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Abstract: At  present,  home  health  care  (HHC)  has  been  accepted  as  an  effective  method  for  handling  the

healthcare  problems  of  the  elderly.  The  HHC  scheduling  and  routing  problem  (HHCSRP)  attracts  wide

concentration from academia and industrial communities. This work proposes an HHCSRP considering several

care centers, where a group of customers (i.e., patients and the elderly) require being assigned to care centers.

Then,  various kinds of  services are provided by caregivers for  customers in different  regions.  By considering

the  skill  matching,  customers’ appointment  time,  and  caregivers’ workload  balancing,  this  article  formulates

an  optimization  model  with  multiple  objectives  to  achieve  minimal  service  cost  and  minimal  delay  cost.  To

handle  it,  we  then  introduce  a  brain  storm  optimization  method  with  particular  multi-objective  search

mechanisms  (MOBSO)  via  combining  with  the  features  of  the  investigated  HHCSRP.  Moreover,  we  perform

experiments  to  test  the effectiveness of  the designed method.  Via  comparing the MOBSO with  two excellent

optimizers,  the  results  confirm  that  the  developed  method  has  significant  superiority  in  addressing  the

considered HHCSRP.

Key words: home health care; multi-center service; multi-objective optimization; scheduling and routing problems; brain

storm optimization

1    Introduction

As the improvement  of  living standards and the rising
of  life  expectancy,  population  aging becomes a  global
trend.  Currently,  population  over  sixty  accounts  for
11% of the world, and the number will grow to 22% by

2050[1]. Along with this trend, the demand for medical
resources  increases,  and  thus  the  public  medical
systems face tremendous pressure.

Home health care (HHC) is an emerging paradigm of
medical  care  that  aims  to  assign  caregivers  to  carry
necessary medical equipment from a care center and go
to customers’ home to provide services. This condition
is suitable for the elderly and the patients with chronic
diseases or mobility difficulties[2].

The  logistics  operations  of  HHC  service,  including
customer  assignment  among  caregivers  and  route
optimization  of  caregivers,  motivate  an  optimization
problem,  namely,  HHC  scheduling  and  routing
problems  (HHCSRPs)[3].  Owing  to  the  appearance  of
some  constraints  such  as  the  skill  matching  and
workload  balancing,  the  decision-makers  face  tough
challenges. In reality, several care centers usually have
to  cooperate  with  each  other  to  provide  services  for
customers.  Although  the  problems  with  only  one  care
center  have  been  extensively  studied,  the  attention  of
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researchers  paid  to  the  HHCSRP  with  several  care
centers is rare.

As  a  matter  of  fact,  the  service  process  of  HHC
contains  more  than  one  participant,  such  as  managers,
customers,  and  caregivers.  These  participants  possess
their respective preference. In terms of managers, they
hope to decrease service cost and acquire high profits.
As  far  as  customers  are  concerned,  they  wish  to  be
served  as  their  needs  including  appointment  time  and
service level. With respect to caregivers, they expect to
have a fair working regulation, i.e., workload balancing.
Hence,  the  demands  of  managers,  customers,  and
caregivers  should  be  taken  into  account  when
addressing  such  problems.  Consequently,  it  is
necessary to handle a multi-objective HHCSRP.

Via  comparing  with  the  prior  works,  we  make  the
following contributions:

(1)  A  multi-objective  HHCSRP  with  several  care
centers  is  proposed.  It  considers  the  skill  matching,
customers’ appointment time, and caregivers’ workload
balancing simultaneously.

(2)  A  mixed  integer  programming  model  with
multiple  objectives  including  minimizing  service  cost
and  minimizing  delay  cost  caused  by  tardiness  is
established.

(3)  A  multi-objective  brain  storm  optimization
(MOBSO)  method  is  developed  to  deal  with  the
investigated  problem.  In  it,  the  solution  encoding  and
decoding,  population  initialization,  clustering,  new
individual  generation,  and  selection  approaches  are
particularly  designed  by  fully  taking  into  account  the
problem’s characteristics.

(4)  Via  making  comparisons  between  the  MOBSO
and  the  nondominated  sorting  genetic  algorithm  II
(NSGA-II)[4] and  improved  multi-objective  artificial
bee  colony  (IMOABC)  algorithm[5],  we  confirm  that
MOBSO  can  achieve  better  optimization  results  than
the comparative approaches for handling the HHCSRP.

In  Section  2,  a  brief  summarization  on  the  related
problems  is  made.  Subsequently,  in  Section  3,  the
problem  under  investigation  is  defined  and  its
corresponding model is formulated. Section 4 provides
the framework of the designed approach. Then, Section
5  does  comparison  experiments  and  dissects  the
acquired  results.  Lastly,  in  Section  6,  we  sum  up  this
article and provide promising topics for next work.

2    Related Work

Recently,  the  HHCSRP  with  a  single  care  center  has

been widely investigated[6]. Effective management and
operation of HHCs in medical systems are conducive to
reducing  related  cost  and  improving  service  quality[7].
Additionally, multi-objective scheduling models on the
HHC with complex constraints have gained popularity
among scholars[8]. In terms of the existing literature on
the  HHCSRP,  we  can  see  that  they  possess  the  main
characteristics  as  follows.  (1)  The  academic  field
focused  more  on  the  HHCSRP  with  only  one  care
center[9, 10],  rarely  paying  attention  to  the  cooperation
of several care centers, in spite of its essential industry
applications  in  real  life[11].  (2)  Concerning  the  recent
research in the domain of HHC, scholars have explored
multi-objective  optimization  model.  For  instance,
Decerle  et  al.[12] studied  a  multi-objective  HHCSRP
considering  caregivers’ working  time  and  customer
satisfaction,  while  Goodarzian  et  al.[3] focused  on  an
HHCSRP  with  reaching  travel  cost  minimization  and
service  time  minimization.  (3)  Some  researchers
formulated  multifarious  models  considering  practical
constraints  such  as  the  customers’ and  caregivers’
preferences[13−15],  working  regulations[16, 17],  time
windows[18, 19], or even synchronization[20].

