

Search-Based Software Test Data Generation for Path Coverage
Based on a Feedback-Directed Mechanism

Stuart Dereck Semujju, Han Huang, Fangqing Liu*, Yi Xiang, and Zhifeng Hao

Abstract: Automatically generating test cases by evolutionary algorithms to satisfy the path coverage criterion

has attracted much research attention in software testing. In the context of generating test cases to cover many

target paths, the efficiency of existing methods needs to be further improved when infeasible or difficult paths

exist in the program under test. This is because a significant amount of the search budget (i.e., time allocated

for the search to run) is consumed when computing fitness evaluations of individuals on infeasible or difficult

paths. In this work, we present a feedback-directed mechanism that temporarily removes groups of paths from

the target paths when no improvement is observed for these paths in subsequent generations. To fulfill this

task, our strategy first organizes paths into groups. Then, in each generation, the objective scores of each

individual for all paths in each group are summed up. For each group, the lowest value of the summed up

objective scores among all individuals is assigned as the best aggregated score for a group. A group is

removed when no improvement is observed in its best aggregated score over the last two generations. The

experimental results show that the proposed approach can significantly improve path coverage rates for

programs under test with infeasible or difficult paths in case of a limited search budget. In particular, the

feedback-directed mechanism reduces wasting the search budget on infeasible paths or on difficult target paths

that require many fitness evaluations before getting an improvement.

Key words: automated test case generation; software testing; path coverage; many-objective optimization

1 Introduction

Software testing is widely recognized as important
activity for improving software quality. Due to its
significance, researchers and software engineers have
proposed automated test case generation techniques to

improve the process over the years. In the context of
white-box unit-testing, proposed techniques have been
widely employed to satisfy structural coverage criteria
such as statement coverage[1], branch coverage[2], and
path coverage[3]. This work concentrates on path
coverage, a widely studied structural test adequacy
criterion. Ideally, path coverage seeks to maximize
coverage of all feasible control flow paths through a
program[4−10].

Automated Test Case Generation based on Path
Coverage (ATCG-PC) has attracted much research
attention in software testing in the past decade.
However, a major hurdle that prevents wider
application of existing approaches is the enormous
number of paths in real-world programs. Moreover,
many of these paths can be more difficult to cover than
others or infeasible (i.e., impossible to cover). A path is
infeasible if there does not exist a program input for

 • Stuart Dereck Semujju, Han Huang, Fangqing Liu, and Yi

Xiang are with the School of Software Engineering, South
China University of Technology, Guangzhou 510006, China.
E-mail: stuartsemujju@gmail.com; hhan@scut.edu.cn; peerfog
@scut.edu.cn; gzhuxiang_yi@163.com.

 • Zhifeng Hao is with the College of Science, Shantou
University, Shantou 515063, China. E-mail: zfhaomail
@gmail.com.

 * To whom correspondence should be addressed.
 ※ This article was recommended by Associate Editor Wenyin

Gong.
 Manuscript received: 2022-08-31; revised: 2022-12-02;

accepted: 2022-12-08

COMPLEX SYSTEM MODELING AND SIMULATION
ISSN 2096-9929 02/06 pp 12−31
Volume 3, Number 1, March 2023
DOI: 10 .23919 /CSMS.2022 .0027

© The author(s) 2023. The articles published in this open access journal are distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

x > y

x ⩽ z y
x

which the path can be traversed. For example, consider
the simple program in Fig. 1a, and some of its paths in
Fig. 1b. Paths P1, P2, and P4 (highlighted in bold) in
Fig. 1b, are infeasible paths since the branch () at
Line 6 cannot be triggered because when “then else”
branch (i.e.,) at Line 3 is triggered, variables
and contain the same values. A significant amount of
the search time would be wasted during the evaluation
of individuals on infeasible paths P1, P2, and P4. There
can be several factors causing paths to be infeasible,
such as defensive programming, dead code, and
semantics of the program, that make it impossible to
find a test input traversing the desired path. Hence, the
presence of infeasible paths wastes the search time
devoted to their coverage. Unfortunately, early
detection of infeasible paths is a laborious task in
programs with enormous number of paths.

To address ATCG-PC, two main techniques are
mainly employed: symbolic execution[11–16] and
search-based techniques[17–21]. Symbolic execution
leverages constraint solvers to generate test cases
systematically exploring program paths. Although
symbolic execution has been widely studied in
literature, its application is limited by several
challenges when addressing test case generation in
real-world programs such as constraint explosion, paths
related to exceptions, and dependencies on external
libraries. In contrast to symbolic execution, search-
based techniques, such as Genetic Algorithms (GAs),
require a fitness function to guide the search toward
optimal solutions covering target paths.

There are two main search-based strategies for
addressing ATCG-PC: single-target (i.e., one-path-at-a-

time) and multi-target approaches. Single-target
approaches consider one target path for coverage at a
time[4, 6, 7, 22, 23]. Despite their simplicity, in the
presence of an infeasible target path, the search budget
would be entirely wasted. Furthermore, single-target
approaches do not take advantage of collateral
coverage, the phenomenon in which test cases
generated when covering a target path accidentally
cover other paths. Recent research shows that the
performance of single-target approaches is equivalent
to or worse than random search if collateral coverage is
not leveraged[24]. In contrast to single-target
approaches, multi-target approaches consider all
coverage targets (e.g., paths) as objectives to optimize
simultaneously[8, 9]. As such, the search budget is
uniformly distributed across all paths. Recent empirical
studies by Campos et al.[25] and Panichella et al.[26]

show that multi-target strategies are more effective and
efficient than single-target approaches when attempting
to satisfy many coverage targets (e.g., paths).

Despite the superiority of multi-target strategies over
single-target approaches, their efficiency needs to be
further improved when a program under test has many
difficult or infeasible paths and the time allotted for the
search is limited. A significant amount of the search
budget is consumed during the evaluation of
individuals on difficult paths. Furthermore, a large
portion of the search budget is wasted during the
evaluation of individuals on infeasible paths.

In this work, we present an approach, called
Feedback-Directed Algorithm for Path Coverage
(FDA-PC) that is tailored for addressing ATCG-PC. In
particular, FDA-PC reduces the chances of wasting the
search time on infeasible paths or difficult paths. In
particular, FDA-PC first organizes paths into groups.
Then, the objective scores of each individual for all
paths in each group are summed up in each generation.
For each group, the minimum of the summed up
objective scores among all individuals is assigned as
the best aggregated score for a group. A group is
removed when no improvement is observed in its best
aggregated score over the last two generations. We
devise this strategy so that the search time is devoted to
evaluating individuals on paths with a higher chance to
be covered.

For a clear exposition of the ideas discussed so far,
this work is organized as follows. Section 2 presents an
overview of search-based software test data generation
and previous work is discussed. Section 3 presents the

(b) Example of program’s paths for Fig.1a

(a) Example program

s int example1 (int x, int y, int z, int q){
1 int max=0; int i=0; int signal=0;
2 if (x>z) {q=0;}
3 else {y=x;}
4 while (i++<5){
5 if (x<q) {max−−;}
6 else if (x>y) {max=0;}
7 else {max++;}}
8 if (max==4) {signal=1;}
9 else {signal=−1;}
10 return signal;
e }

P1: 〈s, 1, 3, 4, 6, 4, 7, 8, 4, 5, 4, 6, 4, 10, e〉
P2: 〈s, 1, 3, 4, 6, 4, 7, 4, 5, 4, 5, 4, 9, e〉
P2: 〈s, 1, 2, 4, 5, 4, 5, 4, 5, 4, 5, 4, 10, e〉
P4: 〈s, 1, 3, 4, 6, 4, 7, 4, 5, 4, 6, 4, 9, e〉

Fig. 1 Example of a program with infeasible paths.

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 13

formulation of ATCG-PC as a many-objective
optimization problem. Section 4 presents the proposed
approach. Section 5 presents the description of the
experiments we conducted for the evaluation of the
proposed algorithm. Section 6 presents the results and
discussions from the experiments conducted while
Section 7 concludes this work.

2 Background

In this section, we present an overview of search-based
software test data generation, basic concepts, and
related work on search-based techniques addressing the
test case generation problem.

