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Abstract: Developing a reasonable and efficient emergency material scheduling plan is of great significance to

decreasing  casualties  and  property  losses.  Real-world  emergency  material  scheduling  (EMS)  problems  are

typically  large-scale  and  possess  complex  constraints.  An  evolutionary  algorithm (EA)  is  one  of  the  effective

methods  for  solving  EMS problems.  However,  the  existing  EAs  still  face  great  challenges  when  dealing  with

large-scale  EMS  problems  or  EMS  problems  with  equality  constraints.  To  handle  the  above  challenges,  we

apply the idea of a variable reduction strategy (VRS) to an EMS problem, which can accelerate the optimization

process of the used EAs and obtain better solutions by simplifying the corresponding EMS problems. Firstly, we

define an emergency material allocation and route scheduling model, and a variable neighborhood search and

NSGA-II  hybrid algorithm (VNS-NSGAII) is designed to solve the model.  Secondly, we utilize VRS to simplify

the  proposed  EMS  model  to  enable  a  lower  dimension  and  fewer  equality  constraints.  Furthermore,  we

integrate VRS with VNS-NSGAII to solve the reduced EMS model. To prove the effectiveness of VRS on VNS-

NSAGII,  we construct two test cases, where one case is based on a multi-depot vehicle routing problem and

the other  case is  combined with  the initial  5∙12 Wenchuan earthquake emergency material  support  situation.

Experimental  results  show  that  VRS  can  improve  the  performance  of  the  standard  VNS-NSGAII,  enabling

better optimization efficiency and a higher-quality solution.
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1    Introduction

Emergency logistics  plays  a  crucial  role  in  emergency

disaster  management[1].  As  an  important  branch  of
emergency  logistics,  emergency  material  scheduling
(EMS)  is  a  special  vehicle  routing  problem  (VRP)[2].
EMS mainly focuses on making the best plan to deliver
emergency  materials  from  supply  nodes  to  demand
nodes in a timely, accurate, and effective manner, so as
to minimize casualties and property losses[3].

Generally,  EMS  includes  three  phases:  location,
allocation,  and  route  optimization[4].  Among  them,
location refers to finding some suitable supply nodes in
an area to ensure that the demand nodes in the area can
be reached within a certain period of time. The purpose
of  the  allocation  is  to  find  the  optimal  allocation
scheme  of  emergency  material  to  minimize  response
time  or  costs.  Route  optimization  is  to  find  the  best
route from supply nodes to demand nodes considering
road conditions.

In  recent  years,  researchers  have proposed plenty  of
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models  that  considered  various  constraints  and
designed  various  algorithms  to  solve  these  EMS
problems from different perspectives and stages.

Regarding  model  construction,  the  EMS  problems
can  be  grouped  into  single-objective  and  multi-
objective problems.

When  it  comes  to  EMS  problems,  the  fastest
response time is typically the main objective, which is
essential  to  enhance  emergency  response  capability.
Many  researchers  have  concentrated  on  the  EMS
optimization  model  with  the  objective  of  the  fastest
response  time[5−9].  For  example,  Bodaghi  et  al.[8]

defined  a  multi-resource  scheduling  model  under
uncertainty  to  minimize  the  weighted  sum  of
completion  time  over  all  demand  nodes,  considering
the sequencing and scheduling of both expendable and
non-expendable  resources.  Lu  et  al.[9] established  a
relief  distribution  model  with  the  objective  of
minimizing  the  total  distribution  time  by  considering
uncertain  data  and  the  risk-averse  attitude  of  the
decision-maker.  Besides,  the  shortest  transportation
route is also one of the most important goals of single-
objective EMS. For example, Vidal et al.[10] established
multi-depot  scheduling  models  to  obtain  the  shortest
route,  and  they  comprehensively  considered  possible
situations  in  the  material  distribution  process.
Meanwhile,  it  is  also  crucial  to  improve  demand
satisfaction  and  ensure  fairness  in  single-objective
EMS.  Demand  satisfaction  can  be  generally  achieved
by  either  minimizing  unsatisfied  demand  nodes  or
maximizing  demand  coverage.  For  instance,  Das[11]

identified seven factors affecting demand and proposed
a warehouse location model intending to maximize the
demand coverage. Concerning fairness, Mishra et al.[12]

proposed a greedy search algorithm for fair distribution
of relief logistics. In Ref. [13], the distribution fairness
was  measured  by  considering  the  minimization  of  the
absolute  standard  deviation  between  demand  and
supply  in  the  demand  regions  and  the  number  of
disaster  regions  receiving  the  relief  logistics.
Furthermore,  some  research  comprehensively
considered  various  factors  to  construct  a  single-
objective  EMS  model[13, 14] .  For  example,  Ferrer
et  al.[14] built  a  compromise  programming  model  for
multi-criteria  optimization  in  humanitarian  last-mile
distribution,  where  they  considered  time,  cost,
coverage, equity, and security.

The  multi-objective  EMS  problems  possess  more
than  one  objective  function  and  are  being  extensively

studied[15−20]. For instance, Zahedi et al.[19] developed a
multi-objective  resource  and  vehicle  scheduling
optimization  model  considering  the  heterogeneity  and
dynamics  of  demands.  The  goal  of  the  model  is  to
minimize unsupplied requests and costs. Wang et al.[15]

constructed  a  bi-objective  EMS  model  aiming  at  the
lowest  cost  and the highest  emergency response speed
with  limited  transportation  resources.  Chang  et  al.[20]

dynamically adjusted allocation schedules according to
the  requirements  of  demand  nodes  to  minimize
unsatisfied demand for resources, time to delivery, and
transportation costs.

Concerning  the  solving  algorithms,  there  have
existed  two  alternative  methods  for  solving  EMS
problems:  exact  algorithms  and  heuristic  algorithms.
When solving a small-scale and simple EMS problem,
the exact algorithms[21] may have higher computational
accuracy  than  the  heuristic  algorithms  and  even  can
find an optimal solution for the problem. However, due
to  the  increasing  scale  and  complexity  of  EMS
problems  and  the  limitation  of  exact  algorithms,
traditional  exact  algorithms  can  no  longer  meet  the
needs. Therefore,  researchers have developed heuristic
algorithms for solving EMS problems in recent years.

As  a  crucial  branch  of  heuristic  algorithms,
evolutionary  algorithms  (EAs)[22−27] are  competitive
methods  for  solving  a  substantial  number  of  EMS
problems[22, 28−30] .  For  example,  Liu  and  Xie[31]

established  an  EMS  model  under  the  condition  of
material  demand  and  vehicle  amount  continual
alteration  and  proposed  a  dynamic  programming  and
ant  colony  optimization  (ACO)  hybrid  algorithm  to
solve  it.  To  solve  a  grain  EMS  problem  effectively,
Zhang  and  Xiong[32] proposed  an  immune  ACO
algorithm, which makes use of the global convergence
and  randomness  of  the  improved  immune  algorithm
together with the distributed search ability and positive
feedback  of  the  ACO  to  enhance  the  performance  of
the  algorithm.  Zahedi  et  al.[19] used  constraint  method
and  NSGA-II  algorithm  to  solve  a  constructed  multi-
objective  EMS  model,  and  the  effectiveness  of  the
proposed  method  was  testified  by  the  2017
Kermanshah  earthquake.  Wang  and  Sun[22] presented
an  improved  genetic  algorithm (GA)  to  solve  a  multi-
objective  and multi-period EMS model.  Zhou et  al.[33]

established  a  multi-objective,  multi-period,  and
dynamic  EMS  problem  model  and  designed  an
improved multi-objective evolutionary algorithm based
on  decomposition  (MOEA/D)[34] to  solve  it.  Wang
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et  al.[28] proposed  an  adaptive  weighted  dynamic
differential  evolutionary  algorithm  to  solve  an  EMS
model,  which  is  superior  to  the  standard  differential
evolutionary algorithm and the chaos adaptive particle
swarm algorithm.

In  general,  on  one  hand,  EMS problems  are  usually
NP-hard  problems[2],  which  involve  the  constraints  on
demand nodes, supply nodes, vehicles, and so on. The
size of the EMS problem increases with the number of
supply  nodes  and  demand  nodes,  and  equality
constraints  widely  exist  in  EMS  problems,  such  as
demand node constraints. On the other hand, most EAs
can  only  find  feasible  solutions  to  an  EMS  problem,
which  is  difficult  to  satisfy  the  actual  need.
Consequently,  improving  the  performance  of  EAs  in
solving  EMS  problems  with  large-scale  or  complex
equality constraints deserves further research.

