
 

Search-Based Software Test Data Generation for Path Coverage
Based on a Feedback-Directed Mechanism
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Abstract: Automatically generating test cases by evolutionary algorithms to satisfy the path coverage criterion

has attracted much research attention in software testing. In the context of generating test cases to cover many

target paths, the efficiency of existing methods needs to be further improved when infeasible or difficult paths

exist in the program under test. This is because a significant amount of the search budget (i.e., time allocated

for the search to run) is consumed when computing fitness evaluations of  individuals on infeasible or difficult

paths. In this work, we present a feedback-directed mechanism that temporarily removes groups of paths from

the  target  paths  when  no  improvement  is  observed  for  these  paths  in  subsequent  generations.  To  fulfill  this

task,  our  strategy  first  organizes  paths  into  groups.  Then,  in  each  generation,  the  objective  scores  of  each

individual  for  all  paths  in  each  group  are  summed  up.  For  each  group,  the  lowest  value  of  the  summed  up

objective  scores  among  all  individuals  is  assigned  as  the  best  aggregated  score  for  a  group.  A  group  is

removed  when  no  improvement  is  observed  in  its  best  aggregated  score  over  the  last  two  generations.  The

experimental  results  show  that  the  proposed  approach  can  significantly  improve  path  coverage  rates  for

programs  under  test  with  infeasible  or  difficult  paths  in  case  of  a  limited  search  budget.  In  particular,  the

feedback-directed mechanism reduces wasting the search budget on infeasible paths or on difficult target paths

that require many fitness evaluations before getting an improvement.
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1    Introduction

Software  testing  is  widely  recognized  as  important
activity  for  improving  software  quality.  Due  to  its
significance,  researchers  and  software  engineers  have
proposed automated test  case  generation techniques  to

improve  the  process  over  the  years.  In  the  context  of
white-box unit-testing,  proposed techniques  have been
widely employed to satisfy structural  coverage criteria
such  as  statement  coverage[1],  branch  coverage[2],  and
path  coverage[3].  This  work  concentrates  on  path
coverage,  a  widely  studied  structural  test  adequacy
criterion.  Ideally,  path  coverage  seeks  to  maximize
coverage  of  all  feasible  control  flow  paths  through  a
program[4−10].

Automated  Test  Case  Generation  based  on  Path
Coverage  (ATCG-PC)  has  attracted  much  research
attention  in  software  testing  in  the  past  decade.
However,  a  major  hurdle  that  prevents  wider
application  of  existing  approaches  is  the  enormous
number  of  paths  in  real-world  programs.  Moreover,
many of these paths can be more difficult to cover than
others or infeasible (i.e., impossible to cover). A path is
infeasible  if  there  does  not  exist  a  program  input  for
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which the path can be traversed. For example, consider
the simple program in Fig. 1a, and some of its paths in
Fig.  1b.  Paths  P1,  P2,  and  P4  (highlighted  in  bold)  in
Fig. 1b, are infeasible paths since the branch ( ) at
Line  6  cannot  be  triggered  because  when “then  else”
branch  (i.e., )  at  Line  3  is  triggered,  variables 
and  contain the same values. A significant amount of
the search time would be wasted during the evaluation
of individuals on infeasible paths P1, P2, and P4. There
can  be  several  factors  causing  paths  to  be  infeasible,
such  as  defensive  programming,  dead  code,  and
semantics  of  the  program,  that  make  it  impossible  to
find a test input traversing the desired path. Hence, the
presence  of  infeasible  paths  wastes  the  search  time
devoted  to  their  coverage.  Unfortunately,  early
detection  of  infeasible  paths  is  a  laborious  task  in
programs with enormous number of paths.

To  address  ATCG-PC,  two  main  techniques  are
mainly  employed:  symbolic  execution[11–16] and
search-based  techniques[17–21].  Symbolic  execution
leverages  constraint  solvers  to  generate  test  cases
systematically  exploring  program  paths.  Although
symbolic  execution  has  been  widely  studied  in
literature,  its  application  is  limited  by  several
challenges  when  addressing  test  case  generation  in
real-world programs such as constraint explosion, paths
related  to  exceptions,  and  dependencies  on  external
libraries.  In  contrast  to  symbolic  execution,  search-
based  techniques,  such  as  Genetic  Algorithms  (GAs),
require  a  fitness  function  to  guide  the  search  toward
optimal solutions covering target paths.

There  are  two  main  search-based  strategies  for
addressing ATCG-PC: single-target (i.e., one-path-at-a-

time)  and  multi-target  approaches.  Single-target
approaches  consider  one  target  path  for  coverage  at  a
time[4, 6, 7, 22, 23].  Despite  their  simplicity,  in  the
presence of an infeasible target path, the search budget
would  be  entirely  wasted.  Furthermore,  single-target
approaches  do  not  take  advantage  of  collateral
coverage,  the  phenomenon  in  which  test  cases
generated  when  covering  a  target  path  accidentally
cover  other  paths.  Recent  research  shows  that  the
performance  of  single-target  approaches  is  equivalent
to or worse than random search if collateral coverage is
not  leveraged[24].  In  contrast  to  single-target
approaches,  multi-target  approaches  consider  all
coverage targets  (e.g.,  paths)  as  objectives to  optimize
simultaneously[8, 9].  As  such,  the  search  budget  is
uniformly distributed across all paths. Recent empirical
studies  by  Campos  et  al.[25] and  Panichella  et  al.[26]

show that multi-target strategies are more effective and
efficient than single-target approaches when attempting
to satisfy many coverage targets (e.g., paths).

Despite the superiority of multi-target strategies over
single-target  approaches,  their  efficiency  needs  to  be
further improved when a program under test has many
difficult or infeasible paths and the time allotted for the
search  is  limited.  A  significant  amount  of  the  search
budget  is  consumed  during  the  evaluation  of
individuals  on  difficult  paths.  Furthermore,  a  large
portion  of  the  search  budget  is  wasted  during  the
evaluation of individuals on infeasible paths.

In  this  work,  we  present  an  approach,  called
Feedback-Directed  Algorithm  for  Path  Coverage
(FDA-PC) that is tailored for addressing ATCG-PC. In
particular, FDA-PC reduces the chances of wasting the
search  time  on  infeasible  paths  or  difficult  paths.  In
particular,  FDA-PC  first  organizes  paths  into  groups.
Then,  the  objective  scores  of  each  individual  for  all
paths in each group are summed up in each generation.
For  each  group,  the  minimum  of  the  summed  up
objective  scores  among  all  individuals  is  assigned  as
the  best  aggregated  score  for  a  group.  A  group  is
removed when no improvement is  observed in its  best
aggregated  score  over  the  last  two  generations.  We
devise this strategy so that the search time is devoted to
evaluating individuals on paths with a higher chance to
be covered.

For  a  clear  exposition  of  the  ideas  discussed  so  far,
this work is organized as follows. Section 2 presents an
overview of search-based software test data generation
and previous work is discussed. Section 3 presents the

 

(b) Example of program’s paths for Fig.1a

(a) Example program

s  int example1 (int x, int y, int z, int q){
1  int max=0; int i=0; int signal=0; 
2  if (x>z) {q=0;}
3  else {y=x;}
4  while (i++<5){
5  if (x<q) {max−−;}
6  else if (x>y) {max=0;}
7  else {max++;}}
8  if (max==4) {signal=1;}
9  else {signal=−1;}
10  return signal;
e    }

P1: 〈s, 1, 3, 4, 6, 4, 7, 8, 4, 5, 4, 6, 4, 10, e〉
P2: 〈s, 1, 3, 4, 6, 4, 7, 4, 5, 4, 5, 4, 9, e〉
P2: 〈s, 1, 2, 4, 5, 4, 5, 4, 5, 4, 5, 4, 10, e〉
P4: 〈s, 1, 3, 4, 6, 4, 7, 4, 5, 4, 6, 4, 9, e〉

 
Fig. 1    Example of a program with infeasible paths.
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formulation  of  ATCG-PC  as  a  many-objective
optimization problem. Section 4 presents the proposed
approach.  Section  5  presents  the  description  of  the
experiments  we  conducted  for  the  evaluation  of  the
proposed algorithm.  Section 6  presents  the  results  and
discussions  from  the  experiments  conducted  while
Section 7 concludes this work.

