
 

Brain-Controlled Multi-Robot at Servo-Control Level Based on
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Abstract: Using  a  brain-computer  interface  (BCI)  rather  than  limbs  to  control  multiple  robots  (i.e.,  brain-

controlled multi-robots) can better assist people with disabilities in daily life than a brain-controlled single robot.

For  example,  one  person  with  disabilities  can  move  by  a  brain-controlled  wheelchair  (leader  robot)  and

simultaneously  transport  objects  by  follower  robots.  In  this  paper,  we  explore  how  to  control  the  direction,

speed, and formation of a brain-controlled multi-robot system (consisting of leader and follower robots) for the

first  time and propose a novel multi-robot predictive control  framework (MRPCF) that can track users'  control

intents  and  ensure  the  safety  of  multiple  robots.  The  MRPCF  consists  of  the  leader  controller,  follower

controller, and formation planner. We build a whole brain-controlled multi-robot physical system for the first time

and test the proposed system through human-in-the-loop actual experiments. The experimental results indicate

that  the proposed system can track users'  direction,  speed,  and formation control  intents  when guaranteeing

multiple  robots’ safety.  This  paper  can  promote  the  study  of  brain-controlled  robots  and  multi-robot  systems

and provide some novel views into human-machine collaboration and integration.
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1    Introduction

With the  constant  progress  of  science  and technology,
the quality of life of people has increasingly improved.
However,  society  is  also  facing  the  problem  of
increasing  population  aging.  Moreover,  the  number  of
patients  with  motor  dysfunction  increases.  Paralysis,
amputation, and loss of central nervous system function
caused by these diseases or other reasons make patients
often need the care of others in their daily lives, which
brings  heavy  pressure  and  burden  to  patients,  their

families, and society. Therefore, it is pretty meaningful
to develop a technology that can improve the self-care
ability of these people.

Brain-computer  interfaces  (BCIs)  have  been
developed  to  address  the  above-mentioned  living
problems  for  disabled  people.  BCIs  can  provide  a
direct  communication  channel  between  the  human
brain and physical devices via interpreting users’ brain
signals into commands[1]. This new interactive method
brings  new  ideas  and  technologies  to  help  disabled
patients and has broad application prospects.

A brain-controlled mobile robot was first put forward
in 2004[2]. Since then, more and more researchers have
devoted themselves to promoting its development, and
brain-controlled  mobile  robots  have  continued  to
progress.  At  the  initial  stage,  researchers  focused  on
building a brain-controlled robot via a BCI to interpret
brain signals into commands to control a robot directly.
The  class  of  brain-controlled  robots  is  called  direct-
brain-control  robots.  Tanaka  et  al.[3] put  forward  a
brain-controlled  wheelchair  in  2005,  and  the  subjects
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can  generate  commands  to  control  the  wheelchair
direction  through  motor  imagery  (MI).  In  2008,  Choi
and  Cichocki[4] also  designed  a  brain-controlled
wheelchair  based  on  MI,  which  can  control  the
wheelchair to turn left, turn right, and go straight. Pires
et al.[5] developed a brain-controlled wheelchair system
based on P300 in 2008. The visual stimuli consisting of
randomly augmented eight arrows were used to choose
the  direction  in  which  the  wheelchair  was  turned.  Lee
et  al.[6] developed  a  brain-controlled  mobile  robot
system  using  steady-state  visual  evoked  potential
(SSVEP) in 2012. The subjects can control the mobile
robot  to  turn  right  and  left  and  move  forward  by
watching three visual stimuli displayed on the screen.

For  a  direct-brain-control  robot,  its  computational
complexity  and  cost  are  low.  However,  the  kind  of
brain-controlled robots has some problems in practical
application. For example, subjects who directly control
the  robot  for  a  long  time  can  feel  tired  easily,  which
can impair the control performance. In addition, safety
is  a  big  problem  for  direct-brain-control  robots.
Therefore,  some  researchers  have  proposed  to
introduce  a  certain  level  of  autonomous  robot  control,
forming  a  shared  control  strategy  to  overcome  the
weaknesses  of  direct  brain-controlled  robots.  Iturrate
et al.[7] developed a brain-controlled robotic wheelchair
that  first  selects  a  destination  through  P300  BCI,  and
then  the  autonomous  driving  system  is  in  charge  of
controlling  the  wheelchair  to  reach  the  selected
destination.  Deng  et  al.[8] developed  the  brain  state
evaluation network (BSE-NET), which can balance the
control  weight  between  human  users  and  robot
autonomy.  Furthermore,  Bi  et  al.  first  applied  model
predictive control with a BCI to develop a brain-control
robot[9−11]. Liu et al. designed several control strategies
to make sure the safety of brain-controlled robots[12, 13].

However,  the  existing  studies  on  brain-controlled
robots at the servo-control level focus on controlling a
single  robot.  With  the  advancement  of  wireless
communication  technology  and  artificial  intelligence
technology,  the  cooperation  between  robots  has
become  possible.  Multi-robot  systems  can  work
together,  perform  complex  tasks,  and  significantly
improve  work  efficiency[14, 15].  The  brain-controlled
multi-robot  system  also  has  more  significant
advantages in assisting the disabled.  For example,  one
person  with  disability  can  move  by  using  a  brain-
controlled  wheelchair  (leader  robot)  and

simultaneously  carry  daily  necessities  by  follower
robots.  Such  multi-robot  systems  can  better  assist
patients in daily life.

Although  there  are  some  existing  studies  on  brain-
controlled  multi-robots,  they  all  use  task-level  control
methods.  Dai  et  al.  designed  different  types  of  shared
control multi-robot control systems, in which they used
SSVEP  BCIs  to  select  the  task  of  the  system  to
improve  the  overall  work  efficiency[16, 17] .  Kirchner
et al.[18] applied a BCI to the level of task engagement,
improving  user  support  and  the  efficiency  of
interaction.  Compared  with  the  task-level  system,  the
servo-level brain-controlled multi-robot framework can
make the operators control the robots more freely.

Considering the potential application values of brain-
controlled  multi-robot  systems  at  the  servo-control
level,  in  our  previous  conference  paper[19],  we
introduced a BCI into a multi-robot system to develop
a  brain-controlled  multi-robot  system.  However,  the
brain-controlled  multi-robot  system  is  simple  and
basic.  Users  cannot  control  the  formation.  In  addition,
the previous work only initially verified the feasibility
of  the  multi-robot  system  in  a  simple  simulation
environment.

