EBO > − − > − −
QTS > − − − − −
DE > − > > − −

WWO > > − > − −
 

 

Table 4    Statistical test results on Instance 5 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − > − −
PSO − − − − − −
EBO > > > − > >

QTS − − − − − −
DE > − − > − −

WWO > > − > − −
 

 

Table 5    Statistical test results on Instance 6 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − − − −
PSO > − − − − −
EBO > > − > − −
QTS − − − − − −
DE > − − > − −

WWO > − − > − −
 

 

Table 6    Statistical test results on Instance 7 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − − − −
PSO − − − − − −
EBO > > > − > >

QTS − − − − − −
DE > − − − − −

WWO > > − > − −
 

 

Table 7    Statistical test results on Instance 8 (“>” indicates
“significantly better”).

Algorithm GA PSO EBO QTS DE WWO
GA − − − − − −
PSO − − − − − −
EBO > > − > > >

QTS − − − − − −
DE > − − > − −

WWO > > − > − −
 

 

Table  8    Ranks  of  the  six  evolutionary  algorithms  on  the
test instances.

Instance No. GA PSO EBO QTS DE WWO
1 6 1 1 1 1 1
2 6 4 2 5 3 1
3 4 5 1 6 3 2
4 6 2 4 5 1 3
5 5 6 1 4 3 2
6 6 5 1 4 3 2
7 5 4 1 6 3 2
8 6 4 1 5 2 3

 

 

Table  9    Summary  of  the  comparative  performance  of  the
six evolutionary algorithms on the test instances.

Metric GA PSO EBO QTS DE WWO
Total rank 44 31 12 36 19 16

Best 0 1 6 1 2 2
Significantly better 1 4 25 3 12 19
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endows  EBO  with  a  stronger  global  search  ability  to
solve large-size instances.

The  computational  results  also  validate  that
increasing  the  number  of  air  defense  systems  can
effectively  increase  the  cost  of  enemy  drones.  For
example, the ratio of the path cost after the deployment
of  the  air  defense  systems  (in  terms  of  the  maximum
cost achieved by the algorithms) to the path cost before
the deployment is around 500% on Instance 1 with five
air  defense  systems,  but  the  ratio  increases  to  over
580% on  Instance  2  with  six  systems.  From  the
viewpoint  of  the  drone  holder,  under  the  threat  of  air
defense  systems,  increasing  the  number  of  drones  can
effectively  decrease  its  total  path  cost.  Facing  the
invasion  of  a  large  swarm  of  drones,  it  is  crucial  to
obtain  high-quality  air  defense  system  deployment
solutions to defend against reconnaissance drones.

7    Conclusion

This  paper  presents  an  optimization  problem  of  air
defense  system  deployment  against  enemy
reconnaissance  drone  swarms,  which  determines  the
locations of air defense systems to intercept drones and
force them to continually change their paths, such that
the total cost of replanned paths of the drone swarm is
maximized.  We  propose  an  exact  iterative  search
algorithm and an evolutionary framework implemented
using six concrete algorithms to solve the problem. The
computational  experimental  results  validate  the
performance  of  air  defense  system  deployment
solutions  obtained  by  the  algorithms  for  defending
against reconnaissance drones.

This  study  only  considers  defense  against
reconnaissance  drones  that  cannot  attack  our  defense
systems.  In  our  ongoing  study,  we  consider  that  the
target  drone  swarm can  have  ground  attack  drones[51],
and  the  problem  should  take  the  possible  damage
caused  by  the  drones  to  the  air  defense  systems  into
consideration, aiming at maximizing the cost of drones
and  minimizing  the  loss  of  air  defense  systems
simultaneously. In this study, we only implemented the
evolutionary  framework  with  six  popular  individual
algorithms,  and  the  ongoing  study  also  includes
implementing  more  hybrid  algorithms  for  further
possible performance improvement.

Although the  countermeasure  of  air  defense  is  more
active  than  spoofing  and  interference,  it  is  not
sufficiently  active  because  air  defense  systems  are
relatively  static  after  deployment.  Currently,  we  are

also studying more comprehensive air defense systems
that  incorporate  the  cooperation  of  ground  weapons,
attacking  drones,  as  well  as  human  soldiers  to  fight
against  enemy  drones[52].  Future  studies  will  consider
air-ground  cooperative  defense  against  enemy  drones,
which could be significantly more complex and require
algorithms  to  be  more  efficient  and  intelligent  in
predicting  drone  behaviors  and  utilizing  problem-
solving knowledge [53].
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