
 

Quantum-Inspired Distributed Memetic Algorithm
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Abstract: This  paper  proposed  a  novel  distributed  memetic  evolutionary  model,  where  four  modules  distributed

exploration,  intensified exploitation,  knowledge transfer,  and evolutionary restart  are coevolved to  maximize their

strengths and achieve superior global optimality. Distributed exploration evolves three independent populations by

heterogenous  operators.  Intensified  exploitation  evolves  an  external  elite  archive  in  parallel  with  exploration  to

balance global and local searches. Knowledge transfer is based on a point-ring communication topology to share

successful  experiences  among  distinct  search  agents.  Evolutionary  restart  adopts  an  adaptive  perturbation

strategy to control  search diversity  reasonably.  Quantum computation is  a newly emerging technique, which has

powerful  computing power  and parallelized ability.  Therefore,  this  paper  further  fuses quantum mechanisms into

the proposed evolutionary model to build a new evolutionary algorithm, referred to as quantum-inspired distributed

memetic algorithm (QDMA). In QDMA, individuals are represented by the quantum characteristics and evolved by

the quantum-inspired evolutionary optimizers in the quantum hyperspace. The QDMA integrates the superiorities of

distributed, memetic, and quantum evolution. Computational experiments are carried out to evaluate the superior

performance of  QDMA.  The  results  demonstrate  the  effectiveness  of  special  designs  and  show that  QDMA has

greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test. The

superiority  is  attributed  not  only  to  good  cooperative  coevolution  of  distributed  memetic  evolutionary  model,  but

also to superior designs of each special component.

Key words: distributed evolutionary algorithm; memetic algorithm; quantum-inspired evolutionary algorithm; quantum

distributed memetic algorithm

1    Introduction

Although  quantum  computation  is  a  newly  emerging
technique,  it  has  achieved  widespread  attention  from
the scientific community due to its powerful computing
power  and  outstanding  parallelized  ability  in  tackling
various specialized problems[1−3].  So far,  many studies
on  quantum  computation  have  progressed  actively,
especially  in  the  design of  quantum algorithms.  In  the
existing  quantum  algorithms,  one  of  the  main  design
ideas is to integrate superior characteristics of quantum
computation  into  the  architecture  of  some  specific
evolutionary  algorithm  (EA).  Such  algorithms  are
referred  to  as  quantum  EA  (QEA).  Compared  to
traditional  EAs,  QEA is  characterized by principles  of
quantum  computation  such  as  concepts  of  qubits  and
superposition  of  states.  Based  on  qubit  representation
and  evolution,  QEA  can  imitate  the  quantum
computation process to achieve strong competitiveness
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of  good  population  diversity,  powerful  global
exploration,  fast  convergence,  and  easy  fusion  with
different EAs[4].

Presently, a variety of QEAs are designed based on a
certain  specific  EA.  Narayanan  and  Moore[5] fused
genetic algorithm and quantum knowledge for the first
time. The quantum genetic algorithm was proposed and
since  then  the  community  of  fusing  quantum
computation  and  evolutionary  computation  has  been
opened.  In  addition  to  quantum genetic  algorithm[6, 7],
there  are  also  several  other  QEAs  to  be  proposed
including quantum differential evolution[8−12], quantum
particle  swarm  optimization[13],  quantum  immune
algorithm[14],  quantum  cooperative  coevolutionary
algorithm[15],  quantum  estimation  of  distribution
algorithm[16], and so on. To the best of our knowledge,
these  variants  of  QEA  basically  use  a  specific  and
single  EA  as  their  evolutionary  framework.  However,
with the rapid development of information science and
technology,  the  problems  that  need  to  be  addressed
become more and more complex. This has put forward
new challenges to  the design of  QEA considering that
there exist plenty of local optima in the search space of
these problems[17−19].

In  order  to  obtain  more  efficient  evolutionary
architecture  for  the  design  of  QEA,  a  few  researchers
have  turned  their  attention  to  distributed  computation
(DC)[20] and  memetic  computation  (MC)[21].  The  DC
architecture  adopts  the  divide-and-conquer  idea  to
decompose  complex  problem  into  several  sub-
problems,  and  coevolves  them  by  independent  search
optimizers.  The  MC  architecture  concentrates  on
synergistic  coordination  between  global  exploration
and local exploitation through integrating a population-
based  EA  and  one  or  more  local  search  optimizers
together.  They  have  respective  advantages  in  the
applications.  Most  recently,  some  efforts  have  been
paid to apply DC and MC architecture to build efficient
QEA for  different  specialized  problems.  For  example,
Deng  et  al.[9] proposed  a  distributed  QEA  for  global
optimization, where the population is divided into three
subpopulations,  and  is  evolved  through  different
mutant  strategies  to  ensure  the  independence  of  each
subpopulation  and  the  diversity  of  overall  population.
Deng  et  al.[11] presented  a  distributed  QEA  for  large
scale  optimization,  where  multipopulation  is  evolved
by a  quantum differential  evolution  in  which  different
mutant  strategies  are  applied  in  the  early  and  later
stages of the search, respectively. In Ref. [15], a multi-

strategy distributed QEA was developed and applied to
the  knapsack  problem  and  airport  gate  allocation
problem,  where  cooperative  coevolution,  random
rotation  direction,  and  Hamming  adaptive  rotation
angle  are  used  to  refine  the  overall  performance.  For
the QEAs based on MC, Yang et al.[22] built a memetic
QEA  with  levy  flight  for  high  dimension  function
optimization,  where  a  memetic  framework  is  used  to
balance  the  global  and  local  search  and  a  levy  flight
based  local  search  is  used  to  enhance  searchability.
Tang  et  al.[23] proposed  a  memetic  QEA  for  global
optimization,  where  two  operators  of  memetic
evolution  and  quantum  evolution  are  coordinated  for
better performance.

These  distributed  and  memetic  QEA  variants  have
shown great development prospect in solving complex
continuous  and  combinatorial  optimization  problems.
In view of the respective architecture superiority of DC
and  MC,  the  idea  of  integrating  quantum  mechanism
with the architecture superiority of both DC and MC is
naturally  proposed.  However,  the  related  study  is  still
very preliminary. This paper carries out the pioneering
exploration  and  proposes  a  novel  quantum-inspired
distributed  memetic  algorithm  (QDMA)  to  tackle  this
issue.  The  main  novelties  and  contributions  are  as
below.