Thus, expanded from our previous work in Ref. [19],
this paper explores how to control the direction, speed,
and  formation  of  a  multi-robot  system  via
electroencephalographic  (EEG)  signals  and  builds  a
complete  brain-controlled  multi-robot  simulation  and
physical  system.  In  particular,  we  propose  a  novel
multi-robot  predictive  control  framework  (MRPCF),
which can track users’ control intentions and ensure the
safety  of  multi-robots.  The  MRPCF  consists  of  the
leader  controller,  follower  controller,  and  formation
planner.  The  leader  controller  can  track  users’
intentions  (including  left  turn,  right  turn,  acceleration,
deceleration,  start,  and  stop)  and  ensure  the  safe
operation of the robot itself. The formation planner can
track users’ formation control intention, realize the safe
transformation  of  multi-robot  formation,  output  the
optimized  tracking  target  positions  to  the  follower
controller,  and  ensure  no  collision  between  follower
robots.  The  follower  controller  can  track  the  target
positions and ensure the safety of the follower robots.

The new contributions of this paper are as follows:
(1) It is the first to investigate brain-controlled multi-

robot  systems’ integrated  lateral,  longitudinal,  and
formation control.
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(2) It proposes a novel multi-robot predictive control
framework  (MRPCF)  for  brain-controlled  multi-robot
systems  at  the  servo-control  level,  which  can  track
users’ control  intentions  (including  direction,  speed,
and  formation  intentions)  while  ensuring  the  safety  of
multi-robot systems.

(3)  It  builds  a  whole  brain-controlled  multi-robot
physical  system  for  the  first  time  and  validates  the
performance of  the proposed system by human-in-the-
loop actual experiments.

The  structure  of  this  paper  is  as  follows.  Section  2
presents  the  structure  of  the  proposed  brain-controlled
multi-robot  system.  The  proposed  multi-robot
predictive control framework is presented in Section 3.
In  Section  4,  the  human-in-the-loop  brain-controlled
multi-robot  experiment  is  shown.  The  experimental
results  and  discussion  are  given  in  Section  5.
Conclusion and future work are described in Section 6.

2    Brain-Controlled Multi-Robot System

2.1    System structure

The structure diagram of a brain-controlled multi-robot
system  is  shown  in Fig.  1 and  composed  of  a  user,  a
BCI,  a  stimulus interface,  an interface model,  a  leader
robot,  several  follower  robots,  and  the  proposed
MRPCF. The formation strategy of the system is based
on  the  leader-follower  model.  In  detail,  in  the  multi-
robot  framework,  one  robot  acts  as  the  leader,  and
other  robots  maintain  the  relationship  in  direction  and
distance as followers and leaders.

This  system  can  effectively  improve  the  safety  of
users  when  using  BCI  to  control  the  robot  system.
First, the user observes the environment and the state of
the  robot  to  make  decisions  and  uses  BCI  to  convey
commands. Next, the interface model will quantify the
control  commands  from  human  and  input  them  to
MRPCF.  The  MRPCF  consists  of  a  leader  controller,
follower  controller,  and  formation  planner.  The  leader

controller  will  confirm  if  the  system  is  safe  with  the
information  of  the  sensors  and  the  robot  itself.  When
safe,  the  controller  will  track  the  control  intention  of
the  user,  otherwise,  the  controller  will  modify  its
control command output to ensure the system operation
security.  The  formation  planner  can  track  users’
formation  control  intention,  realize  the  safe
transformation  of  multi-robot  formation,  output  the
tracking  target  positions  to  the  follower  robots,  and
ensure  no  collision  between  follower  robots.  The
follower  controller  ensures  the  follower  robots  travel
safely and maintain formation.

2.2    Stimulus interface

In this part, the development of the multi-robot system
adopts  the  BCI  based  on  SSVEP.  The  BCI  based  on
SSVEP has the superiority of fast command generation,
high  signal-to-noise  ratio  (SNR),  and  less  training
amount[20, 21]. The stimulus interface was designed with
seven  command  labels  and  displayed  them  on  the
augmented  reality  (AR)  glasses,  as  shown  in Fig.  2.
The  flashing  frequencies  of  command  icons  were
preset  to  13.00,  9.00,  10.00,  12.00,  11.00,  8.50,  and
14.00  Hz,  which  represent  speeding  up  (SU),  slowing
down  (SD),  turning  left  (TL),  turning  right  (TR),
maintaining speed (MS), formation reduction (FR), and
formation enlargement (FE), respectively.

2.3    SSVEP-based BCI

IC ∈ {1,2,3,4,5,6,7}

The  BCI  based  on  SSVEP  interprets  users’ EEG
signals  into  commands  for  controlling  multi-robots
every  0.5  s.  Let  represent  the
intentional  commands  decoded  from  users’ EEG
signals,  where  1  stands  for  SU,  2  for  FR,  3  for  TL,  4
for MS, 5 for TR, 6 for SD, and 7 for FE, respectively.

EEG  signals  were  acquired  from  eight  standard
channels (i.e., POz, PO3, PO4, PO5, PO6, Oz, O1, and
O2)  of  an  international  10-20  system  by  using  a
wireless  EEG  amplifier  (NeuSen.  W64,  Neuracle,
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Fig. 1    Architecture of the proposed brain-controlled multi-robot system.
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China)  with  Ag/AgCl  electrodes.  The  ground  channel
was positioned on AFz, and the reference channel was
positioned  on  CPz.  All  of  the  electrodes’ impedances
were  calibrated  to  keep  lower  than  10  kΩ.  The  EEG
signals  were  magnified  and  digitalized  at  a  sampling
rate  of  1  kHz.  In  addition,  a  filter  bank  canonical
correlation  analysis  (CCA)  was  employed  as  a
recognition model. More details about the algorithm of
the BCI based on SSVEP can be found in Ref. [22].