To  handle  the  challenge  aroused  by  large-scale
variables and equality constraints, we initially proposed
a  variable  reduction  strategy  (VRS)[35] to  obtain  a
lower dimension of solution space and eliminate partial
equality  constraints.  VRS  explores  the  relationships
among  variables  by  utilizing  the  general  problem
domain knowledge implied in an optimization problem,
i.e.,  equality  optimality  condition.  Based  on
relationships among variables, we always utilize a part
of  variables  to  represent  and  calculate  the  rest  of  the
variables  during  the  iteration  process  of  an  algorithm.
Thereby, the optimization problem can possess a lower
dimension of solution space and fewer variables. Some
essential concepts are as follows.

(1) Equality  optimality  condition: It  refers  to  the
equality  condition  that  an  optimization  problem  must
satisfy  when  obtaining  optimal  solutions,  which  is  a
necessary  condition  and  is  expressed  in  form  of
equations.

(2) Core  variable: It  is  used  to  represent  and
calculate other variables.

(3) Reduced  variable: It  is  represented  and
calculated  by  core  variables  via  some  functional
relationships.

(4) Eliminated  equation: It  is  the  equation
eliminated along with the reduction of variables due to
being satisfied by all solutions in an equality optimality
condition.

Currently,  VRS  has  been  applied  to  several
optimization  problems,  like  nonlinear  equations
systems  and  constraint  optimization  problems,  and
gained  competitive  performance[35−38].  Moreover,  Ref.

[39]  realized  the  automatic  reduction  of  VRS  and
simplified  a  continuous  optimization  problem
automatically.  Therefore,  VRS  has  the  potential  to  be
applied  in  EMS.  The  main  contributions  of  the  paper
are presented as follows.

(1)  Construct  an  emergency  material  allocation  and
route  optimization  model  and  design  a  variable
neighborhood  search  and  NSGA-II  hybrid  algorithm
(VNS-NSGAII) to solve the constructed model.

(2)  Combined  with  problem domain  knowledge,  we
utilize  VRS  to  reduce  the  proposed  EMS  model,
thereby enabling a lower dimension and fewer equality
constraints. Furthermore, we integrate VRS with VNS-
NSGAII (the integrated algorithm is called VRS-VNS-
NSGAII) to solve the reduced EMS model.

(3)  Two  test  cases  are  constructed  to  test  the
performance of the proposed method, where one case is
based on a multi-depot vehicle routing problem and the
other case is constructed by combining with the initial
5∙12 Wenchuan earthquake emergency material support
situation.  Experimental  results  on  the  test  cases  verify
that with the assistance of VRS, VNS-NSGAII enables
a  better  optimization  efficiency  and  a  higher  quality
solution.

The paper proceeds as follows. Section 2 establishes
the  EMS  model  and  Section  3  presents  the  detail  of
VNS-NSGAII  to  solve  the  proposed  model.  Section  4
applies  VRS  to  reduce  the  EMS  model  and  integrates
VRS  with  VNS-NSGAII  to  solve  the  reduced  EMS
problem.  Section  5  executes  some  experiments  to  test
the  effectiveness  of  VRS  in  solving  the  EMS  model.
Section 6 concludes the full paper and points out some
future potential directions.

2    Mathematical Model

We consider  two phases of  EMS: allocation and route
optimization.  The  allocation  phase  needs  to  determine
the  amount  of  materials  provided  from  each  supply
point  to  each  demand  node,  which  will  directly  affect
the  route  optimization  scheme.  In  the  route
optimization phase, we need to send a fleet of vehicles
from each supply node to perform transportation tasks
according  to  the  material  allocation  results  in  the
allocation phase.

{B1,B2,B3}

{A1,A2, . . . ,A8}

To further understand the above phases, assume that
there are 3 supply nodes  and the amounts of
material deposited are {10, 9, 11}. Moreover, there are
8  demand  nodes  and  the  amounts  of
material needed are {2, 4, 3, 4, 3, 2, 5, 4}. One of the
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material allocation schemes is shown in Fig. 1.
According  to  the  material  allocation  scheme  in

Fig. 1, assume that the capacity of a vehicle is 8. Then,
when  only  considering  the  capacity  of  vehicles,  a
feasible route scheduling scheme is presented in Fig. 2.

The notion to be used in the proposed EMS model is
exhibited in Table 1.

The objective functions of the EMS model are shown
in Eqs. (1) and (2). The total time is mainly composed
of  transportation  and  handling  loading  time.  The  total
cost  includes  transportation  and  vehicle  operating
costs.
 

min f1 =
∑
i∈F

∑
j∈F

∑
k∈S

Ti jui jk +2
∑
i∈A

∑
j∈B

txi j (1)

 

min f2 =
∑
i∈F

∑
j∈F

∑
k∈S

C1Di jui jk + KC2 (2)

Ti j i
j i, j ∈ F

where  denotes  the  transportation  time  from node 
to  ( ) and can be expressed as
 

Ti j = (Di j/βi j)/(v(1+σi j)) (3)

0 ⩽ βi j and σi j ⩽ 1where .
The constraints of the model are as follows:

 ∑
j∈B

xi j = Pi, ∀i ∈ A (4)

 ∑
i∈A

xi j ⩽ V j, ∀ j ∈ B (5)

 

cxi j ⩽ Q, ∀i ∈ A,∀ j ∈ B (6)
 ∑

i∈F

∑
k∈S

ui jk ⩾ 1, ∀ j ∈ A, j , i (7)

 ∑
j∈F

∑
k∈S

ui jk ⩾ 1, ∀i ∈ A, i , j (8)

 ∑
j∈A

ui jk =
∑
j∈A

u jik, ∀i ∈ B,∀k ∈ S (9)

 ∑
j∈B

∑
i∈B

ui jk = 0, ∀k ∈ S (10)

 

Uik −U jk + (m+n)ui jk ⩽ (m+n)−1,
∀i, j ∈ F, i , j,∀k ∈ S (11)

 

Uik = 0, ∀i ∈ B,∀k ∈ S (12)
 

Uik ⩾ 0, ∀i ∈ A,∀k ∈ S (13)
 ∑

j∈A

ui jk ⩽ 1, ∀k ∈ S ,∀i ∈ B (14)

 ∑
j∈B

ui jk ⩽ 1, ∀k ∈ S ,∀i ∈ A (15)

 ∑
j∈F

∑
i∈A

cui jk xi j ⩽ Q, ∀k ∈ S (16)

 

 

Table 1    Notation used in the EMS mathematical model.

Type Notation

Set

A A= {A1, A2, . . . , Am}: demand nodes set, ;
B B= {B1, B2, . . . , Bn}: supply nodes set, ;
F F = A∪B: vertex set, ;
S S= {1, 2, . . . , K}: vehicle set, ;

Parameter

Pi Ai: an integer amount of materials needed at ;
V j B j: an integer amount of materials deposited at ;
Q: capacity of a vehicle;
c: weight per unit material;
Di j i j i, j ∈ F: distance from node  to , ;
v: average speed of a vehicle;
t: unit time of handling load (loading or unloading)
of a vehicle;
C1: transportation cost per unit distance;
C2: operation cost for a vehicle;
L : maximum allowed transportation time for a
vehicle;
βi j i j i, j ∈ F: road access rate from node  to , ;
σi j i j i, j ∈ F: road congestion factor from node  to , ;
K: number of vehicles;
m: number of demand nodes;
n: number of supply nodes;

Decision
variable

xi j
B j Ai

: an integer amount of resource delivered from
node  to ;
ui jk k

i j i, j ∈ F ui jk = 1
ui jk = 0

: 0 or 1 decision variable. If vehicle  travels
from node  to , , then ; otherwise,

;
Uik

i
: auxiliary variable for sub-tour elimination in

node .
 