To deal  with the HHCSRP, some studies introduced
various  heuristic  and  metaheuristic  optimization
methods.  Fathollahi-Fard  et  al.[8] employed  a  new
modified  social  engineering  optimizer,  while  Lin
et  al.[16] utilized  a  harmony  search  algorithm.  Next,
considering  caregivers’ workload  balancing,  Yang
et  al.[5] developed  an  enhanced  artificial  bee  colony
approach to optimally handle the concerned HHCSRP.
Later,  in  Ref.  [21],  a  hybridization  of  ant  colony
optimization  and  memetic  methods  was  developed  for
settling the given optimization model.

Via  analyzing  the  aforementioned  works,  it  can  be
found  that  a  great  many  of  researchers  have  taken
advantage  of  metaheuristic  methods  to  tackle  the
HHCSRP.  As  one  of  the  metaheuristic  approaches,
brain  storm  optimization  (BSO)  was  introduced  in
Ref. [22]. The BSO has many advantages such as easy
implementation, strong search ability, and high solution
stability[23].  Recently,  it  has  gained  great  success  in
resolving  diverse  optimization  problems  such  as  flow
shop  scheduling  problems[24, 25] and  vehicle  routing
problems[26].  However,  we can find that  scholars  have
not  yet  applied  the  BSO  to  solve  the  scheduling  and
routing  problems  in  HHC.  Hence,  this  work  is
dedicated  to  investigate  its  applications  for  handling
the HHCSRPs.
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In  this  research,  we  propose  a  multi-objective
HHCSRP  having  several  care  centers,  where  the  skill
matching,  appointment  time  of  customers,  and
workload  balancing  of  caregivers  are  considered  as
limitations.  Moreover,  we  construct  a  mathematical
model  with  multiple  optimization  criteria  to  reach
minimal  service  cost  and  minimal  delay  cost.
Afterwards,  the  multi-objective  BSO  (MOBSO)  is
particularly designed to tackle the proposed problem.

3    Problem Formulation

The  HHCSRP  is  composed  of  two  phases,  which  are
assignment  and  scheduling  phases.  The  assignment
phase  contains  several  care  centers  and  a  group  of
customers that needs to be assigned to care centers. The
scheduling  phase  aims  at  providing  the  services  for
customers at their home by caregivers. Each care center
has a set of caregivers, and a caregiver only belongs to
a care center. For each route, caregivers carry necessary
medical  equipment  and  start  from  their  care  centers.
After  finishing  serving  all  assigned  customers,  they
must go back and put the medical equipment back into
the  care  centers  they  belong  to.  Each  customer  has  a
definite  appointment  time  indicated  as  a  latest  start
service time.

The  caregivers  must  arrive  at  the  served  customers
earlier  than their  appointment  time;  otherwise,  a  delay
cost  occurs.  In  addition,  the  skill  grade  is  used  to
represent  the  serviceability  of  a  caregiver.  The  skill
matching  means  that  a  caregiver  can  only  provide
services  for  those  customers  with  skill  grade
requirements  that  are  lower  than  or  equal  to  the  skill
grade  of  this  caregiver.  To  achieve  the  workload
balancing,  caregivers  have  the  maximum  allowable
visiting number of customers.

Notice  that  if  a  customer  is  served  by  a  caregiver
with  a  higher  skill  grade  than  his  requirement,  the
service  cost  per  unit  time  for  this  customer  will  be
higher.  Because  the  service  time  is  fixed,  the  total
service  cost  for  this  customer  will  become  higher.
Besides,  the  following  constraints  for  the  considered
problem are made: (1) Each customer must be assigned
to  only  one  care  center;  (2)  Each  customer  must  be
provided  service  by  only  one  caregiver;  (3)  Each
customer must be served just once; (4) A caregiver can
be  dispatched  at  most  once;  (5)  A  route  begins  and
ends at  the same care center.  To further clarify, Fig.  1
illustrates the investigated HHCSRP.

R = (O,E) O
Indeed, the model can be viewed as a directed graph

,  where  represents  the  set  of  nodes  and E
denotes  the  set  of  arcs.  The  indices,  parameters,  and
decision variables are defined as follows.

Indices:
i, j:  Node index.
k:　Care center index.
l:　 Caregiver index.
f :　Quantity of customers.
g:　 Quantity of care centers.
hk k:   Quantity of caregivers in care center .
F F = {1,2, . . . , f }:　 Set of customers, .
G G = {1,2, . . . ,g}:　 Set of care centers, .
Hk k

Hk = {1,2, . . . ,hk}
:   Set  of  caregivers  belonging  to  care  center ,

.
O O = F ∪G:　 Set of nodes, .
E E = {(i, j) |i, j ∈ O, i , j}:　 Set of arcs, .
Q Q = {Q1,Q2,Q3}

Q1 < Q2 < Q3

:　  Set  of  skill  grades,  ,  there  are
three skill grades, .