2.4    Interface model

Since  the  output  of  SSVEP-based  BCI  is  qualitative,
the control command is quantified as
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where , ,  and  represent  the  linear  velocity,
angular velocity, and commands of formation control at
time k ,  respectively.  is  the  output  of  the  SSVEP-
based  BCI  at  time k.  , ,  and  are  the

ωmin ωmax

∆ω

lmin lmax

∆l
∆v

vmin vmax

∆ω ωmin ωmax

∆l lmin

lmax

maximum,  minimum,  and  increment  of  the  linear
velocity, respectively.  and  are the restricts of
the  robot  angular  velocity,  and  represents  the
angular  velocity increment.  and  are the limits
of  the  formation  control,  and  represents  the
formation control increment. Initially, the values of ,

,  and  were  set  to  be  0.01,  0,  and  0.04  m/s,
respectively. The values of , , and  were set
to be 0.1, −0.2, and 0.2 rad/s, respectively. , , and

 were  taken  to  be  0.10,  0.70,  and  1.20  m,
respectively.

2.5    Multi-robot model

In  this  article,  the  2-wheel  differential  robot  model  is
used  in  the  experiment.  The  robot  has  two  driving
wheels  and  an  auxiliary  wheel  (universal  wheel).
Independent direct current (DC) reduction motors drive
both  driving  wheels.  The  different  rotation  speeds  of
the  wheels  can  realize  the  forward,  backward,  and
steering  movements  of  the  mobile  robot.  At  the  same
time, we assume that there are no unexpected situations
such as slipping and jumping when the robot moves in
the  plane,  which  means  that  there  is  a  pure  scrolling
contact between the wheels and the ground[23].

X =
[

x y θ
]T

u =
[

v ω
]T

XL =
[

xL yL θL
]T

uL =
[

vL ωL
]T

XFn =[
xFn yFn θFn

]T
uFn =

[
vFn ωFn

]T
x y

θ

v ω

We  define  the  robot’s  state  as  and
control  input  as .  Thus,  in  terms  of  the
formation,  the  state  of  the  leader  robot  is  expressed  as

 and the input is .
The  state  of  the n- th  follower  robot  is 

 and  the  robot’s  control  input  is
, where  and  represent the robot’s

position, and  is the orientation of the robot in the world
coordinate system.  is  the robot  linear velocity,  and  is
the robot angular velocity. The relationship between X and
u is as follows:
 

Ẋ =

 cosθ 0
sinθ
0

0
1

u (2)

l−φ

EFnset =[
lFnset φFnset

]T

The leader-follower algorithm and the  formation
control  method  are  used  for  the  multiple  robot
formation strategy. The positional relationship between
the leader robot and the n-th follower robot is shown in
Fig.  3.  The  formation  control  strategy  is  used  to  keep
the  distance  and  relative  rotation  orientation  between
the follower and leader robots[24]. As a result, regarding
the n-th follower robot, the state parameters relative to
the  leading  robot  can  be  expressed  as 

. And the tracking target positions of

 

SU (13.00 Hz)
TR (12.00 Hz)
FE (14.00 Hz)

SD (9.00 Hz)
MS (11.00 Hz)

TL (10.00 Hz)
FR (8.50 Hz)

 
Fig. 2    Stimulus interface of BCI based on SSVEP.
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PFnset =[
xFnset yFnset

]Tthe n- th  follower  robot  are  expressed  as 
, so the following relationship can be

obtained
  xFnset = xL + lFnset cosφFnset,

yFnset = yL + lFnset sinφFnset
(3)

2.6    Multi-robot predictive control framework

The  proposed  MRPCF can  track  users’ intentions  and
keep the multi-robots in safe.  The MRPCF consists  of
the leader controller, follower controller, and formation
planner.  The  leader  controller  optimizes  the  command
output  of  the  interface  model  according  to  the  robot
state  and  constraints,  so  as  to  ensure  the  robot  in  safe
during  operation.  Similarly,  the  follower  controller
ensures that the follower robot runs safely. Finally, the
formation  planner  solves  the  ideal  target  positions  of
the  robots  in  the  light  of  users’ output  command,  and
controls  the  formation  change  of  the  multi-robot
system.

3    MRPCF Design

In this section, we introduce the MRPCF in detail. The
framework  consists  of  the  leader  controller,  follower
controller, and formation planner.

3.1    Leader controller

ubci =
[

vbci ωbci
]T

uL =
[

vL ωL
]T
dL

DLsafe

The  leader  controller  allows  the  leader  robot  to  track
user  control  intentions  (such  as  speeding  up,  slowing
down,  turning  left,  and  turning  right)  when  in  safe.
Assuming  that  users’ brain  controlled  command  input
to  the  leader  controller  is ,  the
command  output by the controller is
the  input  to  the  leader  robot,  the  distance  between the
leader and the obstacle is , and the safety distance is

, we can define the objective and safety constraint

of the leader controller based on MPC as follows:
 

lim
x→∞

(uL −ubci) = 0 (4)
 

dL −DLsafe ⩾ 0 (5)

The whole formulation of the leader controller based
on MPC can be designed as
 

minα
(
u(k)

L −u(k)
bci

)2
+

HC−1∑
i=0

∥∥∥∥u(k+i)
L −u(k+i−1)

L

∥∥∥∥2QL
(6)

s.t.
 

x(k+i+1)
L = x(k+i)

L + v(k+i)
L Ts cosθ(k+i)

L ,

y(k+i+1)
L = y(k+i)

L + v(k+i)
L Ts sinθ(k+i)

L , (7)
 

θ(k+i+1)
L = θ(k+i)

L +ω(k+i)
L Ts, i = 0,1, . . . ,HP−1

DLsafe−d(k+i+1)
L

(
dobs, δobs,u(k)

L , . . . ,u
(k+i)
L

)
⩽ 0,

i = 0,1, . . . ,HP−1

(8)

 

uLmin < u(k+i)
L < uLmax , i = 0,1, . . . ,HC −1 (9)

 

∆u(k+i)
L = u(k+i)

L −u(k+i−1)
L , i = 0,1, . . . ,HC −1 (10)

 

∆uLmin < ∆u(k+i)
L < ∆uLmax , i = 0,1, . . . ,HC −1 (11)

 

∆u(k+i)
L = 0, i = HC ,HC +1, . . . ,HP−1 (12)

HP HC

Ts

α

QL ∈ R1×HC

where k  is  the  current  moment,  and   are  the
prediction  and control  horizons,  respectively.  is  the
sampling  period.  is  the  weighting  factor  to  penalize
control actions, and  is the weighting matrix
that controls the change rate of the output.

dobs δobs

HC < HP

HC ⩽ k ⩽ HP

u(k−1)
L

The cost  function (6)  of  the leader controller  is  able
to  make  sure  that  the  leader  robot  follows  users’
intentions,  in  which  the  first  part  punishes  the
performance of  tracking,  and the second part  punishes
smoothness of the control. Constraint (7) is the robot’s
prediction equation, which can predict the future status
of the leader robot. Constraint (8) is designed to make
sure  the  leader  is  in  safe,  where  and   are  the
distance and angle of the nearest obstacle perceived by
the  radar,  respectively.  Constraints  (9)−(11)  are
physical  constraints.  In  addition,  we  set  and
presume  the  control  signal  to  be  constant  for  all

 to reduce the computation and complexity.
Note  that  denotes  the  output  of  controller  in  the
former cycle.