2.1 Search-based software test data generation

U n
T = (t1, t2, . . . , tn)

ϕti 1 ⩽ i ⩽ n
ti ϕti ti

U
ϕ = ϕt1 ×ϕt2 × · · ·×ϕtn

Search-based software test data generation relies on the
usage of meta-heuristic optimization techniques, such
as Differential Evolution (DE)[27], GA[28], to find
program inputs in the input domain of a program under
test[29]. Suppose that is a program under test with
input variables represented by vector .
Assuming that () is domain of the input
variable , then is the set of all values that can
hold. The input domain of is a cross product of each
input variable’s domain: . In
general, a test input (i.e., test case in this context) is an
input vector where each input is a specific element of
the function’s input domain.

Meta-heuristic optimization techniques, such as GAs
evolve candidate, test cases over multiple generations
to find test cases, also called individuals, covering
structural targets (e.g., paths) in a program under test.
The selection of individuals is guided by fitness
functions, such that individuals with good fitness
values have a higher probability to be selected for
reproduction. The individuals selected for reproduction
go through a crossover operator to generate offsprings.
Then, a mutation operator is applied to introduce small
changes to the offsprings. The evolution ends when an
optimal solution is found or the search runs out of the
allocated search budget.

2.2 Basic concepts

G V E s e V E

E ⊆ V ×V
s,e ∈ V

P =< s,n1, . . . ,

A Control Flow Graph (CFG) of a program under test
is a tuple = (, , ,), where (,) is a finite
directed graph; V is a set of nodes, with each node
being basic code block; is the set of edges
connecting the nodes; are unique entry and exit
nodes of the program, respectively. A path in the CFG
is a sequence of edge-connected nodes

nm,e >
i ⩽ i < m ni,ni+1 ∈ E

 starting at unique node s and ending at node e
such that for all , 1 , () .

P = {π1,π2, . . . ,πm}
π j 1 ⩽ j ⩽ m

P π j |π j|
π j

X = {x1, x2, . . . , xn}
x ∈ X p(x)

x π j p(x) π j

Suppose that is the set of paths in
the CFG of a program under test. A path ()
is the j-th path in . The length of , denoted as ,
refers to the number of nodes in . Suppose that

 is a set of individuals (i.e., test cases).
The path traversed by test case is denoted as .
A test case covers path if and only if and
have successively the same nodes from the entry node
to the exit node.

2.3 Related work

The application of search-based techniques to address
the test case generation problem has been the subject of
extensive research efforts. Proposed approaches can be
categorized into two strategies: single-target and multi-
target approaches.
2.3.1 Single-target strategies
In single-target strategies, search-based algorithms,
such as GAs, are run multiple times, once for every
target path (i.e., one-path-at-a-time). Huang et al.[5]

proposed a mathematical model to address ATCG-PC
in fog computing systems as a single-objective
problem. In their work, a relationship matrix is
incorporated into DE algorithm to collect the
correlation coefficients between test cases and paths
from the used test cases. Bouchachia[22] improved test
case generation based on path coverage by
incorporating immune operators in a GA. Mala et al.[7]

addressed ATCG-PC by using artificial bee colony
optimization-based approach. Their approach combines
both global search and local search to improve the
efficiency of finding optimal solutions. Lin and Yeh[8]

proposed an approach that extends hamming distance
to calculate the fitness of individuals and applied a GA
to search for optimal solutions.

Although single-target approaches have been widely
applied, they are not well-suited for addressing ATCG-
PC in programs under test with many paths, among
which some are infeasible. When target paths are
infeasible, the entire search budget would be wasted in
attempting to cover them.
2.3.2 Multi-target strategies
Multi-target approaches consider all paths as objectives
to optimize simultaneously. Ahmed and Hermadi[10]

were the first to propose a multi-target approach. Their
approach attempts to cover all target paths
simultaneously in order to overcome the disadvantages
of targeting one path at a time. The final fitness value

 14 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

of an individual is based on the path it performs best.
For each path, the individual that has the best objective
score with regard to that path in comparison to other
test cases in the population is given a higher probability
to be selected for reproduction. They employed a
standard GA to search for test cases covering the paths.

Gong et al.[9] proposed an approach which generates
test data to cover many target paths based on grouping.
In their work, ATCG-PC is formulated as a many-
objective optimization problem. They reduced the
complexity of considering all coverage targets by
dividing paths into groups as sub-optimization
problems to optimize. The formulated sub-optimization
problems are optimized in parallel by evolving sub-
populations using GA. More specifically, each sub-
population optimizes paths (i.e., objectives) in a
particular group. The final fitness value of an
individual in a sub-population is taken as the lowest
value among all its fitness values for the paths in the
particular group.

Fraser and Arcuri[2] proposed a multi-target
approach, called Whole Test Suite (WTS) which
optimizes all coverage targets simultaneously using
GA. In their approach, an individual is a set of test
cases (i.e., a test suite). As a fitness function, the sum
of all intermediate distances by all test cases in the test
suite from all the coverage targets is used. The
computed sum of the intermediate distances is the
fitness value of the test suite for the coverage targets in
the program under test. At the end of the search, the
best solution in the population is given as the output
test suite.

m m

Panichella et al.[1] proposed a generic many-objective
optimization formulation of the test case generation
problem. The overall fitness of a test case is measured
based on an -dimensional vector of objectives,
where each dimension corresponds to the fitness value
for a particular test target. In their work, a many-
objective algorithm called Dynamic Many-Objective
Sorting Algorithm (DynaMOSA) is proposed to
generate test cases satisfying the coverage targets.
DynaMOSA narrows the search on coverage targets
free of control dependencies. New coverage targets are
iteratively considered when their dominators are
covered. The authors argue that the control dependency
graph concept employed in DynaMOSA can be
extended to arbitrary coverage targets (e.g., paths).

Recent large scale studies by Campos et al.[25] and
Panichella et al.[26] show that: (1) multi-target

approaches are more effective than single-target
approaches when dealing with many coverage targets,
and (2) approaches employing an entirely many-
objective search (i.e., using many-objective algorithms)
to address the test case generation problem are superior
to alternative multi-target approaches using standard
GAs.

Although multi-target strategies are generally
superior, their efficiency needs to be improved further
when addressing ATCG-PC in programs under test
with many paths, among which some are infeasible or
difficult to cover. Unlike previous works, the multi-
target strategy employed in our work attempts to focus
on paths with higher chance to be covered rather than
on infeasible or difficult paths that would consume a
large portion of the search time during the evaluation
of individuals.

3 Problem Formulation

Test case generation can be modeled as an optimization
problem. As such, meta-heuristic algorithms can be
used to search in the input domain of a program under
test for test cases satisfying the structural targets. In
this work, we formulate ATCG-PC as many-objective
optimization problem in order to consider all paths for
coverage simultaneously.

m
P = {π1, π2, . . . , πm}

X = {x1, x2, . . . , xn}
π1, π2, . . . , πm

m

Suppose that there are target paths for coverage,
and is the set of paths in the
program under test. Find a set of test cases

, which minimize the fitness
functions for all paths , i.e., minimizing
the following objectives:

min f1(x) =
w∑

i=1
d(πi

1, x);

...

min fm(x) =
w∑

i=1
d(πi

m, x)

(1)

π j 1 ⩽ j ⩽ m w
π j d(πi

j, x)

π j

p(x) π j

p(x) < >

x π1 <

>

where () is the j-th path, is the number of
branching nodes in the target path ; denotes
the branch distance. The branch distance quantifies
how far a test case is from solving the conditional
expression at the i-th branching node of path , where
the path traversed by a test case diverges from .
The branch distance is computed using Korel’s
distance function[30]. For example, in Fig. 2b, suppose
that path = s, 1, 2, 4, 6, e (highlighted in bold)
is the path traversed by test input and path : s, 1,
3, 4, 7, e is one of the uncovered paths. In Fig. 2b,

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 15

p(x) π1

a > 0
res <= c

dist1 = (0−a)+K
dist2 = (res− c)+K K

dist1
(1/(1+dist1))

π j

x ⟨ f1, f2, . . . , fm⟩

path diverges from by not triggering the
branching nodes at Line 3 () and at Line 7
(). The branch distance at Line 3 is computed
as . The branch distance at Line 7 is
computed as . is a constant. The
branch distances are normalized to a value between
[0, 1]. For example can be normalized as follows:

[31]. The sum of the accumulated
normalized branch distances is the objective score of a
test case for a particular path . The fitness vector of a
test case is denoted as , where each
dimension corresponds to the objective score for an
uncovered path.