2    Background

In this section, we present an overview of search-based
software  test  data  generation,  basic  concepts,  and
related work on search-based techniques addressing the
test case generation problem.

2.1    Search-based software test data generation

U n
T = (t1, t2, . . . , tn)

ϕti 1 ⩽ i ⩽ n
ti ϕti ti

U
ϕ = ϕt1 ×ϕt2 × · · ·×ϕtn

Search-based software test data generation relies on the
usage  of  meta-heuristic  optimization  techniques,  such
as  Differential  Evolution  (DE)[27],  GA[28],  to  find
program inputs in the input domain of a program under
test[29].  Suppose that  is  a  program under test  with 
input  variables  represented  by  vector .
Assuming  that  ( )  is  domain  of  the  input
variable ,  then  is  the  set  of  all  values  that  can
hold. The input domain of  is a cross product of each
input  variable’s  domain: .  In
general, a test input (i.e., test case in this context) is an
input  vector  where  each  input  is  a  specific  element  of
the function’s input domain.

Meta-heuristic optimization techniques, such as GAs
evolve  candidate,  test  cases  over  multiple  generations
to  find  test  cases,  also  called  individuals,  covering
structural  targets  (e.g.,  paths)  in  a  program under  test.
The  selection  of  individuals  is  guided  by  fitness
functions,  such  that  individuals  with  good  fitness
values  have  a  higher  probability  to  be  selected  for
reproduction. The individuals selected for reproduction
go through a crossover operator to generate offsprings.
Then, a mutation operator is applied to introduce small
changes to the offsprings. The evolution ends when an
optimal solution is found or the search runs out of the
allocated search budget.

2.2    Basic concepts

G V E s e V E

E ⊆ V ×V
s,e ∈ V

P =< s,n1, . . . ,

A Control Flow Graph (CFG) of a program under test
is  a  tuple  =  ( , , , ),  where  ( , )  is  a  finite
directed  graph; V is  a  set  of  nodes,  with  each  node
being  basic  code  block;  is  the  set  of  edges
connecting the nodes;  are unique entry and exit
nodes of the program, respectively. A path in the CFG
is  a  sequence  of  edge-connected  nodes 

nm,e >
i ⩽ i < m ni,ni+1 ∈ E

 starting  at  unique  node s and  ending  at  node e
such that for all , 1 , ( ) .

P = {π1,π2, . . . ,πm}
π j 1 ⩽ j ⩽ m

P π j |π j|
π j

X = {x1, x2, . . . , xn}
x ∈ X p(x)

x π j p(x) π j

Suppose that  is  the set  of paths in
the CFG of a program under test. A path  ( )
is  the j-th path in .  The length of ,  denoted as ,
refers  to  the  number  of  nodes  in .  Suppose  that

 is a set of individuals (i.e., test cases).
The path traversed by test case  is denoted as .
A test  case  covers path  if  and only if  and 
have successively the same nodes from the entry node
to the exit node.

2.3    Related work

The  application  of  search-based  techniques  to  address
the test case generation problem has been the subject of
extensive research efforts. Proposed approaches can be
categorized into two strategies: single-target and multi-
target approaches.
2.3.1    Single-target strategies
In  single-target  strategies,  search-based  algorithms,
such  as  GAs,  are  run  multiple  times,  once  for  every
target  path  (i.e.,  one-path-at-a-time).  Huang  et  al.[5]

proposed  a  mathematical  model  to  address  ATCG-PC
in  fog  computing  systems  as  a  single-objective
problem.  In  their  work,  a  relationship  matrix  is
incorporated  into  DE  algorithm  to  collect  the
correlation  coefficients  between  test  cases  and  paths
from the  used test  cases.  Bouchachia[22] improved test
case  generation  based  on  path  coverage  by
incorporating immune operators in a GA. Mala et al.[7]

addressed  ATCG-PC  by  using  artificial  bee  colony
optimization-based approach. Their approach combines
both  global  search  and  local  search  to  improve  the
efficiency of finding optimal solutions.  Lin and Yeh[8]

proposed  an  approach  that  extends  hamming  distance
to calculate the fitness of individuals and applied a GA
to search for optimal solutions.

Although single-target  approaches have been widely
applied, they are not well-suited for addressing ATCG-
PC  in  programs  under  test  with  many  paths,  among
which  some  are  infeasible.  When  target  paths  are
infeasible, the entire search budget would be wasted in
attempting to cover them.
2.3.2    Multi-target strategies
Multi-target approaches consider all paths as objectives
to  optimize  simultaneously.  Ahmed  and  Hermadi[10]

were the first to propose a multi-target approach. Their
approach  attempts  to  cover  all  target  paths
simultaneously in order to overcome the disadvantages
of targeting one path at  a  time.  The final  fitness value
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of  an  individual  is  based  on  the  path  it  performs best.
For each path, the individual that has the best objective
score  with  regard  to  that  path  in  comparison  to  other
test cases in the population is given a higher probability
to  be  selected  for  reproduction.  They  employed  a
standard GA to search for test cases covering the paths.

Gong et al.[9] proposed an approach which generates
test data to cover many target paths based on grouping.
In  their  work,  ATCG-PC  is  formulated  as  a  many-
objective  optimization  problem.  They  reduced  the
complexity  of  considering  all  coverage  targets  by
dividing  paths  into  groups  as  sub-optimization
problems to optimize. The formulated sub-optimization
problems  are  optimized  in  parallel  by  evolving  sub-
populations  using  GA.  More  specifically,  each  sub-
population  optimizes  paths  (i.e.,  objectives)  in  a
particular  group.  The  final  fitness  value  of  an
individual  in  a  sub-population  is  taken  as  the  lowest
value  among  all  its  fitness  values  for  the  paths  in  the
particular group.

Fraser  and  Arcuri[2] proposed  a  multi-target
approach,  called  Whole  Test  Suite  (WTS)  which
optimizes  all  coverage  targets  simultaneously  using
GA.  In  their  approach,  an  individual  is  a  set  of  test
cases  (i.e.,  a  test  suite).  As a  fitness  function,  the sum
of all intermediate distances by all test cases in the test
suite  from  all  the  coverage  targets  is  used.  The
computed  sum  of  the  intermediate  distances  is  the
fitness value of the test suite for the coverage targets in
the  program  under  test.  At  the  end  of  the  search,  the
best  solution  in  the  population  is  given  as  the  output
test suite.

m m

Panichella et al.[1] proposed a generic many-objective
optimization  formulation  of  the  test  case  generation
problem. The overall fitness of a test case is measured
based  on  an -dimensional  vector  of  objectives,
where each dimension corresponds to the fitness value
for  a  particular  test  target.  In  their  work,  a  many-
objective  algorithm  called  Dynamic  Many-Objective
Sorting  Algorithm  (DynaMOSA)  is  proposed  to
generate  test  cases  satisfying  the  coverage  targets.
DynaMOSA  narrows  the  search  on  coverage  targets
free of control dependencies. New coverage targets are
iteratively  considered  when  their  dominators  are
covered. The authors argue that the control dependency
graph  concept  employed  in  DynaMOSA  can  be
extended to arbitrary coverage targets (e.g., paths).