(1)  A novel  distributed memetic  evolutionary model
is  presented,  which  includes  distributed  quantum
evolution,  intensified  quantum  evolution,  knowledge
transfer,  and  evolutionary  restart.  This  model
effectively  fuses  three  superiorities  of  quantum
mechanism,  distributed  evolution,  and  memetic
evolution.

(2)  Global  exploration  campaign  is  achieved  by
coevolving  three  populations  in  the  distributed  and
heterogenous  way,  which  can  effectively  enhance
search diversity.

(3)  Local  exploitation  campaign  is  performed  on  an
external elite archive in parallel with three populations,
which can effectively enhance search intensification.

(4)  A  novel  knowledge  transfer  model  is  proposed
based  on  a  point-ring  communication  topology,  which
can  exchange  superior  experiences  among  search
agents effectively.

(5)  QDMA  is  proposed  by  fusing  quantum
mechanisms  into  distributed  memetic  evolutionary
model  for  global  optimization in  quantum hyperspace.
The  computational  result  show  that  it  significantly
outperforms the compared state-of-the-art algorithms.
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The  rest  of  the  paper  is  set  as  follows.  Section  2
introduces the related algorithms. Section 3 details  the
proposed  QDMA.  Section  4  carried  out  extensive
computational  experiments.  In  Section  5,  the
conclusions and future works are provided.

2    Related Algorithms

In  the  following,  we  introduce  the  algorithms  closely
related  to  the  proposed  QDMA,  including  basic
difterential  evolution  (DE),  QEA,  and  EAs  based  on
DC and MC.

2.1    DE

Xg =
{
xi,g, i = 1, 2, . . . ,PS

}
xi,g[

xi,1,g, xi,2,g, . . . , xi,d,g
]

Differential  evolution  (DE)  is  a  population-based  EA,
which drives the evolution by the individual difference.
Because  of  its  simplicity  and  efficiency,  it  has  been
successfully  applied  in  diverse  fields[24].  Denote
the  population  of  DE  at  generation g  as

,  where  is  represented  as
 and  referred  to  as  the  target

individual,  which  is  initialized  randomly  in  the  search
space.
 

xi, j,g = xL+ r× (xU− xL) (1)

xL xU

where g  is  the  generation  number, i  is  the  individual
index, j ∈ {1, 2, …, d} is the dimension index, r ∈ [0,
1]  is  a  random  number,  and  and   are  the
predefined lower and upper bounds of the search space,
respectively.  The evolution of  DE at  generation g  will
be achieved by the following three operators.

Mutation. For  each  individual xi,g ,  the  mutation
operator  is  to  generate  the  relevant  mutant  individual
vi,g.  Presently,  different  mutant  strategies  have  been
proposed  in  the  literature.  In  here,  three  most
commonly-used ones are shown as below. They will be
used  in  our  QDMA,  referred  to  as  DE/rand/1,
DE/best/1, and DE/rand-to-best/1, respectively.
 

vi,g = xr1,g+F ×
(
xr2,g− xr3,g

)
(2)

 

vi,g = xbest,g+F ×
(
xr1,g− xr2,g

)
(3)

 

vi,g = xi,g+F ×
(
xbest,g− xi,g

)
+F ×

(
xr1,g− xr2,g

)
(4)

where i,  r1,  r2 ,  and r3  are  four  different  integers  in
range  [1,  PS], F  is  a  parameter  scaling  the  difference
vector,  and xbest,g  is  the  best  individual  in  the  current
generation.

Crossover. Between  each  pair  of xi,g  and  vi,g ,  the
binomial crossover operator is usually performed to get
a trial individual ui,g.

 

ui, j,g =

{
vi, j,g, if r ⩽ CR or j = jr;

xi, j,g, otherwise (5)

where  CR  is  a  parameter  controlling  the  inheritance
rate from the mutant individual, and jr ∈ {1, 2, …, d}
is  a  random  integer  ensuring  the  mutant  individual  is
inherited at least one element.

Selection. By comparing the fitness f(xi,g)  and f(ui,g)
of xi,g  and ui,g  greedily, the one with better fitness will
survive  in  the  population  of  next  generation.  For  a
minimization  problem,  the  selection  operation  is
performed as below.
 

xi,g+1 =

ui,g, if f
(
ui,g

)
⩽ f

(
xi,g

)
;

xi,g, otherwise
(6)

2.2    QEA

QEA  is  also  a  population  dynamics  based  EA,  which
drives  the  evolution  by  imitating  the  concept  and
principle  of  quantum  computation[25].  In  basic  QEA,
the  individual  is  represented  by  the  quantum  bit  (Q-
bit). A Q-bit is represented by a pair of numbers [α, β]T

satisfying  with  |α|2 +  |β|2 =  1.  Each  Q-bit  has  three
possible  states: “0”,  “1” ,  and  a  linear  superposition  of
the two, which can be determined by Eq. (7).
 

|φ⟩ = α |0⟩+β |1⟩ (7)

|0⟩ |1⟩
|α|2 |β|2

|0⟩ |1⟩
Qg =

{
qi,g, i = 1,

2, . . . ,PS
}

qi,g

where  and   denote  the  states “0”  and  “1”,
respectively.  and  specify the probability that the
Q-bit  is  found  in  the  states  and  ,  respectively.
Denote  the  QEA  population  as 

, where each quantum individual includes d Q-
bits.  Naturally,  can  be  represented  as  a  string  of d
pairs of numbers [α, β]T.
 

qi,g =

[ αi,1,g

βi,1,g

∣∣∣∣∣ αi,2,g

βi,2,g

∣∣∣∣∣ · · ·· · · ∣∣∣∣∣ αi,d,g

βi,d,g

]
(8)

qi,g

qi,g pi,g

pi,g βi, j,g

pi, j,g

|βi, j,g|2 pi, j,g

where  |αi,j,g|2 +  |βi,j,g|2 =  1, j  =  1,  2,  …, d .  In  order  to
evaluate each , quantum observation is carried out to
map  to be a binary solution . Each dimension of

 is  determined  by  comparing  with  a  random
number  in  range  [0,  1].  Here,  =  1  if  the  random
number is less to ; otherwise  = 0.