Parameters:
si i:　 Skill grade requirement of customer .
slk l k:    Skill grade of caregiver  in care center .
qi i:　 Service time for customer .
ri i:　 Service cost per unit time for customer .
vilk

i l k
i vilk = slk/si

:  Coefficient  of  service  cost  per  unit  time  for
customer , when caregiver  in care center  is assigned
to serve customer , .
τi j i j:    Travel time from nodes  to .
Li i:    Appointment time of customer .
ck k:    Maximum service capacity of care center .
ω:　 Maximum workload of caregivers.
η:      Delay cost per unit time.
M :    A large positive constant.
Decision variables:
xik i k

xik = 1 xik = 0
:　  If  customer   is  assigned  to  care  center ,

; otherwise, .
yilk i l

k yilk = 1 yilk = 0
:　  If  customer   is  served by caregiver  of  care

center , ; otherwise, .
zi jlk (i, j) l

k zi jlk = 1 zi jlk = 0
:    If  arc  is  covered  by  caregiver  of  care

center , ; otherwise, .
ailk i

l k
:    Arrival  time  at  customer ,  when  he  is  served

by caregiver  of care center .
lilk i

l k
:　 Leave time from customer , when he is served

by caregiver  of care center .
Then,  we  construct  a  multi-objective  optimization

model as below.
 

min

∑
i∈F

∑
l∈Hk

∑
k∈G

qi · vilk · ri · yilk

 (1)
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min

η ·∑
i∈F

∑
l∈Hk

∑
k∈G

max(ailk −Li,0)

 (2)

 ∑
k∈G

xik = 1, ∀i ∈ F (3)

 ∑
i∈F

xik ⩽ ck, ∀k ∈G (4)

 ∑
j∈O

∑
l∈Hk

∑
k∈G

zi jlk = 1, ∀i ∈ F (5)

 ∑
j∈O

zi jlk =
∑
j∈O

z jilk, ∀i ∈ F, ∀l ∈ Hk, ∀k ∈G (6)

 ∑
j∈O

∑
l∈Hk

zk jlk′ =
∑
i∈O

∑
l∈Hk

ziklk′ = 0, ∀k ∈G, ∀k′ ∈G, k , k′

(7)
 ∑

l∈Hk

∑
k∈G

yilk = 1, ∀i ∈ F (8)

 

yilk =
∑
j∈O

zi jlk, ∀i ∈ F, ∀l ∈ Hk, ∀k ∈G (9)

 

y jlk =
∑
i∈O

zi jlk, ∀ j ∈ F, ∀l ∈ Hk, ∀k ∈G (10)

 

ailk ⩾ τki− (1− zkilk) ·M, ∀i ∈ F, ∀l ∈ Hk, ∀k ∈G (11)
 

a jlk ⩾ lilk +τi j− (1− zi jlk) ·M,
∀i ∈ F, ∀ j ∈ F, ∀l ∈ Hk, ∀k ∈G

(12)

 

lilk ⩾ ailk +qi, ∀i ∈ F, ∀l ∈ Hk, ∀k ∈G (13)
 ∑

l∈Hk

∑
k∈G

yilk · slk ⩾ si, ∀i ∈ F (14)

 ∑
i∈F

yilk ⩽ ω, ∀l ∈ Hk, ∀k ∈G (15)

 ∑
j∈F

zi jlk ⩽ 1, ∀i ∈ F, ∀l ∈ Hk, ∀k ∈G (16)

 

xik,yilk,zi jlk ∈ {0,1} ,
ailk ⩾ 0, lilk ⩾ 0,
i, j ∈ O, l ∈ Hk, k ∈G

(17)

where  Formula  (1)  aims  at  minimizing  service  cost.
Formula  (2)  seeks  to  minimize  delay  cost  incurred  by
delay  service.  Equation  (3)  means  that  each  customer
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Fig. 1    Illustration of the problem under consideration.
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must  be  assigned  to  just  one  care  center.  Formula  (4)
ensures that the number of customers assigned to each
care  center  cannot  surpass  its  service  capacity.
Equation (5)  limits  that  each customer must  be served
just  once.  Equation  (6)  imposes  the  flow conservation
constraint  at  each  customer.  Equation  (7)  guarantees
that a route must begin and end at the same care center.
Equation (8) implies that each customer must be visited
by only one caregiver. Equations (9) and (10) describe
the  relationship  of  decision  variables.  Formulas  (11)
and (12) represent the time that a caregiver arrives at a
customer.  Formula  (13)  defines  the  departure  time  of
caregivers  from  customers.  Formula  (14)  implies  that
the  skill  matching  between  caregivers  and  customers
must  be  satisfied.  Formula  (15)  specifies  that  the
workload  of  caregivers  is  no  more  than  a  given
threshold.  Formula  (16)  indicates  that  each  caregiver
can be dispatched at most once. Formula (17) imposes
the value ranges with respect to decision variables.

4    Proposed Multi-Objective Method

The  BSO has  been  demonstrated  to  be  an  outstanding
swarm  intelligence  optimization  algorithm  in  solving
single-objective  optimization  problems[27].  Regarding
the  multiple  objectives  in  the  studied  problem,  this
research  employs  some  special  strategies  in  the
standard BSO.

4.1    Encoding method

m
n

{1,2, . . . ,n}
{n+1,n+2, . . . ,n+m}

{1,2, . . . ,n} {n+1,n+2, . . . ,n+m}

Assume  that  there  are  caregivers  from  several  care
centers  providing  services  for  customers,  we  index
customers  and  caregivers  as  and

, respectively. A solution (namely,
an  individual)  consists  of  elements  in  the  sets  of

 and .  The  customer
assigned to  each caregiver  is  between him/her  and the
next  different  caregiver.  In  the  case  that  there  is  no
customer after a caregiver, it  means that this caregiver
does not serve any customer.

{1,2, . . . ,10} {11,12,13,14}

Considering an example with 4 caregivers  from two
care  centers  providing  services  for  10  customers.  By
employing  the  aforementioned  approach,  the  elements
in the set of  and the set of  are
used  to  construct  solutions.  A  solution  [11, 1, 2, 3, 4,
12, 5, 6, 7, 13, 8, 9, 10, 14] means that Customers 1, 2,
3,  and  4  are  served  by  Caregiver  11  as  their  relative
sequence.  The  remaining  three  routes  can  be  decoded
using the similar approach as well. Note that Caregiver
14 does not serve any customer.