3.2    Formation planner

l−φFor  the  formation  control  strategy,  to  reduce
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YL ωL
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YFn
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xL xFn
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lFn

XFn

yFn

O X

Follower
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Fig. 3    Positional relationship between the leader robot and
the follower robot.
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l φ

PFnset

lbci

PFnset

users’ workload  to  control  the  multi-robot  formation,
we required users  to  only control  the ,  and the  was
pre-set.  For  the  formation  planner,  it  can  solve  the
tracking  target  positions  of  the n- th  follower
robot  according  to  the  formation  command  output
by  users.  The  input  is  users’ formation  control
commands,  and  the  output  is  the  tracking  target
positions  to  keep  the  follower  robots  from
making collision with each other  and the leader robot.
Its control objective and safety constraint are
 

lim
x→∞

(lFnset − lbci) = 0 (13)
 

dFormation−DFormation_safe ⩾ 0 (14)

DFormation_safe

dFormation

where  is the safe distance between robots,
and  is  the  minimum  distance  between  the
current follower and other robots.

The  whole  formulation  of  the  formation  planner
based on MPC is designed as
 

minγ
(
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Fnset
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(15)

s.t.
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Fnset cosφFnset, i = 0,1, . . . ,HC −1 (16)

 

y(k+i)
Fnset = y(k)

L + l(k+i)
Fnset sinφFnset, i = 0,1, . . . ,HC −1 (17)

 

∆x(k+i)
Fnset = xk+i

Fnset − xk+i−1
Fnset , i = 0,1, . . . ,HC −1 (18)

 

∆y(k+i)
Fnset = yk+i

Fnset − yk+i−1
Fnset , i = 0,1, . . . ,HC −1 (19)

 

∆xmin < ∆x(k+i)
Fnset < ∆xmax, i = 0,1, . . . ,HC −1 (20)

 

∆ymin < ∆y(k+i)
Fnset < ∆ymax, i = 0,1, . . . ,HC −1 (21)

 

lFnmin < l(k+i)
Fnset < lFnmax , i = 0,1, . . . ,HC −1 (22)

 

DFormation_safe−d(k+i+1)
Formation ⩽ 0, i = 0,1, . . . ,HP−1 (23)

γ

QP ∈ R1×HC

∆x ∆y

where  is  the weight  factor  to penalize the formation
control actions, and  is the weight matrix of
the  control  output’s  rate  of  change.  The  above
optimization  problem  can  ensure  that  the  output
formation  is  safe.  Constraints  (16)−(22)  are  physical
constraints. In Constraints (18) and (19),  and  are
the  change  rates  of  tracking  target  positions.
Constraints (20) and (21) are used to limit the tracking
of  target  position  changes.  Constraint  (23)  is  a  safety
constraint to ensure that the robots do not collide with
each other.

3.3    Follower controller

PFnset

The follower controller  enables each follower robot to
track  its  target  positions  planned  by  the
formation planner in safe. Therefore, the major control
objectives are defined as
 

lim
x→∞

en = 0 (24)
 

lim
x→∞

(uFn−uL) = 0 (25)

enwhere  is  the  passional  error  between  the  current
moment  location  of  the n- th  follower  robot  and  the
robot’s  target  location.  The  control  objective  of  Eq.
(25)  is  to  keep  the  speed  of  the n- th  follower  robot
consistent  with  which  of  the  leader  to  maintain  the
formation  when  the n- th  follower  robot  is  near  the
target point.

The safety constraint can be written as
 

dF −DFsafe ⩾ 0 (26)

DFsafe

dF

where  represents  the  robot’s  safe  distance,  and
 is the distance from the robot to barriers.
The whole formulation of the follower controller for

the n-th follower robot based on MPC is designed as
 

min
NP−1∑
i=0

β
(
e(k+i+1)

n

)2
+λ
(
u(k)

Fn−u(k)
L

)2
+

HC−1∑
i=0

∥∥∥∥u(k+i)
Fn −u(k+i−1)

Fn

∥∥∥∥2QF

(27)

s.t.
 

x(k+i+1)
Fn = x(k+i)

Fn + v(k+i)
Fn Ts cosθ(k+i)

Fn ,

y(k+i+1)
Fn = y(k+i)

Fn + v(k+i)
Fn Ts sinθ(k+i)

Fn , (28)
 

θ(k+i+1)
Fn = θ(k+i)

Fn +ω
(k+i)
Fn Ts, i = 0,1, . . . ,HP−1

e(k+i+1)
n =

√(
x(k+i+1)

Fn − x(k+i+1)
Fnset

)2
+
(
y(k+i+1)

Fn − y(k+i+1)
Fnset

)2
,

i = 0,1, . . . ,HP−1 (29)
 

DFsafe−d(k+i+1)
F ⩽ 0, i = 0,1, . . . ,HP−1 (30)

 

uFmin < u(k+i)
Fn < uFmax , i = 0,1, . . . ,HC −1 (31)

 

∆u(k+i)
F = u(k+i)

Fn −u(k+i−1)
Fn , i = 0,1, . . . ,HC −1 (32)

 

∆uFmin < ∆u(k+i)
Fn
< ∆uFmax , i = 0,1, . . . ,HC −1 (33)

β

λ

In Formula (27),  is the weight factor of penalizing
the  tracking  error  of  the  follower  robot,  is  the
weighting  factor  to  penalize  the  control  actions,  and
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QF ∈ R1×HC

PFnset

 is  the  weighting  matrix  of  the  change  rate
of control signals. The cost function (27) is designed to
make  sure  that  the n- th  follower  robot  follows  the
target  point .  Equation  (28)  is  the  prediction
equation,  which  can  be  used  to  predict  the  future
positions of  the n- th  follower robot.  Formula (30)  is  a
safety  constraint,  which  can  stipulate  the  safety
distance  between  the n- th  follower  robot  and  the
obstacle to ensure the safe operation of the system.