Basic QEA is still an EA, and evolves the individuals
by  quantum gate  (Q-gate)  until  a  termination  criterion
is  satisfied.  The  Q-gate  can  be  seen  as  a  variation
operator,  which  changes  the  Q-bits  of  individuals  to
drive  the  evolution  process  of  QEA.  The  rotation  Q-
gate is commonly used in QEA, which updates the Q-
bits as follows:
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αi, j,g+1

βi, j,g+1

 = [
cos∆θi, j,g −sin∆θi, j,g
sin∆θi, j,g cos∆θi, j,g

] αi, j,g

βi, j,g

 (9)

∆θi, j,gwhere  is  rotation  angle  which  controls  the
direction  and  magnitude  of  rotation.  They  should  be
designed in compliance with the addressed application
problems.  However,  the  Q-gate  driven QEA evolution
has  the  issues  of  low  search  accuracy  and  slow
convergence.  More  often,  it  is  based  on  the  quantum
representation  and  quantum  mechanism  to  realize  the
evolution  within  the  framework  of  some  basic  EAs
such as DE[2],  genetic algorithm[6],  and particle swarm
optimization[13].  In  this  sense,  the  performance  of  a
QEA is greatly influenced by the adopted evolutionary
architecture. For this reason, researchers began to try to
adopt  some new evolutionary  models  such  as  DC and
MC  when  designing  QEA,  and  have  achieved  several
high-quality algorithms.

2.3    EAs based on DC and MC

For  ease  of  description,  denote  the  EAs  based  on  DC
and  MC  as  distributed  EA  (DEA)  and  memetic  EA
(MEA), respectively. Next, we make a brief review on
them.

DEA  is  a  famous  computational  method,  which
decomposes  complex  problem  into  multiple
subproblems  and  evolves  them  in  the  distributed
way[20]. To realize the distributed evolution efficiently,
different  distributed  evolutionary  models  have  been
proposed.  Zhan  et  al.[18] proposed  an  adaptive  DE-
based  DEA  within  a  master-slave  multipopulation
distributed  model,  where  a  master  node  dominates
three  different-identity  slave  nodes,  and  different
populations  are  co-evolved  concurrently  on  these
nodes.  According  to  this  master-slave  distributed
model, some DEA variants[26−30] have been built based
on  different  EAs  such  as  DE,  genetic  algorithm,  and
particle  swarm  optimization.  Ge  et  al.[31] proposed  a
DEA within a balanced best-random distributed model
for  database  fragmentation  problem,  where  the
population is divided into several subpopulations which
are arranged in a ring topology. Communications occur
when  the  best  individual  and  a  random  individual  of
each subpopulation are sent  to its  neighbors according
to  the  communication  topology  in  the  opposite
directions. Ge et al.[32] was also based on this model to
propose  a  DEA  with  adaptive  split  and  mergence  for
large-scale optimization. More distributed evolutionary
models  and  the  corresponding  DEAs  can  be  found  in
Ref. [20]. Although plenty of efforts have been paid to
DEAs, the reports on the fusion algorithms of quantum

mechanism and DEA are still very limited. At present,
there are only Refs. [8, 9, 11, 15, 22, 23].

MEA  can  be  viewed  as  a  computational  method,
which  fuses  a  population-based  EA  and  one  or  more
problem-specific local optimizers to effectively balance
exploration  and  exploitation.  Due  to  successful
applications in various specialized problems, MEA has
attracted  wide  attention[21, 33] .  Here,  we  only  focus  on
the  works  in  the  fields  of  distributed  MEA  and
quantum  MEA.  Zhang  et  al.[34] built  a  distributed
memetic  DE  which  fuses  Lamarckian  learning  and
Baldwinian learning. To gain a better tradeoff between
exploration  and  exploitation,  DE  as  an  evolutionary
framework is assisted by the Hooke-Jeeves local search
algorithm.  Zhang et  al.[35] presented a  multipopulation
ant colony MEA with problem-specific local search for
supply chain configuration problem. Sabar et al.[36] put
forward  a  heterogeneous  memetic  DE  for  big  data
optimization  problem,  which  fuses  a  cooperative  co-
evolution  method  with  various  memetic  algorithms  to
increase  the  efficiency  of  the  solving  process.  Zhang
et al.[37] devised a distributed co-evolutionary MEA to
address  a  realistic  production  scheduling  problem,  in
which  four  newly  devised  modules  are  integrated
reasonably.  In  addition,  the  works  in  the  aspects  of
quantum MEA are  very  scarce,  and  we  only  retrieved
Refs. [22, 23].

Overall,  DEA  and  MEA  represent  two  different
evolutionary  models,  which  have  shown  their
respective  superiority  in  the  wide  applications.
Encouraged by these facts, this paper aims to integrate
quantum evolution  with  the  architecture  superiority  of
both  DEA  and  MEA  to  propose  a  novel  and  efficient
QDMA metaheuristic.

3    Proposed QDMA

In  this  section,  we  elaborate  the  proposed  QDMA
including its evolutionary framework, specific designs,
overall procedure, and the complexity analysis.

3.1    Distributed memetic evolutionary model

The  QDMA  adopts  a  novel  distributed  memetic
evolutionary  model  to  achieve  the  optimization
process.  All  evolutions  are  performed  completely  in  a
quantum  space. Figure  1 illustrates  the  model
consisting of four modules, that is, distributed quantum
evolution  on  multipopulation,  intensified  quantum
evolution  on  elite  archive,  knowledge  transfer  with
point-ring  topology,  and  evolutionary  restart  with
adaptive perturbation.
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In  the  evolutionary  process,  three  quantum
populations  (QP1,  QP2,  and  QP3)  are  coevolved  for
global  exploration  in  a  distributed  way.  To  obtain
diversified  exploring  behaviors,  heterogeneous
optimizers  are  performed  on  three  populations.  In
parallel with the quantum populations, an elite archive
(EAR)  consisting  of  some  superior  individuals  is
configurated.  It  is  evolved  by  the  local  optimizer  to
exploit the promising area found by global exploration.
This  is  not  only  different  from  traditional  memetic
algorithm  (MA)[38] that  evolves  the  global  and  local
search  agents  in  serial,  but  also  different  from
traditional  DEA[20] that  evolves multiple global  search
agents parallelly. In this sense, the proposed model can
cover  both  advantages  of  MA  and  DEA.  After  the
global  and  local  search  campaign,  the  superior
experiences from different search agents are exchanged
by transferring the knowledge in a point-ring topology.
Finally,  the  three  populations  are  restarted  by  the
evolutionary  operators  like  quantum  mutation,
crossover, and selection. In this way, the homogeneous
searches  are  expected  to  be  relieved,  especially  in  the
later  evolutionary  phase.  In  this  evolutionary  model,
the  above  process  will  be  repeated  until  a  termination
criterion is met.