4.2    Population initialization

In this work, a heuristic rule is proposed for population
initialization. Its main procedure is given as follows.

Step  1: Assign  all  customers  to  care  centers
randomly under the constraint given in Formula (4).

Ω

Step  2: Randomly  sort  all  customers  at  each  care
center,  and  then  the  obtained  sequence  is  customer
sequence (defined as ).

Ψ

Step  3: Sort  all  caregivers  at  each  care  center  in
accordance of their  skill  grades as an ascending order,
and the sequence is caregiver sequence (defined as ).

Ω

Ψ

Step 4: Assign the first customer in the  to the first
caregiver  in  the ,  and  check  whether  the  constraints
with  respect  to  the  skill  matching  and  workload
balancing are satisfied in such situation or not.  If  both
limitations (i.e., skill grade and workload) are satisfied,
the  first  customer  is  certainly  assigned  to  the  first
caregiver. Otherwise, check the caregiver one by one as
the  caregiver  sequence  until  a  satisfied  caregiver  is
found, then we arrange him/her to serve this customer.
Following  the  aforementioned  procedure,  we  can
assign the rest of customers to the suitable caregivers.

4.3    Clustering

Deb et al.[4] sorted the population based on individuals’
dominated  relationships.  The  rank  value  of  each
individual  is  equal  to  its  nondomination  level.  In  the
proposed  MOBSO,  all  individuals  having  an  identical
rank  value  are  formed  as  a  cluster.  Consequently,  we
can  partition  all  individuals  in  the  population  into
multiple clusters. The index of each cluster is equal to
the rank values of individuals in the cluster. As a result,
a cluster having a smaller index comprises of the better
individuals.  Noteworthily,  in  the  case  that  all
individuals are nondominated, there is only one cluster
using the proposed method.

4.4    New individual generation

It  is  noted  that  all  individuals  in  the  same  cluster  are
nondominated. For each cluster, this research randomly
chooses  an  individual  from  it  as  its  center,  and  the
others are seen as its normal individuals.

pg

po pt

The  main  process  of  the  designed  MOBSO  is
provided in Algorithm 1, in which  decides whether
one  or  two  clusters  are  chosen,  while  and 
represent center or normal individuals are chosen from
the  selected  cluster(s)  for  generating  new  individuals.
The  binary  selection  approach[28] is  used  to  choose
clusters. It randomly selects two clusters and compares
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them, then reserves the cluster with a smaller index. If
one individual is chosen, the mutation operation will be
executed  for  generating  a  new  individual.  If  two
individuals are selected, the crossover operation will be
performed  for  producing  two  new  individuals  and  the
better  one  will  be  retained.  On  the  condition  that  the
newly-generated  individuals  are  nondominated,  this
work retains any one of them at random.

For  the  mutation  operation,  this  paper  designs  two
mutation  approaches  and  they  are  chosen  with  equal
probability.  They  are  described  in  the  followings:
(1)  Randomly  swap  two  customers  in  the  same  route;
(2) Randomly insert a customer into the other position
in the same route.

P1 P2

P1 P2

ρ1 ρ2

ρ1 ρ2

λ1 λ2

P1

λ2

P1

P2 ρ1 ρ2

λ1 P1

λ2

P2

The  following  approach  is  designed  to  execute  the
crossover  operation.  Let  and  be  two  parent
individuals.  Firstly,  one  caregiver  is  randomly  chosen
and the routes of the selected caregiver in  and  are
marked  as  and ,  respectively.  Secondly,  the
customers in  are compared with those in  and the
different  customers  are  stored  in  and ,
respectively. Thirdly, the customers in  are compared
with  those  in  and  the  same  customers  are  deleted
from . Similarly, the same operation is performed on

.  Fourthly,  and  are  exchanged.  Finally,  the
customers  in  are  inserted  into  the  routes  in 
randomly  under  the  constraints  of  skill  grade  and
workload, and the customers in  are inserted into the
routes in  using the same approach.

Q3 Q1

Q2

Q1

Q2

Q3

Figure  2 displays  an  example  of  generating  two
individuals.  Looking at  it,  the skill  grade of  Caregiver
11 is , the skill grade of Caregiver 12 is , and the
skill  grade  of  Caregivers  13  and  14  is .  Looking  at
Fig.  2,  the  circles  with  different  shadows  are  used  to
distinguish  the  skill  grades  of  the  caregivers.  The
rectangles  indicate  customers  with  skill  grade
requirement  of ,  the  diamonds  indicate  customers
with  skill  grade  requirement  of ,  and  the  hexagons
indicate customers with skill grade requirement of .

4.5    Selection method

N 2N

N

After generating  new individuals, we can obtain 
individuals by combining the individuals in population
and  all  the  newly-generated  individuals.  Afterwards,
this  work  chooses  individuals  by  adopting  the  rank
and crowding distance strategies[4].

5    Experiments and Analysis

To  prove  the  validity  of  the  designed  MOBSO  in
tackling  the  HHCSRP,  NSGA-II  and  IMOABC  are
chosen  for  comparison.  As  one  of  the  popular
evolutionary  methods  on  the  basis  of  the  Pareto  rule,
the  NSGA-II  has  been employed for  resolving vehicle
routing  problems[29−31],  flow  shop  scheduling
problems[32−38],  and  other  multi-objective  optimization
problems[39].  The  IMOABC  was  initially  proposed  to
handle  a  multi-objective  scheduling  and  routing
problem having  a  single  care  center  given  in  Ref.  [5].

 

Algorithm 1　Procedure of MOBSO
pg po pt1 Input: algorithm parameters N, , , and .