Recent  large  scale  studies  by  Campos  et  al.[25] and
Panichella  et  al.[26] show  that:  (1)  multi-target

approaches  are  more  effective  than  single-target
approaches  when  dealing  with  many  coverage  targets,
and  (2)  approaches  employing  an  entirely  many-
objective search (i.e., using many-objective algorithms)
to address the test case generation problem are superior
to  alternative  multi-target  approaches  using  standard
GAs.

Although  multi-target  strategies  are  generally
superior,  their  efficiency needs to be improved further
when  addressing  ATCG-PC  in  programs  under  test
with many paths,  among which some are infeasible or
difficult  to  cover.  Unlike  previous  works,  the  multi-
target strategy employed in our work attempts to focus
on paths  with  higher  chance to  be  covered rather  than
on  infeasible  or  difficult  paths  that  would  consume  a
large  portion  of  the  search  time  during  the  evaluation
of individuals.

3    Problem Formulation

Test case generation can be modeled as an optimization
problem.  As  such,  meta-heuristic  algorithms  can  be
used to search in the input domain of a program under
test  for  test  cases  satisfying  the  structural  targets.  In
this  work,  we  formulate  ATCG-PC as  many-objective
optimization problem in order to consider all paths for
coverage simultaneously.

m
P = {π1, π2, . . . , πm}

X = {x1, x2, . . . , xn}
π1, π2, . . . , πm

m

Suppose  that  there  are  target  paths  for  coverage,
and  is  the  set  of  paths  in  the
program  under  test.  Find  a  set  of  test  cases

,  which  minimize  the  fitness
functions  for  all  paths ,  i.e.,  minimizing
the following  objectives:
 

min f1(x) =
w∑

i=1
d(πi

1, x);

...

min fm(x) =
w∑

i=1
d(πi

m, x)

(1)

π j 1 ⩽ j ⩽ m w
π j d(πi

j, x)

π j

p(x) π j

p(x) < >

x π1 <

>

where  ( ) is the j-th path,  is the number of
branching  nodes  in  the  target  path ;  denotes
the  branch  distance.  The  branch  distance  quantifies
how  far  a  test  case  is  from  solving  the  conditional
expression at the i-th branching node of path , where
the path  traversed by a test case diverges from .
The  branch  distance  is  computed  using  Korel’s
distance function[30].  For  example,  in Fig.  2b,  suppose
that path  =  s, 1, 2, 4, 6, e  (highlighted in bold)
is the path traversed by test input  and path : s, 1,
3,  4,  7, e  is  one  of  the  uncovered  paths.  In Fig.  2b,
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p(x) π1

a > 0
res <= c

dist1 = (0−a)+K
dist2 = (res− c)+K K

dist1
(1/(1+dist1))

π j

x ⟨ f1, f2, . . . , fm⟩

path  diverges  from  by  not  triggering  the
branching  nodes  at  Line  3  ( )  and  at  Line  7
( ).  The  branch  distance  at  Line  3  is  computed
as .  The  branch  distance  at  Line  7  is
computed  as .  is  a  constant.  The
branch  distances  are  normalized  to  a  value  between
[0, 1]. For example  can be normalized as follows:

[31].  The  sum  of  the  accumulated
normalized branch distances is the objective score of a
test case for a particular path . The fitness vector of a
test  case  is  denoted  as ,  where  each
dimension  corresponds  to  the  objective  score  for  an
uncovered path.

4    Feedback-Directed  Algorithm  for
Addressing ATCG-PC

This  section  presents  the  proposed  method,  called
FDA-PC  for  addressing  ATCG-PC.  FDA-PC  is  based
on  NSGA-II[32],  a  widely  known  multi-objective
genetic  algorithm  and  the  corner  sort  algorithm
proposed  in  Ref.  [33]  to  obtain  non-dominated
solutions.  We  highlight  in  bold  the  main  modification
over  NSGA-II  in Algorithm 1.  In  a  nutshell,  FDA-PC
is designed to temporarily remove groups of paths from
the  target  paths  when  no  improvement  is  observed  in
two generations.

m/n m
n

G = {group1,group2, . . . ,groupk}
groupi 1 ⩽ i ⩽ k

groupi

|groupi|

Algorithm  1 provides  a  high-level  pseudo-code  of
FDA-PC.  At  the  beginning,  FDA-PC  organizes  paths
into  groups, where  is the number of paths in the
program under test and  is the population size (Line 2
of Algorithm  1).  Each  path  is  assigned  to  only  one
group.  Suppose  that  is
the set of groups of paths. A group  ( ) is
the i-th group of paths. The number of paths in 
is denoted as . Figure 3 depicts an example of a
program and some of its groups.

 

Algorithm 1　FDA-PC
P = {p1, p2, . . . , pm}

n
Require: Set of paths  in the program under
　　test and population size 

XEnsure: Test suite  covering the paths
H←− ∅1:    // Set of removed groups of paths

G←− m/n2:  Create  groups of paths
X←− ∅3:   // Set of generated test cases (test suite)
r←− 04:   // Current generation
Tr ← n5:   Randomly generate initial population of  individuals

x ∈ Tr6:   for  do
x7:       Evaluate individual  with respect to all paths in all the

　　 groups
x G8:       if  covers a path in any group in  then

9:             Remove covered path from the group
X← X

∪{x}10:             
11:       end if
12:  end for
13: while search budget not consumed do

Cr ← Tr14:       Apply reproduction operations on  // Crossover
　　 and mutation

x ∈Cr15:      for  do
x16:            Evaluate individual  with respect to all paths in all

　　　the groups
x G17:             if  covers a path in any group in  then

18:                        Remove covered path from the group
X← X

∪{x}19:                         
20:             end if

groupi ∈G
21:             Compute sum of objective values for paths in each
　　　　 group 
22:       end for

r >23:        if   0 then
G , ∅24:             if  then

H,G←− G,Cr,r,H25:                    REMOVE-PATHS ( )
Tr

Cr

26:                   Update fitness vector for all individuals in  and
　　　　　　
27:             end if
28:       end if

Pop← Tr
∪

Cr29:       
F ←− Pop G n30:        CORNER-SORT ( , , )
Tr+1←−∅31:       
z←− 032:       

|Tr+1|+ |Fz| ⩽ n33:        while {  do
Fz34:             Perform crowding distance assignment on 

Tr+1←− Tr+1
∪Fz35:             

z←− z+136:             
37:       end while

Fz38:       Sort ( ) // Based on crowding distance
Tr+1←−
F0 n

39:        Add individuals from all fronts to new starting
　　 from  to form the new population of size 

r > 0 G = ∅40:       if  and  then
G←− G,r,H41:              ADD-PATHS ( )

42:       end if
r←− r+143:       

44: end while
45: return X
 

 

(a) Example program

(b) Example of paths for Fig.2a

s  void example2 (int a, int b, int c){
1  intres=0;
2  if (a<=0) {a=a+10;}
3  else {a=a−10;}
4  if (a<=b) {res=a−b;}
5  else {res=a+b;}
6  if (res>c) {res=1;}
7  else {res=0;}
e  }

coveredpath p(x):    <s, 1, 2, 4, 6, e>
uncoveredpath π1:  <s, 1, 3, 4, 7, e>
uncoveredpath π2:  <s, 1, 3, 5, 6, e>

