
 

A Coevolutionary Algorithm for Many-Objective Optimization
Problems with Independent and Harmonious Objectives

Fangqing Gu*, Haosen Liu, and Hailin Liu

Abstract: Evolutionary  algorithm  is  an  effective  strategy  for  solving  many-objective  optimization  problems.  At

present,  most  evolutionary  many-objective  algorithms  are  designed  for  solving  many-objective  optimization

problems where the objectives conflict with each other. In some cases, however, the objectives are not always

in  conflict.  It  consists  of  multiple  independent  objective  subsets  and  the  relationship  between  objectives  is

unknown in advance. The classical evolutionary many-objective algorithms may not be able to effectively solve

such  problems.  Accordingly,  we  propose  an  objective  set  decomposition  strategy  based  on  the  partial  set

covering  model.  It  decomposes  the  objectives  into  a  collection  of  objective  subsets  to  preserve  the

nondominance  relationship  as  much  as  possible.  An  optimization  subproblem  is  defined  on  each  objective

subset.  A  coevolutionary  algorithm  is  presented  to  optimize  all  subproblems  simultaneously,  in  which  a

nondominance  ranking  is  presented  to  interact  information  among  these  sub-populations.  The  proposed

algorithm  is  compared  with  five  popular  many-objective  evolutionary  algorithms  and  four  objective  set

decomposition based evolutionary algorithms on a series of test problems. Numerical experiments demonstrate

that  the  proposed algorithm can achieve promising  results  for  the  many-objective  optimization  problems with

independent and harmonious objectives.
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1    Introduction

Researchers have proposed various evolutionary multi-
objective  optimization  algorithms  (EMOs)  during  the
last  decades[1−3].  However,  the  efficiency  of  these
EMOs will decrease for problems with more than three
objectives[4].  Such  problems  are  known  as  many-
objective  optimization  problems  (MaOPs)[5, 6].  To
alleviate this issue, researchers have developed various
many-objective  evolutionary  optimization  algorithms
(MaOEAs)[7].  These  algorithms  can  be  broadly
classified  into  three  categories,  i.e.,  Pareto-based

algorithms[8−11], decomposition-based algorithms[12−14],
and  indicator-based  algorithms[15−18].  Generally
speaking,  these  EMOs are  designed for  solving many/
multi-objective optimization problems whose objectives
are conflicted.
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However, the objectives are not always conflicted in
practice.  Some  objectives  may  be  harmonious  or
independent.  As  an  example, Fig.  1 plots  some  non-
dominated solutions in parallel coordinate graphs. Each
line of Fig. 1 stands for a non-dominated solution. The
x-axis stands for the objectives, while the y-axis stands
for  the  values  of  the  objective  function  of  these  non-
dominated  solutions.  From Fig.  1 we  can  see  that
objectives  and  are harmonious. One can group 
and  in a new compound objective[19], or remove one
of  and  from  the  objective  set  by  using  objective
reduction  method[20, 21].  Objective  reduction[22−24] and
objective  extraction[25, 26] are  the  representatives  of
such approaches which have demonstrated effectiveness
in  solving  MaOPs  with  redundant  or  correlated
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objectives.  Objective  reduction  methods  improve  the
efficiency  of  EMOs  by  reducing  the  number  of
objectives.  Nevertheless,  it  is  a  little  powerless  for
these optimization problems with multiple independent
objective subsets.
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MaOP  consists  of  multiple  independent  objective
subsets  in  the  case  that  the  Pareto  solution set  (PS)  of
the  original  problem  can  be  covered  by  the  PSs  of
several  subproblems  with  these  objective  subsets.  As
shown in Fig. 1, we can easily notice that the PS of the
original problem consists of the PSs of the subproblem
with  objectives  and  the  subproblem  with
objectives . That is, we can obtain the PS of the
original MaOP by solving two subproblems  and

.  The  relationship  between  objectives  is
unknown  in  advance.  Thus,  it  is  very  important  to
identify the relationship between the objectives[27].

Nowadays, some research attempts to decompose an
MaOP  into  several  subproblems  and  then  optimize
these  subproblems  independently.  For  example,  an
adaptive  divide-and-conquer  method[28] has  been
proposed which uses the Kendall K method to measure
the  correlation  among  the  objectives.  The  objectives
are  grouped  into  some  subsets  by  statistical  analysis,
and  each  objective  subset  owns  a  sub-population[29].
Accordingly,  the  population  is  divided  into  some sub-
populations.  After  division,  each  sub-population
evolves  independently  and  repeats  this  step  in  each
generation.  Reference  [30]  investigated  three  different
strategies to decompose the objective set, i.e., random,
fixed,  and  shift.  However,  the  above  methods  do  not
adequately  consider  the  conflict  between  objectives,
which may group the conflict or non-conflict objectives
in  the  same  subset.  Based  on  the  consideration  of
conflict  information,  an  objective  set  decomposition
method  was  proposed  in  Ref.  [30].  It  utilizes  the
Pearson-correlation  coefficient  to  measure  the  degree
of conflict between objects. The offsprings are selected
by  NSGA-II  according  to  the  decomposed  objective
subsets.  These MaOEAs show their  great  performance

in  solving  MaOPs with  independent  objective  subsets.
Nevertheless, these algorithms involve a predetermined
number of objective subsets to decompose the original
objective  set  equally.  This  may  lead  to  the  algorithm
not  being  able  to  solve  MaOPs  with  independent
objective subsets with different numbers of objectives.
In  addition,  the  evolution  of  the  population  does  not
make  full  use  of  the  information  interaction  between
different objective subsets.