 

10
B1

A1 A2 A3 A4 A5 A6 A7 A8

B2 B3

9

2

Supply node

Demand node

Material
allocation 

4

11

2 54 34 3

2 4 3 3 1 5 43 11

 
Fig. 1    Diagram of material allocation.
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Fig. 2    Diagram of route scheduling.
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∑
j∈F

∑
i∈F

Ti jui jk ⩽ L, ∀k ∈ S (17)

 

xi j ∈ [0,min(V j,Q/c)], ∀i ∈ A,∀ j ∈ B,
xi j is an integer

(18)

 

ui jk ∈ 0,1, ∀i ∈ F,∀ j ∈ F,∀k ∈ S (19)

Material  demand  constraint  (4)  requires  that  the
amount of materials allocated to a demand node should
be  equal  to  the  amount  of  materials  needed  at  the
demand  node,  which  can  ensure  satisfaction  and
fairness  without  wasting  resources.  Material  supply
constraint  (5)  ensures  that  the  total  allocation  amount
of materials at a supply node cannot exceed the amount
of  materials  deposited  at  the  supply  node,  which  can
avoid  allocation  conflicts.  Constraint  (6)  restricts  that
the  number  of  materials  allocated  to  a  demand  node
from a supply node should not exceed the capacity of a
vehicle.  Constraints  (7)  and  (8)  guarantee  that  each
demand  node  needs  to  be  traveled  at  least  once.
Constraint  (9)  restricts  that  each  vehicle  should  return
to  the  original  supply  node  after  completing  the
transportation  task.  Constraint  (10)  limits  that  no  path
exists between any supply nodes. Constraints (11)−(13)
are  sub-tour  elimination  constraints.  Constraints  (14)
and (15) are the vehicle availability constraints, i.e.,  at
most  one  vehicle  is  allowed  to  travel  from  a  supply
node  to  a  demand  node,  and  at  most  one  vehicle  is
allowed to return from one demand node to one supply
node.  Capacity  constraint  (16)  guarantees  that  the
materials  carried  by  each  vehicle  cannot  exceed  its
capacity.  Vehicle  transportation  time  constraint  (17)
ensures  that  the  transportation  time  of  each  vehicle
does not exceed its longest allowed transportation time
(excluding  loading  and  unloading  time).  Constraints
(18) and (19) are variable constraints.

Compared  with  classical  material  scheduling
problems, the constructed model in the paper possesses
the  characteristic  of  considering  timeliness  and
economy, road factors, as well as multiple demand and
supply  nodes.  Furthermore,  in  comparison  with  the
majority  of  EMS  problems,  the  EMS  problem
presented in this paper requires a balance of the amount
of supply and demand materials (i.e., constraint (4)) to
ensure  satisfaction  and  fairness.  Whereas  most  EMS
problems allow the  amount  of  materials  allocated  to  a
demand  node  to  be  less  than  the  amount  of  materials
needed at the demand node.

3    VNS-NSGAII Hybrid Algorithm

3.1    Main procedure of VNS-NSGAII

To solve the model presented in Eqs. (1)−(4), (9), (10),
and (12) and Formulas (5)−(8), (11), and (13)−(19), we
design  a  VNS-NSGAII  hybrid  algorithm  to  solve  the
model  herein.  NSGA-II  is  mainly  responsible  for
optimizing the material allocation scheme and the VNS
is  used  to  optimize  the  route  scheduling  scheme.  The
two  algorithms  combine  and  promote  each  other  to
approximate the optimal solutions to the EMS problem.
The main pseudocode of VNS-NSGAII is displayed in
Algorithm 1, where VNS-NSGAII works as follows.

(1) Lines 1 and 2 generate the material allocation and
route scheduling schemes of the initial population.

(2) In Line 3, we conduct the crossover and mutation
operation for the initial population.

(3) Lines 4 and 5 initialize the relevant parameters.
(4)  Line  7  generates  the  offspring  population  by

crossover and mutation.
 

Algorithm 1　Main pseudocode of VNS-NSGAII

Dbest

Rbest

popallocate←
poproute←
[popallocate,poproute]←

iter← 1 k← 1

Dbest← popbestallocate Rbest← popbestroute

iter ⩽ itermax

[offspringallocate,offspringroute]←
pop

iter = k×G

offspringroute←
k← k+1

[offspringallocate,offspringroute]←
pop offspring

cpop
[spopallocate,spoproute]←

cpop
[popallocate,poproute]←

spop
Dbest

Rbest

Input: Algorithm  parameters;  vertices  parameters;  vehicle
parameters; material parameters; road parameters.
Output: Best-so-far  material  allocation scheme  and route
scheduling scheme .
1  InitialDistribution();
2  IntialRoute();
3  LocalOptimization();
4  Initialize the iteration indicators  and ;
5  Initialize  the  best-so-far  material  allocation  and  route
scheduling schemes: , ;
6　 while  do
7　 Perform  crossover  and
　　mutation operations for ;
8　 if  then
9　　 RouteOptimization();
10　　 ;
11　end if
12　 LocalOptimization();
13　Combining  and  forms  the  combined
　 population ;
14　 Perform  the  fast  nondominated
　　 sorting and selection for ;
15　 Perform the elitism and 2- tournament
　　selection for ;
16　Update the best-so-far material allocation scheme  and
　 　 route scheduling scheme ;
17　end while
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(5)  Lines  8−11  optimize  the  route  scheduling
schemes  of  the  offspring  population  under  a  certain
number of iterations.

(6)  Line  12  performs  the  local  optimization  for  the
offspring population.

(7)  In  Lines  13−15,  we  combine  the  offspring  and
parent  population  and  execute  the  fast  nondominated
sorting  and  selection  for  the  combined  population  to
select the population for the next iteration.

(8)  Line  16  updates  the  best-so-far  material
allocation and route scheduling schemes.

3.2    Generation of initial population

3.2.1    Material allocation scheme of initial population
n 1,2, . . . ,n

m n+1,n+2, . . . ,
n+m k

m×n
popm×n

allocate,k, k ∈ {1,2, . . . ,NP}
popi j

allocate,k ⩾ 0

j i+n

We  sequentially  encode  supply  nodes  as .
And  demand  nodes  are  denoted  as 

.  The  material  allocation  scheme  of  the -th
individual is an  material allocation matrix, which
can  be  represented  as ,
where  denotes  the  amount  of  material
allocated from supply node  to demand node , and
NP is population size.

Mm×n

Before  generating  an  initial  material  allocation
scheme, we should calculate the transportation distance
matrix  between supply nodes and demand nodes
as follows:
 

Mi j = D j,i+n, i = {1,2, . . . ,m}, j = {1,2, . . . ,n} (20)

Rm×n

Rm×n

Moreover,  we  define  a  binary  response  matrix 
that  reflects  whether  a  supply  node  responds  to  a
demand node or  not  (i.e.,  there  are  materials  allocated
from  the  supply  node  to  the  demand  node).  The
expression of  is
 

Ri j = {0,1}, i = {1,2, . . . ,m}, j = {1,2, . . . ,n} (21)

j i+n
Ri j = 1 Ri j = 0

where if supply node  responds to demand node ,
then ; otherwise, .

popm×n
allocate,k kThe material allocation scheme  of the -th

individual  in  the  initial  population  is  constructed  as
follows:

popm×n
allocate,k(1) Initialize the matrix  to 0.

Rm×n(2) Determine the response matrix  by Eq. (22).
 

Ri j =

{
1, if pi, j−1 ⩽ ξ < pi j;
0, otherwise (22)

ξ

ξ ∈ U(0,1) pi j

j i+n

where  is  a  random  number  between  0  and  1,
.  is  the  response  probability  between

supply  node  and  demand  node ,  which  can  be
calculated by Eq. (23).
 

pi j = (1/Mi j)/(
n∑

j=1

1/Mi j) (23)

i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n}where . The shorter the
transportation  distance,  the  greater  the  response
probability.

Rm×n

(0,min(Vi,Q/c)]

(3) Allocate the material to the non-zero elements of
matrix  and  the  amount  of  allocated  material  is  a
random integer in .

Accordingly,  the  pseudocode  for  generating  the
material  allocation  scheme  of  the  initial  population  is
shown in Algorithm 2.

popm×n
allocate,k

k pop

In  addition,  to  ensure  the  feasibility  of  the  material
allocation scheme for the initial  population, we design
a  repair  strategy  to  repair  the  infeasible  material
allocation  scheme  in  the  initial  population.  Repair
strategy of the material allocation scheme  of
the -th individual in  proceeds is as follows.

(1)  Calculate  the  amount  of  materials  remaining  in
each supply node by Eq. (24).
 