3.2    Quantum representation and measurement

Xg =
{
xi,g, i = 1,2, . . . ,PS

}
xi,g =

[
xi,1,g

∣∣∣xi,2,g
∣∣∣ . . . ∣∣∣xi,D,g

]
xi, j,g

In  the  population  of  QDMA,
the individuals also employ the quantum representation
as in the basic QEA. That is, ,
where  is  a  Q-bit.  Because  parameters α  and  β

xi,g

satisfy with |α|2 + |β|2 = 1, the Q-bit can be expressed as
[cos θ ,  sin θ]T  equivalently.  Thus,  the  is  re-
expressed as below.
 

xi,g =

[
cosθi,1,g
sinθi,1,g

∣∣∣∣∣∣ cosθi,2,g
sinθi,2,g

∣∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣∣ cosθi,D,g

sinθi,D,g

]
(10)

 

θi, j,g = rand j×π (11)

θi, j,g

where randj is a random number in range [0, 1], which
means  is  always  generated  in  range  [0,  π]
randomly.

xi,g

xi,g

xi,g

xi,g

Under this representation, the search space is limited
into  the  range  [−1,  1].  To  calculate  the  fitness,  the
quantum  individuals  must  be  mapped  to  the  solution
space  in  range  [a, b ],  where a  and  b  are  the  lower
bound  and  upper  bound  of  the  variables  of  test
functions  in  the  experiment,  respectively.  For  each  Q-
bit of ,  the solution space mapping is performed by
Eq. (12). Now,  can be seen as the superposition of
2d possible  solutions.  To  further  collapse  into  a
unique  solution  vector,  a  quantum  measurement
strategy in Eq.  (13) is  carried out.  Then,  the fitness of
the current  can be calculated.
 

xi, j,g =
(b−a)× xi, j,g+ (b+a)

2
=

(
(b−a)× cosθi, j,g+ (b+a)

)
/2(

(b−a)× sinθi, j,g+ (b+a)
)
/2

 (12)

 

xi, j,g =

{
cosθi, j,g, if cos2θi, j,g < rand;
sinθi, j,g, otherwise

(13)

Based  on  the  quantum  representation,  three  initial
quantum populations QP1, QP2, and QP3 are generated
randomly, and then coevolved in distributed way.

3.3    Distributed  quantum  evolution  on
multipopulation

The  global  exploration  campaign  of  QDMA  is
achieved  by  coevolving  QP1,  QP2,  and  QP3 at  each
generation. Figure  2 shows  the  global  exploration
procedure.  We  can  see  that  three  subpopulations  are
coevolved by different quantum operators in distributed
way.  In  this  way,  it  is  expected  to  increase  the
successful  probability  of  the  global  exploration
traversing  the  whole  solution  space.  In  view  of  the
quantum characteristics of each population and in order
to  evolve  them,  we  introduce  the  quantum  computing
into three operators (mutation, crossover, and selection)
of the basic DE algorithm as follows.

xi,g Xg =
{
xi,g, i = 1,2, . . . ,PS

}Quantum  mutation.  For  each  quantum  individual
 of the population , there is a

 

Quantum sparch
space of the problem

Distributed quantum evolution Intensified quantum evolution

EAR

EAR

QP3

QP3

QP2

QP2

QP1

QP1

Knowledge transfer

Evolutionary restart
 

Fig. 1    Distributed memetic evolutionary model.
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θi,g =
[
θi,1,g

∣∣∣θi,2,g∣∣∣ . . . ∣∣∣θi,D,g ]
θg =

{
θi,g, i = 1, 2, . . . ,PS

}

θi,g

unique  phase  angle  vector .
For  convenience,  denote  the  set  of  all  phase  angle
vectors  as .  Based  on  the
framework  of  three  basic  mutation  strategies
DE/rand/1,  DE/best/1,  and  DE/rand-to-best/1,  three
quantum  mutation  operators  are  used  to  update  to
generate the mutant vector.
 

θim,g = θr1,g+F ×
(
θr2,g− θr3,g

)
(14)

 

θim,g = θbest,g+F ×
(
θr1,g− θr2,g

)
(15)

 

θim,g = θi,g+F ×
(
θbest,g− θi,g

)
+F ×

(
θr1,g− θr2,g

)
(16)

θi,g xi,gwhere  corresponds  to .  In  evolution,  they  are
performed on three quantum populations QP1, QP2, and
QP3,  respectively,  which are  used to  enrich  the  search
diversity.

Quantum  crossover.  To  further  diversify  the
population, the mutant vector and its parent vector are
performed  by  the  quantum  crossover  operator  to
generate a trial vector.
 

θic, j,g =

{
θim, j,g, if r ⩽ CR or j = jr;
θi, j,g, otherwise (17)

xi,g

θic,g

Quantum selection.  To  enable  better  individuals  to
enter  the  next  generation  of  population,  the  fitness
value  of  the  quantum  individual  corresponding  to
the  obtained  trial  vector  is  calculated.  Then,  a
greedy selection operator is performed. In this way, the
quantum  individual  is  evolved  by  the  update  of
quantum phase angles.
 

θi,g+1 =

θic,g, if f
(
xic,g

)
⩽ f

(
xi,g

)
;

θi,g, otherwise
(18)

3.4    Intensified quantum evolution on elite archive

The  local  exploitation  campaign  is  set  in  QDMA  to
enhance the search intensification for several promising
areas  found  by  global  exploration.  Different  from  the
serial  execution mode in traditional hybrid algorithms,

however,  QDMA  performs  the  local  exploitation  in
parallel  with  the  proposed  multipopulation  global
exploration.  For  details,  the  local  exploitation
campaign  is  performed  on  an  external  elite  archive
(EAR), which is independent of the multipopulation. In
this way, the search intensification and diversity can be
balanced  more  effectively.  For  the  elite  archive,  its
individual quality is expected to be as good as possible.
Therefore,  the  elite  archive  is  initialized  by  the  three
best  individuals  from  the  initial  quantum  populations
QP1,  QP2,  and  QP3.  When  performing  the  local
exploitation, two operators are adopted. One is simplex
search  operator,  which  is  used  to  improve  the  worst
individual  of  EAR,  and  the  other  is  Cauchy  mutation
operator,  which  is  used  to  perturb  the  other  two  EAR
individuals.