Consequently,  this  paper  proposes  an  adaptive
objective  set  decomposition  strategy  based  on  the
partial  set  covering  model.  It  is  intended  to  find  a
minimum size sub-collection of the objective subset to
maintain  the  nondominance  relationship  of  the
solutions.  After  that,  we define a  subproblem for  each
objective  subset  and  propose  a  coevolutionary
algorithm  based  on  the  decomposed  objective  subsets
(DOS-CEA).  The  algorithm  uses  a  novel  selection
operation  that  considers  other  objective  subsets  while
considering  the  current  objective  subset.  Due  to  the
lack of good expression of the features of MaOPs with
independent objective subsets, a series of test problems
are constructed. Numerical experiments on the existing
test  problems and newly proposed test  problems show
the  efficiency  of  the  proposed  DOS-CEA.  The  main
contributions of this paper are summarized as follows.

(1)  We  propose  an  objective  set  decomposition
strategy  based  on  the  partial  set  covering  model  to
decompose  an  MaOP  into  several  subproblems  and
maintain the nondominance relationship of solutions as
much as possible.

(2)  We  propose  a  coevolutionary  algorithm  for
solving the many-objective optimization problems with
independent and harmonious objectives.

The  rest  of  this  paper  is  organized  as  follows.  We
describe  the  proposed  objective  set  decomposition
strategy  based  on  a  partial  set  covering  model  in
Section 2. Section 3 describes the proposed DOS-CEA.
In Section 4, we compare the proposed DOS-CEA with
four  objective  set  decomposition  based  methods  and
five popular MaOEAs on the existing test problems and
constructed test problems. The paper ends in Section 5
by presenting some conclusions.

2    Proposed  Objective  Set  Decomposition
Strategy

2.1    Representing  the  objectives’ relationships  by
using a partial set covering model

An MaOP can be formulated as follows:
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Fig. 1    A set of non-dominated solutions of an example.
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min
x∈Ω

F(x) = ( f1(x), f2(x), . . . , fM(x))T (1)

x = (x1, x2, . . . , xn)T

n x Ω
fi :Ω→ R i

F = { f1, f2, . . . , fM}

where  represents  the  decision
variables and  is the dimension of the .  represents
the  decision  space.  represents  the -th
objective  function,  and M is  the  total  number  of
objectives. The objective set of Eq. (1) is denoted as a
set .

x1 x2

Fk(⊆ F ) fi ∈ Fk

fi(x1) ⩽ fi(x2) fi ∈ Fk

fi(x1) < fi(x2) x1≺Fk x2 x∗ ∈Ω
Fk

x ∈Ω x≺Fk x∗

E(Fk,Ω) Fk ⊂ F
E(Fk,Ω)

E(F ,Ω)

x∗ ∈ E(F ,Ω) x ∈Ω
x≺Fk x∗ x∗

Fk Fk

E(Fk,Ω)
Fk,F j ⊆ F Fk ⊆ F j E(Fk,Ω) ⊆ E(F j,Ω)

A solution  is dominated by solution  in regard to
objective subset  if  and only if  for any ,
such that  and there exists  satisfing

, denoted as .  is known as a
Pareto  optimal  solution  with  respect  to  if  no
solution  such  that .  All  Pareto  optimal
solutions compose the Pareto optimal solution set (PS),
denoted  as .  For  an  objective  subset ,
we  have  shown  that  may  not  be  a  subset  of

[25].  Therefore,  we  propose  a  concept  of  non-
dominant  hold  set  for  describing  the  relationship  of
objectives.  For  any ,  if  no  solution 
such that ,  the  nondominance relationship  of 
is  maintained.  The  set  of  all  the  solutions  whose
nondominance  relationship  is  maintained  concerning

 is  called  a  non-dominant  hold  set  of  and  also
denoted  as §.  For  any  two  objective  subsets

,  if ,  we have .  In
addition,  we  provide  three  definitions  of  the
relationship between the objectives.

E(Fk,Ω)∪E(F j,Ω) = E(Fk ∪F j,Ω)
Fk F j

Definition  1: If ,
then  and  are independent.

E(Fk,Ω) = E(F j,Ω) = E(Fk ∪F j,Ω)
Fk F j

Definition  2: If ,
then  and  are harmonious.

E(Fk,Ω)∪E(F j,Ω) ⊂ E(Fk ∪F j,Ω)
Fk F j

Definition  3: If ,
then  and  are conflicted.

S = {S 1,S 2, . . . ,SM}
E(F ,Ω) S i = E(Fi,Ω)

Fi ⊂ F M
S i ⊆ E(F ,Ω) ∪Mi=1S i = E(F ,Ω)

T ⊆ S
E(F ,Ω) T

Fi

S i ∈ T E(F ,Ω)

Let  be  a  collection of  subsets  of
,  where  is  the  non-dominant  hold

set  of  and  is  the  number  of  the  subsets.
Obviously, we have  and .
If  we  find  a  sub-collection ,  such  that  every
element of  belongs to at least one subset in ,
then  Eq.  (1)  can  be  decomposed  into  some
subproblems  with  objectives  corresponding  to

.  Therefore,  we  can  obtain  by  solving
these subproblems with these objective subsets.

Currently,  most  evolutionary  algorithms  work  well
for  multi-objective  optimization  problems.  Thus,  we
limit the number of objectives of a subproblem smaller

|Fi| < 4
∪|Fi |<4S i

E(F ,Ω)

than four, i.e., . This brings about a consequence
that  may not  be  able  to  cover  all  elements  of

.  Objective  decomposition  intends  to  find
minimum size sub-collection of objective subsets such
that the PS of the original MaOP is covered by that of
these  subproblems  with  these  objective  subsets  as
much  as  possible.  Accordingly,  the  objective
decomposition can be modeled as a partial set covering
problem.

E(F ,Ω)

S i = E(Fi,X)

Fi

T ⊆ S
|{x ∈ X : x ∈ ∪S i,S i ∈ T }| ⩾ qN′ q

N′ = | ∪S i| |Fi| < 4

Since  is  unknown  in  advance,  we  can  only
decompose  the  objective  set  according  to  the  current
non-dominated solutions and periodically re-decompose
the  objective  set.  Suppose X is  a  non-dominated
solution set of Eq. (1). Analogously,  is the
non-dominated  solution  set  in  regard  to  objective  set

.  Objective  set  decomposition  strategy  decomposes
Eq. (1) into several subproblems aiming to maintain the
nondominance  relationship  of X as  much  as  possible.
That  is  to  find  a  minimum  size  sub-collection ,
such  that ,  where  is  a
constant between 0 and 1,  with . It is
a partial set covering problem.