L j = P j−
m∑

i=1

popi j
allocate,k, j = {1,2, . . . ,n} (24)

(2)  Repair  material  supply  constraints  and  make  the
total  materials  provided  by  a  supply  node  less  than  or
equal to the materials deposited in the supply node.

L j < 0, j ∈ {1,2, . . . ,n}If , we execute
 

popi∗ j
allocate,k = 0 (25)

 

Algorithm 2　Function InitialDistribution()
NP

P1×n V1×m n

m Q c

popallocate
Mm×n

k = 1→ NP
popallocate,k ← 0

Pm×n

Rm×n

i = 1→ m

j = 1→ n

Ri j = 1

popi j
allocate,k ← randi(0,min{Q/c,Vi})

popallocate,k ←

Input: Transportation distance matrix D; size of population ;
 and ;  number  of  supply  nodes ;  number  of  demand

nodes ; capacity of a vehicle ; weight per unit material .
Output: Material  allocation  scheme  of  initial  population

.
1 Calculate the matrix  by Eq. (20).
2 for  do
3　 Initialize ;
4　 Calculate  via Eq. (23);
5　 Calculate  via Eq. (22);
6　 for  do
9　　 for  do
8　　　 if  then
9　　　　 ;

10　　　end if
11　　end for
12　end for
13 RepairStrategy();
14 end for
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i∗ = argmax(D ji∗ ),popi∗ j
allocate,k > 0, j ∈ {1,2, . . . ,n}

L j ⩾ 0, j = {1,2, . . . ,n}

where .
Repeat  the  operation  in  Eq.  (25)  until  the  material
supply constraints are met, i.e., .

(3) Repair material demand constraints and make the
total  materials  provided  by  all  supply  nodes  to  a
demand node equal  to  the total  material  needed of  the
demand node.

n∑
j=1

popi j
allocate,k > Vi, i ∈ {1,2, . . . ,m}If  , then we perform

 

popi j∗

allocate,k = popi j∗

allocate,k−

min{popi j∗

allocate,k,

n∑
j=1

popi j
allocate,k −Vi}

(26)

j∗ = argmax(D j∗i), popi j∗

allocate,k > 0, i ∈ {1,2, . . . ,m}

n∑
j=1

popi j
allocate,k = Vi, i ∈ {1,2, . . . ,n}

where .
Repeat  the  operation  in  Eq.  (26)  until  the  demand

constraints are met, i.e., .
n∑

j=1
popi j

allocate,k < Vi, i ∈ {1,2, . . . ,n}If , we have
 

popi j∗

allocate,k = popi j∗

allocate,k+

min{L j∗ ,Vi−
n∑

j=1∧ j, j∗
popi j

allocate,k}
(27)

j∗ = argmin(D j∗i), popi j∗
allocate,k > 0, i ∈ {1,2, . . . ,m}

n∑
j=1

popi j
allocate,k = Vi, i ∈ {1,2, . . . ,n}

where .
Repeat  the  operation  in  Eq.  (27)  until  the  demand

constraints are met, i.e., .
The pseudocode of the repair strategy is presented in

Algorithm 3.
3.2.2    Route scheduling scheme of initial population

j
j

We  encode  the  route  scheduling  scheme  of  an
individual with a 2-D array, where the -th row denotes
all  vehicle  routes  from  supply  node  and  different
vehicle  routes  are  separated  by  inserting  the  supply
node  to  which  the  vehicles  belong.  Furthermore,  the
first and last codes are the corresponding supply nodes,
indicating that all vehicles depart from the supply node
and eventually return to the same supply node.

Taking  the  material  allocation  and  route  scheduling
schemes  in Figs.  1 and  2  as  an  example,  the  3  supply
nodes  are  represented  as  {1,  2,  3},  and  the  8  demand
nodes  are  represented  as  {4, 5, …, 11},  then  the
encoding  of  the  route  scheduling  scheme  is  shown  in
Fig. 3.

k
pop pop1×n

route,k,k ∈ {1,2, . . . ,NP}
pop j

route,k j

The route scheduling scheme of the -th individual in
 can  be  represented  as ,

where  denotes the route of supply node . The
initial  route  for  each  supply  node  is  generated  by  a
greedy  heuristic  algorithm,  which  chooses  the  next
traveled  node  by  judging  the  minimum  transportation

distance  between  the  current  node  and  other  unserved
nodes.

3.3    Local search strategy

To ensure  a  sufficient  exploration  of  solution  space,  a
local search strategy is designed herein. The main idea
of the local search strategy is to transfer demand nodes
in  sub-routes  with  long  transportation  time  and
distances to other supply nodes.

A3

B1

Assume that  demand node  in  the route  of  supply
node  should  be  transferred  in Fig.  4.  Then,  the

 

Algorithm 3　Function RepairStrategy()
popallocate,k P1×n V1×m

n m Mm×n

popallocate,k
L1×n

j = 1→ n

L j < 0

L j

i = 1→ m
n∑

j=1
popi j

allocate,k > Vi

L j

n∑
j=1

popi j
allocate,k < Vi

L j

Input: Material  allocation  matrix ;  and ;
number of supply nodes ; number of demand nodes ; .
Output: Material allocation matrix .
1 Calculate  by Eq. (24);
2 for  do
3　 while  do
4 　　Execute the operation in Eq. (25);
5　　 Update  by Eq. (24);
6　 end while
7 end for
8 for  do

9　 while  do

10　　Execute the operation in Eq. (26);
11　　Update  by Eq. (24);
12　end while

13　while  do

14 　　Execute the operation in Eq. (27);
15 　　Update  by Eq. (24);
16　end while
17 end for
 

 

Vehicle route

4 5 7 11 61Route of
supply node 1

Route of
supply node 2

Route of
supply node 3

9 8 22 7

10 9 33 113

Sub-route

 
Fig. 3    Diagram  of  the  encoding  of  a  route  scheduling
scheme.
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Fig. 4    Diagram of demand node merge.
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A3

B1

A3

B1 A3

materials  allocated  to  demand  node  from  supply
node  should  first  be  transferred  to  other  supply
nodes. Then we delete demand node  from the route
of  supply  node  and  put  to  the  route  of  another
supply node. There are two situations for transferring a
demand node to the route of another supply node.

A3 B2

A1→ A3→ A7 A1→ A7

The first situation is that the route of the supply node
to  be  transferred  has  already  involved  the  transferred
demand  node.  As  presented  in Fig.  4,  if  we  should
transfer  to the route of , we should delete the route

 and add the route . The situation
can be  regarded as  transforming the  situation  that  two
supply nodes provide materials to a demand node into a
single  supply  node  providing  materials  to  the  demand
node, which is called a demand node merge herein.

A3

B3

A1→ A3→ A7 A9→ B3

A1→ A7 A9→ A3→ B3

The  second  situation  is  that  the  route  of  the  supply
node to be transferred does not  contain the transferred
demand node.  As shown in Fig.  5,  if  demand node 
needs  to  be  transferred  to  the  route  of ,  then  we
should delete the route  and , and
add the route  and . The situation
is known as a demand node shift.

The  demand  nodes  that  need  to  be  transferred  are
determined by the sub-route transportation distance and
time. To eliminate the dimensional difference between
time and distance, we first normalize the transportation
time matrix T and the transportation distance matrix D:
 

T =
T −Tmin

Tmax−Tmin
, D =

D−Dmin

Dmax−Dmin
(28)

Subsequently, the normalized transportation time and
distance matrices are linearly weighted:
 

T D = α1T +α2D (29)

α1 = α2 = 0.5where .
The pseudocode of local optimization is displayed in

Algorithm 4.