 
Fig. 2    Example of a program and some of its paths.
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G

x ∈Cr groupi ∈G

Next,  FDA-PC  randomly  generates  an  initial
population  (i.e.,  test  cases)  of  size n (Line  5  of
Algorithm 1).  Then,  each test  case is  executed against
the program under test and evaluated on all the paths in
all  the  groups  in  (Lines  6−12  of Algorithm 1).  The
“while” loop at Line 13 evolves the test cases until the
search  budget  is  consumed.  Next,  new  offspring  test
cases  are  created  using  crossover  and  mutation  (Line
14  of Algorithm 1).  Similarly,  the  offspring  test  cases
are  evaluated  on  all  paths  in  all  the  groups  in .  In
addition,  for  each  group’s  paths,  the  corresponding
objective  scores  of  each  individual  for  the  paths  is
summed up. For example, the objective scores of a test
case  for  paths  in  is  computed  as
follows:
 

groupi(x) =
∑

π j∈groupi

f j(x) (2)

π j 1 ⩽ j ⩽ |groupi| groupiwhere  ( ) is the j-th path in .

groupi ∈G

G

Next,  FDA-PC  executes  the  function  REMOVE-
PATHS  in Algorithm  2.  Note  that  in  the  first
generation, this function is not executed. It is executed
in the subsequent generations. The rationale behind this
function is to ensure when no improvement is observed
for  some  groups  of  paths  in  two  generations,  they  are
temporarily  removed from the  target  paths  to  cover  in
the next generation. More specifically, for each group,
the  lowest  value  of  the  summed  up  objective  scores
among all individuals is assigned as the best aggregated
score  for  a  group  (Lines  1−4  of
Algorithm 2) in each generation r. A group is removed
from  if  its  best  aggregated  score  in  the  current
generation is not better than its best aggregated score in
the  previous  generation  (Lines  5−10  of Algorithm  2).
Next,  the  fitness  vector  for  both  the  parent  and
offspring  test  cases  is  updated  by  removing  objective
scores  corresponding  to  the  paths  in  the  groups  that
have been removed (Line 26 of Algorithm 1).

Pop

n
(n−1)

m

(n−1)

m(n−1)
Pop

x

Next,  FDA-PC  selects  candidate  test  cases  (Lines
29−39 of Algorithm 1).  First,  the parent  and offspring
test  cases  are  combined  to  form  an  intermediate
population .  Unlike  NSGA-II  that  uses  the
traditional  non-dominated  sorting  algorithm  to  rank
individuals, we use the corner sort based algorithm[33].
Corner  sort  is  applied  to  save  comparisons  when
obtaining  the  non-dominated  test  cases  (Algorithm 3).
For example, suppose the size of population is , corner
sort  only  requires  objective  comparisons  for
each  objective.  In  traditional  non-dominated  sorting  2
to  objective  comparisons  are  required  for  the
comparison  of  two  individuals  (i.e.,  test  cases).  Only

 comparisons  are  required  for  one  single
objective. The number of objective comparison times is
fewer  than .  The  function  CORNER-SORT
ranks  the  new  population  using  a  preference
procedure. More formally, an test case  is preferred to

 

Group 1

Group 2

(b) Example of groups of paths(a) Example program

s   int example3 (int x, int y, int z, int q){
1   int max=0;
2   int i=0;
3   int signal;
4   if (x>z) {q=0;}
5   else {y=x;}
6   while (i++<5){
7   if (max>q) {max−−;}
8   else if (max<q&&x>y) {q++;}
9   else {max++;}}
10 if (max==3) {signal=1;}
11 else {signal=0;}
e return signal;}

P1: 〈s, 1, 2, 3, 5, 6, 8, 6, 9, 6, 7, 6, 8, 6, 11, s〉
P2: 〈s, 1, 2, 3, 5, 6, 8, 6, 9, 6, 7, 6, 8, 6, 10, e〉
P3: 〈s, 1, 2, 3, 4, 6, 8, 6, 9, 6, 7, 6, 8, 6, 11, e〉
P4: 〈s, 1, 2, 3, 4, 6, 7, 6, 9, 6, 7, 6, 8, 6, 10, s〉

P1: 〈s, 1, 2, 3, 5, 6, 9, 6, 8, 6, 8, 6, 9, 6, 12, e〉
P2: 〈s, 1, 2, 3, 4, 6, 9, 6, 9, 6, 7, 6, 8, 6, 11, e〉
P3: 〈s, 1, 2, 3, 5, 6, 8, 6, 8, 6, 8, 6, 8, 6, 11, e〉
P4: 〈s, 1, 2, 3, 4, 6, 7, 6, 7, 6, 7, 6, 7, 6, 11, e〉

 
Fig. 3    Example of a program and some of its groups.

 

 

Algorithm 2　REMOVE-PATHS
G Cr r

H
Require: : remaining groups of paths; : new offsprings; :
current iteration; : temporarily removed groups

G
H

Ensure:  Updated groups  of  targets  paths  in   and updated
group of removed paths in 

groupi ∈G1: for  do
xmin← Cr

groupi

2: 　  Find test case in  with the lowest sum of objectives
　　 score for 

groupbest
i ← xmin

groupi

3: 　  Get the sum of objective scores of  for
　　
4: end for

groupi ∈G5: for  do

groupbest
i Cr groupbest

i Cr−16:　 if  in  is not better than  in 
G← G groupi G7: 　　  Update  by removing  from 
H←− H

∪
groupi groupi8: 　　  // Add  to set of removed groups

9: 　end if
10: end for

G11: return 
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y π j f j(x) < f j(y)

π j

F0

Pop
F0

a test  case  for path  if  and only if .  As
such, a test case with lowest objective score among all
test  cases  for  a  path  is  assigned  to  the  first  non-
dominated  front  (Lines  4−9  of Algorithm  3).
Similarly,  to  establish  other  fronts,  the  remaining  test
cases  in  are  ranked  using  the  same  procedure
applied  when  assigning  test  cases  to .  After
executing  the  CORNER-SORT  function,  FDA-PC
proceeds  to  implement  the  crowding  distance
procedure  to  give  more  diverse  test  cases  in  the  same
front  a  higher  chance  of  being  selected  in  the  next
population.

G

G

In  the  subsequent  generations,  if  is  empty  after
removing  all  groups  of  paths,  the  function  ADD-
PATHS (see Algorithm 4) adds the removed groups in
the  previous  generations  to  the  target  groups  of  paths
(i.e., added to ).

5    Empirical Evaluation

This section presents the empirical study we conducted
to  evaluate  the  proposed  approach  (FDA-PC).  The
empirical  evaluation  seeks  to  answer  the  following
research questions:

●  RQ1:  How  does  FDA-PC  perform  compared  to
alternative search-based approaches addressing ATCG-
PC in programs under test with many target paths?

This  research  question  investigates  to  what  extent
FDA-PC is able to cover more paths when compared to
alternative approaches addressing ATCG-PC.

● RQ2: What is the effectiveness of FDA-PC without
the feedback-directed mechanism?

This research question aims at  assessing the internal
functioning  of  our  approach.  FDA-PC  incorporates  a
feedback-directed mechanism that temporarily removes
groups  of  paths  when  no  improvement  is  observed  in
subsequent  generations.  Particularly,  we  investigate
whether  or  not  temporarily  removing  groups  of  paths
when  no  improvement  observed  is  enough  to  attain
higher path coverage.

5.1    Baseline comparison

To  answer  the  first  research  question,  we  compared
FDA-PC with a single-target approach and four multi-
target approaches tailored for addressing ATCG-PC:

●  RP-DE[4].  It  is  a  single-target  approach  that
generates test cases to cover target paths. RP-DE uses a
relationship  matrix  to  empower  Differential  Evolution
to address ATCG-PC.