4 Feedback-Directed Algorithm for
Addressing ATCG-PC

This section presents the proposed method, called
FDA-PC for addressing ATCG-PC. FDA-PC is based
on NSGA-II[32], a widely known multi-objective
genetic algorithm and the corner sort algorithm
proposed in Ref. [33] to obtain non-dominated
solutions. We highlight in bold the main modification
over NSGA-II in Algorithm 1. In a nutshell, FDA-PC
is designed to temporarily remove groups of paths from
the target paths when no improvement is observed in
two generations.

m/n m
n

G = {group1,group2, . . . ,groupk}
groupi 1 ⩽ i ⩽ k

groupi

|groupi|

Algorithm 1 provides a high-level pseudo-code of
FDA-PC. At the beginning, FDA-PC organizes paths
into groups, where is the number of paths in the
program under test and is the population size (Line 2
of Algorithm 1). Each path is assigned to only one
group. Suppose that is
the set of groups of paths. A group () is
the i-th group of paths. The number of paths in
is denoted as . Figure 3 depicts an example of a
program and some of its groups.

Algorithm 1　FDA-PC
P = {p1, p2, . . . , pm}

n
Require: Set of paths in the program under
　　test and population size

XEnsure: Test suite covering the paths
H←− ∅1: // Set of removed groups of paths

G←− m/n2: Create groups of paths
X←− ∅3: // Set of generated test cases (test suite)
r←− 04: // Current generation
Tr ← n5: Randomly generate initial population of individuals

x ∈ Tr6: for do
x7: Evaluate individual with respect to all paths in all the

　　 groups
x G8: if covers a path in any group in then

9: Remove covered path from the group
X← X

∪{x}10:
11: end if
12: end for
13: while search budget not consumed do

Cr ← Tr14: Apply reproduction operations on // Crossover
　　 and mutation

x ∈Cr15: for do
x16: Evaluate individual with respect to all paths in all

　　　the groups
x G17: if covers a path in any group in then

18: Remove covered path from the group
X← X

∪{x}19:
20: end if

groupi ∈G
21: Compute sum of objective values for paths in each
　　　　 group
22: end for

r >23: if 0 then
G , ∅24: if then

H,G←− G,Cr,r,H25: REMOVE-PATHS ()
Tr

Cr

26: Update fitness vector for all individuals in and
　　　　　　
27: end if
28: end if

Pop← Tr
∪

Cr29:
F ←− Pop G n30: CORNER-SORT (, ,)
Tr+1←−∅31:
z←− 032:

|Tr+1|+ |Fz| ⩽ n33: while { do
Fz34: Perform crowding distance assignment on

Tr+1←− Tr+1
∪Fz35:

z←− z+136:
37: end while

Fz38: Sort () // Based on crowding distance
Tr+1←−
F0 n

39: Add individuals from all fronts to new starting
　　 from to form the new population of size

r > 0 G = ∅40: if and then
G←− G,r,H41: ADD-PATHS ()

42: end if
r←− r+143:

44: end while
45: return X

(a) Example program

(b) Example of paths for Fig.2a

s void example2 (int a, int b, int c){
1 intres=0;
2 if (a<=0) {a=a+10;}
3 else {a=a−10;}
4 if (a<=b) {res=a−b;}
5 else {res=a+b;}
6 if (res>c) {res=1;}
7 else {res=0;}
e }

coveredpath p(x): <s, 1, 2, 4, 6, e>
uncoveredpath π1: <s, 1, 3, 4, 7, e>
uncoveredpath π2: <s, 1, 3, 5, 6, e>

Fig. 2 Example of a program and some of its paths.

 16 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

G

G

x ∈Cr groupi ∈G

Next, FDA-PC randomly generates an initial
population (i.e., test cases) of size n (Line 5 of
Algorithm 1). Then, each test case is executed against
the program under test and evaluated on all the paths in
all the groups in (Lines 6−12 of Algorithm 1). The
“while” loop at Line 13 evolves the test cases until the
search budget is consumed. Next, new offspring test
cases are created using crossover and mutation (Line
14 of Algorithm 1). Similarly, the offspring test cases
are evaluated on all paths in all the groups in . In
addition, for each group’s paths, the corresponding
objective scores of each individual for the paths is
summed up. For example, the objective scores of a test
case for paths in is computed as
follows:

groupi(x) =
∑

π j∈groupi

f j(x) (2)

π j 1 ⩽ j ⩽ |groupi| groupiwhere () is the j-th path in .

groupi ∈G

G

Next, FDA-PC executes the function REMOVE-
PATHS in Algorithm 2. Note that in the first
generation, this function is not executed. It is executed
in the subsequent generations. The rationale behind this
function is to ensure when no improvement is observed
for some groups of paths in two generations, they are
temporarily removed from the target paths to cover in
the next generation. More specifically, for each group,
the lowest value of the summed up objective scores
among all individuals is assigned as the best aggregated
score for a group (Lines 1−4 of
Algorithm 2) in each generation r. A group is removed
from if its best aggregated score in the current
generation is not better than its best aggregated score in
the previous generation (Lines 5−10 of Algorithm 2).
Next, the fitness vector for both the parent and
offspring test cases is updated by removing objective
scores corresponding to the paths in the groups that
have been removed (Line 26 of Algorithm 1).

Pop

n
(n−1)

m

(n−1)

m(n−1)
Pop

x

Next, FDA-PC selects candidate test cases (Lines
29−39 of Algorithm 1). First, the parent and offspring
test cases are combined to form an intermediate
population . Unlike NSGA-II that uses the
traditional non-dominated sorting algorithm to rank
individuals, we use the corner sort based algorithm[33].
Corner sort is applied to save comparisons when
obtaining the non-dominated test cases (Algorithm 3).
For example, suppose the size of population is , corner
sort only requires objective comparisons for
each objective. In traditional non-dominated sorting 2
to objective comparisons are required for the
comparison of two individuals (i.e., test cases). Only

 comparisons are required for one single
objective. The number of objective comparison times is
fewer than . The function CORNER-SORT
ranks the new population using a preference
procedure. More formally, an test case is preferred to

Group 1

Group 2

(b) Example of groups of paths(a) Example program

s int example3 (int x, int y, int z, int q){
1 int max=0;
2 int i=0;
3 int signal;
4 if (x>z) {q=0;}
5 else {y=x;}
6 while (i++<5){
7 if (max>q) {max−−;}
8 else if (max<q&&x>y) {q++;}
9 else {max++;}}
10 if (max==3) {signal=1;}
11 else {signal=0;}
e return signal;}

P1: 〈s, 1, 2, 3, 5, 6, 8, 6, 9, 6, 7, 6, 8, 6, 11, s〉
P2: 〈s, 1, 2, 3, 5, 6, 8, 6, 9, 6, 7, 6, 8, 6, 10, e〉
P3: 〈s, 1, 2, 3, 4, 6, 8, 6, 9, 6, 7, 6, 8, 6, 11, e〉
P4: 〈s, 1, 2, 3, 4, 6, 7, 6, 9, 6, 7, 6, 8, 6, 10, s〉

P1: 〈s, 1, 2, 3, 5, 6, 9, 6, 8, 6, 8, 6, 9, 6, 12, e〉
P2: 〈s, 1, 2, 3, 4, 6, 9, 6, 9, 6, 7, 6, 8, 6, 11, e〉
P3: 〈s, 1, 2, 3, 5, 6, 8, 6, 8, 6, 8, 6, 8, 6, 11, e〉
P4: 〈s, 1, 2, 3, 4, 6, 7, 6, 7, 6, 7, 6, 7, 6, 11, e〉

Fig. 3 Example of a program and some of its groups.

Algorithm 2　REMOVE-PATHS
G Cr r

H
Require: : remaining groups of paths; : new offsprings; :
current iteration; : temporarily removed groups

G
H

Ensure: Updated groups of targets paths in and updated
group of removed paths in

groupi ∈G1: for do
xmin← Cr

groupi

2: 　 Find test case in with the lowest sum of objectives
　　 score for

groupbest
i ← xmin

groupi

3: 　 Get the sum of objective scores of for
　　
4: end for

groupi ∈G5: for do

groupbest
i Cr groupbest

i Cr−16:　 if in is not better than in
G← G groupi G7: 　　 Update by removing from
H←− H

∪
groupi groupi8: 　　 // Add to set of removed groups

9: 　end if
10: end for

G11: return

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 17

y π j f j(x) < f j(y)

π j

F0

Pop
F0

a test case for path if and only if . As
such, a test case with lowest objective score among all
test cases for a path is assigned to the first non-
dominated front (Lines 4−9 of Algorithm 3).
Similarly, to establish other fronts, the remaining test
cases in are ranked using the same procedure
applied when assigning test cases to . After
executing the CORNER-SORT function, FDA-PC
proceeds to implement the crowding distance
procedure to give more diverse test cases in the same
front a higher chance of being selected in the next
population.