ε2 Output: external archive .
3 Begin

pg po pt4　set algorithm parameters, i.e., N, , , and .
N5　generate a population with  individuals.

6　evaluate all individuals in population.
ε7　update .

8　while (a given termination condition is not met) do
9　   construct clusters on the population.
10　   repeat
11　　 if (there are multiple clusters) then

rand(0,1) < pg12　　  if ( ) then
13　　　choose a cluster by using a binary selection method.

rand(0,1) < po14　　　if ( ) then
15　　　  select its center individual and generate a new
　　　　 individual.
16　　　else
17　　　  choose a normal individual and generate a new
　　　　 individual.
18　　　end if
19　　  else
20　　　select two clusters by using a binary selection method.

rand(0,1) < pt21　　　if ( ) then
22　　　  choose two clusters’ center individuals and generate a
　　　　 new individual.
23　　　else
24　　　  select two clusters’ normal individuals and generate a
　　　　 new individual.
25　　　end if
26　　  end if
27　　 else //there is only one cluster.
28　　  choose two individuals randomly from this cluster.
29　　  generate a new individual by using these two
　　　　 individuals.
30　　 end if

N31　   until (  new individuals have been generated).
N32　   select the top  best individuals as next population.

ε33　   update .
34　end while

ε35　output .
36 End.
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In  this  research,  it  is  extended  to  deal  with  the
HHCSRP with more than one care center.

In  this  work,  the  search  processes  of  NSGA-II  and
IMOABC  are  described  as:  The  NSGA-II  chooses
parent individuals by a binary selection strategy on the
basis  of  their  dominated  relationships,  and  generates
new  individuals  by  performing  the  same  crossover
approach  and  mutation  method  as  the  MOBSO.  The
IMOABC  includes  three  stages.  At  the  employed  bee
stage,  a  swap  or  insert  based  approach  is  adopted.
Then,  the  onlooker  bees  utilize  a  roulette  wheel
approach  to  select  individuals  and  employ  a  swap  or

insert  based  method  to  create  new  individuals.  At  the
scout  bee  stage,  the  worse  ones  in  the  population  are
replaced  by  randomly-generated  individuals.  Both  the
rivals  implement  the  same  encoding  method  as  the
proposed MOBSO.

N n

The  computation  complexities  of  MOBSO,  NSGA-
II,  and  IMOABC are  analyzed  at  each  iteration  in  the
worst case, in which  and  represent population size
and the number of customers, respectively.

2N

For  the  MOBSO,  its  basic  operation  and  the  worst
case  complexities  are  analyzed  as  follows.  (1)  The
binary  selection  approach  is  used  to  choose 
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Fig. 2    Schematic view of the designed crossover method.
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O(4N)

N
O(N ·n2)

N
O(2N2)

O(N · (n2+2N +4))
O(N ·n2)

clusters,  and  its  computation  complexity  is .
(2)  The single-point  crossover is  employed to produce

 new  individuals,  and  its  computation  complexity  is
. (3) The rank and crowding distance method is

utilized  to  select  individuals,  and  its  computation
complexity is . Therefore, the overall complexity
of MOBSO in the worst case is , i.e.,

.

N
O(2N)

N

O(N · (n2+n))
O(2N2)

O(N · (n2+n+2)+2N2) O(N ·n2)

For  the  NSGA-II,  its  basic  operation  and  the  worst
case  complexities  are  dissected  as  follows.  (1)  The
binary  selection  approach  is  used  to  select 
individuals,  and  its  computation  complexity  is .
(2)  The  single-point  crossover  and  the  insert-based
mutation  operators  are  utilized  to  generate  new
individuals,  which  have  the  computation  complexity

. (3) The population updating process has
the computation complexity . Hence, the overall
complexity  of  NSGA-II  in  the  worst  case  is

, i.e., .

O(N ·n)

O(N · (N2+n))

O(N ·n)

O(N · (N2+3n)) O(N3)

For  the  IMOABC,  its  basic  operation  and  the  worst
case  complexities  are  analyzed  as  follows.  (1)  The
insert-based method at the employed bee stage has the
computation  complexity .  (2)  The  roulette
wheel  and  insert-based  operations  at  the  onlooker  bee
stage  have  the  computation  complexity .
(3) Creating a new population at the scout bee stage has
the  computation  complexity .  Therefore,  the
overall  complexity  of  IMOABC  in  the  worst  case  is

, i.e., .
By  analyzing  their  computation  complexity  in  the

worst  case,  we  can  infer  that  the  computation
complexity of MOBSO is not very large and it  can be
accepted  as  a  promising  method  to  deal  with  the
studied problem.

5.1    Test instances and performance metrics

This  section  tests  the  performance  of  the  MOBSO
using  12  benchmark  instances  introduced  by  Vidal
et  al.[40] Looking  at Table  1,  the  chosen  Vidal  et  al.’s
instances  consist  of  four  sizes,  and  each  size  contains
three  instances.  These  instances  are  named  as:  S101,

S102, S103, M101, M102, M103, M201, M202, M203,
L101, L102, and L103.

Q = {Q1,Q2,Q3} RQ =

{0.6,0.3,0.1}
Q1 Q2 Q3

In  the  benchmark  instances,  we  calculate  the
Euclidean  distance  between  two  nodes  and  view  it  as
their  travel  time.  There  are  totally  three  skill  grades,
i.e., .  In  all  the  used  instances, 

 is  a  ratio  of  customers  with  skill  grade
requirements of , , and . Besides, the bigger one
between  two  randomly-generated  skill  grades  is
selected as the skill grade of a caregiver. Additionally,
the maximum workload of caregivers is 5.

In  this  work,  we utilize C-metric  and IGD-metric  to
assess the numerical results obtained by three reported
algorithms. They are defined as follows.