2.2    Proposed  greedy  strategy  for  the  partial  set
covering problem

It is well-known that the partial set covering problem is
an  NP-hard  problem.  In  this  paper,  we  propose  a
greedy  strategy  for  objective  set  decomposition  based
on  the  partial  set  covering  problem. Algorithm  1
 

Algorithm  1　Greedy  strategy  for  partial  set  covering
problem
Require:
    (1) A non-dominated solution set X;

0 < ϵ < 1    (2) A real number ;
F(x), x ∈ X    (3) Original objective vectors .

Ensure:
R    A collection of objective subsets .

Initialization:

S← {S i} S i = E(Fi,X)    Compute , where  with
|Fi| = 2,3        .

R← ∅ q′← 1 X′← ∅ N′← |∪S i|    , , , .
q′ > ϵ & S , ∅    while  do

k← argmax
i
|S i|,S i ∈ S        .

R←R∪Fk S←S\S k        , .
S k        Remove those elements covered by  from

S i ∈ S        each .
S k X′← X′ +S k        Add into the covered solution set ,

q′← |X′ |
N′        .

    end while
 

  

E(Fk,Ω)
Fk

§ The remaining parts of this paper,  is the non-dominant hold
set of .
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ϵ

S i

Fi |Fi| < 4
R

S k

Fk

R←R∪Fk S k

S←S\S k

S k

R

provides the pseudo-code of the proposed objective set
decomposition  strategy.  Specifically,  let X be  the
current  non-dominated  solutions  obtained  by  an  EMO
algorithm,  and  is  a  tolerance  of  the  elements  which
are  uncovered.  In  the  algorithm  initialization,  we
identify  the  non-dominated  solution  set  for  each
objective  subset  with . X' is  the  covered
solution set  and  is  the  selected objective subsets.  In
the loop of  the proposed,  we find the subset  which
has  the  largest  size.  That  is,  it  can  cover  the  most
uncovered  elements  of X.  And  then  add  into  the
selected  collection  of  the  objective  subset,  i.e.,

, and remove the solution subset  from the
collection  of  the  solution  subset .  Those
elements  which  have  been  covered  by  have  to  be
removed  from  each  set.  Finally,  we  output  a  sub-
collection  of the objective subsets.

3    Proposed Coevolutionary Algorithm

3.1    Redefinition subproblems

Fk ⊂ F
Fk E(Fk,Ω)

Fk

R = {F1,F2, . . . ,Fs}

Fk k
Fk

For an objective subset , we have shown that the
non-dominated  solutions  of ,  i.e.,  may  not
be that of the original optimization problem. Thus, we
can  not  select  the  next  generation  population  only
according  to  objective  subset  in  the  evolution
process. Therefore, after the objective set is decomposed
into a collection of objective subset ,
an  optimization  subproblem  is  redefined  on  each
objective subset .  The -th subproblem with respect
to objective subset  is given as
 

min
x∈Ω

Gk(x) =
(
g1

k(x),g2
k(x), . . . ,gkh

k (x)
)T

(2)

gi
k(x) = f i

k(x)+ε
∑

f j<Fk f j(x) f i
k(x) i
Fk kh = |Fk |

Fk k = 1,2, . . . , s ε
1×10−3

where ,  is  the -th
objective  function  of  objective  subset  and 
is  the  number  of  objectives  of , .  is  a
small  positive  constant  which  is  set  as  in  this
paper. We can easily show that a dominated solution of
Eq.  (1)  must  be  a  dominated  solution  of  Eq.  (2).
Furthermore,  a  non-dominated  solution  of  Eq.  (2)  is
one non-dominated solution of Eq. (1).

3.2    Framework  of  the  proposed  coevolutionary
algorithm

N

In this  paper,  a  coevolutionary algorithm based on the
objective set decomposition is put forward. Algorithm 2
shows  the  general  framework  of  the  proposed  co-
evolutionary  algorithm.  First,  we  randomly  sample 
solutions in the decision space and compute the values

P0

T
s

G1,G2, . . . ,Gs

Gk

Nk =
|Gk |∑s
i=1 |Gi |N k = 1,2, . . . , s Nk

Gk Pk
t+1

of  the  objective  function.  These  solutions  form  the
initial  population .  In  the  proposed  algorithm,  we
decompose  the  objective  set  into  several  objective
subsets  every  generations by Algorithm 1.  Then,  an
MaOP  is  decomposed  into  subproblems  and
redefined  as  by  Eq.  (2).  Each  sub-
problem  is optimized by a subpopulation with a size

, .  After  that,  we  select 
best  solutions  according  to  to  update  by
Algorithm 3.

3.3    Selection mechanism

Pk
t+1

Gk

NDk xi

Gk

The information interaction among the sub-populations
selected  by  multiple  subproblems  plays  an  important
role.  When  updating  sub-population ,  we  prefer
these  non-dominated  solutions  according  to  current
subproblem ,  which  are  also  non-dominated
according  to  other  subproblems.  Therefore,  a  non-
dominated rank is presented to evaluate the performance
of  the  solutions.  The  non-dominated  rank  of 
according to the subproblem  is calculated as
 

 

Algorithm 2　Proposed DOS-CEA
Require:
    (1) Eq. (1);

N    (2) : The population size;
gen_max    (3) : Maximum value of the number of generations;
T    (4) : Frequency of objective set decomposition.

Ensure:
Pt    The final population .