G

G

In the subsequent generations, if is empty after
removing all groups of paths, the function ADD-
PATHS (see Algorithm 4) adds the removed groups in
the previous generations to the target groups of paths
(i.e., added to).

5 Empirical Evaluation

This section presents the empirical study we conducted
to evaluate the proposed approach (FDA-PC). The
empirical evaluation seeks to answer the following
research questions:

● RQ1: How does FDA-PC perform compared to
alternative search-based approaches addressing ATCG-
PC in programs under test with many target paths?

This research question investigates to what extent
FDA-PC is able to cover more paths when compared to
alternative approaches addressing ATCG-PC.

● RQ2: What is the effectiveness of FDA-PC without
the feedback-directed mechanism?

This research question aims at assessing the internal
functioning of our approach. FDA-PC incorporates a
feedback-directed mechanism that temporarily removes
groups of paths when no improvement is observed in
subsequent generations. Particularly, we investigate
whether or not temporarily removing groups of paths
when no improvement observed is enough to attain
higher path coverage.

5.1 Baseline comparison

To answer the first research question, we compared
FDA-PC with a single-target approach and four multi-
target approaches tailored for addressing ATCG-PC:

● RP-DE[4]. It is a single-target approach that
generates test cases to cover target paths. RP-DE uses a
relationship matrix to empower Differential Evolution
to address ATCG-PC.

● Method in Ref. [9]. It is a multi-target approach
that evolves sub-populations to generate test cases
covering target paths. First, the approach organizes
paths into groups. Then, the paths in each group are
transformed into objectives to optimize simultaneously.
Each group is assigned a sub-population to optimize its
objectives by using a standard GA. The final fitness of
an individual (i.e., a test case) in a sub-population is
computed as the minimum objective score among all its
objective scores in its fitness vector obtained from a
group.

● Method in Ref. [10]. It is a multi-target approach
that generates test cases to simultaneously cover many
target paths. The approach considers all paths as
objectives to optimize simultaneously in all
generations. The method employs a standard GA to
find the optimal solutions. The final fitness value of a

Algorithm 3　CORNER-SORT
Pop G

n
Require: : current population; : remaining groups of
paths; and population size

F PopEnsure: : Ranking assignment of
j←− 01:

Pop2: while exists test case in not ranked do
F j←− ∅3:　

groupi ∈G4:　for each remaining group do
π ∈ groupi5:for each uncovered path in each group do

xlowest ←− x Pop
π

6:　 Find test case in with lowest objective
score for uncovered target
F j←− F j

∪{xlowest}7:　
8:end for
9:　end for

Pop←− Pop−F j10:　
F ←− F ∪F j11:　
|F | ⩽ n12:　if then

j←− j+113:
14:　end if
15: end while

F16: return

F j F
Pop

Note: is a subset of which contains the test cases with the
j-th ranking assignment of .

Algorithm 4　ADD-PATHS
G r

H
Require: : remaining groups of paths; : current generation;
and : temporarily removed groups

GEnsure: Updated groups of paths in
groupi ∈ H1: for do
groupi r2: 　if not removed in current generation then
H← H groupi H3: 　　 Update by removing from
G←−G

∪
groupi groupi G4: 　　 //Add to

5: 　end if
6: end for

G7: return

 18 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

test case is based on the path it performs best. That is,
the lowest objective score among all the objective
scores of a test case for all paths is assigned as its final
fitness value. Finally, for each path, the test case with
the lowest objective score in comparison to other
individuals in the population is given higher probability
to be selected for reproduction.

● DynaMOSA is a many-objective test case
generation algorithm that considers a subset of
coverage targets at a time based on a control
dependency hierarchy. DynaMOSA is an improvement
of MOSA algorithm. MOSA[34] is many-objective test
case generation algorithm that considers all coverage
targets for optimization simultaneously. In
DynaMOSA, new coverage targets are considered as
test targets (e.g., branches) only when their dominators
are covered based on a control dependency hierarchy.
The control dependency graph concept employed in
DynaMOSA can be extended to arbitrary coverage
targets such as paths. We have extended the
implementation of DynaMOSA and adapted it to path
coverage.

● Whole Test Suite (WSA) with archive[35] is an
improvement of the whole test suite generation[2]. In
WTS a GA is used where an individual is a set of test
cases (i.e., a test suite). As a fitness function, the sum
of all accumulated distances from the coverage targets
(i.e., paths in this context) in the program under test is
used. Mutation and crossover operators are applied on
the combined set of test suites. At the end of the search,
the best solution in the population is given as output
test suite. In addition, in the whole test suite generation,
all coverage targets including those already covered
during the search, are considered as part of the
optimization until the search ends. WSA keeps a test
archive for the already satisfied coverage targets, and
focuses the search only on those coverage targets not
yet satisfied. We have extended the implementation of
WSA and adapted it to path coverage.

To answer the second research question (RQ2), we
have built a variant of FDA-PC called No-FDA. No-
FDA is a variant of FDA-PC without the feedback-
directed mechanism.

5.2 Case study subjects

A key factor of evaluating test case generation
approaches is the selection of programs under test. Our
subjects consist of 27 programs. All these programs are
sampled from the open source repositories, such as
Software-artifact Infrastructure Repository[36],

SF110[37], and Apache software foundation. Some of
the programs are also considered in related
literature[8, 9]. Details of the programs are shown in
Table 1.

5.3 Parameter setting

We considered a number of parameters to control the
performance of the approaches under evaluation.
Table 2 shows the parameter settings used in our
implementation of FDA-PC and its variant No-FDA.

For RP-DE we followed the same DE parameter
settings in the original work[4] and assigned a
maximum search time of 4 minutes. For the method in
Ref. [9], the method in Ref. [10], WSA[2], and
DynaMOSA[1], we set a maximum search time of 4
minutes and followed the same parameter settings used
in their work.

The input variables were sampled from a range of [1,
10 000] for all approaches (i.e., FDA-PC, RP-DE, the
method in Ref. [9], the method in Ref. [10], WSA,
DynaMOSA, and No-FDA).

5.4 Experimental procedure

×
×

We run FDA-PC, RP-DE, the method in Ref. [9], the
method in Ref. [10], WSA, DynaMOSA, and No-FDA
for each program, collecting the resulting coverage. We
set a maximum search time of 4 minutes. Hence, the
search stops when the maximum time allocated for the
search is consumed. Due to randomness of search
algorithms, different results can be produced in
different runs. Therefore, we repeated the experiments
30 times. Thus, we performed a total of 7 (i.e., FDA-
PC, RP-DE, the method in Ref. [9], the method in Ref.
[10], WSA, DynaMOSA, and No-FDA) 27
(programs) 30 (repetitions) = 5670 experiments.

To answer research questions RQ1 and RQ2, we
measure the percentage of covered paths as

path_coverage =
Number of covered paths
total paths to be covered

.

We also conduct statistical analysis of the results.
Statistical significance is measured by using the non-
parametric Wilcoxon test[38] with a p-value threshold of
0.05. This is done to check whether the difference
between any two approaches under comparison is
statistically significant or not. In addition, we conduct
the Vargha-Delaney (Â12) statistical test[39] to measure
the effect size. The Vargha-Delaney (Â12) statistic also
categorizes the obtained effect size into four different
magnitude levels (i.e., negligible, small, medium, and
large).

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 19

6 Result and Discussion

This section presents the results and discussions to
answer the research questions formulated in Section 5.

6.1 What is the performance of FDA-PC
compared to alternative search-based
approaches addressing ATCG-PC?

Table 3 summarizes the results of the average
path_coverage and standard deviation for each

averaged coverage value achieved by FDA-PC, RP-
DE, the method in Ref. [9], the method in Ref. [10],
WSA, and DynaMOSA for each program. To better
understand Table 3, the indicators used in the
experiments are presented as follows:

σ● Path_coverage (%) (standard deviation): The
average path_coverage achieved for each program over
30 independent runs and the standard deviation for
each averaged coverage value.

● Mean over programs: The mean of the average
path_coverage over all the programs.

We highlight in bold the programs where FDA-PC
achieves higher average path_coverage than RP-DE,
the method in Ref. [9], the method in Ref. [10], WSA,
and DynaMOSA. It can be observed that FDA-PC
outperforms RP-DE, the method in Ref. [9], the
method in Ref. [10], WSA, and DynaMOSA in
majority of the programs. Furthermore, FDA-PC
achieved the highest overall mean coverage (61.29%).