3.4    Route optimization

Since the demand nodes and the allocation amount that
each  supply  node  needs  to  respond  to  have  been
determined  in  the  allocation  phase,  we  adapt  the

adaptive neighborhood selection mechanism embedded
VNS  (ANS-VNS)  for  solving  multi-depots  VRP[40] to

 

Algorithm 4　Function LocalOptimization()
NP n

m Q

c popallocate poproute
popallocate poproute

T D

k = 1→ NP

poproute,k
T D

CM

i = 1→ |CM |
new_popk ← popk

i∗ j∗

CM
i

∃popi∗−n, j
allocate,k , 0, j ∈ {1,2, . . . ,n}, j , j∗

i∗

j∗ Candi

j′ Candi

i∗

j′ popi∗−n, j∗

allocate,k

new_popi∗−n, j′

allocate,k ← new_popi∗−n, j′

allocate,k+

new_popi∗−n, j∗

allocate,k new_popi∗−n, j∗

allocate,k ← 0

new_pop j∗

route,k ← new_pop j∗

route,k/i
∗

j′ ∈ {1,2, . . . ,n} j′ , j∗

i∗

P j′ −
m∑

i=1
new_popi, j′

allocate,k ⩾ new_popi∗−n, j∗

allocate,k

new_popi∗−n, j′

allocate,k ← new_popi∗−n, j′

allocate,k+

new_popi∗−n, j∗

allocate,k new_popi∗−n, j∗

allocate,k ← 0

new_pop j∗

route,k ← new_pop j∗

route,k/i
∗

new_pop j′

route,k ← new_pop j′

route,k ∪ i∗

new_pop j′

route,k

new_pop j′

route,k

new_popk popk

popk ← new_popk

Input: Size  of  population ;  number  of  supply  nodes ;
number of demand nodes ; capacity of a vehicle ; maximum
allowed transport  time for a vehicle L;  weight per unit  material
;  and .

Output:  and .
1 Calculate  by Eqs. (28) and (29);
2 for  do
3　 Sort  all  sub-routes  in  in  descending  order
according to ;
4 　Select the demand nodes and supply nodes corresponding to
the sub-routes in the first half of the order and put them into the
set ;
5　 for  do
6　　 ;
7　　  Record the demand node as   and supply node as  in

;

8　　 if  then

9　　　 Put other supply nodes that respond to demand node 
except for  into ;
10　　 Select  the  supply  node  in  with  the  shortest
transport distance with demand node  and the remain materials
in  are more than ;

11　　　

　　　　 , ;

12　　　 ;

13　　else
14　　　Select the supply node ,  with the
　　　　shortest distance from ;

15　　 if  then

16　　　 

　　　　　 , ;

17　　　　 ,

　　　　　 ;

18　　　end if
19　　end if
20　　if  violates constraints then

21　　　Reallocate vehicles for 

22　　end if
23　　if  is better than  then
24　　　 ;
25　　end if
26　end for
27end for
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Fig. 5    Diagram of demand node shift.
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optimize  the  vehicle  route  scheme  herein,  where  the
pseudocode is presented in Algorithm 5.

In terms of the characteristics of the designed model,
we design the following 5 neighborhood operators.

4→ 5→ 6
6→ 5→ 4

1→ 6→ 5→ 1→
4→ 7→ 1

(1) Segment  reverse: Select  a  segment  of  a  supply
node  route  and  reverse  it.  For  instance,  in Fig.  6,  we
choose the route  as the reverse segment and
reverse it, and we can obtain . Reallocate the
vehicles,  and  the  changed  route  is 

.
(2) Or-opt:  Select  a  vehicle  route  in  the  route  of  a

supply  node.  Then  randomly  choose  1−3  sequential

1→ 7→ 6→ 1

demand  nodes  in  the  vehicle  route  and  insert  them  to
other  positions  of  the  vehicle  route.  For  example,  we
have  chosen  demand  node  6  as  the  changed  node  in
Fig.  7.  If  the  insert  position  is  after  demand  node  7,
then the changed vehicle route is .

(3) 1-0 shift: Randomly select a demand node in the
route of a supply node and transfer it to another vehicle
route. For example, in Fig. 8, we select demand node 7
and transfer it to the first vehicle route.

(4) 1-1  swap: Randomly  select  two  demand  nodes
located in two different vehicle routes and swap them.
In Fig. 9, we choose demand nodes 5 and 6 to swap and

 

Algorithm 5　Function RouteOptimization()
NP n

m popk

poproute
k = 1→ NP

Broute,k ← poproute,k
Croute,k ← poproute,k
g = 0 kk = 1

g <Gmax

j = 1→ n

N j
route← C j

route,k

N j
route

C j
route,k ← N j

route

Croute,k Broute,k
Broute,k ←Croute,k

g = kk×G∗

kk← kk+1

j = 1→ n

C j
route,k G∗

C j
route,k

g← g+1

Input: Population size ;  number of supply nodes ;  number
of demand nodes ; .
Output: Route planning scheme .
1 for  do
2  Initialize  the  best-so-far  route  and  the
current route ;
3　Initialize  and ;
4　 while  do
5　　 for  do
6　 　 　  Select  a  neighborhood  operator  by  the  adaptive
neighborhood selection mechanism;
7　　　 Change  by the selected neighborhood

operator;
8　　　 if  satisfies the acceptance criterion then

9　　　　 ;

10　　　end if
11　　　 Update  the  used  times  and  successful  times  for  all
neighborhood operators;
12　　end for
13　　if  is better than  then
14　　　 ;
15　　end if
16　　if  then
17　　　 ;
18　　　Update the weight of each neighborhood operator;
19　　　for  do
20　　　　if  is unchanged at  iterations then

21　　　　　Perturb  by greedy insertion heuristic;

22　　　　end if
23　　　end for
24　　end if
25　　 ;
26　end while
27 end for
 

 

Segement reverse

Reallocate vehicles

Delete supply nodes

4 5 7 11 6

6 5 7 11 4

6 5 7 11 41

4 5 7 11 61

 
Fig. 6    Example of segment reverse.

 

 

4 5 7 11 61

Select a demand node

4 5 6 11 71

Or-opt

 
Fig. 7    Example of or-opt.

 

 

1-0 shift

4 5 7 11 61

4 7 6 11 5

Select a demand node

1
 

Fig. 8    Example of 1-0 shift.
 

 

4 5 7 11 61

1-1 swap

4 6 7 11 51

Swap

 
Fig. 9    Example of 1-1 swap.
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1→ 4→ 6→ 1→ 5→ 7→ 1obtain the changed route .

1→ 4→
7→ 1→ 6→ 5→ 1

(5) 2-opt*[41] :  Remove  two  vehicle  routes  in  the
route  of  a  supply  node  and  bring  in  two  new  vehicle
routes.  For instance,  in Fig.  10,  we execute the 2-opt*
operator  and  can  obtain  the  changed  route 

.

3.5    Crossover and mutation

The encoding of an individual in a population consists
of a material allocation scheme and a route scheduling
scheme.

m×n j
i

j i+n

(1)  The  first  part  represents  the  material  allocation
scheme and is  an  matrix,  where  the -th  gene in
the -th  row  denotes  the  material  amount  allocated  by
the supply node  to the demand node ;

j
j

(2)  The  second  part  represents  the  route  scheduling
scheme, where the -th row denotes the route of supply
node .

n×m

Take  material  allocation  and  route  scheduling
schemes  in Figs.  1 and  2  as  an  example,  and  the
encoding  of  the  individual  is  shown in Fig.  11,  where
the  material  allocation  scheme  is  inverted  as  an 
matrix.

We  sequentially  select  an  individual  in  the  parent
population as P1, and P2 is randomly selected from the
remaining  parent  population.  During  the  crossover,  an
offspring  inherits  most  of  the  genes  from the  material
allocation scheme of P1, and P2 provides several genes
to the offspring. Hence, we call P2 a donor. The route
scheduling  scheme of  offspring  is  changed along with
the material allocation scheme. For example, in Fig. 12,
the offspring inherits the most genes from the material
allocation  scheme  of  P1  and  the  genes  of  demand

nodes  5  and  7  from the  material  allocation  scheme  of
P2.

As  depicted  in Fig.  13,  the  mutation  is  operated  by
swapping  the  amounts  of  material  allocated  by  two
different  supply  nodes  to  a  demand  node  (1-1  inter-
swap).

3.6    Nondominated sorting and selection strategy

n
m

In the nondominated sorting, we consider the influence
of  model  constraints  on  sorting  results.  Considering  a
multi-objective constraint optimization problem with 
decision variables and  objective functions:
 

min f (x) = ( f1(x), f2(x), . . . , fm(x)) (30)

xu xv

We  redefine  the  dominant  relationship  between
individuals  and :
 

xu ≺ xv⇔{
fi(xu) ⩽ fi(xv) and f j(xu) < f j(xv), if v̄(xu), v̄(xv) = 0;
v̄(xu) < v̄(xv),otherwise

(31)
∀i ∈ {1,2, . . . ,m} ∃ j ∈ {1,2, . . . ,m} v̄where , .  is  the

violation degree value.
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Fig. 10    Example of 2-opt*.
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Fig. 11    Illustration of an individual.