Initialization:

P0← {x1, x2, . . . , xN } t← 0    Set the population , set ;
t < gen_max    while  do

Qt ← ∅        ;
x ∈ Pt        for each  do

y Pt            Randomly choose a solution  from ;
z            Generate an offspring  by applying genetic operators

x y            on  and ;
Qt ← Qt ∪ z            .

    　end for
mod(t,T ) = 0    　if  then

            Decompose the objectives into several objective

F1,F2, . . . ,Fs            subsets  by Algorithm 1;
s G1,G2, . . . ,Gs F1,F2, . . . ,Fs            Redefine  MOPs  on 

            by Eq. (2).
    　end if

N Pt ∪Qt
Pt+1 t← t+1

    　  best solutions are selected from  by Algorithm 3
　　to form , .
　end while
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NDk(xi) =

∑ j=s

j=1, j,k
I(G j(xi))

s−1
(3)

I(G j(xi)) is given as follows:
 

I(G j(xi)) =


1, xi is a non-dominated

solution according to G j;
0, otherwise

(4)

{R1,R2, . . . } NDk

Gk

The non-dominated rank sorting divides the population
into  based  on  descending  order  for
subproblem .

Gk Nk

The  pseudo-code  of  the  selection  mechanism  in  the
t-th  generation  is  provided  in Algorithm  3.  For
subproblem , we select  solutions following three
criteria,  i.e.,  (1)  non-dominated  sorting,  (2)  non-
dominated  rank  sorting,  and  (3)  crowding  distance
sorting,  in  order.  From  the  selection  mechanism,  the
solutions  which  are  non-dominated  according  to  most
subproblems  are  easier  to  retain.  This  is  beneficial  to
the  information  interaction  between  these  sub-
populations.

4    Numerical Experiments

4.1    Compared algorithms

We  compared  the  proposed  DOS-CEA  with  nine

MaOEAs  to  investigate  the  performance  of  the
proposed  algorithm.  Among  them,  four  MaOEAs
are  objective  set  decomposition  based  methods  that
use  the  NSGA-II[8] with  different  objective  set
decomposition  strategies,  i.e.,  random[30],  fixed[30],
shift[30],  and  conflict  degree[31],  called  NSGA-II-
random, NSGA-II-fixed, NSGA-II-shift, and NSGA-II-
conflict  in  this  paper.  We  also  consider  other  five
popular  MaOEAs,  i.e.,  NSGA-III[32],  MOEA/D[12],
RVEA[33],  PREA[16],  and  MaOEA-IGD[17].  The  main
ideas of these algorithms are given as follows:
• NSGA-II-random[30] uses  a  random  strategy  to

decompose  the  objective  set.  In  each  cycle,  NSGA-II-
random  contains  two  phases,  i.e.,  the  approximation
phase and the decomposition phase. In the approximation
phase,  it  uses  NSGA-II  to  update  the  population
according  to  the  original  objective  set.  In  the
decomposition phase,  NSGA-II-random first  randomly
decomposes  the  objective  set  into  several  objective
subsets  equally  and  then  updates  the  sub-population
according to each objective subset.
• NSGA-II-fixed[30] uses a fixed strategy to decompose

the objective set. Differing from the NSGA-II-random,
NSGA-II-fixed  sequentially  decomposes  the  objective
set equally.
• NSGA-II-shift[30] uses a shift strategy to decompose

the objective set. Differing from the NSGA-II-random,
NSGA-II-shift shifts the last objective in each objective
subset to the next objective subset in each cycle.
• NSGA-II-conflict[30] uses  the  conflict  degree  to

decompose  the  objective  set.  In  the  NSGA-II-conflict,
the  conflict  degree  is  measured  by  the  Person
correlation  coefficient.  Differing  from  the  NSGA-II-
random,  NSGA-II-conflict  decomposes  the  objective
set  evenly  and  maximizes  the  conflict  degree  in  each
objective subset.

4.2    Test problems and performance metrics

Twenty-one MaOPs with independent and harmonious
objectives  are  considered  in  investigating  the
performance of the proposed DOS-CEA. c-ZDT1(m)[34]

which  is  the  existing  test  suite  with  independent
objective  subsets  is  considered.  We also  constructed  a
series of new test problems called MaOPIOS1-18. The
main features of these test problems are as follows:
• m

( f2i−1, f2i), i = 1,2, ...,m
 c-ZDT1(m)  is  concatenated  by  ZDT1  times.  In

c-ZDT1(m),  a  pair  of  sequences 
is  an  independent  objective  subset.  The  number  of
objectives  in  each  independent  objective  subset  is
equal.  In  this  paper,  we  construct  three  test  problems

 

Algorithm 3　Selection mechanism
Require:

Gk,k = 1,2, . . . , s　(1) A series of subproblems ;
Pt ∪Qt　(2) Population .

Ensure:
Pt+1　The population of next generation .

Gk,k = 1,2, . . . , s　for each  do
Pt ∪Qt {Fr1,Fr2, . . . } Gk

Pk
t+1 = ∅ i = 1

　　  is divided into  according to  by
　　using non-dominated sorting, , ;

|Pk
t+1|+ |Fri| < N j　　while  do

Pk
t+1← Pk

t+1∪Fri i← i+1　　   , ;
　　end while

Fri+1 {R1,R2, . . . } Gk h = 1
　　Use non-dominated rank sorting, i.e., Eq. (3), to divide
　　solutions in  into  according to , ;

|Pk
t+1|+ |Rh| < N j　　while  do

Pk
t+1← Pk

t+1∪Rh h← h+1　　   , ;
　　end while

Rh+1
CD

　　Calculate each solution’s crowding distance in  and
　　descending sort as ;

Pk
t+1← Pk

t+1∪CD[1 : N j − |Pk
t+1|]　　 ;

　end for

Pt+1←∪s
k=1Pk

t+1　 .
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c-ZDT1(2), c-ZDT1(3), and c-ZDT1(4).
• The constructed test problems, i.e., MaOPIOS1-18,

consist  of  two types of  multiple independent objective
subsets  with  the  same  and  different  numbers  of
objectives.  In  addition,  the  Pareto  front  of  each
objective  subset  has  its  shape,  i.e.,  linear,  nonlinear,
convex, and concave. Table 1 shows the characteristics
of  the  test  problems  constructed  in  this  paper.  Due  to
the space limit, the detailed description of MaOPIOS1-
18 can be found in the supplementary document.