C (T,U)
U

C (T,U)

(1) C-metric  can  assess  the  coverage  of  two
nondominated  solution  sets[41].  represents  the
percentage of the quantity of solutions in  dominated
by at least one solution in T, where T and U denote two
solution sets acquired by two methods. Equation (18) is
used to calculate .
 

C (T,U) =
|{u ∈ U |∃t ∈ T : t ≺ u}|

|U | (18)

U
C (T,U) = 0

U C (T,U) = 1

If  no  solution  in T can  dominate  the  solutions  in ,
.  If  the  solutions  in T can  dominate  all  the

solutions in , .
(2)  IGD-metric  is  employed  to  assess  the  overall

performance  including  approximation  and  distribution
of  solutions[42].  The  suggested  formulation  for  this
metric is given in Eq. (19).
 

IGD
(
V,V∗
)
=

1
|V∗|
∑
v∈V∗

dist (v,V) (19)

V∗

dist (v,V)
v V∗ V

V∗

[0,1]

V

where  indicates  an  optimal  solution  set,  and
 implies  the  closest  Euclidean  distance

between  a  solution  in  and  solutions  in .  In  this
work,  we  combine  all  solutions  acquired  by  three
considered approaches, and the nondominated solutions
are  regarded  as .  Additionally,  all  objective  values
are  standardized  into ,  then  the  inverted
generational  distance  (IGD)  values  are  calculated  by
Eq.  (19).  Evidently,  a  smaller  IGD  value  implies  a
better performance of .

5.2    Parameter setting

Parameter  setting  is  of  significance  since  it  can
influence  the  search  ability  of  algorithms.  For
MOBSO,  this  research  does  numerical  experiments
with  different  parameter  combinations,  and
subsequently  uses  the  Taguchi  method[43, 44] to
determine  parameter  values.  MOBSO  contains  the

 

Table  1    Information  of  used  instances  for  the  considered
problem.

Size Number of
centers

Number of
caregivers

Number of
customers

S1 2 10 40
M1 3 15 60
M2 4 20 80
L1 5 25 100
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N pg po ptfollowing pivotal parameters: , , , and . Table 2
lists the levels of each parameter.

100 · f f

In  this  research,  the  maximum  number  of  fitness
evaluations is taken as a termination criterion and it  is
set  to ,  where  is  the  quantity  of  customers.
M101  is  chosen  as  a  test  instance,  and  the  MOBSO
with  each  parameter  combination  is  independently
executed for twenty times.

Looking  at Table  3,  the  average  IGD  values  over
twenty  times  are  treated  as  average  response  variable
(ARV) values.

Table  4 provides  the  effect  rank  of  different

parameters,  and  the  effect  plot  of  user  parameters  is
illustrated in Fig. 3.

N = 80 pg = 0.8 po = 0.6 pt = 0.4
From Fig. 3, the following parameters are used in the

MOBSO: , , , and .
According  to  Refs.  [5, 45],  we  summarize  the

parameter  setting  of  NSGA-II  and  IMOABC  in
Table 5.

100 ·n n

In  the following experiments,  both of  them treat  the
total  number of  fitness  evaluations as  a  stop condition
and  it  is  set  to ,  where  is  the  number  of
customers.

5.3    Numerical results and analysis

Table  6 tabulates  the  numerical  results  regarding C-
metric. For the sake of briefness, the MOBSO, NSGA-
II,  and  IMOABC  are  indicated  as  the “BSO”, “GA”,
and “ABC”,  respectively.  For  each  instance,  we
calculate  the  average  values  over  twenty  independent
runs  in  terms  of C-metric.  Besides,  to  confirm  the
statistical  difference  among  the  MOBSO  and
comparative algorithms, we adopt a statistical method,
i.e.,  the  one-tailed t-test[46].  The  degree  of  freedom  is
set as 38, and the level of significance is set as 0.05. If
the  MOBSO  is  obviously  worse  than,  statistically
equivalent  to,  or  evidently better  than the comparative

 

Table 2    Levels of parameters.

Level N pg po pt

1 20 0.2 0.2 0.2
2 40 0.4 0.4 0.4
3 60 0.6 0.6 0.6
4 80 0.8 0.8 0.8
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Fig. 3    Effect plot of user parameters.

 

 

Table  3    Orthogonal  table  and  experimental  results
obtained by Taguchi method.

No. N pg po pt ARV
1 20 0.2 0.2 0.2 0.6831
2 20 0.4 0.4 0.4 0.6134
3 20 0.6 0.6 0.6 0.5210
4 20 0.8 0.8 0.8 0.5540
5 40 0.2 0.4 0.6 0.7837
6 40 0.4 0.2 0.8 0.6147
7 40 0.6 0.8 0.2 0.5357
8 40 0.8 0.6 0.4 0.3685
9 60 0.2 0.6 0.8 0.3343
10 60 0.4 0.8 0.6 0.4997
11 60 0.6 0.2 0.4 0.6557
12 60 0.8 0.4 0.2 0.5691
13 80 0.2 0.8 0.4 0.3835
14 80 0.4 0.6 0.2 0.3055
15 80 0.6 0.4 0.8 0.5840
16 80 0.8 0.2 0.6 0.4332

 

 

Table 4    Effect rank of different parameters.

Level N pg po pt

1 0.5929 0.5461 0.5967 0.5233
2 0.5756 0.5083 0.6375 0.5053
3 0.5147 0.5741 0.3823 0.5594
4 0.4265 0.4812 0.4932 0.5217

Delta 0.1664 0.0929 0.2552 0.0541
Note: Delta is referred to the value between maximum ARV and
minimum ARV in four levels. The bigger the Delta is, the more
important the parameter is.
 

 

Table 5    Parameters setting of NSGA-II and IMOABC.