Table 1 Details of the subjects under study.

Package Repository Function Number of
paths

Number of
inputs

org.apache.commons.math3 —

min 1024 10
max 1024 10

checkPositive 1024 10
checkNonNegative 1024 10

coreNLP-master — entropy 1024 10

sglib-1.0.4 —
compare_counts 2187 14

compare_unique_counts 1024 10
check_that_int_array_is_sorted 1024 11

org.apache.commons.lang — normalizeSpace 2187 7
org.apache.commons.jcs.utils.config — convertSpecialChars 1000 12

org.apache.commons.lang3 —
containsAny 1024 20

convertRemainingAccentCharacters 2187 7
flex_1.1

Software-artifact Infrastructure
Repository

bubble 1024 10
grep_1.2 equal 1024 20
make_1.4 find_next_argument 625 12
sed_2.0 get_space 2187 7

org.apache.commons.cli — parsePattern 1024 5
corina

SF110 Corpus

stringDistance 1024 10
caloriecount containsCharacters 1024 20

liferay _hasNonASCIICode 1024 10
a4j stripString 1024 20

caloriecount toSlashClassName 1024 10
battlecry metricMatch 2187 14

water-simulator parseString 2187 7
lagoon encodePath 1000 3
jaw_br toAttributo 2187 7
liferay getRGB 2401 4

Table 2 Parameter settings.

Parameter Value
Population size 50 individuals

Crossover probability 0.75
Crossover operator One-point crossover
Mutation operator One-point mutation

Mutation probability 1/h
Maximum search time 4 minutes

Note: h is the number of inputs to the program under test.

 20 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

Besides capturing the mean coverage and standard
deviation, we report the effect size values obtained
from Vargha-Delaney (Â12) statistic, the magnitude of
the difference, and p-values in Table 4. To better
understand Table 4, the indicators used in the
experiments are presented as follows:

● Â12 statistics (magnitude) (p-value): The effect
size, the magnitude of the difference, and p-value.

● vs.: It stands for versus. It indicates the comparison
between FDA-PC against an alternative approach.

● +/=/−: These signs indicate the number of
programs where FDA-PC performs better than,
equivalently to, and worse than the compared
approach, respectively, according to the Wilcoxon test.

In Table 4, we highlight in bold the effect size, the

magnitude of the difference, and p-value for the
programs, where FDA-PC is significantly better than
another approach according to the Wilcoxon test. FDA-
PC is significantly better than RP-DE in 25 programs.
Among these programs, the magnitude of the
difference is large in 23 program instances, small in 1
program instance, and negligible in 1 program instance.
There is one program _hasNonASCIICode where
statistically significant difference is not observed. In
this program instance the magnitude of the difference is
negligible. FDA-PC is significantly worse than RP-DE
in one program instance, called bubble. In this program
instance the magnitude of the difference is large.

Regarding the comparison between FDA-PC and the
method in Ref. [9], FDA-PC is significantly better than

Table 3 Average path_coverage and standard deviation achieved for each program by FDA-PC and alternative approaches.

Function
σPath_coverage (%) (standard deviation)

FDA-PC RP-DE Method in Ref. [9] Method in Ref. [10] WSA DynaMOSA
min 98.00 (1.48) 70.00 (5.89) 96.00 (0.82) 66.26 (6.62) 65.33 (12.02) 97.80(3.25)
max 97.00 (0.72) 72.00 (4.55) 95.00 (0.61) 93.00 (10.03) 94.26 (2.73) 94.00 (0.17)

checkPositive 100.00 (0.00) 99.00 (0.85) 99.00 (1.03) 100.00 (0.00) 99.76 (0.42) 96.00 (3.48)
checkNonNegative 100.00 (0.00) 98.00 (0.87) 100.00 (0.00) 98.00 (1.03) 99.73 (0.44) 92.00 (2.84)

equal 78.00 (13.62) 3.00 (0.58) 5.00 (0.68) 2.00 (0.41) 43.70 (4.96) 62.80 (3.03)
get_space 35.00 (2.86) 1.00 (0.37) 4.00 (0.86) 1.00 (0.68) 1.40 (0.80) 9.13 (2.04)
entropy 44.00 (9.44) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 30.46 (0.95) 36.63 (4.76)

compare_counts 89.00 (7.27) 22.00 (0.84) 26.00 (0.06) 18.00 (4.10) 31.80 (0.89) 93.00 (9.34)
compare_unique_counts 48.00 (9.24) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 36.00 (12.42)

check_that_int_array_is_sorted 99.00 (0.00) 95.00 (1.32) 99.00 (0.00) 99.00 (1.31) 95.30(1.83) 99.00 (0.76)
normalizeSpace 4.00 (0.82) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.20 (0.4) 0.00 (0.00)

convertSpecialChars 15.00 (4.58) 0.00 (0.51) 0.00 (0.10) 0.00 (0.10) 0.93(0.62) 7.00 (3.68)
bubble 80.00 (3.58) 89.00 (9.91) 91.00 (0.41) 97.00 (10.82) 66.26(6.64) 79.00 (10.37)

find_next_argument 19.00 (1.82) 5.00 (0.72) 8.00 (0.93) 2.00 (0.34) 14.63 (1.04) 9.83 (2.57)
containsAny 100.00 (0.00) 13.00 (2.10) 36.00 (2.17) 11.00 (2.44) 11.36 (2.77) 100.00 (0.00)

convertRemainingAccentCharacters 82.00 (14.10) 0.00 (0.10) 1.00 (0.72) 0.00 (0.10) 0.66 (0.64) 48.00 (14.65)
parsePattern 32.00 (5.03) 7.00 (1.58) 12.00 (0.89) 9.00 (1.89) 24.40 (2.93) 13.73 (0.92)

stringDistance 54.00 (12.00) 2.00 (0.37) 1.00 (0.72) 2.00 (0.86) 12.80 (0.54) 33.85 (0.95)
containsCharacters 91.00 (2.03) 15.00 (1.31) 34.00 (2.37) 29.00 (7.27) 16.90 (1.22) 83.00 (6.93)

_hasNonASCIICode 100.00 (0.00) 98.00 (0.96) 100.00 (0.00) 99.00 (0.75) 99.80 (0.40) 100.00 (0.00)
stripString 93.00 (1.51) 13.08 (1.34) 34.00 (2.06) 26.00 (6.96) 14.76 (1.33) 85.00 (9.00)

toSlashClassName 28.00 (1.34) 1.00 (0.72) 5.00 (0.37) 1.00 (0.55) 1.60 (0.75) 21.00 (1.45)
metricMatch 8.00 (5.62) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 2.26 (0.44) 3.80 (0.47)
parseString 5.00 (0.00) 0.00 (0.40) 1.00 (0.24) 0.00 (0.62) 0.50 (0.50) 1.00 (0.00)
encodePath 97.00 (0.06) 9.00 (2.72) 11.00 (2.34) 20.00 (4.00) 11.13 (2.61) 69.00 (0.42)
toAttributo 3.00 (0.82) 0.00 (0.27) 1.00 (0.00) 0.00 (0.58) 1.13 (1.04) 0.93 (0.24)

getRGB 56.00 (5.03) 2.80 (0.79) 5.00 (0.89) 33.86 (1.44) 3.00 (2.23) 41.48 (5.93)

Mean over programs (%) 61.29 26.48 32.03 29.88 31.29 52.30

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 21

Table 4 Effect size and statistical significance achieved for each program following a comparison of FDA-PC with alternative
approaches.

Function
Â12 statistics (magnitude) (p-value)

FDA-PC vs. RP-DE FDA-PC vs. method
in Ref. [9]

FDA-PC vs. method
in Ref. [10] FDA-PC vs. WSA FDA-PC vs.