●  Method  in  Ref.  [9].  It  is  a  multi-target  approach
that  evolves  sub-populations  to  generate  test  cases
covering  target  paths.  First,  the  approach  organizes
paths  into  groups.  Then,  the  paths  in  each  group  are
transformed into objectives to optimize simultaneously.
Each group is assigned a sub-population to optimize its
objectives by using a standard GA. The final fitness of
an  individual  (i.e.,  a  test  case)  in  a  sub-population  is
computed as the minimum objective score among all its
objective  scores  in  its  fitness  vector  obtained  from  a
group.

●  Method  in  Ref.  [10].  It  is  a  multi-target  approach
that generates test cases to simultaneously cover many
target  paths.  The  approach  considers  all  paths  as
objectives  to  optimize  simultaneously  in  all
generations.  The  method  employs  a  standard  GA  to
find the optimal  solutions.  The final  fitness  value of  a

 

Algorithm 3　CORNER-SORT
Pop G

n
Require:  :  current  population;  :  remaining  groups  of
paths; and population size 

F PopEnsure: : Ranking assignment of 
j←− 01: 

Pop2: while exists test case in  not ranked do
F j←− ∅3:　

groupi ∈G4:　for each remaining group  do
π ∈ groupi5:for each uncovered path in each group  do

xlowest ←− x Pop
π

6:　  Find test case  in  with lowest objective
score for uncovered target 
F j←− F j

∪{xlowest}7:　
8:end for
9:　end for

Pop←− Pop−F j10:　
F ←− F ∪F j11:　
|F | ⩽ n12:　if  then

j←− j+113:
14:　end if
15: end while

F16: return 

F j F
Pop

Note:  is a subset of  which contains the test cases with the
j-th ranking assignment of .
 

 

Algorithm 4　ADD-PATHS
G r

H
Require: : remaining groups of paths; : current generation;
and : temporarily removed groups

GEnsure: Updated groups of paths in 
groupi ∈ H1: for  do
groupi r2: 　if  not removed in current generation  then
H← H groupi H3: 　　  Update  by removing  from 
G←−G

∪
groupi groupi G4: 　　  //Add  to 

5: 　end if
6: end for

G7: return 
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test case is based on the path it performs best. That is,
the  lowest  objective  score  among  all  the  objective
scores of a test case for all paths is assigned as its final
fitness  value.  Finally,  for  each path,  the  test  case  with
the  lowest  objective  score  in  comparison  to  other
individuals in the population is given higher probability
to be selected for reproduction.

●  DynaMOSA  is  a  many-objective  test  case
generation  algorithm  that  considers  a  subset  of
coverage  targets  at  a  time  based  on  a  control
dependency hierarchy. DynaMOSA is an improvement
of  MOSA algorithm.  MOSA[34] is  many-objective  test
case  generation  algorithm  that  considers  all  coverage
targets  for  optimization  simultaneously.  In
DynaMOSA,  new  coverage  targets  are  considered  as
test targets (e.g., branches) only when their dominators
are  covered  based  on  a  control  dependency  hierarchy.
The  control  dependency  graph  concept  employed  in
DynaMOSA  can  be  extended  to  arbitrary  coverage
targets  such  as  paths.  We  have  extended  the
implementation  of  DynaMOSA and  adapted  it  to  path
coverage.

●  Whole  Test  Suite  (WSA)  with  archive[35] is  an
improvement  of  the  whole  test  suite  generation[2].  In
WTS a GA is used where an individual is a set of test
cases  (i.e.,  a  test  suite).  As a  fitness  function,  the sum
of all  accumulated distances from the coverage targets
(i.e., paths in this context) in the program under test is
used.  Mutation and crossover  operators  are applied on
the combined set of test suites. At the end of the search,
the  best  solution  in  the  population  is  given  as  output
test suite. In addition, in the whole test suite generation,
all  coverage  targets  including  those  already  covered
during  the  search,  are  considered  as  part  of  the
optimization  until  the  search  ends.  WSA  keeps  a  test
archive  for  the  already  satisfied  coverage  targets,  and
focuses  the  search  only  on  those  coverage  targets  not
yet satisfied. We have extended the implementation of
WSA and adapted it to path coverage.

To  answer  the  second  research  question  (RQ2),  we
have  built  a  variant  of  FDA-PC  called  No-FDA.  No-
FDA  is  a  variant  of  FDA-PC  without  the  feedback-
directed mechanism.

5.2    Case study subjects

A  key  factor  of  evaluating  test  case  generation
approaches is the selection of programs under test. Our
subjects consist of 27 programs. All these programs are
sampled  from  the  open  source  repositories,  such  as
Software-artifact  Infrastructure  Repository[36],

SF110[37],  and  Apache  software  foundation.  Some  of
the  programs  are  also  considered  in  related
literature[8, 9].  Details  of  the  programs  are  shown  in
Table 1.

5.3    Parameter setting

We  considered  a  number  of  parameters  to  control  the
performance  of  the  approaches  under  evaluation.
Table  2 shows  the  parameter  settings  used  in  our
implementation of FDA-PC and its variant No-FDA.

For  RP-DE  we  followed  the  same  DE  parameter
settings  in  the  original  work[4] and  assigned  a
maximum search time of 4 minutes. For the method in
Ref.  [9],  the  method  in  Ref.  [10],  WSA[2],  and
DynaMOSA[1],  we  set  a  maximum  search  time  of  4
minutes and followed the same parameter settings used
in their work.

The input variables were sampled from a range of [1,
10  000]  for  all  approaches  (i.e.,  FDA-PC,  RP-DE,  the
method  in  Ref.  [9],  the  method  in  Ref.  [10],  WSA,
DynaMOSA, and No-FDA).

5.4    Experimental procedure

×
×

We run  FDA-PC,  RP-DE,  the  method  in  Ref.  [9],  the
method in Ref. [10], WSA, DynaMOSA, and No-FDA
for each program, collecting the resulting coverage. We
set  a  maximum  search  time  of  4  minutes.  Hence,  the
search stops when the maximum time allocated for the
search  is  consumed.  Due  to  randomness  of  search
algorithms,  different  results  can  be  produced  in
different  runs.  Therefore,  we repeated the experiments
30  times.  Thus,  we  performed  a  total  of  7  (i.e.,  FDA-
PC, RP-DE, the method in Ref. [9], the method in Ref.
[10],  WSA,  DynaMOSA,  and  No-FDA)  27
(programs)  30 (repetitions) = 5670 experiments.

To  answer  research  questions  RQ1  and  RQ2,  we
measure the percentage of covered paths as
 

path_coverage =
Number of covered paths
total paths to be covered

.

We  also  conduct  statistical  analysis  of  the  results.
Statistical  significance  is  measured  by  using  the  non-
parametric Wilcoxon test[38] with a p-value threshold of
0.05.  This  is  done  to  check  whether  the  difference
between  any  two  approaches  under  comparison  is
statistically  significant  or  not.  In  addition,  we  conduct
the Vargha-Delaney (Â12)  statistical  test[39] to  measure
the effect size. The Vargha-Delaney (Â12) statistic also
categorizes  the  obtained  effect  size  into  four  different
magnitude  levels  (i.e.,  negligible,  small,  medium,  and
large).
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6    Result and Discussion

This  section  presents  the  results  and  discussions  to
answer the research questions formulated in Section 5.