4    Brain-Controlled Multi-Robot Experiment

To verify and evaluate the performance of the proposed
MRPCF,  we  set  up  a  whole  brain-controlled  multi-
robot physical system and physical experimental scene
and  conducted  a  human-in-the-loop  brain-controlled
multi-robot experiment.

4.1    Participant

Four  subjects  (aged  20−25  years  old)  participated  in
this  experiment.  All  subjects  had  no  history  of  brain-
related diseases and had normal or corrected-to-normal
vision.  Each  subject  had  enough  sleep  and  a  good
mental state before the experiment. The study complied
with the principles of the 2013 Declaration of Helsinki
and  was  approved  by  the  local  research  ethics
committee.  In  addition,  each  subject  signed  the
experimental informed form.

Before  starting  the  experiment,  we  required  the
subjects  to  be  familiar  with  the  experimental  protocol
and procedure. As shown in Fig. 4, the subject sat on a
comfortable  chair  during  the  experiment  and  wore  an
EEG collection cap and AR glasses (LINGXI-AR Inc.,
China).

4.2    Experimental platform

Figure  5 shows  the  human-in-the-loop  multi-robot
experimental scene. We set two destinations (Positions
A and  B )  in  the  scene.  We  also  set  up  two  types  of
obstacles,  namely  obstacle-O1 and  obstacle-O2.
Obstacle-O1 can be detected by the radar of the robots,
whereas  the  robots  cannot  perceive  obstacle-O2.  A
narrow passage was formed between the two obstacle-
O2s,  and  multi-robots  were  required  to  pass  through
this  passage  during  the  navigation  control.  The  initial
positions of the multi-robots were in a regular triangle,
as  shown  in Fig.  5,  in  which  the  leader  robot  was
located  on  the  tip,  and  the  two  follower  robots  were
located  on  both  sides.  The  model  of  the  leader  robot
was  Turtlebot3  Waffle-Pi,  and  the  model  of  the
follower  robots  was  Turtlebot3  Burger.  Turtlebot3
robot  is  a  small,  low-cost,  fully  programmable,  robot
operating system (ROS) based two-wheeled differential
mobile  robot.  Every  robot  was  equipped  with  a  radar
for  perceiving  environmental  information  (HLS-
LFCD2).  In  addition,  the  encoder  arranged  on  the
motor can be used to estimate the state of the robots.

The  stimulation  interface  was  developed  by
Matlab/Psychophysics  Toolbox,  and the  SSVEP-based
BCI  system  was  developed  in  M  code.  The  matlab-
robot  operating  system  (ROS)  node  sent  the  control
signals  quantized  by  the  interface  model  to  the  ROS
system. The proposed control framework MRPCF was
built  based  on  the  ROS  system  development,  which
received the quantized control signals and sent them to
each robot.

4.3    Parameter setup

Parameters  of  the  MRPCF  consisted  of  the  leader 

AR glasses

EEG acquisition cap

 
Fig. 4    Experimental setup for subjects.

 

 

A B

Destinations

Obstacle-O2

Obstacle-O1

Leader robot

Follower robots
 
Fig. 5    Human-in-the-loop multi-robot experimental setup.
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controller,  follower  controller,  and  formation  planner
parameters.  We  used  the  trial-and-error  method  to
determine  the  weight  factors,  prediction  and  control
horizons, and safe distances. Because the models of the
leader robot and follower robots were different, we set
different  safe  distances.  Considering  that  the  leader
control  can  only  obtain  the  reference  input  of  the
subjects  at  the  current  moment,  we  design  the  control
horizons  of  the  leader  controller  to  be  1.  The
parameters  of  the  proposed  controller  were  set,  as
shown in Table 1.

4.4    Experimental  procedure  and  evaluation
metrics

This  experiment  was  divided  into  two  stages:  (1)  the
offline  testing  stage;  (2)  the  online  navigation  stage.

The purpose of the offline testing was to calibrate and
evaluate  the  SSVEP-based  BCI  system.  During  this
stage,  the  subjects  were  asked  to  concentrate  on  each
command stimulus for 1 min, and the response time of
the BCI was 0.5 s. Therefore, for each command, there
were  a  total  of  120  samples.  Using  the  FBCCA
algorithm  in  Ref.  [22],  we  obtained  the  recognition
results of all  samples of each command and computed
the recognition accuracy of each command.

When  the  average  accuracy  of  all  commands  was
larger  than  70%,  the  subjects  were  qualified  for  the
online  navigation  task.  The  navigation  task  was  to
control the multi-robots from the initial position to the
designated  target  position  (A or  B )  in  a  limited  time
while  avoiding  obstacles.  If  the  leader  robot  reached
within  0.2  m  around  the  target  position  within  the
timeout  limit,  we  considered  that  the  task  was
completed  successfully.  The  experimental  timeout
condition is  set  to  three times the time it  takes  for  the
leader robot to reach the destination in a straight line at
the highest speed.

In  this  stage,  we  set  up  three  tasks:  (1)  the  brain-
controlled  online  navigation  task,  (2)  the  manual-
control online navigation task simulating the condition
of  the  BCI  with  an  accuracy  of  100%,  and  (3)  the
formation transformation task. In task (1), we made the
comparison  between  the  brain-controlled  navigation
task  with  and  without  the  proposed  MRPCF.  Without
MRPCF,  the  commands  output  by  the  SSVEP-based
BCI  system  directly  control  the  robot  cluster,  and
subjects rely on the brain-computer interface to output
commands to ensure the system runs safely and reaches
the target  position.  In this  task,  subjects  were required
to  reach  target  locations A  and  B  twice  under  each
control condition. Figure 6 shows a subject performing
a  brain-controlled  online  navigation  task.  In  task  (2),
the  only  difference  from  task  (1)  was  that  the  control
signal  was  output  by  users  pressing  the  keyboard  by
hands  rather  than  through  the  BCI.  We  set  the  same
commands  on  the  keyboard  as  in  the  stimulation
interface,  and  keyboard  commands  were  output  every
0.5 s.

In  addition,  for  the  above  two  tasks,  the  trials  of
different  control  modes  (i.e.,  with  and  without  the
MRPCF) were counterbalanced in random order. In the
above  two  tasks,  subjects  did  not  need  to  change
the  formation  of  robots.  Therefore,  for  the  tasks
assisted  by  the  MRPCF,  we  deactivated  the  formation

 

Table 1    Parameters of MRPCF.