DynaMOSA

min 1.00 (large)
 (< 0.001)

0.78 (large)
 (<0.001)

0.47 (negligible)
(0.809)

1.00 (large)
 (< 0.001)

0.62 (small)
 (0.017)

max 1.00 (large)
 (< 0.001)

0.99 (large)
 (< 0.001)

0.62 (large)
 (< 0.001)

0.98 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

checkPositive 0.58 (small)
 (0.025)

0.50 (negligible)
(1.000)

1.00 (large)
(0.008)

0.58 (small)
 (< 0.025)

0.77 (large)
 (< 0.001)

checkNonNegative 0.56 (negligible)
 (0.025)

0.50 (negligible)
(1.000)

0.55 (negligible)
(0.102)

0.61 (small)
 (< 0.001)

1.00 (large)
 (< 0.001)

equal 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.96 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

get_space 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

entropy 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (0.006)

compare_counts 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.72 (medium)
(0.053)

compare_unique_counts 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.74 (large)
 (< 0.001)

check_that_int_array_is_sor
ted

1.00 (large)
 (< 0.001)

0.50 (negligible)
(1.000)

0.50 (negligible)
(1.000)

0.96 (large)
 (< 0.001)

0.50 (negligible)
 (0.025)

normalizeSpace 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

convertSpecialChars 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

bubble 1.00 (large)
(< 0.001)

0.15 (large)
(< 0.001)}

1.00 (large)
(< 0.001)

1.00 (large)
 (< 0.001)

0.64 (small)
 (0.026)

find_next_argument 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (<0.001)

1.00 (large)
 (0.005)

containsAny 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (1.000)

convertRemainingAccentCh
aracters

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

parsePattern 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

stringDistance 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

containsCharacters 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.50 (negligible)
(1.000)

_hasNonASCIICode 0.53 (negligible)
(0.157)

0.5 (negligible)
(1.000)

0.63 (small)
 (0.005)

0.61 (small)
 (0.005)

0.50 (negligible)
(1.000)

stripString 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

toSlashClassName 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

metricMatch 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

parseString 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

encodePath 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

toAttributo 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

getRGB 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

+/=/− 25/1/1 22/4/1 23/3/1 27/0/0 23/3/1
Note: “+” indicates the number of programs where FDA-PC performs better than the compared approach according to the Wilcoxon
test. “=” indicates the number of programs where FDA-PC performs equivalently to the compared approach according to the Wilcoxon
test. “−” indicates the number of programs where FDA-PC performs better than the compared approach according to the Wilcoxon test.

 22 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

the method in Ref. [9] in 22 programs. The magnitude
of the difference is large in the 22 programs. There are
4 programs where statistically significant difference is
not observed. In all these programs, the magnitude of
the difference is negligible. FDA-PC is significantly
worse than the method in Ref. [9] in one program
instance, bubble. In this program instance the
magnitude of the difference is large.

FDA-PC is significantly better than the method in
Ref. [10] in 23 programs. Among these programs, the
magnitude of the difference is large in 22 programs
instances and small in 1 instance. There are 3 programs
where statistically significant difference is not
observed. In these 3 programs, the magnitude of the
difference is negligible in 2 instances and small in 1
instance. FDA-PC is significantly worse than the
method in Ref. [10] in only 1 program, named bubble.
In this program, the magnitude of the difference is
large.

FDA-PC is significantly better than WSA in all the
programs. Among these programs, the magnitude of
the difference is large in 24 programs instances and
small in 3 program instances.

Regarding the comparison between FDA-PC and
DynaMOSA, FDA-PC is significantly better than
DynaMOSA in 23 programs. The magnitude of the
difference is large in 21 programs, small in 2 programs.
There are 3 programs where statistically significant
difference is not observed. The magnitude of the
difference is negligible in all the 3 programs. FDA-PC
is significantly worse than DynaMOSA in 1 program
instance, named compare_counts. In this program
instance, the magnitude of the difference is medium.

To provide more insight into the distribution of the
path coverage scores, Figs. 4−6 highlight that FDA-PC
leads to larger path coverage scores in a majority of the
programs, which is verified by the mean, maximum,
minimum, and median of the average path coverage.

We notice that FDA-PC outperforms RP-DE, the
method in Ref. [9], the method in Ref. [10], WSA, and
DynaMOSA on a large number of programs. We can
conclude that in case of limited search budget, FDA-
PC improves average path coverage scores in programs
under test with many paths, among which some are
infeasible. More specifically, the feedback-directed
mechanism employed in FDA-PC reduces the
probability that a significant portion of the search
budget is consumed in attempting to cover infeasible
paths or difficult paths. Hence, the search effort is

always focused on paths that are more likely to
covered.

6.2 What is the impact of the feedback-directed
mechanism used in FDA-PC?

Table 5 summarizes the results of the average
path_coverage and standard deviation for each
averaged coverage value achieved by FDA-PC, and its
variant No-FDA for each program. To better
understand Table 5, the indicators used in the
experiments are presented as follows:

σ● Path_coverage (%) (standard deviation): The
average path_coverage achieved for each program over
30 independent runs and the standard deviation for
each averaged coverage value.

● Mean over programs: The mean of the average
path_coverage over all the programs.

● Â12 statistics (magnitude) (p-value): The effect
size, the magnitude of the difference, and p-value.

● vs.: It stands for versus. It indicates the comparison
between FDA-PC against No-FDA.

● +/=/−: These signs indicate the number of
programs where FDA-PC performs better than,
equivalently to, and worse than No-FDA, respectively,
according to the Wilcoxon test.

We highlight in bold the programs where FDA-PC
achieved higher average path_coverage than its
derivative No-FDA. It can be observed that FDA-PC
outperformed its variant No-FDA in all the programs.
Besides capturing the mean coverage and standard
deviation, we report the effect size values obtained
from Vargha-Delaney Â12 statistic, the magnitude of
the difference, and p-values for the programs where
FDA-PC is significantly better than its variant No-FDA
according to the Wilcoxon test. FDA-PC achieved
significantly better coverage than No-FDA in all the 27
programs. The magnitude of the difference is large in
all the 27 program instances. To provide more insight
into the distribution of the path_coverage scores,
Figs. 7−9 highlight that FDA-PC achieved higher
path_coverage scores in a majority of the cases, which
is verified by the mean, maximum, minimum, and
median of the average path_coverage. Hence, we can
conclude that the feedback-directed mechanism is a
key component in the overall performance of FDA-PC.

7 Conclusion

We have presented a feedback-directed algorithm for
addressing ATCG-PC (FDA-PC) in programs under

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 23

(a) min
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

40

60

80

100

(b) max
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

60

70

80

90

100

(c) checkPositive
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA
90

92

94

96

98

100

90

92

94

96

98

100

90

92

94

96

98

100

(d) checkNonNegative
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(e) equal
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

0

40

60

80

100

(f) get_space
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)
RP-D

E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

10

0

20

30

40

(g) entropy
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

10
0

20
30

50
40

60

10
0

20
30

50
40

70
60

(g) compare_counts
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

40

60

80

100

(i) compare_unique_counts
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(j) check_that_int_array_is_sorted
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(k) normalizeSpace
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

1

0

2

3

4

5

(l) bubble
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

40

60
50

80
70

90
100

Fig. 4 Box plots for min, max, checkPositive, checkNonNegative, equal, get_space, entropy, compare_counts,
compare_unique_counts, check_that_int_array_is_sorted, normalizeSpace, and bubble.

 24 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

(a) convertSpecialChars
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA
0
5

10

20
15

25
30

(b) find_next_argument
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

5

10

15

20

(c) containsAny
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

0

2

4

6

8

10

(d) convertRemainingAccentCharacters
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(e) stringDistance
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

0

40

60

20

0

40

60 80

100

20

40

60

80

100

20

40

60

80

100

(f) containsCharacters
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)
RP-D

E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(g) _hasNonASCIICode
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA
99.0

99.2

99.4

99.8

99.6

100.0

5

15

10

25

20

(h) stripString
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

40

60

80

100

(i) toSlashClassName
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(g) metricMatch
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

(k) parseString
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

1

0

2

3

4

5

(l) encodePath
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

40

60

80

100

Fig. 5 Box plots for convertSpecialChars, find_next_argument, containsAny, convertRemainingAccentCharacters, stringDistance,
containsCharacters, _hasNonASCIICode, stripString, toSlashClassName, metricMatch, parseString, and encodePath.

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 25

(a) toAttributo
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA
0

2

1

3

4

(b) parsePattern
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)
RP-D

E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

10

20

30

40

(c) getRGB
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

RP-D
E

FDA-P
C

Meth
od

 in
 R

ef.
 [9

]

Meth
od

 in
 R

ef.
 [1

0]
WSA

Dyn
aM

OSA

20

0

40

60

80

100

Fig. 6 Box plots for toAttributo, parsePattern, and getRGB.

Table 5 Mean path_coverage, standard deviation, effect size, and statistical significance achieved by FDA-PC and No-FDA.