6.1    What  is  the  performance  of  FDA-PC
compared  to  alternative  search-based
approaches addressing ATCG-PC?

Table  3 summarizes  the  results  of  the  average
path_coverage  and  standard  deviation  for  each

averaged  coverage  value  achieved  by  FDA-PC,  RP-
DE,  the  method  in  Ref.  [9],  the  method  in  Ref.  [10],
WSA,  and  DynaMOSA  for  each  program.  To  better
understand Table  3,  the  indicators  used  in  the
experiments are presented as follows:

σ●  Path_coverage  (%)  (standard  deviation ):  The
average path_coverage achieved for each program over
30  independent  runs  and  the  standard  deviation  for
each averaged coverage value.

●  Mean  over  programs:  The  mean  of  the  average
path_coverage over all the programs.

We  highlight  in  bold  the  programs  where  FDA-PC
achieves  higher  average  path_coverage  than  RP-DE,
the method in Ref. [9], the method in Ref. [10], WSA,
and  DynaMOSA.  It  can  be  observed  that  FDA-PC
outperforms  RP-DE,  the  method  in  Ref.  [9],  the
method  in  Ref.  [10],  WSA,  and  DynaMOSA  in
majority  of  the  programs.  Furthermore,  FDA-PC
achieved the highest overall mean coverage (61.29%).

 

Table 1    Details of the subjects under study.

Package Repository Function Number of
paths

Number of
inputs

org.apache.commons.math3 —

min 1024 10
max 1024 10

checkPositive 1024 10
checkNonNegative 1024 10

coreNLP-master — entropy 1024 10

sglib-1.0.4 —
compare_counts 2187 14

compare_unique_counts 1024 10
check_that_int_array_is_sorted 1024 11

org.apache.commons.lang — normalizeSpace 2187 7
org.apache.commons.jcs.utils.config — convertSpecialChars 1000 12

org.apache.commons.lang3 —
containsAny 1024 20

convertRemainingAccentCharacters 2187 7
flex_1.1

Software-artifact Infrastructure
Repository

bubble 1024 10
grep_1.2 equal 1024 20
make_1.4 find_next_argument 625 12
sed_2.0 get_space 2187 7

org.apache.commons.cli — parsePattern 1024 5
corina

SF110 Corpus

stringDistance 1024 10
caloriecount containsCharacters 1024 20

liferay _hasNonASCIICode 1024 10
a4j stripString 1024 20

caloriecount toSlashClassName 1024 10
battlecry metricMatch 2187 14

water-simulator parseString 2187 7
lagoon encodePath 1000 3
jaw_br toAttributo 2187 7
liferay getRGB 2401 4

 

 

Table 2    Parameter settings.

Parameter Value
Population size 50 individuals

Crossover probability 0.75
Crossover operator One-point crossover
Mutation operator One-point mutation

Mutation probability 1/h
Maximum search time 4 minutes

Note: h is the number of inputs to the program under test.
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Besides  capturing  the  mean  coverage  and  standard
deviation,  we  report  the  effect  size  values  obtained
from Vargha-Delaney  (Â12)  statistic,  the  magnitude  of
the  difference,  and p-values  in Table  4.  To  better
understand Table  4,  the  indicators  used  in  the
experiments are presented as follows:

● Â12 statistics  (magnitude)  (p-value):  The  effect
size, the magnitude of the difference, and p-value.

● vs.: It stands for versus. It indicates the comparison
between FDA-PC against an alternative approach.

●  +/=/−:  These  signs  indicate  the  number  of
programs  where  FDA-PC  performs  better  than,
equivalently  to,  and  worse  than  the  compared
approach, respectively, according to the Wilcoxon test.

In Table  4,  we  highlight  in  bold  the  effect  size,  the

magnitude  of  the  difference,  and p-value  for  the
programs,  where  FDA-PC  is  significantly  better  than
another approach according to the Wilcoxon test. FDA-
PC is  significantly better  than RP-DE in 25 programs.
Among  these  programs,  the  magnitude  of  the
difference is  large in 23 program instances,  small  in 1
program instance, and negligible in 1 program instance.
There  is  one  program  _hasNonASCIICode  where
statistically  significant  difference  is  not  observed.  In
this program instance the magnitude of the difference is
negligible. FDA-PC is significantly worse than RP-DE
in one program instance, called bubble. In this program
instance the magnitude of the difference is large.

Regarding the comparison between FDA-PC and the
method in Ref. [9], FDA-PC is significantly better than

 

Table 3    Average path_coverage and standard deviation achieved for each program by FDA-PC and alternative approaches.

Function
σPath_coverage (%) (standard deviation )

FDA-PC RP-DE Method in Ref. [9] Method in Ref. [10] WSA DynaMOSA
min 98.00 (1.48) 70.00 (5.89) 96.00 (0.82) 66.26 (6.62) 65.33 (12.02) 97.80(3.25)
max 97.00 (0.72) 72.00 (4.55) 95.00 (0.61) 93.00 (10.03) 94.26 (2.73) 94.00 (0.17)

checkPositive 100.00 (0.00) 99.00 (0.85) 99.00 (1.03) 100.00 (0.00) 99.76 (0.42) 96.00 (3.48)
checkNonNegative 100.00 (0.00) 98.00 (0.87) 100.00 (0.00) 98.00 (1.03) 99.73 (0.44) 92.00 (2.84)

equal 78.00 (13.62) 3.00 (0.58) 5.00 (0.68) 2.00 (0.41) 43.70 (4.96) 62.80 (3.03)
get_space 35.00 (2.86) 1.00 (0.37) 4.00 (0.86) 1.00 (0.68) 1.40 (0.80) 9.13 (2.04)
entropy 44.00 (9.44) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 30.46 (0.95) 36.63 (4.76)

compare_counts 89.00 (7.27) 22.00 (0.84) 26.00 (0.06) 18.00 (4.10) 31.80 (0.89) 93.00 (9.34)
compare_unique_counts 48.00 (9.24) 1.00 (0.00) 0.00 (0.00) 1.00 (0.00) 1.00 (0.00) 36.00 (12.42)

check_that_int_array_is_sorted 99.00 (0.00) 95.00 (1.32) 99.00 (0.00) 99.00 (1.31) 95.30(1.83) 99.00 (0.76)
normalizeSpace 4.00 (0.82) 0.00 (0.00) 1.00 (0.00) 0.00 (0.00) 0.20 (0.4) 0.00 (0.00)

convertSpecialChars 15.00 (4.58) 0.00 (0.51) 0.00 (0.10) 0.00 (0.10) 0.93(0.62) 7.00 (3.68)
bubble 80.00 (3.58) 89.00 (9.91) 91.00 (0.41) 97.00 (10.82) 66.26(6.64) 79.00 (10.37)

find_next_argument 19.00 (1.82) 5.00 (0.72) 8.00 (0.93) 2.00 (0.34) 14.63 (1.04) 9.83 (2.57)
containsAny 100.00 (0.00) 13.00 (2.10) 36.00 (2.17) 11.00 (2.44) 11.36 (2.77) 100.00 (0.00)

convertRemainingAccentCharacters 82.00 (14.10) 0.00 (0.10) 1.00 (0.72) 0.00 (0.10) 0.66 (0.64) 48.00 (14.65)
parsePattern 32.00 (5.03) 7.00 (1.58) 12.00 (0.89) 9.00 (1.89) 24.40 (2.93) 13.73 (0.92)

stringDistance 54.00 (12.00) 2.00 (0.37) 1.00 (0.72) 2.00 (0.86) 12.80 (0.54) 33.85 (0.95)
containsCharacters 91.00 (2.03) 15.00 (1.31) 34.00 (2.37) 29.00 (7.27) 16.90 (1.22) 83.00 (6.93)