Type Symbol Value

Leader controller

Ts 0.5 s
HC 1
HP 4
α 2

QL [1 1 1]T

uLmin [0 m/s; −0.2 rad/s]
uLmax [0.04 m/s; 0.2 rad/s]
∆uLmin [−0.02 m/s; −0.1 rad/s ]
∆uLmax [0.02 m/s; 0.1 rad/s]
DLsafe 0.25 m

Formation planner

Ts 0.5 s
HC 1
HP 4
γ 2

QP [1 1 1]T

∆xmin −0.02 m
∆xmax 0.02 m
∆ymin −0.02 m
∆ymax 0.02 m

DFomation_safe 0.15 m

Follower controller

Ts 0.25 s
HC 20
HP 20
β 5
λ 1

QF [1 1 · · · 1]T

uFmin [0 m/s; −0.4 rad/s]
uFmax [0.06 m/s; 0.4 rad/s]
∆uFmin [−0.02 m/s; −0.1 rad/s]
∆uFmax [0.02 m/s; 0.1 rad/s]
DFsafe 0.04 m
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transformation commands. To reduce unwanted effects,
subjects  will  rest  for  five  minutes  after  each  control
trial.

Finally,  to  verify  the  proposed  controller’s
performance more intuitively, we set up task (3). In this
task,  we  need  subjects  to  control  the  robot  formation
through BCI to change formation and pass through the
obstacle  area  to  reach  the  designated  place.  The
subjects  were  required  to  control  the  multi-robot  to
arrive  at  each  destination  twice  in  different  formation
transformations (zooming in or out).

To evaluate the performance of the online navigation
task,  we  used  these  metrics:  (1)  Task  completion  rate
(CR), defined as the proportion of the tasks completed
in the total;  (2) Number of collisions (NC), defined as
the number of times that robots collided with obstacles,
(3)  Task  completion  time  (CT),  defined  as  the  time
taken  by  the  multi-robot  system  from  the  initial
position  to  the  destination,  (4)  Driving  distance  (DD),
defined as the distance travelled by the leader robot in
each  control  cycle;  and  (5)  Average  speed  (AS),  the
average  speed  of  the  leader  robot.  Furthermore,  we
required all subjects to complete a questionnaire survey
(QS) used for subjective evaluation of the system after
the first task was completed.

5    Experimental Results and Discussion

5.1    Performance of the SSVEP-based BCI

Table  2 shows  the  accuracy  of  SSVEP BCI  across  all
subjects obtained in the offline test stage. It was found
that  the  highest  accuracy was  100.00% (SU command
for  Subject  S1),  and  the  lowest  accuracy  was  61.21%
(FR  command  for  Subject  S4).  In  addition,  compared
with other subjects, the average accuracy of Subject S4
was  relatively  low.  The  results  show  that  the  average
BCI  accuracy  rate  of  all  participants  is  above  70%,
which  meets  the  basic  conditions  for  the  online
navigation stage task.

5.2    Brain-controlled online navigation performance

Table  3 shows  the  performance  comparison  of  brain-
controlled  multi-robot  navigation  tasks  with  and
without  the  MRPCF.  Note  that,  for  the  metrics  DD,
AS, and CT, we only counted the trials where the tasks
were  completed  successfully,  whereas,  for  NC,  we
counted all trials. From Table 3, we found that with the
MRPCF,  the  average  CR  reached  (100.00±0.00)%.  In
contrast,  without  the  MRPCF,  the  average  CR  was
(37.50±14.43)%.  With  the  MRPCF,  there  was  no
collision  for  each  subject  (i.e.,  all  NC  were  0.00).  In
comparison, without the MRPCF, the average NC was
0.94±0.24.

Compared  with  the  direct  control  (i.e.,  without  the
MRPCF), the MRPCF shortened the DD and increased
AS  by  9.19% and  12.97%,  respectively.  Furthermore,
there  was  a  difference  in  CT  with  and  without  the
MRPCF  (165.28±222.88  versus  205.39±34.16),
showing  that  by  using  the  proposed  MRPCF,  CT  was
improved  by  19.53%.  These  experimental  results
showed  that  the  proposed  MRPCF  could  make  up  for
the  shortcomings  of  the  direct  control,  improve  the
performance  of  the  brain-controlled  multi-robot
system,  and  ensure  the  safety  of  the  brain-controlled
multi-robot  system.  The  reason  for  these  findings  was
likely  that  the  MRPCF  had  safety  constraints  and  the
functions  of  assisting  obstacle  avoidance  and  keeping

 

 
Fig. 6    Brain-controlled online navigation scene.

 

 

Table 2    Performance of the SSVEP BCI.

Subject
Accuracy of SSVEP BCI (%)

SU TL MS TR SD FR FE Mean ± standard deviation
S1 100.00 92.71 92.73 99.64 99.66 93.73 95.01 96.21±3.16
S2 94.10 94.91 97.32 98.22 79.20 96.61 93.97 93.47±6.01
S3 95.41 94.14 98.32 98.32 98.00 98.55 94.86 96.80±1.77
S4 72.57 75.00 96.55 82.46 73.45 61.21 76.52 76.82±9.98
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formation.
Figure  7 shows  the  trajectories  of  navigation  tasks

with  and  without  MRPCF,  respectively.  The  orange
areas A and B represent the destination of each mission,
the yellow circles represent obstacles on the way of the
mission, the black solid lines represent the trajectory of
each  robot  (the  path  of  the  leader  robot  is  the  thick
solid line), and the gray dash-line triangles indicate the
position of the multi-robots at a certain moment, which
can reflect the multi-robot formation. Furthermore, the
triangles in Fig. 7 are screenshots of the formation with
an interval of 10 s, and the vertices of the triangles are
the  positions  of  the  robots.  The  density  between  the
triangles  can  show  the  difference  in  the  speed  of  the
system.