Algorithm Parameter setting

NSGA-II
Population size: 100
Crossover rate: 1.0

Mutate rate: 0.8

IMOABC
Number of food resources: 50

Maximum trial value: 2500
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algorithms,  the  obtained  optimization  results  will  be
displayed as “−”, “~”, or “+”.

From Table  6,  we  can  see  that  almost  all  solutions
acquired  by  the  peer  algorithms  can  be  dominated  by
the  nondominated  solution  set  obtained  by  the
proposed MOBSO, whereas  no solution gained by the
comparative approaches can dominate those attained by
the  MOBSO.  On  all  the  employed  instances,  the
statistical  results  uncover  that  the  developed  MOBSO
obviously exceeds both NSGA-II and IMOABC.

Table  7 provides  the  numerical  results  by  three
reported  algorithms  regarding  the  IGD-metric,  where
the  variance  is  denoted  as “var”.  Regarding  each
instance,  the  mean  value  of  the  MOBSO  over  twenty
independent  runs  is  smaller  than  its  rivals.  Therefore,
we are able to declare that the overall performance (i.e.,
approximation  and  distribution)  of  the  nondominated

solution sets attained by the MOBSO is more excellent
than  those  acquired  by  the  NSGA-II  and  IMOABC.
Moreover,  the  statistical  test  demonstrates  that  the
MOBSO  evidently  surpasses  both  NSGA-II  and
IMOABC with respect to all the considered instances.

Furthermore,  in  terms  of  the  first  instance  of  each
type, the boxplot graphs for the IGD-metric using three
studied optimizers are displayed in Fig. 4. From it, we
can  see  that  the  designed  MOBSO  algorithm  is  more
stable  for  dealing  with  the  given  problem  compared
with NSGA-II and IMOABC.

Via summing up the given analysis and discussion on
the numerical results, we can affirm that the developed
MOBSO has  superior  performance  to  the  comparative
approaches in solving the studied problem.

5.4    Case study

To  further  confirm  the  effectiveness  of  the  designed

 

Table 6    Comparisons of three reported optimizers on C-metric.

Instance C
(BSO, GA)

C
(GA, BSO)

t-
test

C
(BSO, ABC)

C
(ABC, BSO)

t-
test

S101 0.9955 0.0000 + 0.9833 0.0000 +
S102 0.6784 0.0000 + 0.7375 0.0000 +
S103 0.8862 0.0000 + 0.8708 0.0000 +
M101 0.9074 0.0000 + 0.8583 0.0000 +
M102 0.8190 0.0000 + 0.8500 0.0000 +
M103 0.9950 0.0000 + 1.0000 0.0000 +
M201 0.9850 0.0000 + 1.0000 0.0000 +
M202 0.9152 0.0000 + 0.8983 0.0000 +
M203 1.0000 0.0000 + 1.0000 0.0000 +
L101 0.9330 0.0000 + 0.9750 0.0000 +
L102 1.0000 0.0000 + 1.0000 0.0000 +
L103 0.9335 0.0000 + 0.9000 0.0000 +

 

 

Table 7    Comparisons of three considered algorithms on IGD-metric.

Instance
MOBSO NSGA-II IMOABC

Mean Var Mean Var t-test Mean Var t-test
S101 0.0730 0.0008 0.8853 0.0028 + 0.9988 0.0056 +
S102 0.1110 0.0043 0.8228 0.0012 + 0.9474 0.0009 +
S103 0.1564 0.0027 0.7746 0.0024 + 0.9369 0.0031 +
M101 0.0866 0.0025 0.8994 0.0009 + 0.9982 0.0009 +
M102 0.1081 0.0062 0.8785 0.0009 + 0.9853 0.0010 +
M103 0.0654 0.0019 0.8888 0.0022 + 1.0415 0.0031 +
M201 0.0683 0.0014 0.8718 0.0017 + 1.0345 0.0054 +
M202 0.0702 0.0014 0.8691 0.0012 + 0.9912 0.0005 +
M203 0.0442 0.0003 0.8834 0.0009 + 1.0194 0.0022 +
L101 0.0875 0.0052 0.8861 0.0010 + 1.0252 0.0012 +
L102 0.0464 0.0002 0.9323 0.0013 + 1.0861 0.0036 +
L103 0.0756 0.0013 0.8939 0.0006 + 1.0078 0.0005 +
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approach, this work offers a case study. There are two
care centers (“A” and “B”) providing services for forty
customers.

qi Li

si

The coordinates of “A” and “B” are (53.5, 69.5) and
(66,  68),  respectively. Table  8 gives  the  basic
information of customers including coordinates, service
time  ( ),  appointment  time  ( ),  and  skill  grade
requirement  ( ). Figure  5 illustrates  the  location  of
customers.

Table 9 lists the nondominated solutions acquired by
the  developed  method.  By  observing Table  9,  we  can
infer that eight nondominated solutions are obtained by
the  MOBSO  which  can  provide  well-informed
decisions for managers and engineers.

6    Conclusion

To  be  more  realistic,  this  article  considered  multiple
care centers and presented a multi-objective HHCSRP.
To  ensure  customers’ and  caregivers’ satisfaction
simultaneously, the skill matching, appointment time of
customers,  and workload balancing of caregivers were
taken into account. Moreover, this research formulated
an  optimization  model  with  multiple  objectives  to
minimize  service  cost  and  delay  cost.  To  handle  the
two  conflicting  objectives,  a  multi-objective  brain
storm  optimization  method  was  introduced.  Finally,
this study implemented numerous experiments and the

analysis of the obtained optimization results suggested
that the better solutions can be attained by the designed
approach in tackling the HHCSRP compared with two
prominent algorithms.