_hasNonASCIICode 100.00 (0.00) 98.00 (0.96) 100.00 (0.00) 99.00 (0.75) 99.80 (0.40) 100.00 (0.00)
stripString 93.00 (1.51) 13.08 (1.34) 34.00 (2.06) 26.00 (6.96) 14.76 (1.33) 85.00 (9.00)

toSlashClassName 28.00 (1.34) 1.00 (0.72) 5.00 (0.37) 1.00 (0.55) 1.60 (0.75) 21.00 (1.45)
metricMatch 8.00 (5.62) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 2.26 (0.44) 3.80 (0.47)
parseString 5.00 (0.00) 0.00 (0.40) 1.00 (0.24) 0.00 (0.62) 0.50 (0.50) 1.00 (0.00)
encodePath 97.00 (0.06) 9.00 (2.72) 11.00 (2.34) 20.00 (4.00) 11.13 (2.61) 69.00 (0.42)
toAttributo 3.00 (0.82) 0.00 (0.27) 1.00 (0.00) 0.00 (0.58) 1.13 (1.04) 0.93 (0.24)

getRGB 56.00 (5.03) 2.80 (0.79) 5.00 (0.89) 33.86 (1.44) 3.00 (2.23) 41.48 (5.93)

Mean over programs (%) 61.29 26.48 32.03 29.88 31.29 52.30
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Table 4    Effect size and statistical significance achieved for each program following a comparison of FDA-PC with alternative
approaches.

Function
Â12 statistics (magnitude) (p-value)

FDA-PC vs. RP-DE FDA-PC vs. method
in Ref. [9]

FDA-PC vs. method
in Ref. [10] FDA-PC vs. WSA FDA-PC vs.

DynaMOSA

min 1.00 (large)
 (< 0.001)

0.78 (large)
 (<0.001)

0.47 (negligible)
(0.809)

1.00 (large)
 (< 0.001)

0.62 (small)
 (0.017)

max 1.00 (large)
 (< 0.001)

0.99 (large)
 (< 0.001)

0.62 (large)
 (< 0.001)

0.98 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

checkPositive 0.58 (small)
 (0.025)

0.50 (negligible)
(1.000)

1.00 (large)
(0.008)

0.58 (small)
 (< 0.025)

0.77 (large)
 (< 0.001)

checkNonNegative 0.56 (negligible)
 (0.025)

0.50 (negligible)
(1.000)

0.55 (negligible)
(0.102)

0.61 (small)
 (< 0.001)

1.00 (large)
 (< 0.001)

equal 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.96 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

get_space 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

entropy 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (0.006)

compare_counts 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.72 (medium)
(0.053)

compare_unique_counts 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.74 (large)
 (< 0.001)

check_that_int_array_is_sor
ted

1.00 (large)
 (< 0.001)

0.50 (negligible)
(1.000)

0.50 (negligible)
(1.000)

0.96 (large)
 (< 0.001)

0.50 (negligible)
 (0.025)

normalizeSpace 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

convertSpecialChars 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

bubble 1.00 (large)
(< 0.001)

0.15 (large)
(< 0.001)}

1.00 (large)
(< 0.001)

1.00 (large)
 (< 0.001)

0.64 (small)
 (0.026)

find_next_argument 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (<0.001)

1.00 (large)
 (0.005)

containsAny 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (1.000)

convertRemainingAccentCh
aracters

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

parsePattern 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

stringDistance 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

containsCharacters 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

0.50 (negligible)
(1.000)

_hasNonASCIICode 0.53 (negligible)
(0.157)

0.5 (negligible)
(1.000)

0.63 (small)
 (0.005)

0.61 (small)
 (0.005)

0.50 (negligible)
(1.000)

stripString 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

toSlashClassName 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

metricMatch 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

parseString 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

encodePath 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

toAttributo 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

getRGB 1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

1.00 (large)
 (< 0.001)

+/=/− 25/1/1 22/4/1 23/3/1 27/0/0 23/3/1
Note: “+” indicates the number of programs where FDA-PC performs better than the compared approach according to the Wilcoxon
test. “=” indicates the number of programs where FDA-PC performs equivalently to the compared approach according to the Wilcoxon
test. “−” indicates the number of programs where FDA-PC performs better than the compared approach according to the Wilcoxon test.
 

    22 Complex System Modeling and Simulation, March  2023, 3(1): 12−31

 



the method in Ref. [9] in 22 programs. The magnitude
of the difference is large in the 22 programs. There are
4  programs where  statistically  significant  difference  is
not  observed.  In  all  these  programs,  the  magnitude  of
the  difference  is  negligible.  FDA-PC  is  significantly
worse  than  the  method  in  Ref.  [9]  in  one  program
instance,  bubble.  In  this  program  instance  the
magnitude of the difference is large.

FDA-PC  is  significantly  better  than  the  method  in
Ref.  [10]  in  23  programs.  Among these  programs,  the
magnitude  of  the  difference  is  large  in  22  programs
instances and small in 1 instance. There are 3 programs
where  statistically  significant  difference  is  not
observed.  In  these  3  programs,  the  magnitude  of  the
difference  is  negligible  in  2  instances  and  small  in  1
instance.  FDA-PC  is  significantly  worse  than  the
method in Ref. [10] in only 1 program, named bubble.
In  this  program,  the  magnitude  of  the  difference  is
large.

FDA-PC  is  significantly  better  than  WSA  in  all  the
programs.  Among  these  programs,  the  magnitude  of
the  difference  is  large  in  24  programs  instances  and
small in 3 program instances.

Regarding  the  comparison  between  FDA-PC  and
DynaMOSA,  FDA-PC  is  significantly  better  than
DynaMOSA  in  23  programs.  The  magnitude  of  the
difference is large in 21 programs, small in 2 programs.
There  are  3  programs  where  statistically  significant
difference  is  not  observed.  The  magnitude  of  the
difference is negligible in all the 3 programs. FDA-PC
is  significantly  worse  than  DynaMOSA  in  1  program
instance,  named  compare_counts.  In  this  program
instance, the magnitude of the difference is medium.

To  provide  more  insight  into  the  distribution  of  the
path coverage scores, Figs. 4−6 highlight that FDA-PC
leads to larger path coverage scores in a majority of the
programs,  which  is  verified  by  the  mean,  maximum,
minimum, and median of the average path coverage.

We  notice  that  FDA-PC  outperforms  RP-DE,  the
method in Ref. [9], the method in Ref. [10], WSA, and
DynaMOSA  on  a  large  number  of  programs.  We  can
conclude  that  in  case  of  limited  search  budget,  FDA-
PC improves average path coverage scores in programs
under  test  with  many  paths,  among  which  some  are
infeasible.  More  specifically,  the  feedback-directed
mechanism  employed  in  FDA-PC  reduces  the
probability  that  a  significant  portion  of  the  search
budget  is  consumed  in  attempting  to  cover  infeasible
paths  or  difficult  paths.  Hence,  the  search  effort  is

always  focused  on  paths  that  are  more  likely  to
covered.

6.2    What  is  the  impact  of  the  feedback-directed
mechanism used in FDA-PC?

Table  5 summarizes  the  results  of  the  average
path_coverage  and  standard  deviation  for  each
averaged coverage value achieved by FDA-PC, and its
variant  No-FDA  for  each  program.  To  better
understand Table  5,  the  indicators  used  in  the
experiments are presented as follows:

σ●  Path_coverage  (%)  (standard  deviation ):  The
average path_coverage achieved for each program over
30  independent  runs  and  the  standard  deviation  for
each averaged coverage value.

●  Mean  over  programs:  The  mean  of  the  average
path_coverage over all the programs.

● Â12 statistics  (magnitude)  (p-value):  The  effect
size, the magnitude of the difference, and p-value.