From Fig.  7,  it  can  be  pointed  out  that  the  brain-
controlled  multi-robot  system  with  the  MRPCF  can
avoid obstacles while navigation. For the leader robot,

when  the  brain  control  commands  did  not  ensure  the
safety  of  the  robot,  the  proposed  MRPCF  can  output
safe  control  commands.  For  follower  robots,  when
obstacles threaten the safety of the robot, the proposed
controller  can  change  the  formation  of  multi-robots  to
avoid  obstacles.  When  the  surroundings  are  safe,  the
MRPCF  can  ensure  the  tracking  of  the  desired
formation.  In  contrast,  subjects  without  MRPCF
require  to  specifically  secure  the  system  through  BCI
commands.  Therefore,  from Fig.  7b,  we  saw  that  the
trajectory of multi-robots while contouring obstacle-O1
was very tortuous. Also, the density of triangles shows
that the system in Fig. 7b spends more time traversing
the obstacle  area.  The main reason is  that  the  subjects
need  to  constantly  change  the  direction  of  the  robot
formation to avoid collisions with obstacles.

Figure  8 shows  the  linear  velocity  profiles  of  the
leader  robot  with  and  without  MRPCF  for  a  subject.
The red curve is the velocity profile of the leader robot
with  the  MRPCF.  The  blue  dotted  line  represents  the
velocity  profile  of  the  leader  without  the  MRPCF.
Time a  and  Time b  represent  the  time  points  of
reaching  the  destination  under  the  MRPCF  and  direct
control,  respectively.  From Fig.  8,  we  found  that,
compared  to  the  direct  control,  the  MRPCF  made  the
leader robot run at a relatively higher linear velocity at
most  time,  which  indicated  that  our  method  improved
the  control  ability  of  brain-controlled  subjects.
Combining the subjects’ statements and trajectories, we
can  see  that  the  high-frequency  deceleration  of  the
direct  brain-controlled  multi-robot  system  is  to  avoid

 

Table  3    Performance  comparison  of  brain-controlled  navigation  tasks  with  and  without  MRPCF.  Note  that  CR  is  task
completion rate, NC is number of collisions, CT is task completion time, DD is driving distance, and AS is average speed.

Modality Subject CR (%)
Mean ±
STD of
CR (%)

NC
Mean ±
STD of
NC (%)

CT (s)
Mean ±
STD of
CT (%)

DD (m)
Mean ±
STD of
DD (%)

AS (m/s)
Mean ±
STD of
AS (%)

With
MRPCF

S1 100.00

100.00±
0.00

0.00±
0.00

0.00±
0.00

148.75±
7.79

165.28±
222.88

5.64±
0.29

5.83±
0.20

0.0379±
0.000 25

0.0357±
0.003 40

S2 100.00 0.00±
0.00

148.35±
7.19

5.68±
0.25

0.0383±
0.000 84

S3 100.00 0.00±
0.00

166.98±
2.97

5.98±
0.37

0.0356±
0.002 07

S4 100.00 0.00±
0.00

197.02±
23.19

6.03±
0.63

0.0309±
0.000 74

Without
MRPCF

S1 25.00

37.50±
14.43

0.75±
0.50

0.94±
0.24

163.00±
0.00

205.39±
34.16

5.88±
0.00

6.42±
0.49

0.0361±
0.000 00

0.0316±
0.003 25

S2 25.00 0.75±
0.50

192.40±
0.00

6.15±
0.00

0.0317±
0.000 00

S3 50.00 1.00±
0.00

234.20±
10.78

6.92±
0.05

0.0292±
0.001 63

S4 50.00 1.25±
0.50

231.95±
6.43

6.74±
0.06

0.0292±
0.001 20

Note：STD is the standard deviation.
 

 

A

(a) With MRPCF (b) Without MRPCF

B A B

 
Fig. 7    Trajectories of multi-robot navigation tasks with and
without MRPCF for a subject.
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collisions  between  robots  and  obstacles  to  ensure  the
safety of the system.

ubci =
[

0.04 0.0
]T

uL =
[

0.02 −0.2
]T

Figure  9 shows  the  input  and  output  linear  and
angular velocity profiles of the leader controller in the
navigation  stage  for  a  subject,  respectively.  The  input
velocity  is  represented  by  a  blue  dotted  line  and  the
output  velocity  by  a  black  curve.  The  input  velocity
commands  were  generated  by  the  brain-controlled
subjects,  and  the  output  velocity  commands  were
generated  by  the  leader  controller.  In  the  red  circle,
we  can  see  that  the  input  command  was

,  and  the  output  command  was
corrected to be about . The reason
for correcting the input  velocity was that,  as  shown in
Fig. 5, brain-controlled subjects first  needed to issue a
speeding-up  command  to  start  the  multi-robot  system.
Since  there  was  an  obstacle-O1 in  right  front  of  the
leader  robot,  the  leader  robot  has  the  possibility  of
colliding  with  obstacle-O1.  Thus,  the  leader  controller
reduced  the  linear  velocity  of  the  multi-robots  and
started  to  steer  the  multi-robots  to  avoid  obstacle-O1.
Similarly,  the  same  situation  also  occurred  at  about
time 45 s.  The leader  controller  actively  slowed down
the  multi-robots  to  ensure  safety.  At  other  time,  the
input  and  output  velocities  were  approximately
identical. The reason for this may be that the safety of
the  leader  robot  was  guaranteed,  so  the  leader

controller tracked the commands output by subjects.
Furthermore,  we  found  that,  during  the  entire

navigation process, to ensure safety, the controller took
6.2 s and 4.0 s to actively adjust the linear and angular
velocities,  accounting  for  3.67% and  2.37% of  the
entire process, respectively. The results showed that the
leader  controller  almost  completely  tracked  the
subject’s  intentions  during  the  execution  of  the  task,
except for the necessary safety.

After  the  human-in-the-loop  brain-controlled  multi-
robot experiment, we conducted a questionnaire survey
for  all  subjects  to  evaluate  two  control  methods.  As
shown in Table 4,  the questionnaire consisted of  three
questions,  and  the  answer  to  each  question  was  on  a
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Fig. 8    Linear velocity profiles of the leader robot with and
without MRPCF for a subject.
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Fig. 9    Input and output linear and angular velocity profiles
of the leader controller in the navigation stage for a subject.
 

 

Table 4    Subjective questionnaire.