θw,g

θa,g θb,g θo,g

Simplex search. It is a direct optimization technique,
which does not depend on specific gradient information
and has strong local search ability[39]. It first constructs
a  simplex  based  on  current  population,  and  rescales  it
to  generate  a  better  solution  based  on  four  operators:
reflection, expansion, contraction, and shrinkage. Then,
the worst solution in population is replaced by this new
solution. Thus, the population quality can be gradually
improved  to  approximate  the  global  optimum.  Denote
the  worst  individual  of  EAR  as ,  the  other  two  as

 and , and the optimal of EAR as . The steps
of the proposed simplex search operator are as follows.

θmid,g

θa,g θb,g θref,g

θw,g

θref,g θo,g

θref,g θw,g

Step 1: Reflection. Calculate the middle point  =
(  +  )  /  2,  and  generate  a  new  point  by
reflecting  based  on  Eq.  (19).  For  a  minimization
problem,  if f( )  < f( ),  perform the  expansion;  if
f( )  > f( ),  perform  the  contraction;  otherwise,
perform the shrinkage.
 

θref,g = θmid,g+δ1×
(
θmid,g− θw,g

)
(19)

θref,g θexp,g

θexp,g

θo,g θexp,g θref,g θw,g

θref,g θw,g

Step 2: Expansion. Expand  to point  along
the  same reflection  direction  by  Eq.  (20).  If f( )  <
f( ),  the  better  one  of  and   replaces  ;
otherwise,  replaces .
 

θexp,g = θmid,g+δ2×
(
θref,g− θmid,g

)
(20)

θcon,g

θcon,g θw,g θcon,g θw,g

Step 3: Contraction. This operator is  performed by
Eq.  (21)  to  generate  the  contraction  point .  If
f( ) < f( ),  replaces .
 

θcon,g = θmid,g+δ3×
(
θw,g− θmid,g

)
(21)

θshr,g θshr,g

θw,g θshr,g θref,g θw,g

Step  4:  Shrinkage. This  operator  is  performed  by
Eq. (22) to generate the shrinkage point . If f( ) <
f( ),  the  better  one  of  and   replaces  ;

 

QP3QP2QP1

Quantum mutation
DE/rand/1

Quantum mutation
DE/best/1

Quantum crossover

Quantum selection

Quantum mutation
DE/rand-to-best/1

 
Fig. 2    Distributed quantum evolution on multipopulation.
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θref,g θw,gotherwise,  replaces .
 

θshr,g = θmid,g−δ4×
(
θw,g− θmid,g

)
(22)

where δ1  =  1, δ2  =  2,  and δ3  =  δ4  =  0.5.  These  four
operators are shown in Fig. 3.

θa,g θb,g θa,g

Cauchy  mutation. Due  to  the  fast  convergence
brought  by  the  simplex  search  strategy  and  the
following  knowledge  transfer  strategy,  the
improvement  of  EAR  will  become  more  and  more
difficult  with  evolution.  It  is  expected  to  introduce  an
efficient  strategy  for  EAR  such  that  the  search  can
jump  out  of  the  local  optimal  solution.  For  this
purpose,  the  Cauchy  mutation,  which  has  successfully
applied to improve many EAs[40−42],  is used to perturb
the  and   of  EAR.  Take  as  an  example,  the
Cauchy  mutation  is  performed  based  on  Eq.  (23),  in
which  the  generating  function  of  Cauchy  distribution
random variable is in Eq. (24).
 

θa,g = θa,g+ θGbest,g×Cauchy(0,1) (23)
 

Cauchy(0,1) = tan
[
(ξ−0.5)π

]
(24)

θGbest,gwhere ξ  ∈  [0, 1].  is the global optimal solution
found  at  generation g  and  the  greedy  acceptance
criterion is used after each mutation.

3.5    Knowledge  transfer  based  on  point-ring
topology

During  the  QDMA  evolutionary  process,  the  three
quantum populations  and the  elite  archive are  evolved
in  the  distributed  and  independent  way.  Because  of
their  different  evolutionary  mechanisms,  the  superior
information  they  have  searched  for  at  each  generation
is  different  and  time-varying.  Clearly,  it  is  very
necessary  to  exchange  these  excellent  experiences
among them to improve the overall searching ability of
the algorithm. This is achieved by a knowledge transfer
strategy,  by  which  the  search  individuals  are
transferred  across  search  agents  reasonably  and
dynamically.  Before  devising  this  knowledge  transfer
model, we expect it to be a general model, that is, it can
tackle different optimization problems directly. To this
end,  a  new  knowledge  transfer  model  independent  of
specific  problems  is  proposed  based  on  the  point-ring
topology. Figure  4 shows the  procedure  of  knowledge
transfer.

Specifically,  all  search  agents  are  configurated
according  to  a  point-ring  topology,  where  the  three
quantum populations  QP1,  QP2,  and  QP3 are  arranged
to  the  ring  positions  and  the  EAR  is  placed  to  the
central  point  of  the  ring.  First,  the  best  individual  of
each  population  is  migrated  into  the  neighbor
population  clockwise.  Therefore,  the  population
diversity  can  be  remained.  Second,  individual
replacement operation is performed from EAR to each

 

θa,g

θa,g θa,g

θa,g

θw,gθw,g

θw,g θw,g

θb,g θb,g

θb,gθb,g

θmid,g

θmid,g
θmid,g

θref,g

θref,g θref,gθcon,g θshr,g

θexp,gθmid,g θref,g

(a) Reflection (b) Expansion

(c) Contraction (d) Shrinkage 
Fig. 3    Simplex operator.
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Fig. 4    Example of knowledge transfer.
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population.  In  replacement,  three  elite  individuals  of
EAR  are  removed  to  replace  the  worst  individual  of
each  population,  respectively.  Therefore,  the  overall
quality  of  three  populations  can  be  continuously
improved.  Third,  individual  replication  operation  is
executed  from  each  population  to  EAR.  The  best
individual  of  each current  population is  replicated and
the copy is sent back to EAR. This can always maintain
the overall quality of EAR at a high level, and can also
introduce a certain diversity into EAR.