We  use  inverted  generational  distance  (IGD)[35] and
hypervolume  (HV)[36] to  evaluate  the  performance  of
the  compared  algorithm.  The  following  is  a  brief
description of IGD and HV:

● Inverted generational distance (IGD): The value of
IGD is calculated as
 

IGD(P,P∗) =
∑

v∈P∗ d(v,P)
|P∗| (5)

P∗

d(v,P)
v d(v,P) =

minu∈Pd(v,u) |P∗| P∗

IGD(P,P∗)

where  is  a  set  of  points  that  are  uniformly
distributed  on  the  Pareto  front,  and P is  a  set  of
solutions obtained by an algorithm.  denotes  the
Euclidean  distance  from  solution  to P,  i.e., 

.  denotes  the  size  of  set .  The
smaller  value is, the better approximation is
to  the  Pareto  front  for P.  For  each test  problem in  the
experiment, 100 000 points are generated by using the

Das and Dennis method[37].
●  Hypervolume (HV):  The value of  HV for  a  given

solution set P is calculated as
 

HV(P|y)=Vol

∪
p∈P

[ f1(p),y1]×[ f2(p),y2]×· · ·× [ fM(p),yM]


(6)

y = (y1,y2, . . . ,yM)
Vol(·)

HV(P|y)

y = 1.1× (z∗1,z
∗
2, . . . ,z

∗
M) z∗i

i

where  is a reference point, dominated
by  all  Pareto  solutions.  denotes  the  Lebesgue
measure.  The  larger  value  of  is,  the  better
approximation P gives to the Pareto front. For each test
problem  in  the  experiment,  the  reference  point

 with  is the maximum value of
the -th objective of the Pareto solutions.

4.3    Parameter settings

N = 100
● Population  size:  For  all  compared  algorithms  on
each test problem, the size of the population is .

gen_max gen_max = 1500

● Termination  condition:  All  algorithms  terminate
when  the  maximum  number  of  evolution  generation

 is  reached  and  for  all  test
problems.

● Operators:  Simulated  binary  crossover[38] and
polynomial  mutation[39] are  applied  to  generate
offspring.  They  are  also  used  in  compared  algorithms
for generating offspring.

● Special parameters: For the proposed DOS-CEA,
 

Table 1    Characteristics description of each test problem.

Problem M m Mi Pareto front shape
MaOPIOS1 5 2 2, 3 Linear, linear
MaOPIOS2 5 2 2, 3 Nonlinear, nonlinear
MaOPIOS3 5 2 2, 3 Convex, convex
MaOPIOS4 5 2 2, 3 Concave, concave
MaOPIOS5 5 2 2, 3 Linear, nonlinear
MaOPIOS6 5 2 3, 2 Linear, nonlinear
MaOPIOS7 5 2 2, 3 Linear, convex
MaOPIOS8 5 2 3, 2 Linear, convex
MaOPIOS9 5 2 2, 3 Convex, concave
MaOPIOS10 5 2 3, 2 Convex, concave
MaOPIOS11 4 2 2, 2 Linear, linear
MaOPIOS12 6 2 3, 3 Linear, linear
MaOPIOS13 4 2 2, 2 Convex, convex
MaOPIOS14 6 2 3, 3 Convex, convex
MaOPIOS15 4 2 2, 2 Nonlinear, nonlinear
MaOPIOS16 6 2 3, 3 Nonlinear, nonlinear
MaOPIOS17 4 2 2, 2 Concave, concave
MaOPIOS18 6 2 3, 3 Concave, concave

Note: M represents the number of objectives, m represents the number of independent objective subsets, and Mi denotes the number of
objectives in each independent objective subset sequentially.
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the generation of objective set decomposition T is set to
50.  For  the  other  algorithm,  the  number  of  objective
subsets is set to 2.

● Number  of  runs:  All  algorithms  run  30  times
independently on each test problem.

4.4    Results and analysis of the experiments

5%

Table 2 lists the average values of IGD obtained by the
proposed  algorithm  and  NSGA-II-random,  NSGA-II-
fixed,  NSGA-II-shift,  and  NSGA-II-conflict  in  the  30
independent runs on all test problems. Table 3 lists the
average  values  of  IGD  obtained  by  the  proposed
algorithm  and  five  popular  MaOEAs,  i.e.,  NSGA-III,
MOEA/D,  RVEA,  PREA,  and  MaOEA-IGD.
Moreover,  the  comparison  results  of  mean  HV  values
are list in Tables 4 and 5. In Tables 2−5, “+”, “=”, and
“−” represent  that  the  proposed  DOS-CEA  is  inferior
to, similar to, and better than other algorithms in regard
to the Wilcoxon rank sum test at  significance level,
respectively. Tables  2−5 indicate  the  proposed  DOS-
CEA is significantly superior to the other algorithms in
terms of IGD and HV on these test problems. Then, we
try  to  analyze  the  detailed  reasons  why  the  proposed

DOS-CEA is  superior  to  its  counterparts  on  these  test
problems.

y

For the MaOPs whose independent objective subsets
have  the  same  number  of  objectives,  i.e.,  c-ZDT1(m)
and MaOPIOS11-18, the proposed DOS-CEA achieves
a good performance from Table 2 to Table 5. The mean
HV  values  obtained  by  NSGA-II-fixed  and  NSGA-II-
shift on most test problems are 0, which means all the
solutions obtained are dominated by the reference point
. The reason for this phenomenon is that there are few

combinations  of  objective  subsets  by  objective  set
decomposition  for  NSGA-II-fixed  and  NSGA-II-shift.
In  this  case,  it  is  difficult  for  these  algorithms  to
accurately decompose the objective set. In addition, the
HV values obtained by the compared algorithms NSGA-
II-conflict  and  NSGA-II-shift  on  the  part  of  test
problems  are  0.  Although  NSGA-II-conflict  and
NSGA-II-shift  consider  more  combinations  of
objective  subsets,  the  decomposition  of  the  objective
set may still be incorrect. Compared to the conventional
MaOEAs,  the  proposed  DOS-CEA  algorithm  is  also
superior  to  these  algorithms  on  the  test  problems.
These  algorithms  have  been  demonstrated  to  be

 

Table 2    Comparison results of the IGD mean value of the five algorithms running 30 independently on all test problems.