No. Question Score 1 Score 2 Score 3 Score 4 Score 5

Q1 Under this control mode, do you have the feeling of controlling the
motion of multiple robots? Not at all Little Some A lot Totally

Q2 Under this control mode, how much effort do you think it takes to
control multiple robots? A lot Much Some A little None

Q3 To what extent do you prefer to use this control mode? Not at all A little Some Much A lot
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scale of 1−5.
In Fig.  10,  the  subjective  evaluation  results  are

shown  as  a  histogram.  In  the  control  feeling  question
(Q1),  the  subjects  had  more  strong  feelings  in  control
of  robots  under  the  MRPCF  than  under  the  direct
control  (4.75±0.50  versus  3.00±0.82).  In  the  control
effort  question  (Q2),  it  was  easier  for  the  subjects  to
control  multiple  robots  under  the  MRPCF  than  under
the  direct  control  (3.25±0.95  versus  1.75±0.50).
Moreover,  in  the  control  preference  (Q3),  brain-
controlled  subjects  preferred  the  proposed  MRPCF  to
the direct control (4.25±0.50 versus 2.50±0.58).

5.3    Manual-control online navigation performance

All  subjects  completed  the  manual-control  online
navigation  task,  so  the  CR  was  100%.  Furthermore,
multi-robots  did  not  collide  with  any  obstacles  for  all
subjects,  except  Subject  3.  For Subject  3,  multi-robots
collided with obstacles twice during the direct manual-
control navigation. Although the direct manual-control
navigation  performance  was  pretty  good,  with  the
addition of  the  MRPCF,  the  safety  of  the  multi-robots
was  guaranteed  for  all  subjects.  That  is,  there  was  no
collision  during  the  whole  navigation  for  all  subjects

under the MRPCF.
Table  5 shows  the  performance  comparison  of

manual-control  multi-robot  navigation  tasks  with  and
without MRPCF. By comparing the metrics, we found
that,  under  the  direct  manual  control,  the  average  CT,
DD,  and  AS  of  all  subjects  were  158.16±16.07  s,
5.72±0.28  m,  and 0.0363± 0.001  65 m/s,  respectively.
After  introducing  the  proposed  MRPCF,  the  average
metrics  CT,  DD,  and  AS  were  140.58±3.06  s,  5.37±
0.12 m, and 0.0381±0.00012 m/s, respectively. That is,
the  MRPCF  improved  the  three  metrics  by  11.11%,
6.12%,  and  4.96%,  respectively.  Therefore,  the
proposed MRPCF can improve the system performance
even  for  traditional  control  methods  (manual  control),
demonstrating the effectiveness of MRPCF.

5.4    Formation transformation performance

We changed the task content, asking subjects to change
the  multi-robot  formation  and  reach  the  designated
destination  under  the  MRPCF. Figure  11 shows
trajectories of the formation of the multi-robot system.
In Fig.  11a,  the  subject  controlled  the  system to  cross
the  obstacle  area  expanding  the  formation  to  reach
destination A .  Similarly,  in Fig.  11b,  the  subject
controlled  the  formation  reducing  the  formation  to
reach  destination B .  The  results  showed  that  the
subjects were able to complete the specified formation
changes  and  reach  the  specified  destination  under  the
MRPCF.

In  the  entire  moving  process  of  the  multi-robot
system, the proposed MRPCF was able to perform the
formation  transformation  and  guarantee  the  safety  of
the  multi-robot  system.  However,  we  found  that  after
introducing  the  formation  change  command,  the
follower  robots’ movement  trajectory  was  more
tortuous.  This  phenomenon  may  be  triggered  by
formation command errors caused by BCI accuracy.
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Fig. 10    Subjective questionnaire results.

 

 

Table  5    Performance  of  manual-control  multi-robot  navigation  tasks  with  and  without  MRPCF.  Note  that  CT  is  task
completion time, DD is driving distance, and AS is average speed.

Modality Subject CT (s) Mean of CT (%) DD (m) Mean of DD (%) AS (m/s) Mean of AS (%)

With MRPCF

S1 142.00±6.50

140.58±3.06

5.47±0.19

5.37±0.12

0.0382±0.000 56

0.0381±0.000 12
S2 139.80±1.76 5.33±0.12 0.0380±0.000 51
S3 143.80±1.30 5.48±0.03 0.0380±0.000 55
S4 136.70±4.53 5.22±0.15 0.0382±0.000 23

Without MRPCF

S1 144.00±1.66

158.16±16.07

5.49±0.09

5.72±0.28

0.0378±0.000 31

0.0363±0.001 65
S2 152.90±22.26 5.63±0.27 0.0371±0.003 42
S3 181.25±27.05 6.12±0.45 0.0340±0.002 65
S4 154.48±4.18 5.64±0.11 0.0364±0.000 80
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6    Conclusion

This  paper  investigated  the  integrated  lateral,
longitudinal,  and formation control  of  brain-controlled
multi-robot  systems  by  proposing  a  novel  multi-robot
predictive  control  framework  (MRPCF),  which  can
track users’ control intentions and ensure the safety of
multi-robots, and built an entire brain-controlled multi-
robot  system  based  on  the  proposed  MRPCF  for  the
first  time.  The  proposed  MRPCF  consisted  of  the
leader  controller,  follower  controller,  and  formation
planner. We validated the performance of the proposed
system through human-in-the-loop actual  experiments.
The  experimental  results  showed  the  effectiveness  of
the  proposed  method  in  tracking  users’ lateral,
longitudinal,  and formation control  of  brain-controlled
multi-robot  systems  and  maintaining  the  safety  of
brain-controlled multi-robot systems.

This  work  has  value  in  moving  the  study  of  brain-
controlled  robots  toward  a  new  direction  of  brain-
controlled multi-robots and provides some new insights
into  human-machine  collaboration  and  integration.
However, several challenges still need to be addressed,
and  they  open  future  research  opportunities  along  in
this direction.

First, during the entire experiment with the MRPCF,
the  safety  distance  was  fixed.  In  the  next  step,  we
should  improve  the  safety  distance  for  better  robot
performance, in which safety distance can change with
different speeds.

Second,  in  our  formation  transformation  task,  the
multi-robot  formation  was  relatively  simple.  It  was
only  limited  to  the  enlargement  and  reduction  of  the
formation. In the future, we should expand the function
of  formation  to  adapt  to  more  complex  scenarios.  In
addition,  we  need  to  improve  the  interface  model  to

reduce the cases where the mind-controlled user falsely
triggers the command by mistake.

Third,  our  experimental  scene  was  still  relatively
simple,  where  only  static  obstacles  existed.  In  the
future, we should introduce dynamic obstacles to better
validate the performance of the proposed method.

Our  future  work  aims  to  address  the  issues
mentioned  above,  including  adjusting  the  safety
distance, testing more formations, introducing dynamic
obstacles,  and  improving  the  control  method’s
performance  by  combining  other  intelligent
technologies.
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