3.6    Evolutionary  restart  with  adaptive
perturbation

The  strategies  of  quantum  evolution  and  knowledge
transfer  can  diversify  search  behaviors  effectively.
However,  it  is  hoped  to  further  enrich  it  especially  in
the late phase of evolution.  So,  an adaptive strategy is
proposed  to  restart  the  global  exploration  populations
(QP1,  QP2,  and  QP3).  This  restart  strategy  uses  the
framework  of  the  quantum  DE  algorithm  proposed
previously.  The  mutation  operator  is  executed  by  Eq.
(25)  and  the  crossover  operator  is  the  same  as  that  in
Eq.  (17).  The  designed  selection  operator  is  described
in Eq. (26). As can be seen, the trial individual after the
mutation and crossover will enter the next generation if
it  is  better  than  the  parent  individual.  Otherwise,  the
parent  individual  is  first  perturbed  in  an  adaptive  way
by  Eq.  (27),  and  then  sent  into  next  generation.  From
Eq.  (27),  we  can  see  that  the  strength  of  the
perturbation  gradually  increases  with  the  evolution,
which  will  provide  more  and  more  diversity  for  the
populations,  so  that  the  search  can  escape  the  local
optima and traverse more solution space.
 

θi, j,g = θr1, j,g+F × rand j×
(
θr2, j,g− θr3, j,g

)
(25)

 

θi, j,g+1 =

θic, j,g, if f
(
xic,g

)
⩽ f

(
xi,g

)
;

θi, j,g+∆θi, j,g, otherwise
(26)

 

∆θi, j,g = θmin+fit× rand j×

(θmax− θmin)× exp
(

cputime
max_cputime

)
(27)

 

fit =
f
(
θi,g

)
− f

(
θGbest,g

)
f
(
θGbest,g

) (28)

θmin θmaxwhere  = 0.001 × π,  = 0.05 × π, cputime is the
current  runtime,  and  max_cputime  is  the  allowed
maximum runtime of the algorithms.

3.7    Overall procedure of QDMA

Combining  the  above  special  designs,  the  overall

procedure of QDMA is illustrated in Algorithm 1. Note
that the QDMA has two key parameters F and CR that
 

Algorithm 1　Overall procedure of QDMA
Input: population size PS, parameter pools of F and CR
Output: Global best solution gbest
1: /* Initialization */
2: Initialize quantum populations QP1, QP2, and QP3 randomly
3: Solution space transformation in Eq. (12)
4: Quantum individual measurement in Eq. (13)
5: Calculate the fitness of quantum individuals
6: Choose the best of each population to generate elite archive
　EAR
7: Determine gbest
8: while the termination criterion is not satisfied do
9:　 /* Distributed quantum evolution on multipopulation */
10:　 for k = 1 to 3 do
11:　　for i = 1 to PS do
12:　　　Randomly select a value of F from parameter pool
13:　　　Randomly select a value of CR from parameter pool
14:　　　Quantum mutation on individual i of QPk, where
　　　　 DE/rand/1 for QP1, DE/best/1 for QP2, and DE/rand-
　　　　 to-best/1 for QP3

15:　　　Quantum crossover in Eq. (17) on individual i of QPk

16:　　　Quantum selection in Eq. (18) on individual i of QPk

17:　　endfor
18:　 endfor
19:　 /* Intensified quantum evolution on EAR */
20:　 Simplex search on the worst individual of EAR
21:　 Cauchy mutation on the other individuals of EAR
22:　 /* Knowledge transfer with point-ring topology */
23:　 Configure QP1, QP2, QP3, and EAR in a point-ring
　 　 topology
24:　 Migrate the best individual of each population clockwise
25:　 Replace the worst individual of each population by the
　　  elite of EAR
26:　 Duplicate the best individual of each population to EAR
27:　 /* Evolutionary restart with adaptive perturbation */
28:　 for k = 1 to 3 do
29:　　for i = 1 to PS do
30:　　　Randomly select a value of F from parameter pool
31:　　　Randomly select a value of CR from parameter pool
32: 　　　Quantum mutation in Eq. (25) on individual i of QPk

33:　　　Quantum crossover in Eq. (17) on individual i of QPk

34: 　　　Evolutionary restart in Eqs. (26) and (27) on individual
　　　　   i of QPk

35:　　endfor
36:　 endfor
37: 　Update gbest
38: endwhile
39: return gbest
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need  to  be  controlled.  In  evolution,  we  first  adopt  the
experimental  method  to  initialize  a  pool  of  good
combinations  (F,  CR).  Then  (F,  CR)  are  randomly
selected  from  the  pools  at  each  usage.  The  detailed
procedure is introduced in the experimental setup.

3.8    Analysis of QDMA on complexity

Denote the population size and the problem dimension
as PS and D ,  respectively. First, in the initialization of
quantum  populations  and  elite  archive,  the  time
complexity  is  obtained  as O(PS×D )  and O(PS),
respectively.  In  order  to  measure  the  population
individuals,  the  solution  space  transformation  and
quantum  observation  are  performed.  The  time
complexity  is  calculated  as O(PS×D ).  Second,  the
quantum populations  are  coevolved in  distributed way
by  the  three  operators  of  quantum  DE  algorithm.  The
time  complexity  of  the  mutation  operator,  crossover
operator,  and  selection  operator  is  obtained  as O(PS),
O(PS×D),  and O (PS),  respectively.  Third,  the  simplex
search  and  Cauchy  mutation  strategies  are  applied  to
improve  the  elite  archive,  and  the  time  complexity  is
obtained  as O (1).  Fourth,  the  knowledge  transfer
among different  search agents  is  used to  exchange the
superior search experience. The time complexity is also
O(1).  Finally, in the restart strategy based on quantum
DE,  the  quantum  mutation,  crossover,  and  selection
operators  are  used  to  evolve  or  adaptively  perturb  the
three populations. The time complexity is calculated as
O(PS), O(PS×D ),  and O (PS),  respectively.  Therefore,
the  overall  time  complexity  of  QDMA  is  obtained  as
O(PS×D).