Function
σPath_coverage (%) (standard deviation) Â12 statistics (magnitude) (p-value)

for FDA-PC vs. No-FDAFDA-PC No-FDA
min 98.00 (1.48) 48.00 (15.09) <1.00 (large) (0.001)
max 97.00 (0.72) 72.00 (17.47) <1.00 (large) (0.001)

checkPositive 100.00 (0.00) 51.00 (6.06) <1.00 (large) (0.001)
checkNonNegative 100.00 (0.00) 56.00 (9.17) <1.00 (large) (0.001)

equal 78.00 (13.62) 12.00 (3.75) <1.00 (large) (0.001)
get_space 35.00 (2.86) 5.00 (0.66) <1.00 (large) (0.001)
entropy 44.00 (9.44) 9.00 (1.69) <1.00 (large) (0.001)

compare_counts 89.00 (7.27) 15.00 (4.72) <1.00 (large) (0.001)
compare_unique_counts 48.00 (9.24) 8.00 (1.28) <1.00 (large) (0.001)

check_that_int_array_is_sorted 99.00 (0.00) 57.00 (12.00) <1.00 (large) (0.001)
normalizeSpace 4.00 (0.82) 0.00 (0.52) <1.00 (large) (0.001)

convertSpecialChars 15.00 (4.58) 3.00 (0.44) <1.00 (large) (0.001)
bubble 80.00 (3.58) 38.00 (10.06) <1.00 (large) (0.001)

find_next_argument 19.00 (1.82) 14.00 (0.55) <0.98 (large) (0.001)
containsAny 100.00 (0.00) 37.00 (11.17) <1.00 (large) (0.001)

convertRemainingAccentCharacters 82.00 (14.1) 5.00 (1.32) <1.00 (large) (0.001)
parsePattern 32.00 (5.03) 6.00 (1.62) <1.00 (large) (0.001)

stringDistance 54.00 (12.00) 5.00 (2.58) <1.00 (large) (0.001)
containsCharacters 91.00 (2.03) 18.00 (4.32) <1.00 (large) (0.001)

_hasNonASCIICode 100.00 (0.00) 99.00 (2.00) <0.9 (small) (0.001)
stripString 93.00 (1.51) 19.00 (4.20) <1.00 (large) (0.001)

toSlashClassName 28.00 (1.34) 11.00 (1.58) <1.00 (large) (0.001)
metricMatch 8.00 (5.62) 8.00 (3.83) <1.00 (large) (0.001)
parseString 5.00 (0.00) 2.00 (0.42) <1.00 (large) (0.001)
encodePath 97.00 (0.06) 9.00 (3.78) <1.00 (large) (0.001)
toAttributo 3.00 (0.82) 1.00 (0.52) <1.00 (large) (0.001)

getRGB 56.00 (5.03) 22.00 (6.28) <1.00 (large) (0.001)
Mean over programs 61.29 23.33 −

+/=/− − − 27/0/0
Note: “+” indicates the number of programs where FDA-PC performs better than No-FDA according to the Wilcoxon test. “=”
indicates the number of programs where FDA-PC performs equivalently to No-FDA according to the Wilcoxon test. “−” indicates the
number of programs where FDA-PC performs better than No-FDA according to the Wilcoxon test.

 26 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

test with many paths, among which some are infeasible
or difficult to cover. The feedback-directed mechanism
temporarily removes groups of paths from the target
paths when no improvement is observed in subsequent
generations. As such, the search concentrates on the
paths that are more likely to be covered. We have
carried out an empirical study to compare FDA-PC
with other test case generation approaches. Results
show that FDA-PC achieves higher path coverage on
average than alternative approaches RP-DE[4], the
method in Ref. [9], the method in Ref. [10], WSA[2],
and DynaMOSA[1] when many infeasible or difficult

paths exist in a program under test and a limited time is
given to the search. In addition, FDA-PC also achieves
higher coverage levels than its variant without the
feedback-directed mechanism. Therefore, our method
is well suited for generating test cases of programs
under test with many target paths.

However, there are some shortcomings in our work.
The instrumentation of the program under test is done
manually. For future work we plan to build an
automated tool to instrument the program under test. In
addition, while this work focuses only on ATCG-PC,
we plan to include other non-coverage aspects such as

(a) min
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(b) max
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(c) checkPositive
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

40

50

60

70

80

90

100

40

50

60

70

80

90

100

20

40

60

80

100

40

60

80

100

(d) checkNonNegative
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(e) equal
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(f) bubble
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

20

40

60

80

40

20

60

80

100

40

20

60

80

100

(g) get_space
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(h) entropy
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(i) compare_counts
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

10

20

30

40

10

30

20

40

60

50

Fig. 7 Box plots for min, max, checkPositive, checkNonNegative, equal, bubble, get_space, entropy, and compare_counts.

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 27

(a) compare_unique_counts
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(b) check_that_int_array_is_sorted
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)
(c) normalizeSpace

Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

0

1

2

3

4

5

0

5

10

15

20

25

30

10
20
30
40
50
60
70

40

60

80
90

70

50

100

(d) convertSpecialChars
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(e) find_next_argument
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(f) containsAny
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

20

40

60

80

100

16

14

18

20

22

40

20

60

80

100

(g) convertRemainingAccentCharacters
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(h) stringDistance
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(i) containsCharacters
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

0

20

60

40

10

15

25

20

0

40

20

60

100

80

40

20

60

80

100

(j) _hasNonASCIICode
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

(k) stripString
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

(l) toSlashClassName
Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

75

80

85

95

100

90

Fig. 8 Box plots for compare_unique_counts, check_that_int_array_is_sorted, normalizeSpace, convertSpecialChars,
find_next_argument, containsAny, convertRemainingAccentCharacters, stringDistance, containsCharacters, _hasNonASCIICode,
stripString, and toSlashCl-assName.

 28 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

run time and memory usage as objectives to optimize
in future works.

Acknowledgment

This work was supported by the National Natural
Science Foundation of China (No. 61876207), the
Natural Science Foundation of Guangdong Province
(No. 2022A1515011491), and the Fundamental
Research Funds for the Central Universities (No.
2020ZYGXZR014).

References

 A. Panichella, F. M. Kifetew, and P. Tonella, Automated
test case generation as a many-objective optimisation
problem with dynamic selection of the targets, IEEE
Trans. Software Eng., vol. 44, no. 2, pp. 122–158, 2018.

[1]

 G. Fraser and A. Arcuri, Whole test suite generation, IEEE
Trans. Software Eng., vol. 39, no. 2, pp. 276–291, 2013.

[2]

 S. Scalabrino, G. Grano, D. Di Nucci, R. Oliveto, and A.
De Lucia, Search-based testing of procedural programs:
Iterative single-target or multi-target approach? in Proc.
8th Int. Symp. Search Based Software Engineering,
Raleigh, NC, USA, 2016, pp. 64–79.

[3]

 J. R. Horgan, S. London, and M. R. Lyu, Achieving
software quality with testing coverage measures,
Computer, vol. 27, no. 9, pp. 60–69, 1994.

[4]

 H. Huang, F. Liu, Z. Yang, and Z. Hao, Automated test
case generation based on differential evolution with
relationship matrix for iFogSim toolkit, IEEE Trans. Ind.
Inf., vol. 14, no. 11, pp. 5005–5016, 2018.

[5]

 J. Wegener, A. Baresel, and H. Sthamer, Evolutionary test
environment for automatic structural testing, Inf. Software
Technol., vol. 43, no. 14, pp. 841–854, 2001.

[6]

 D. J. Mala, V. Mohan, and M. Kamalapriya, Automated
software test optimisation framework—an artificial bee
colony optimisation-based approach, IET Software, vol. 4,
no. 5, pp. 334–348, 2010.

[7]

 J. C. Lin and P. L. Yeh, Automatic test data generation for
path testing using GAs, Inf. Sci., vol. 131, nos. 1–4,
pp. 47–64, 2001.

[8]

 D. Gong, W. Zhang, and X. Yao, Evolutionary generation
of test data for many paths coverage based on grouping, J.
Syst. Software, vol. 84, no. 12, pp. 2222–2233, 2011.

[9]

 M. A. Ahmed and I. Hermadi, GA-based multiple paths
test data generator, Comput. Oper. Res., vol. 35, no. 10,
pp. 3107–3124, 2008.

[10]

 R. E. Prather and J. P. Myers, The path prefix software
testing strategy, IEEE Trans. Software Eng., vol. SE-13,
no. 7, pp. 761–766, 1987.

[11]

 L. A. Clarke, A system to generate test data and
symbolically execute programs, IEEE Trans. Software
Eng., vol. SE-2, no. 3, pp. 215–222, 1976.