 

 

2 9 8 7 2
1 4 5 1 6 7 12 4 3 1 0 0

0 0 0 3 3 1
0
0

0
0

0 0 0 0 0 1 5 4 3 10 9 3 11 3

2 8 10 9 2
1 6 4 1 7 1 12 0 3 4 0 0

0 4 0 0 3 1
0
1

0
0

0 0 0 0 0 1 4 4 3 9 10 3 11
5

Crossover

P1

P2 (donor)

2 9 8 5 2
1 4 6 1 1 7 12 0 3 4 0 0

0 4 0 0 3 1
0
0

0
0

0 0 0 0 0 1 5 4 3 10 9 3 3 11 3

Offspring 

2
3

ReplaceReplace

 
Fig. 12    Illustration of crossover.
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Fig. 13    Illustration of mutation.
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NP

NP

In the selection, we first select the top  individuals
according  to  the  nondominated  sorting  results.
Subsequently, we select the top 10% of individuals into
the next generation in terms of the elitism strategy and
the  remaining  individuals  into  the  next  generation  by
the 2-tournament selection strategy until the population
size into the next generation reaches .

4    Integrate  Variable  Reduction  Strategy
with VNS-NSGAII

4.1    Problem  complexity  reduction  by  variable
reduction strategy

The proposed emergency material allocation and route
scheduling  model  involves  the  equality  constraint  (4),
which  will  be  regarded  as  the  equality  optimality
condition. Expand Eq. (4) and we obtain
 

φ1(x) = x11+ x12+ · · ·+ x1n = V1,

φ2(x) = x21+ x22+ · · ·+ x2n = V2,

...
φm(x) = xm1+ xm2+ · · ·+ xmn = Vm

(32)

φi

Ωi = {xi1, xi2, . . . , xin}
φi

In Eq. (32), each equation possesses totally different
variables  and  the  variables  whose  coefficients  are  not
equal  to  0  in  equation  can  be  denoted  as

.  If  we  can  obtain  the  following
variable relationship by equation ,
 

xik = Rik,i({xl|l ∈ Ωi, l , ik}) (33)

xik φi

xik {xl|l ∈ Ωi, l , ik}
Rik,i

xik φi

φ j

xik

then variable  can be reduced by equation . Among
them,  is a reduced variable and  is a
subset  of  core  variables.  indicates  the  function
expression of  derived from equation . Meanwhile,
equation  can be reduced due to being satisfied when
calculating  variable  and  is  deemed  an  eliminated
equation.

m
In each equation,  we choose a variable as a reduced

variable, then  reduced variables can be denoted as
 

XR = {x1,r1, x2,r2, . . . , xm,rm} (34)

xi,ri, i ∈ {1,2, . . . ,m}
φi m(n−1)

where  indicates the variable reduced
by equation . The set of  core variables can be
represented as
 

XC = {x1,c1, . . . , x1,c(n−1), . . . , xm,c1, . . . , xm,c(n−1)} (35)

xi,ri xi,c j, j =
{1,2, . . . ,n−1} φi

Consequently,  the  variable  relationship  between
reduced  variable  and  core  variables 

 obtained by equation  is denoted as
 

xi,ri = Vi−
n−1∑
j=1

xi,c j, ri , c j, i ∈ {1,2, . . . ,m} (36)

xri

Meanwhile,  the  reduction  will  add  the  following
constraints related to reduced variable .
 

0 ⩽ xi,ri = Vi−
n−1∑
j=1

xi,c j ⩽min(Q,Vi) (37)

xi,c j ∈ [0,min(Q,Vi)]where .

XR XC
Accordingly,  the  relationship  between  reduced

variables  and  core  variables  can  be  further
expressed as
 

x1,r1 = V1−
n−1∑
j=1

x1,c j,

x2,r2 = V2−
n−1∑
j=1

x2,c j,

...

xm,rm = Vm−
n−1∑
j=1

xm,c j

(38)

{x1,r1, x2,r2, . . . , xm,rm}

m

With  the  assistance  of  VRS,  the  value  of  reduced
variables  can  be  calculated  by
variable relationships shown in Eq.  (38) and the value
of  core  variables.  Hence,  there  are  variables  and
equations that can be reduced.

xi j

B j

Ai Ai

n−1
n−1

φi

Ai

In the EMS model, variable  denotes the amount of
material allocated from supply node  to demand node

. Hence, regarding demand node , we only need to
determine  the  amount  of  material  allocated  from 
supply nodes to it (i.e., determine  core variables in
equation ),  and  the  whole  allocation  scheme  of
demand  node  can  be  acquired  by  variable
relationship in Eq. (36).

In  terms  of  the  objective  functions  in  Eqs.  (1)  and
(2),  there  is  a  positive  correlation  between  total  time
and transportation time or total cost and transportation
distance. For a demand node, it will take less time and
cost  to  choose  a  supply  node  with  a  shorter
transportation  distance  and  time  to  respond  to  it.
Therefore,  to  minimize  the  two  objective  functions,  a
supply node with  a  shorter  transportation distance and
time to a demand node is more likely to respond to the
demand node.

xi,ri

{xi,c1, xi,c2, . . . , xi,c(n−1)} φi

In  addition,  the  application  of  VRS  brings  the
constraint (37). To gain the lowest constraint violation
degree,  reduced  variable  and  core  variables

 in equation  can be determined
by the following steps.

n
Ai T d = {t1i, t2i, . . . , tni}

(1)  Record  the  transportation  time  from  supply
nodes to demand node  as  and the
transportation  distance  can  be  denoted  as
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Dd = {d1i,d2i, . . . ,dni}.  Normalize  the  above
transportation time and distance:
 

T
d
=

T d −T d
min

T d
max−T d

min

, D
d
=

Dd −Dd
min

Dd
max−Dd

min

(39)

(2)  Linearly  weight  of  the  normalized transportation
time and distance can be obtained
 

T D
d
= (T

d
+D

d
)/2 (40)

min(T D
d
) Bri xi,ri

φi φi

{xi,c j|c j , ri, j = {1,2, . . . ,n−1}}

xi,ri

(3)  Record  the  corresponding  supply  node  with
 as  and the core variable is denoted as 

in  equation .  The  remaining  variables  in  equation 
are  represented  as  ,
which  are  regarded as  core  variables.  The  relationship
of  and core variables can be indicated as
 

(xi, j∗ ∪{xi,c j|c j , j∗, j = {1,2, . . . ,n−1}}) = Ωi (41)

and
 

(xi, j∗ ∩{xi,c j|c j , j∗, j = {1,2, . . . ,n−1}}) = ∅ (42)

The  pseudocode  of  grouping  reduced  variables  and
core  variables  for  the  proposed  EMS  model  is
presented in Algorithm 6.

4.2    Integrate  variable  reduction  strategy  with
VNS-NSGAII algorithm

Considering the characteristics of the reduced problem
and  the  VNS-NSGAII  algorithm,  the  reduced  EMS

problem  should  be  solved  by  the  algorithm  that
integrates  VRS  and  VNS-NSGAII  (abbreviated  as
VRS-VNS-NSGAII).  The  flowchart  of  VRS-VNS-
NSGAII  is  exhibited  in Fig.  14,  where  the
implementation  of  VRS-VNS-NSGAII  is  consistent
with that of VNS-NSGAII other than the generation of
initial population and offspring population.

m×n

m× (n−1)

For the generation of  an initial  population,  the  main
difference  between  VRS-VNS-NSGAII  and  VNS-
NSGAII  is  the  generation  of  material  allocation
scheme.  VNS-NSGAII  randomly  generates 
variables  for  material  allocation,  which  cannot  ensure
the  satisfaction  of  the  material  demand  constraint  (4).
Nevertheless,  VRS-VNS-NSGAII  only  needs  to
generate  core  variables.  And  the  value  of
reduced  variables  is  calculated  by  the  value  of  core
variables  and  variable  relationships.  The  whole  initial
material  allocation  scheme  can  be  acquired  by
integrating reduced variables and core variables.

In VRS-VNS-NSGAII, the process of generating the
material allocation scheme for individual is as follows.