4    Computational Results

4.1    Experimental setup

To  evaluate  the  performance  of  the  proposed
algorithms,  a  total  of  18  representative  and  universal
benchmark  functions  from  CEC  2014−2018  are
selected.  All  these  functions  have  the  global  optimum
value  zero.  They  are  considered  four  different
dimensions,  denoted  as  10D,  30D,  50D,  and  100D,
respectively. Further, f1−f8 are unimodal functions, f9 is
a  noisy  quadratic  function,  and f10−f18  are  multimodal
functions. In order to save space, the details of all these
functions  including  expressions,  variable  ranges,  and
optimal  values  are  provided  in Table  A1 in  the
Appendix.

The  proposed  QDMA  applies  three  quantum
populations for  distributed evolution.  The size of  each
population  is  set  as  PS  =  30.  As  the  original  DE

algorithm,  the  range  of  parameters F  and  CR  are  all
limited  into  [0,  1].  To  determine  the  most  reasonable
combination of them, we first select F and CR from the
set  {0.1,  0.2,  …,  1.0},  which  generates  a  total  of  100
combinations  (F,  CR).  Then,  each  combination  is
performed  30  times  by  QDMA  on  the  30-dimension
function f14. Finally, we adopt the average value of the
optimal  results  in  30 times as  the measure criterion of
each  combination.  The  top  12  combinations  with  the
lowest  measure  criterion  are  selected.  In  this  way,  we
obtain a good pool of combination (F, CR), where F ∈
{0.6,  0.7,  0.8,  0.9}  and  CR ∈  {0.7,  0.8,  0.9}.  In  the
evolution  of  QDMA,  (F,  CR)  are  randomly  selected
from the pools at each usage.

We compare the QDMA against three state-of-the-art
QEA  variants,  including  MSIQEA[8],  EMMSIQDE[9],
and  HMCFQDE[11].  In  addition,  the  QDMA  is  also
compared  against  three  effective  DE  variants  and  a
novel  distributed  DE  variant,  including  SaDE[43],
SaNSDE[44],  SaNSDE+[45],  and  ADDE[18].  In  order  to
execute  a  fair  comparison,  the  parameters  of  these
compared  algorithms  are  set  the  same  as  those  in  the
original  papers.  At  the  same  time,  the  termination
criterion  is  set  as  the  specified  maximal  runtime,  i.e.,
10 000×D ms, in all algorithms.

The performance of all algorithms is measured by the
fitness  error  value f(x)  –  f(x* ),  where x  is  the  best
solution obtained by a  given algorithm in  a  single  run
and x*  is  the  global  optimum  of  the  test  function.  To
generate  reliable  statistical  results,  each  algorithm  is
run  30  times  independently  on  each  benchmark
function.  Among  the  30  runs,  the  best  error  value
(Bev), mean error value (Mev), and standard deviation
(Std)  are  used  for  the  final  performance  metrics.
Besides,  the  Wilcoxon’s  rank-sum  test[46] at  5%
significance  level  is  carried  out  to  evaluate  the
statistical  significance  of  the  algorithmic  comparison.
Three symbols (“+”, “≈”, and “–”) are used to represent
that  the  QDMA  is  significantly  better,  similarly,  or
worse  than  the  compared  algorithm.  For  clarity,  the
results  of  the  best  algorithms  are  marked  in  boldface.
The  implementation  setup  is  the  Python3.7  simulation
software  and  the  PC  with  an  Intel(R)  Core(TM)  i5-
9300H CPU@2.4 GHz and 8 GB RAM under  the  64-
bit Windows 10 operating system.

4.2    Comparison with different QEA algorithms

The  QDMA  is  first  compared  with  the  three  state-of-
the-art  QEA  variants  including  MSIQDE[8],
EMMSIQDE[9],  and  HMCFQDE[11] to  assess  its
overall  performance.  The  detailed  computational
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results  are  provided  from Table  1 to  Table  4 on  four
different dimensions, respectively.

For  the  10D problems  in Table  1,  the  Bev  index
shows  that  QDMA generates  the  best  performance  on
all  the  functions,  and  the  Mev  and  Std  indexes  show
that  QDMA  outperforms  the  competitors  on  10
benchmark  functions  except  on f4,  f9−f12,  f14,  f16 ,  and
f17.  On  these  8  functions,  it  is  surpassed  by  MSIQDE
on f4,  f11,  f12 ,  and f16  and  EMMSIQDE  on f9,  f10,  f14,
and f17.

For  the  30D and  50D problems  in Tables  2 and  3,
QDMA  provides  the  almost  same  superiority  on  all
these functions. Specifically, QDMA also generates all
best values for the Bev index, and performs better in 12
values  of  the  30D problems  and  in  13  values  of  the
50D problems for both Mev and Std indexes.

For the larger 100D problems in Table 4, we can see
that the superiority of QDMA becomes more and more
obvious.  It  significantly  outperforms  the  other
competitors  on  all  functions,  except  the  Mev  and  Std
indexes of functions f2,  f4 ,  and f10 .  In addition, we can
also see that  QDMA can generate  the global  optimum
zero in 12, 8, 8, and 5 of the 18 functions for the 10D,
30D,  50D,  and  100D problems,  respectively.  It  is
significantly better than the compared three algorithms.

As  can  be  seen  from  the  statistic  test,  QDMA  is

significantly  better  (+)  than  MSIQDE  on  12,  16,  16,
and 16 of 18 functions in the dimensions from 10D to
100D,  respectively.  These  data  are  11,  14,  14,  and  15
of  18  functions  in  the  dimensions  from  10D to  100D
for  EMMSIQDE.  HMCFQDE  cannot  outperform
QDMA on any function in the four  dimensions.  Thus,
it  can  be  concluded  that  QDMA  achieves  the  best
performance, followed by MSIQDE, EMMSIQDE, and
HMCFQDE. According to the longitudinal comparison
from  10D to  100D,  the  results  show  that  the
performance of QDMA becomes better and better with
the increase of problem scale, which also indicates that
it  has  greater  advantages  in  solving  large-scale
problems.  As  a  result,  QDMA  generates  the  best
performance.