[12]

 N. Tillmann and J. De Halleux, Pex-white box test
generation for. NET, in Proc. Second Int. Conf. Tests and
Proofs, Prato, Italy, 2008, pp. 134–153.

[13]

Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

Approaches under comparison
Pa

th
_c

ov
er

ag
e

(%
)

Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

0

20

40

60

80

1.0

1.5

2.0

2.5

3.0

3.5

4.0

5

10

15

20

2

1

3

4

5

Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

FDA-P
C

NO-FDA

Approaches under comparison

Pa
th

_c
ov

er
ag

e
(%

)

Approaches under comparison

(a) metricMatch (b) parseString (c) encodePath

(d) toAttributo (e) parsePattern (f) getRGB

Pa
th

_c
ov

er
ag

e
(%

)

20

40

60

80

100

20

10

30

40

Fig. 9 Box plots for metricMatch, parseString, encodePath, toAttributo, parsePattern, and getRGB.

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 29

 K. Sen, D. Marinov, and G. Agha, CUTE: A concolic unit
testing engine for C, ACM SIGSOFT Software Eng. Notes,
vol. 30, no. 5, pp. 263–272, 2005.

[14]

 P. Godefroid, N. Klarlund, and K. Sen, DART: Directed
automated random testing, ACM SIGPLAN Not., vol. 40,
no. 6, pp. 213–223, 2005.

[15]

 M. M. Eler, A. T. Endo, and V. H. S. Durelli, Quantifying
the characteristics of Java programs that may influence
symbolic execution from a test data generation
perspective, in Proc. IEEE 38th Annu. Computer Software
and Applications Conf., Vasteras, Sweden, 2014, pp.
181–190.

[16]

 M. Harman, Software engineering meets evolutionary
computation, Computer, vol. 44, no. 10, pp. 31–39, 2011.

[17]

 R. Malhotra and M. Khari, Heuristic search-based
approach for automated test data generation: A survey, Int.
J. Bio-Inspired Comput., vol. 5, no. 1, pp. 1–18, 2013.

[18]

 M. Khari and P. Kumar, An extensive evaluation of
search-based software testing: A review, Soft Comput.,
vol. 23, no. 6, pp. 1933–1946, 2019.

[19]

 S. Shamshiri, J. M. Rojas, G. Fraser, and P. McMinn,
andom or genetic algorithm search for object-oriented test
suite generation, in Proc. Annu. Conf. Genetic Evol.
Comput., Madrid, Spain, 2015, pp. 1367–1374

[20]

 J. M. Rojas, J. Campos, M. Vivanti, G. Fraser, and A.
Arcuri, Combining multiple coverage criteria in search-
based unit test generation, in Proc. 7th Int. Symp. Search
Based Software Engineering, Bergamo, Italy, 2015, pp.
93–108.

[21]

 A. Bouchachia, An immune genetic algorithm for software
test data generation, in Proc. 7th Int. Conf. Hybrid
Intelligent Systems, Kaiserslautern, Germany, 2007, pp.
84–89.

[22]

 N. Zhang, B. Wu, and X. Bao, Automatic generation of
test cases based on multi-population genetic algorithm, Int.
J. Multimedia Ubiquitous Eng., vol. 10, no. 6,
pp. 113–122, 2015.

[23]

 A. Arcuri, M. Z. Iqbal, and L. Briand, Formal analysis of
the effectiveness and predictability of random testing, in
Proc. 19th Int. Symp. Software Testing and Analysis,
Trento, Italy, 2010, pp. 219–230.

[24]

 J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler, and A.
Arcuri, An empirical evaluation of evolutionary
algorithms for unit test suite generation, Inf. Software
Technol., vol. 104, pp. 207–235, 2018.

[25]

 A. Panichella, F. M. Kifetew, and P. Tonella, A large scale
empirical comparison of state-of-the-art search-based test

[26]

case generators, Inf. Software Technol., vol. 104,
pp. 236–256, 2018.
 R. Storn and K. Price, Differential evolution—a simple
and efficient heuristic for global optimization over
continuous spaces, J. Global Optim., vol. 11, no. 4,
pp. 341–359, 1997.

[27]

 J. H. Holland, Adaptation in Natural and Artificial
Systems. Ann Arbor, MI, USA: University of Michigan
Press, 1975.

[28]

 C. C. Michael, G. McGraw, and M. A. Schatz, Generating
software test data by evolution, IEEE Trans. Software
Eng., vol. 27, no. 12, pp. 1085–1110, 2001.

[29]

 B. Korel, Automated software test data generation, IEEE
Trans. Software Eng., vol. 16, no. 8, pp. 870–879, 1990.

[30]

 A. Arcuri, It does matter how you normalise the branch
distance in search based software testing, in Proc. 3rd Int.
Conf. Software Testing, Verification and Validation, Paris,
France, 2010, pp. 205–214.

[31]

 K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast
and elitist multiobjective genetic algorithm: NSGA-II,
IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197,
2002.

[32]

 H. Wang and X. Yao, Corner sort for Pareto-based many-
objective optimization, IEEE Trans. Cybern., vol. 44,
no. 1, pp. 92–102, 2014.

[33]

 A. Panichella, F. M. Kifetew, and P. Tonella,
Reformulating branch coverage as a many-objective
optimization problem, in Proc. IEEE 8th Int. Conf.
Software Testing, Verification and Validation, Graz,
Austria, 2015, pp. 1–10.

[34]

 J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, A
detailed investigation of the effectiveness of whole test
suite generation, Empirical Software Eng., vol. 22, no. 2,
pp. 852–893, 2017.

[35]

 H. Do, S. Elbaum, and G. Rothermel, Supporting
controlled experimentation with testing techniques: An
infrastructure and its potential impact, Empirical Software
Eng., vol. 10, no. 4, pp. 405–435, 2005.

[36]

 G Fraser and A Arcuri, A large-scale evaluation of
automated unit test generation using EvoSuite, ACM
Trans. Software Eng. Methodol., vol. 24, no. 2, p. 8, 2014.

[37]

 W. J. Conover, Practical Nonparametric Statistics., 3rd
ed. Hoboken, NJ, USA: Wiley, 1998.

[38]

 A. Vargha and H. D. Delaney, A critique and
improvement of the CL common language effect size
statistics of McGraw and Wong, J. Educ. Behav. Stat.,
vol. 25, no. 2, pp. 101–132, 2000.

[39]

Stuart Dereck Semujju received the
BEng degree in software engineering from
Makerere University, Kampala Uganda in
2014, and the MEng degree in computer
applications technology from Shenyang
Aerospace University, China in 2017. He
is currently a PhD candidate in software
engineering at the School of Software

Engineering, South China University of Technology,
Guangzhou, China. His research interests include routing in
wireless sensor networks, automated software test case
generation, and evolutionary computation for software testing.

Han Huang received the BEng degree in
information management and information
system from South China University of
Technology (SCUT), Guangzhou, China in
2003, and the PhD degree in computer
science from SCUT in 2008. He is
currently a full professor at the School of
Software Engineering, SCUT. His research

interests include theoretical foundation and application of
evolutionary computation and microcomputation. He is a
distinguished member of CCF, and a senior member of IEEE.

 30 Complex System Modeling and Simulation, March 2023, 3(1): 12−31

Fangqing Liu received the PhD degree in
software engineering from South China
University of Technology, Guangzhou,
China in 2021. He is currently a
postdoctoral researcher in software
engineering at School of Software
Engineering, South China University of
Technology, Guangzhou, China. His

current research interests include automated software test case
generation and evolutionary computation for software testing.

Yi Xiang received the BS and MS degrees
in mathematics from Guangzhou
University, Guangzhou, China in 2010 and
2013, respectively, and the PhD degree in
computer science from Sun Yat-sen
University, Guangzhou, China in 2018. He
is currently an associate professor at the
School of Software Engineering, South

China University of Technology, Guangzhou. His current
research interests include many-objective optimization and
search-based software engineering.

Zhifeng Hao received the BS degree in
mathematics from Sun Yat-sen University,
Guangzhou, China in 1990, and the PhD
degree in mathematics from Nanjing
University, Nanjing, China in 1995. He is
currently a professor at the College of
Science, Shantou University, Shantou,
Guangdong, China. His current research

interests include various aspects of algebra, machine learning,
data mining, and evolutionary algorithms. He is a senior member
of IEEE.

 Stuart Dereck Semujju et al.: Search-Based Software Test Data Generation for Path Coverage Based on a … 31