δ

(1)  Determine  whether  a  core  variable  is  responded
by  Eqs.  (22)  and  (43),  where  the  response  probability
shown in Eq. (23) should be shrunk by the coefficient 
in [0,1) to have a lower constraint violation degree
 

pi j = δ
1/Mi j

n∑
j=1

1/Mi j

(43)

δ = 0.5 i ∈ {1,2, . . . ,m}, j ∈ {1,2, . . . ,n}where  and  herein.
(2) Calculate

 

Ld
i = Vi−

n−1∑
j=1

xi,c j (44)

xi,c j, j = {1,2, . . . ,n−1}
φi

where  are  the  core  variables  in
equation .

Ri,c j = 1 xi,c j(3) If , then core variable  is calculated by
Eq. (45).
 

xi,c j =max{0, floor(min{Ld
i ,Q/c}−

n−1∑
j=1

xi,c j)× rand} (45)

where rand denotes a random number between 0 and 1.
(4)  Calculate  the  value  of  reduced  variables  by  the

value of core variables and variable relationship in Eq.
(38).

popk

(5) Integrate the value of core variables and reduced
variables  and  obtain  the  material  allocation  scheme of

.
(6)  Repair  the  variables  that  violate  material  supply

 

Algorithm 6　Pseudocode of grouping reduced variables
and core variables

φ

XR XC

XR← ∅
XC ← ∅

R← ∅
i = 1→ m

T d ← ∅ Dd ← ∅
j = 1→ n

T d ← T d ∪T j,i+n Dd ← Dd ∪D j,i+n

T D
d

T D
d

ri

XR← XR∪ xi,ri

φi Ωi

XC ← XC ∪Ωi\xi,ri

R← R∪ solve(φi, xi,ri)

Input: Equality  optimality  condition ;  transportation  time
matrix T; transportation distance matrix D.
Output: Set  of  reduced variables ;  set  of  core variables ;
set of variable relationships R.
1  Initialize  the  set  of  reduced  variables ,  set  of  core
variables ,  and  set  of  function  expressions  of  variable
relationships ;
2 for  do
3　  and ;
4　 for  do
5　　 , ;
6　 end for
7　 Calculate  by Eqs. (39) and (40);
8　  Record  the  corresponding  supply  node  with  the  minimum
value in  as ;
9　 ;
10　Put the variables in equation  into set ;
11　 ;
12　 ;
13 end for
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constraint  (5)  by  the  repair  strategy  proposed  in
Algorithm 3.

popallocate

The  pseudocode  of  VRS-VNS-NSGAII  for
generating  the  material  allocation  scheme  of
initial population is presented in Algorithm 7.

Regarding  the  generation  of  the  offspring,  VRS-
VNS-NSGAII  only  executes  the  crossover  and
mutation  operations  for  core  variables.  The  value  of
reduced variables is calculated by core variables.

5    Experimental Study

5.1    Test case

Two test  cases are constructed for experimental  study.
The  first  case  is  adapted  by  multi-depot  VRP.  The
second case combines the initial situation of emergency
material support for the 5·12 Wenchuan earthquake.

(1) Test case 1
Test case 1 possesses 5 supply nodes and 50 demand

 

Local optimization for initial population

Route optimization for
the offsprings 

Local optimization for offsprings

Select the individual into the next generation

Input: core variables, reduced variables,
variable relationships, algorithm and problem

parameters

Satisfy termination condition? 
Output: the best-so-far
material allocation and

route scheduling schemes

Satisfy the condition for route
optimization?

Yes

No

Yes

No

Material allocation
schemes of offsprings

Route scheduling
schemes of offsprings

Combine

Generate the offsprings 
Core variables

values of offsprings
Reduced variables

values
Variable 

relationship

Material allocation schemes
for initial population  

Route scheduling schemes
of initial population 

Combine

Generate initial population

Core variables of
initial population 

Reduced variables
values 

Variable 
relationship

 
Fig. 14    Flowchart of VRS-VNS-NSGAII.

 

  Zhen Shu et al.:   Variable Reduction Strategy Integrated Variable Neighborhood Search and NSGA-II … 95

 



nodes. The location and encoding of each node and the
demand  amount  of  each  demand  node  are  shown  in
Fig. 15. Among them, the supply nodes are encoded as
1–5, and the corresponding materials deposited at these

{200,170,190,200,160}supply  nodes  are  in  sequence.
50 demand nodes are encoded as 6−55. In Fig. 15, the
value  in  parentheses  after  a  demand  node  number
indicates  the  amount  of  material  demanded  at  the
demand point. The transportation distance between any
two nodes is simply regarded as the Euclidean distance
between the two nodes.

(2) Test case 2
We construct test case 2 under the background of the

5∙12  Wenchuan  earthquake[42]:  Dujiangyan,  Maoxian,
Mianzhu,  Mianyang,  and  Guangyuan  are  selected  as
the supply nodes, numbered 1−5. Moreover,  50 places
like  Guankou  Town,  Qingchengshan  Town,  and
Xiaojin  are  the  demand  nodes,  numbered  6−55.  The
latitude  and  longitude  coordinates  of  the  demand  and
supply  nodes,  as  well  as  the  transportation  distance
between  any  two  nodes,  are  obtained  by  crawling  the
API  of  Amap.  The  brief  information  on  supply  and
demand nodes are presented in Tables 2 and 3.

In  addition, Table  4 shows  the  other  parameter
settings for the two test cases.

5.2    Performance  metrics  and  parameter  settings
of algorithms

To evaluate the solution obtained by an algorithm, the
objective  functions  and  the  number  of  vehicles  are
firstly  selected  as  the  performance  metrics.  Moreover,
we  also  adopt  the  hypervolume  (HV)  to  assess  the
convergence and diversity of an algorithm.

To  ensure  a  fair  comparison,  the  parameter  settings
of  VRS-VNS-NSGAII  are  consistent  with  those  of
VNS-NSGAII,  which  are  exhibited  in Table  5.  In
addition,  to  enable  a  reliable  comparison,  10
independent runs are executed on each case.

5.3    Experimental results and discussion

The  experimental  results  for  VRS-VNS-NSGAII  and
VNS-NSGAII  over  10  independent  runs  are  presented
in Tables 6 and 7, including the best, worst, mean, and
standard deviation (std.) values of total time, total cost,
number of vehicles, and HV.

As  shown  in Tables  6 and  7 ,  compared  with  VNS-

 

Algorithm 7　Generation of material allocation scheme of
initial population for VRS-VNS-NSGAII

NP V1×m

n m

Q c

XR XC

popallocate
Mm×n← 0

i = 1→ m

j = 1→ n

Mi j← Di, j+n

k = 1→ NP
Rm×n← 0 popallocate,k ← 0 Pm×n← 0

Rm×n

i = 1→ m

Ld
i ← Vi

j = 1→ n

Ri j = 1

popi j
allocate,k

Ld
i ← Ld

i −popi j
allocate,k

popi,ri
allocate,k ← Vi −

n−1∑
j=1

popi,c j
allocate,k

popallocate,k ←

Input: Transport  distance matrix D;  population size ; ;
number of supply nodes ; number of demand nodes ; capacity
of  a  vehicle ;  weight  per  unit  material ;  set  of  reduced
variables ;  set  of  core  variables ;  set  of  variable
relationships R.
Output: Material  allocation  scheme  of  initial  population

.
1 ;
2 for  do
3　 for  do
4　　 ;
5　 end for
6 end for
7 for  do
8　 Initialize , , and ;
9　 Determine  by Eqs. (22) and (43);
10 for  do
11　　 ;
12　　for  do
13　　　if  then
14　　　　Calculate  by Eq. (45);

15　　　　 ;

16　　　end if
17　　end for

18　　 ;

19　end for
20　 RepairStrategy();
21 end for
 

 

Table 2    Brief information on supply nodes for test case 2.

Supply node No. Amount of deposited resources
Dujiangyan 1 5800

Maoxian 2 5865
Mianzhu 3 5905
Mianyang 4 5600

Guangyuan 5 5805
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Fig. 15    Illustration of vertexes for test case 1.
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NSGAII,  VRS-VNS-NSGAII  always  can  obtain  a
better  scheduling  scheme  with  less  time  and  cost  as
well  as  fewer  vehicles.  In  addition,  the  HV  indicator
values  obtained  by  VRS-VNS-NSGAII  are  also  better
than those of VNS-NSGAII.