Problem
IGD mean value

NSGA-II-conflict NSGA-II-fixed NSGA-II-random NSGA-II-shift DOS-CEA
c-ZDT1(2) 3.10×100 − 2.27×101 − 5.63×100 − 1.78×101 − 9.70×10−2

c-ZDT1(3) 5.53×100 − 6.93×101 − 3.39×100 − 3.60×100 − 2.47×10−1

c-ZDT1(4) 9.02×100 − 3.52×100 − 5.86×100 − 3.15×100 − 4.03×10−1

MaOPIOS1 2.02×100 − 6.56×100 − 8.77×100 − 4.51×100 − 3.30×10−1

MaOPIOS2 1.59×100 − 5.72×100 − 1.30×101 − 3.97×100 − 2.94×10−1

MaOPIOS3 1.74×100 − 5.22×100 − 1.22×101 − 3.98×100 − 2.45×10−1

MaOPIOS4 1.84×100 − 4.72×100 − 6.08×100 − 3.40×100 − 3.57×10−1

MaOPIOS5 1.53×100 − 5.94×100 − 1.10×101 − 3.72×100 − 2.70×10−1

MaOPIOS6 7.72×101 − 2.26×102 − 2.64×100 − 6.81×101 − 3.00×10−1

MaOPIOS7 2.18×100 − 6.45×100 − 2.79×100 − 4.20×100 − 2.19×10−1

MaOPIOS8 1.06×102 − 2.21×102 − 7.74×100 − 6.15×101 − 2.83×10−1

MaOPIOS9 1.87×100 − 5.20×100 − 2.81×101 − 4.18×100 − 3.09×10−1

MaOPIOS10 8.82×101 − 2.24×102 − 4.41×100 − 4.50×101 − 2.31×10−1

MaOPIOS11 5.89×101 − 1.93×102 − 2.01×101 − 5.67×101 − 2.27×10−1

MaOPIOS12 3.90×101 − 2.79×102 − 8.43×100 − 2.36×100 − 4.00×10−1

MaOPIOS13 9.14×101 − 2.21×102 − 3.69×101 − 6.60×101 − 2.08×10−1

MaOPIOS14 7.13×101 − 2.61×102 − 6.69×100 − 2.08×100 − 2.61×10−1

MaOPIOS15 7.59×101 − 2.07×102 − 3.27×101 − 7.36×101 − 1.75×10−1

MaOPIOS16 4.40×101 − 2.54×102 − 1.03×101 − 1.66×100 − 3.56×10−1

MaOPIOS17 1.02×102 − 2.08×102 − 3.51×101 − 7.09×101 − 2.26×10−1

MaOPIOS18 5.83×101 − 2.63×102 − 1.70×101 − 1.85×100 − 5.37×10−1

+/−/= 0/21/0 0/21/0 0/21/0 0/21/0 –
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Table 3    Comparison results of the IGD mean value of the six algorithms running 30 independently on all test problems.

Problem
IGD mean value

NSGA-III MOEA/D RVEA PREA MaOEA-IGD DOS-CEA
c-ZDT1(2) 2.22×10−1 − 1.15×10−1 − 3.05×10−1 − 1.35×10−1 − 3.80×100 − 9.70×10−2