Future  research  will  consider  the  following  two
directions:  (1)  To  achieve  sustainability,  green
objectives  can be added into our  HHC scheduling and
routing  model[47−50];  (2)  To  improve  the  performance
of the designed MOBSO, machine learning approaches
can be developed[51−54].

 

Table  8    Customer  information  for  the  considered  case
study.

No. Coordinate qi Li si No. Coordinate qi Li si

1 (53.8, 66.8) 20 48 Q1 21 (56.0, 61.6) 30 36 Q1

2 (49.4, 65.9) 20 64 Q1 22 (67.0, 62.3) 30 53 Q1

3 (70.6, 69.8) 20 39 Q1 23 (52.6, 61.5) 30 39 Q1

4 (57.9, 69.0) 20 32 Q1 24 (55.1, 71.3) 30 62 Q1

5 (66.1, 63.4) 20 43 Q1 25 (63.1, 66.3) 30 43 Q2

6 (50.8, 72.0) 20 50 Q1 26 (62.8, 62.9) 30 49 Q2

7 (65.6,72.2) 20 57 Q1 27 (67.7, 64.7) 30 65 Q2

8 (47.1, 63.3) 20 61 Q1 28 (62.0, 69.4) 30 48 Q2

9 (57.4, 65.7) 20 62 Q1 29 (66.2, 76.0) 30 59 Q2

10 (71.2, 64.8) 20 47 Q1 30 (70.4, 75.8) 30 66 Q2

11 (70.0, 68.2) 30 55 Q1 31 (67.5, 75.7) 40 49 Q2

12 (60.7, 69.5) 30 58 Q1 32 (63.5, 75.9) 40 55 Q2

13 (68.1, 69.8) 30 43 Q1 33 (68.2, 72.5) 40 62 Q2

14 (51.0, 68.4) 30 59 Q1 34 (57.5, 72.6) 40 58 Q2

15 (48.1, 68.7) 30 44 Q1 35 (55.2, 65.0) 40 52 Q2

16 (70.3, 72.6) 30 59 Q1 36 (59.0, 66.5) 40 69 Q2

17 (60.9, 72.7) 30 58 Q1 37 (49.9, 74.4) 40 47 Q3

18 (53.0, 65.2) 30 39 Q1 38 (70.9, 60.0) 40 36 Q3

19 (70.5, 63.5) 30 43 Q1 39 (50.6, 61.7) 40 52 Q3

20 (59.9, 61.7) 30 48 Q1 40 (53.5, 75.8) 40 43 Q3
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Fig. 4    Boxplot  graphs  of  four  instances  obtained  by  three
studied algorithms.
 

 

 
Fig. 5    Location map for the customers and care centers.
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Table 9    Nondominated solutions.

No. Caregiver Route Service cost Delay cost No. Caregiver Route Service cost Delay cost

1

1 A-24-18-23-20-15-A

2415 1548.16 5

1 A-24-18-23-20-15-A

2445 1468.5

2 A-1-9-7-16-3-A 2 A-1-12-9-17-22-A

3 A-8-2-28-31-A 3 A-8-2-28-31-A

4 A-25-36-39-37-A 4 A-25-36-39-37-A

5 A-14-29-32-A 5 A-14-29-32-A

6 B-17-12-13-11-22-B 6 B-13-3-11-7-16-B

7 B-5-10-19-21-6-B 7 B-5-10-19-21-6-B

8 B-4-35-30-B 8 B-4-35-30-B

9 B-38-34-40-B 9 B-38-34-40-B

10 B-26-27-33-B 10 B-26-27-33-B

2

1 A-18-23-20-24-15-A

2430 1478.95 6

1 A-1-9-20-24-15-A

2505 1328.13

2 A-1-6-2-8-9-A 2 A-6-18-2-23-8-A

3 A-28-3-16-31-A 3 A-28-12-17-31-A

4 A-25-36-39-37-A 4 A-25-36-39-37-A

5 A-14-29-32-A 5 A-14-29-32-A

6 B-22-11-13-17-12-B 6 B-13-3-11-7-16-B

7 B-7-5-10-19-21-B 7 B-5-10-19-21-22-B

8 B-4-35-30-B 8 B-4-35-30-B

9 B-34-40-38-B 9 B-38-34-40-B

10 B-26-27-33-B 10 B-26-27-33-B

3

1 A-24-18-23-20-15-A

2475 1393.57 7

1 A-21-24-17-12-14-A

2400 1611.2

2 A-2-1-9-6-8-A 2 A-4-1-2-8-23-A

3 A-28-12-17-31-A 3 A-6-34-29-33-31-A

4 A-25-36-39-37-A 4 A-39-36-A

5 A-14-29-32-A 5 A-40-32-A

6 B-13-3-11-7-16-B 6 B-11-13-16-22-20-B

7 B-5-10-19-21-22-B 7 B-9-18-15-19-10-B

8 B-4-35-30-B 8 B-5-25-26-B

9 B-38-34-40-B 9 B-27-28-7-35-37-B

10 B-26-27-33-B 10 B-30-3-38-B

4

1 A-1-9-20-24-15-A

2460 1449.88 8

1 A-14-18-21-19-16-A

2490 1378.98

2 A-6-18-8-2-23-A 2 A-9-1-8-15-24-A

3 A-28-3-16-31-A 3 A-4-7-32-34-A

4 A-25-36-39-37-A 4 A-37-39-A

5 A-14-29-32-A 5 A-28-30-31-A

6 B-13-22-11-17-12-B 6 B-11-12-17-22-B

7 B-7-5-10-19-21-B 7 B-20-23-2-6-10-B

8 B-4-35-30-B 8 B-3-13-33-38-B

9 B-38-34-40-B 9 B-5-27-29-40-B

10 B-27-26-33-B 10 B-25-26-35-36-B
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