Regarding  solving  test  case  1,  in  comparison  with
VNS-NSGAII,  the  mean  total  time  and  cost  of  VNS-
NSGAII  are  reduced  by  3.36% and  4.83%,
respectively.  In  terms  of  the  number  of  vehicles,  the
minimum number of vehicles required for the material
scheduling  schemes  obtained  by  the  VNS-NSGAII
algorithm is 15, while the number of vehicles required
for  the  best  solution  obtained  by  the  VRS-VNS-
NSGAII  algorithm  over  10  runs  is  14.  Moreover,  the
mean HV index value obtained by VRS-VNS-NSGAII
is 40.94% higher than that of VNS-NSGAII.

For  solving  test  case  2,  compared  with  VNS-
NSGAII,  the  mean  total  time  and  total  cost  of  VRS-
VNS-NSGAII are reduced by 9.33 h and 11 331.06 RMB.
The mean number of vehicles obtained by VRS-VNS-
NSGAII  is  14.4,  which  is  also  lower  than  the  14.7

 

Table 3    Brief information on demand nodes for test case 2.

Demand node No.
Amount of

needed
resources

Demand node No.
Amount of

needed
resources

Demand node No.
Amount of

needed
resources

Guankou Town 6 530 Xiaojin 23 340 Luojiang County 40 470
Qingcheng Mountain 7 486 Heishui 24 420 Zhongjiang County 41 530

Hongkou 8 480 Songpan 25 230 Santai County 42 580
Fushun 9 360 An County 26 800 Yanting County 43 630
Feihong 10 380 Xiushui 27 356 Zitong County 44 565
Heihu 11 400 Baolin 28 420 Deyang 45 639

Taiping 12 320 Gaochuan 29 228 Qingchuan 46 705
Li County 13 490 Shifang 30 400 Rubble Township 47 412

Putou Township 14 320 Luoshui Town 31 380 Banqiao Township 48 488
Muka Township 15 200 Shuangsheng Town 32 520 Qima Township 49 450

Tonghua Township 16 480 Yinghua Town 33 480 Yingpan Township 50 410
Wenchuan 17 940 Qingping Town 34 312 Chaotian District 51 802

Yingxiu Town 18 400 Hanwang Town 35 272 Cangxi 52 865
Shuimozhen 19 360 Beichuan 36 720 Jiange 53 775

Wolong Town 20 340 Yongan 37 388 Yuanba Town 54 890
Yanmen Town 21 348 Yongchang 38 400 Xiangyan Town 55 440

Sanjiang 22 308 Kaiping 39 380 − − −
 

 

Table 4    Parameter settings for the test cases.

Parameter
Value

Test case 1 Test case 2

QCapacity of a vehicle 6 t 20 t
cWeight per unit material 0.1 kg 0.01 kg

vAverage speed of a vehicle 60 km/h 70 km/h
tUnit time of handling load of a vehicle 0.01 h/t 0.01 h/t

C1Transportation cost of per unit distance 10 RMB/km 20 RMB/km

C2Operation cost for a vehicle 500 RMB 1000 RMB
Maximum allowed transport time for a vehicle L 12 h 18 h

β σRoad access rate  and congestion factor Generate randomly Generate randomly
 

 

Table 5    Parameter settings of the algorithm.

Parameter Value
PcCrossover rate 0.9

PmMutation rate 0.2
itermaxMaximum number of generations of NSGA-II 200

GIndicator for route optimization 40
NPPopulation size 20

GmaxMaximum number of generations of ANS-VNS 200

G∗
Indicator for perturbing the best-so-far solution in

ANS-VNS 25
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obtained  by  VNS-NSGAII.  Furthermore,  in  terms  of
the  HV  indicator,  the  mean  HV  value  obtained  by
VRS-VNS-NSGAII  is  improved  by  86.46% than  that
obtained by VNS-NSGAII over 10 independent runs.

Overall, we can conclude that VRS-VNS- NSGAII is
able  to  obtain  higher  quality  material  allocation  and
route  scheduling  schemes  than  VNS-NSGAII,  and
VRS-VNS-NSGAII  possesses  better  convergence  and
diversity.

To  further  study  the  performance  of  VRS-VNS-
NSGAII  and  VNS-NSGAII, Fig.  16 shows  the
convergence  process  of  the  normalized  weighted
objective  function  value  provided  by  the  two
algorithms over a single run. The normalized weighted
objective  function  normalizes  the  two  objective
functions  and  weights  them  linearly,  which  can
eliminate the influence of different dimensions.

It  can  be  observed  from Fig.  16 that  VRS-VNS-
NSGAII converges faster and can robustly obtain better
solutions than VNS-NSGAII and that the integration of
VRS  can  noticeably  improve  the  search  efficiency  of
the  standard  VNS-NSGAII.  When  solving  test  case  1,
although  both  VNS-NSGAII  and  VRS-VNS-NSGAII
can converge a solution at about 120 generations, VRS-
VNS-NSGAII  can  converge  to  a  better  solution  than
VNS-NSGAII.  For  solving  test  case  2,  VNS-NSGAII
converges to a  solution at  about  160 generations,  with
the assistance of VRS, the algorithm can locate a better
solution at about 120 generations.

6    Conclusion and Future Work

This  paper  proposes  an  EMS  model  and  designs  a
VNS-NSGAII hybrid algorithm to solve it. To improve

the search efficiency of VNS-NSGAII,  we employ the
variable  reduction  strategy  (VRS)  to  reduce  the
modeled  EMS  problem  via  utilizing  the  problem
characteristics.  VRS  can  reduce  some  variables,
eliminate the demand equality constraint,  and result  in

 

Table 6    Total time and total cost for compared algorithms.

Test case No. Compared algorithm
Total time (h) Total cost (RMB)

Best Worst Mean Std. Best Worst Mean Std.

1
VRS-VNS-NSGAII 27.08 28.56 27.57 0.43 13 910.55 14 389.24 14 092.26 296.09

VNS-NSGAII 27.38 30.05 28.53 1.14 14 023.63 15 720.64 14 808.10 534.34

2
VRS-VNS-NSGAII 532.59 538.65 535.41 1.76 83 893.26 90 573.18 89 134.53 2277.14

VNS-NSGAII 533.98 552.00 544.74 5.60 92 425.98 107 950.40 100 465.59 5245.85
 

 

Table 7    Number of vehicles and HV indicator values for compared algorithms.

Test case No. Compared algorithm
Number of vehicles HV

Best Worst Mean Std. Best Worst Mean Std.

1
VRS-VNS-NSGAII 14.00 16.00 15 0.67 2.72×104 1.86×104 2.41×104 2.71×103

VNS-NSGAII 15.00 16.00 15.40 0.52 2.53×104 8.40×103 1.71×104 6.23×103

2
VRS-VNS-NSGAII 14.00 16.00 14.4 0.70 1.65×106 1.17×106 1.35×106 1.40×105

VNS-NSGAII 14.00 16.00 14.7 0.67 1.30×106 3.60×105 7.24×105 2.91×105
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Fig. 16    Convergence curves for the test cases.
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lower problem complexity. Based on the characteristics
of  the  constructed  model  and  the  proposed  VNS-
NSGAII, we integrate VRS with VNS-NSGAII (which
is  called  the  VRS-VNS-NSGAII  algorithm)  to  solve
the  reduced  EMS  problem.  Based  on  the  multi-depot
VRP  problem  and  combined  with  the  initial  5∙12
Wenchuan  earthquake  emergency  material  support
situation,  two  test  cases  are  constructed  in  the  paper.
The  relevant  experimental  study  has  verified  that  the
integration  of  VRS  can  improve  the  performance  of
VNS-NSGAII,  enabling  a  better  optimization
efficiency and a higher quality solution.

It is noted that there are still limitations in this work.
On  one  hand,  the  EMS  model  considered  is  slightly
simple herein. On the other hand, we only use an EA to
integrate with VRS. Therefore, for future work, we can
consider applying VRS to a more complex EMS model
with  dynamic  demands,  multiple  materials,  different
vehicle capacities, and so on. Additionally, it would be
worthwhile  to  conduct  more  research  into  integrating
another  potential  EA  with  VRS  in  order  to  assist  the
EA to perform better.  Furthermore, the paper provides
a  reference  for  employing  VRS  to  effectively  solve
real-world  combinatorial  optimization  problems,  and
we can also focus on utilizing the idea of VRS to solve
more complicated real-world optimization problems in
the future.
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