c-ZDT1(3) 5.31×10−1 − 2.21×10−1 + 4.85×10−1 − 3.67×10−1 − 2.28×100 − 2.47×10−1

c-ZDT1(4) 4.40×100 − 4.06×10−1 = 7.62×10−1 − 7.43×10−1 − 3.32×100 − 4.03×10−1

MaOPIOS1 2.07×100 − 3.38×10−1 = 9.46×10−1 − 2.99×100 − 1.22×100 − 3.30×10−1

MaOPIOS2 1.53×100 − 2.68×10−1 = 5.87×10−1 − 2.73×100 − 5.88×10−1 − 2.94×10−1

MaOPIOS3 1.50×100 − 3.10×10−1 − 6.74×10−1 − 2.96×100 − 4.92×10−1 − 2.45×10−1

MaOPIOS4 1.99×100 − 1.07×100 − 1.05×100 − 2.34×100 − 1.26×100 − 3.57×10−1

MaOPIOS5 1.60×100 − 2.98×10−1 = 7.96×10−1 − 2.46×100 − 9.18×10−1 − 2.70×10−1

MaOPIOS6 1.95×100 − 3.54×10−1 = 9.01×10−1 − 2.90×100 − 1.09×100 − 3.00×10−1

MaOPIOS7 1.84×100 − 3.25×10−1 − 8.27×10−1 − 2.83×100 − 8.16×10−1 − 2.19×10−1

MaOPIOS8 1.85×100 − 4.12×10−1 − 1.02×100 − 3.07×100 − 1.02×100 − 2.83×10−1

MaOPIOS9 1.72×100 − 5.12×10−1 − 8.34×10−1 − 2.56×100 − 1.06×100 − 3.09×10−1

MaOPIOS10 1.62×100 − 5.63×10−1 − 6.25×10−1 − 2.40×100 − 8.26×10−1 − 2.31×10−1

MaOPIOS11 1.61×100 − 3.55×10−1 − 1.22×100 − 2.11×100 − 1.14×100 − 2.27×10−1

MaOPIOS12 2.64×100 − 3.93×10−1 = 8.74×10−1 − 4.47×100 − 1.28×100 − 4.00×10−1

MaOPIOS13 1.36×100 − 2.58×10−1 − 8.88×10−1 − 2.03×100 − 8.15×10−1 − 2.08×10−1

MaOPIOS14 1.95×100 − 2.31×10−1 = 4.80×10−1 − 4.11×100 − 3.76×10−1 − 2.61×10−1

MaOPIOS15 1.16×100 − 2.45×10−1 − 7.23×10−1 − 1.98×100 − 6.79×10−1 − 1.75×10−1

MaOPIOS16 1.78×100 − 2.60×10−1 + 4.69×10−1 − 3.65×100 − 5.83×10−1 − 3.56×10−1

MaOPIOS17 1.35×100 − 8.20×10−1 − 1.17×100 − 1.72×100 − 1.13×100 − 2.26×10−1

MaOPIOS18 2.15×100 − 1.23×100 − 8.75×10−1 − 3.15×100 − 1.38×100 − 5.37×10−1

+/−/= 0/21/0 2/12/7 0/21/0 0/21/0 0/21/0 –
 

 

Table 4    Comparison results of the HV mean value of the five algorithms running 30 independently on all test problems.

Problem
HV mean value

NSGA-II-conflict NSGA-II-fixed NSGA-II-random NSGA-II-shift DOS-CEA
c-ZDT1(2) 2.25×10−2 − 0.00×100 − 5.79×10−3 − 0.00×100 − 4.77×10−1

c-ZDT1(3) 0.00×100 − 0.00×100 − 5.03×10−5 − 0.00×100 − 2.73×10−1

c-ZDT1(4) 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 1.37×10−1

MaOPIOS1 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 2.19×10−1

MaOPIOS2 3.00×10−3 − 0.00×100 − 0.00×100 − 0.00×100 − 5.58×10−1

MaOPIOS3 2.11×10−3 − 0.00×100 − 6.61×10−6 − 0.00×100 − 5.56×10−1

MaOPIOS4 5.67×10−4 − 0.00×100 − 0.00×100 − 0.00×100 − 6.06×10−2

MaOPIOS5 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 3.68×10−1

MaOPIOS6 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 4.06×10−1

MaOPIOS7 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 3.85×10−1

MaOPIOS8 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 4.02×10−1

MaOPIOS9 6.61×10−7 − 0.00×100 − 0.00×100 − 0.00×100 − 2.44×10−1

MaOPIOS10 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 1.87×10−1

MaOPIOS11 0.00×100 − 0.00×100 − 0.00×100 − 0.00×100 − 1.71×10−1

MaOPIOS12 0.00×100 − 0.00×100 − 1.46×10−5 − 0.00×100 − 3.35×10−1

MaOPIOS13 0.00×100 − 0.00×100 − 5.04×10−4 − 0.00×100 − 4.62×10−1

MaOPIOS14 3.08×10−4 − 0.00×100 − 4.80×10−3 − 7.07×10−4 − 7.49×10−1

MaOPIOS15 0.00×100 − 0.00×100 − 8.08×10−4 − 0.00×100 − 5.80×10−1

MaOPIOS16 6.17×10−4 − 0.00×100 − 4.79×10−4 − 2.50×10−3 − 6.24×10−1

MaOPIOS17 0.00×100 − 0.00×100 − 9.27×10−7 − 0.00×100 − 4.50×10−2

MaOPIOS18 8.98×10−5 − 0.00×100 − 0.00×100 − 0.00×100 − 8.53×10−2

+/−/= 0/21/0 0/21/0 0/21/0 0/21/0 –
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effective  in  solving  MaOPs.  Therefore,  different  from
the  comparison  objective  set  decomposition  based
MaOEAs,  these  conventional  MaOEAs,  especially
MOEA/D,  are  competitive  on  test  problems.  The
decomposition-based MaOEAs use uniform weights to
aggregate all objectives. This makes it possible to find
some PF fragments.

For the MaOPs whose independent objective subsets
possess  different  numbers  of  objectives,  i.e.,
MaOPIOS1-10, not surprising, the proposed DOS-CEA
acquires the best performance from Table 2 to Table 5.
Since the compared objective set decomposition based
algorithms  decompose  the  objective  set  into  a
predetermined  number  of  objective  subsets  with  the
same  number  of  objectives,  it  is  difficult  to  deal  with
such problems. In contrast to the objective set average
decomposition,  DOS-CEA  adaptively  decomposes  the
objective  set  according  to  the  partial  set  covering
model.  In  this  way,  different  objective  subsets  may
have  different  numbers  of  objectives.  Therefore,  the
objective  set  decomposition  in  DOS-CEA  is  more
reasonable.  Compared  with  the  MaOPs  with  the  same
number  of  objectives  in  each  independent  objective

subset,  the  conventional  MaOEAs  deteriorated  in  this
type of problem. This can be attributed to two reasons.
One  is  that  these  problems  are  all  5-objective  test
problems, which are more difficult than the previous 4-
objective test problems. Another is that the numbers of
each  independent  objective  subset  are  different,  and  it
requires  different  resources  for  each  independent
objective subset.

4.5    Further analysis

From the above experimental results, we have observed
the  superior  performance  of  DOS-CEA  for  solving
MaOPs with independent objective subsets. In order to
better  understand  coevolution  in  DOS-CEA,  we
compare DOS-CEA with its variant. The variant is the
same as DOS-CEA, except for the different selection of
the next generation population in each generation. The
variant uses the NSGA-II to select offspring according
to each objective subset.

We show the average change of IGD values obtained
by DOS-CEA and its variant on three test problems c-
ZDT1(4),  MaOPIOS1,  and  MaOPIOS9  in  30
independent runs in Fig. 2. From Fig. 2, we can see that

 

Table 5    Comparison results of the HV mean value of the six algorithms running 30 independently on all test problems.