● vs.: It stands for versus. It indicates the comparison
between FDA-PC against No-FDA.

●  +/=/−:  These  signs  indicate  the  number  of
programs  where  FDA-PC  performs  better  than,
equivalently to, and worse than No-FDA, respectively,
according to the Wilcoxon test.

We  highlight  in  bold  the  programs  where  FDA-PC
achieved  higher  average  path_coverage  than  its
derivative  No-FDA.  It  can  be  observed  that  FDA-PC
outperformed  its  variant  No-FDA in  all  the  programs.
Besides  capturing  the  mean  coverage  and  standard
deviation,  we  report  the  effect  size  values  obtained
from  Vargha-Delaney Â12 statistic,  the  magnitude  of
the  difference,  and p-values  for  the  programs  where
FDA-PC is significantly better than its variant No-FDA
according  to  the  Wilcoxon  test.  FDA-PC  achieved
significantly better coverage than No-FDA in all the 27
programs.  The  magnitude  of  the  difference  is  large  in
all  the  27  program instances.  To  provide  more  insight
into  the  distribution  of  the  path_coverage  scores,
Figs.  7−9 highlight  that  FDA-PC  achieved  higher
path_coverage scores in a majority of the cases, which
is  verified  by  the  mean,  maximum,  minimum,  and
median  of  the  average  path_coverage.  Hence,  we  can
conclude  that  the  feedback-directed  mechanism  is  a
key component in the overall performance of FDA-PC.

7    Conclusion

We  have  presented  a  feedback-directed  algorithm  for
addressing  ATCG-PC  (FDA-PC)  in  programs  under
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Fig. 4    Box  plots  for  min,  max,  checkPositive,  checkNonNegative,  equal,  get_space,  entropy,  compare_counts,
compare_unique_counts, check_that_int_array_is_sorted, normalizeSpace, and bubble.
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Fig. 5    Box  plots  for  convertSpecialChars,  find_next_argument,  containsAny,  convertRemainingAccentCharacters,  stringDistance,
containsCharacters, _hasNonASCIICode, stripString, toSlashClassName, metricMatch, parseString, and encodePath.
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Fig. 6    Box plots for toAttributo, parsePattern, and getRGB.

 

 

Table 5    Mean path_coverage, standard deviation, effect size, and statistical significance achieved by FDA-PC and No-FDA.

Function
σPath_coverage (%) (standard deviation ) Â12 statistics (magnitude) (p-value)

for FDA-PC vs. No-FDAFDA-PC No-FDA
min 98.00 (1.48) 48.00 (15.09) <1.00 (large) (  0.001)
max 97.00 (0.72) 72.00 (17.47) <1.00 (large) (  0.001)

checkPositive 100.00 (0.00) 51.00 (6.06) <1.00 (large) (  0.001)
checkNonNegative 100.00 (0.00) 56.00 (9.17) <1.00 (large) (  0.001)

equal 78.00 (13.62) 12.00 (3.75) <1.00 (large) (  0.001)
get_space 35.00 (2.86) 5.00 (0.66) <1.00 (large) (  0.001)
entropy 44.00 (9.44) 9.00 (1.69) <1.00 (large) (  0.001)

compare_counts 89.00 (7.27) 15.00 (4.72) <1.00 (large) (  0.001)
compare_unique_counts 48.00 (9.24) 8.00 (1.28) <1.00 (large) (  0.001)

check_that_int_array_is_sorted 99.00 (0.00) 57.00 (12.00) <1.00 (large) (  0.001)
normalizeSpace 4.00 (0.82) 0.00 (0.52) <1.00 (large) (  0.001)

convertSpecialChars 15.00 (4.58) 3.00 (0.44) <1.00 (large) (  0.001)
bubble 80.00 (3.58) 38.00 (10.06) <1.00 (large) (  0.001)

find_next_argument 19.00 (1.82) 14.00 (0.55) <0.98 (large) (  0.001)
containsAny 100.00 (0.00) 37.00 (11.17) <1.00 (large) (  0.001)

convertRemainingAccentCharacters 82.00 (14.1) 5.00 (1.32) <1.00 (large) (  0.001)
parsePattern 32.00 (5.03) 6.00 (1.62) <1.00 (large) (  0.001)

stringDistance 54.00 (12.00) 5.00 (2.58) <1.00 (large) (  0.001)
containsCharacters 91.00 (2.03) 18.00 (4.32) <1.00 (large) (  0.001)

_hasNonASCIICode 100.00 (0.00) 99.00 (2.00) <0.9 (small) (  0.001)
stripString 93.00 (1.51) 19.00 (4.20) <1.00 (large) (  0.001)

toSlashClassName 28.00 (1.34) 11.00 (1.58) <1.00 (large) (  0.001)
metricMatch 8.00 (5.62) 8.00 (3.83) <1.00 (large) (  0.001)
parseString 5.00 (0.00) 2.00 (0.42) <1.00 (large) (  0.001)
encodePath 97.00 (0.06) 9.00 (3.78) <1.00 (large) (  0.001)
toAttributo 3.00 (0.82) 1.00 (0.52) <1.00 (large) (  0.001)

getRGB 56.00 (5.03) 22.00 (6.28) <1.00 (large) (  0.001)
Mean over programs 61.29 23.33 −

+/=/− − − 27/0/0
Note: “+” indicates the number of programs where FDA-PC performs better than No-FDA according to the Wilcoxon test. “=”
indicates the number of programs where FDA-PC performs equivalently to No-FDA according to the Wilcoxon test. “−” indicates the
number of programs where FDA-PC performs better than No-FDA according to the Wilcoxon test.
 

    26 Complex System Modeling and Simulation, March  2023, 3(1): 12−31

 



test with many paths, among which some are infeasible
or difficult to cover. The feedback-directed mechanism
temporarily  removes  groups  of  paths  from  the  target
paths when no improvement is observed in subsequent
generations.  As  such,  the  search  concentrates  on  the
paths  that  are  more  likely  to  be  covered.  We  have
carried  out  an  empirical  study  to  compare  FDA-PC
with  other  test  case  generation  approaches.  Results
show  that  FDA-PC  achieves  higher  path  coverage  on
average  than  alternative  approaches  RP-DE[4],  the
method  in  Ref.  [9],  the  method  in  Ref.  [10],  WSA[2],
and  DynaMOSA[1] when  many  infeasible  or  difficult

paths exist in a program under test and a limited time is
given to the search. In addition, FDA-PC also achieves
higher  coverage  levels  than  its  variant  without  the
feedback-directed  mechanism.  Therefore,  our  method
is  well  suited  for  generating  test  cases  of  programs
under test with many target paths.

However,  there are  some shortcomings in  our  work.
The instrumentation of  the program under  test  is  done
manually.  For  future  work  we  plan  to  build  an
automated tool to instrument the program under test. In
addition,  while  this  work  focuses  only  on  ATCG-PC,
we plan to include other non-coverage aspects such as
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Fig. 7    Box plots for min, max, checkPositive, checkNonNegative, equal, bubble, get_space, entropy, and compare_counts.
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Fig. 8    Box  plots  for  compare_unique_counts,  check_that_int_array_is_sorted,  normalizeSpace,  convertSpecialChars,
find_next_argument,  containsAny,  convertRemainingAccentCharacters,  stringDistance,  containsCharacters,  _hasNonASCIICode,
stripString, and toSlashCl-assName.
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run  time  and  memory  usage  as  objectives  to  optimize
in future works.
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Fig. 9    Box plots for metricMatch, parseString, encodePath, toAttributo, parsePattern, and getRGB.
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