Problem
HV mean value

NSGA-III MOEA/D RVEA PREA MaOEA-IGD DOS-CEA
c-ZDT1(2) 3.26×10−1 − 4.58×10−1 − 2.60×10−1 − 4.14×10−1 − 1.35×10−2 − 4.77×10−1

c-ZDT1(3) 1.24×10−1 − 2.70×10−1 − 1.45×10−1 − 1.22×10−1 − 4.74×10−3 − 2.73×10−1

c-ZDT1(4) 0.00×100 − 1.26×10−1 − 4.58×10−2 − 5.95×10−3 − 2.14×10−3 − 1.37×10−1

MaOPIOS1 0.00×100 − 1.84×10−1 = 3.52×10−3 − 0.00×100 − 1.87×10−3 − 2.19×10−1

MaOPIOS2 1.14×10−3 − 5.38×10−1 = 1.66×10−1 − 0.00×100 − 2.15×10−1 − 5.58×10−1

MaOPIOS3 4.62×10−3 − 4.28×10−1 − 1.42×10−1 − 0.00×100 − 2.38×10−1 − 5.56×10−1

MaOPIOS4 0.00×100 − 7.48×10−3 − 1.03×10−4 − 0.00×100 − 1.13×10−3 − 6.06×10−2

MaOPIOS5 1.93×10−5 − 2.63×10−1 − 2.30×10−2 − 0.00×100 − 8.14×10−3 − 3.68×10−1

MaOPIOS6 6.68×10−6 − 3.17×10−1 − 3.91×10−2 − 4.09×10−6 − 1.65×10−2 − 4.06×10−1

MaOPIOS7 2.46×10−4 − 2.49×10−1 − 2.39×10−2 − 0.00×100 − 2.51×10−2 − 3.85×10−1

MaOPIOS8 9.45×10−4 − 2.41×10−1 − 1.83×10−2 − 0.00×100 − 1.93×10−2 − 4.02×10−1

MaOPIOS9 4.10×10−4 − 1.34×10−1 − 1.72×10−2 − 0.00×100 − 1.26×10−2 − 2.44×10−1

MaOPIOS10 0.00×100 − 4.95×10−2 − 1.68×10−2 − 0.00×100 − 1.31×10−2 − 1.87×10−1

MaOPIOS11 2.55×10−5 − 9.05×10−2 − 7.53×10−6 − 0.00×100 − 8.16×10−5 − 1.71×10−1

MaOPIOS12 0.00×100 − 2.23×10−1 − 1.97×10−2 − 0.00×100 − 2.21×10−3 − 3.35×10−1

MaOPIOS13 2.89×10−3 − 4.05×10−1 − 2.98×10−2 − 0.00×100 − 1.41×10−1 − 4.62×10−1

MaOPIOS14 2.01×10−3 − 5.44×10−1 − 3.27×10−1 − 0.00×100 − 2.67×10−1 − 7.49×10−1

MaOPIOS15 1.14×10−2 − 5.03×10−1 − 9.57×10−2 − 0.00×100 − 1.62×10−1 − 5.80×10−1

MaOPIOS16 5.82×10−4 − 5.72×10−1 − 2.36×10−1 − 0.00×100 − 1.88×10−1 − 6.24×10−1

MaOPIOS17 0.00×100 − 6.22×10−3 − 0.00×100 − 0.00×100 − 4.77×10−4 − 4.50×10−2

MaOPIOS18 0.00×100 − 4.94×10−3 − 4.80×10−3 − 0.00×100 − 1.85×10−3 − 8.53×10−2

+/−/= 0/21/0 0/19/2 0/21/0 0/21/0 0/21/0 –
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DOS-CEA  performs  better  than  its  variant  on  three
representative test  problems.  The poor  performance of
the  variant  can  be  due  to  the  neglect  of  the  other
objectives  while  selecting  the  population  according  to
the  current  objective  subset.  As  for  our  proposed
algorithm  DOS-CEA,  it  redefines  the  subproblems
according  to  all  objective  subsets.  Besides,  it  uses  a
new  proposed  selection  operator.  In  this  way,  more
effective  information  interaction  can  be  carried  out
among  population  selection  according  to  each  subset,
which realizes coevolution.

4.6    Sensitivity of T in DOS-CEA

In  the  proposed  algorithm  DOS-CEA, T is  a  control
parameter  for  objective  set  decomposition.  In  the
sensitivity  analysis  experiments,  we  compare  four
different T values, i.e., 20, 30, 50, and 80, on three test
problems  c-ZDT1(4),  MaOPIOS1,  and  MaOPIOS9  to
analyze  the  influences  of  this  parameter.  All  other
settings  are  the  same  as  used  in  Section  4.3. Figure  3
shows the histograms of different T values on three test
problems in the 30 independent runs. Figure 3 indicates
that  the  DOS-CEA  with  different T values  gets  a

similar  performance.  This  means  the  proposed  DOS-
CEA is not sensitive to the control parameter T.

5    Conclusion

We  have  proposed  an  adaptive  objective  set
decomposition  and  coevolutionary  algorithm  (DOS-
CEA)  for  solving  MaOPs  with  independent  and
harmonious  objectives.  In  the  objective  set
decomposition,  we  proposed  an  adaptive  objective  set
decomposition strategy based on a partial  set  covering
model  to  cover  the  nondominance  relationship  of
the solutions as much as possible. And in the selection
of  the  population,  we  proposed  a  new  selection
mechanism  that  considers  the  information  interaction
among  objective  subsets.  The  performance  of  DOS-
CEA has been studied on a series of test problems with
independent  and  objective  subsets.  The  empirical
results  fully  demonstrate  its  effectiveness  on  MaOPs
with  independent  objective  subsets.  In  the  future,  we
will  apply  the  proposed  algorithm  to  solve  some
practical problems.
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