In  order  to  investigate  the  algorithmic  evolutionary
behavior,  we further  provide their  convergence graphs
to illustrate their evolutionary process. We choose f5, f9,
f12−f14, and f16 as the representative functions and only
test  50D problems.  For  other  10D,  30D,  and  100D
dimensions,  our  experiment  shows  that  the
convergence  curves  of  the  algorithms  have  the  same
change trend as those of 50D.  Therefore, they will not
be  provided  here  due  to  page  limitation.  From  the
convergence  graphs  in Fig.  5,  we  can  see  that  the
proposed  QDMA  shows  three  aspects  of  advantages.
First,  QDMA  obtains  the  better  solutions  than  its

 

Table 1    Comparison of QDMA and state-of-the-art QEAs on 10D problems.

Function
QDMA MSIQDE EMMSIQDE HMCFQDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 0.00×100/1.80×10–26/3.55×10–26 3.41×10–10/6.68×10–6/1.31×10–5/+ 2.25×10–6/1.65×10–3/4.18×10–3/+ 4.88×100/1.41×102/1.94×102/+
f2 0.00×100/1.58×10–24/3.75×10–24 3.01×10–8/1.91×10–4/3.41×10–4/+ 1.39×10–5/2.97×10–2/5.19×10–2+ 2.30×102/7.48×102/5.74×102/+
f3 0.00×100/3.56×10–20/1.59×10–19 3.92×10–7/2.49×10–4/2.84×10–4/+ 1.02×10–1/1.94×102/4.11×102/+ 1.39×103/4.18×103/2.03×103/+
f4 0.00×100/1.76×10–2/7.34×10–2 1.84×10–5/9.00×10–4/8.49×10–4/+ 1.13×10–5/9.39×10–3/9.81×10–3/+ 7.69×10–1/1.62×100/4.66×10–1/+
f5 0.00×100/1.73×10–13/2.86×10–13 8.38×10–5/1.83×10–3/1.31×10–3/+ 1.77×10–4/9.77×10–3/9.92×10–3+ 8.64×100/1.28×101/2.48×100/+
f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 7.50×101/3.86×102/2.53×102/+
f7 0.00×100/2.15×10–25/3.22×10–25 7.24×10–9/1.30×10–5/2.15×10–5/+ 5.38×10–7/6.99×10–3/1.26×10–2/+ 7.43×100/4.49×102/2.61×102/+
f8 0.00×100/4.90×10–20/8.67×10–20 1.91×10–3/3.13×100/5.44×100/+ 4.72×10–2/5.51×102/8.65×102/+ 6.97×106/1.08×108/7.35×107/+
f9 9.48×10–6/9.87×10–3/1.66×10–2 3.54×10–4/1.94×10–3/1.44×10–3/≈ 4.02×10–5/1.31×10–3/9.11×10–4/≈ 1.52×10–2/7.52×10–2/3.19×10–2/+
f10 1.59×10–28/3.99×10–1/1.20×100 5.44×100/8.82×100/6.32×10–1/+ 2.80×10–4/1.44×10–1/2.34×10–1/+ 2.15×104/2.87×105/4.26×105/+
f11 0.00×100/6.40×10–2/1.30×10–1 4.39×10–9/3.27×10–4/5.38×10–4/≈ 1.74×10–6/7.34×10–3/1.23×10–2/≈ 2.12×100/4.37×100/1.59×100/+
f12 4.44×10–16/1.44×10–1/4.51×10–1 6.36×10–5/1.60×10–3/1.65×10–3/+ 2.12×10–4/1.08×10–2/1.29×10–2/+ 4.95×100/7.93×100/1.53×100/+
f13 0.00×100/0.00×100/0.00×100 5.97×10–10/1.28×10–6/2.81×10–6/+ 1.57×10–9/4.86×10–6/1.09×10–5/+ 1.25×10–2/1.02×100/6.15×10–1/+
f14 0.00×100/5.42×10–1/8.19×10–1 3.33×10–2/1.80×10–1/9.04×10–2/≈ 5.84×10–3/1.49×10–1/8.52×10–2/≈ 3.11×100/4.40×100/6.10×10–1/+
f15 0.00×100/0.00×100/0.00×100 3.71×10–11/1.90×10–8/2.38×10–8/+ 1.17×10–13/4.03×10–8/6.73×10–8/+ 5.71×10–3/1.80×10–2/9.09×10–3/+
f16 4.25×10–97/1.67×10–1/2.57×10–1 2.13×10–5/4.71×10–4/5.34×10–4/≈ 3.65×10–5/9.21×10–3/9.91×10–3/≈ 1.61×100/2.62×100/5.60×10–1/+
f17 1.01×10–31/6.02×10–1/2.16×100 5.86×10–5/3.83×10–2/1.65×10–2/≈ 7.01×10–8/8.75×10–5/1.37×10–4/≈ 4.47×100/1.09×101/4.78×100/+
f18 3.35×10–30/1.30×10–3/4.42×10–3 4.10×10–2/1.61×10–1/6.61×10–2/+ 2.92×10–7/7.53×10–3/2.12×10–2/≈ 3.49×100/2.30×102/8.35×102/+

Statistic test
(+/≈/−)

− 12/6/0 11/7/0 18/0/0
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competitors  in  solving  all  six  test  functions.  Second,
QDMA  converges  to  the  solutions  at  a  faster  speed.
Third,  the  solution  of  each  function  obtained  by

QDMA  is  equal  to  or  very  close  to  zero,  i.e.,  the
optimal  solution.  Therefore,  we  can  conclude  that
QDMA  clearly  outperforms  the  compared  three  state-

 

Table 2    Comparison of QDMA and state-of-the-art QEAs on 30D problems.

Function
QDMA MSIQDE EMMSIQDE HMCFQDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 0.00×100/1.95×10–22/6.02×10–22 3.04×10–10/1.43×10–6/1.76×10–6/+ 3.32×10–7/2.53×10–3/3.02×10–3/+ 8.39×103/1.69×104/2.90×103/+
f2 2.58×10–88/2.02×100/9.26×100 1.56×10–7/1.12×10–3/2.87×10–3/+ 1.86×10–5/5.65×10–1/8.84×10–1/+ 2.45×104/3.34×104/5.31×103/+
f3 0.00×100/1.10×104/3.88×104 7.05×10–7/9.42×10–4/1.77×10–3/+ 8.74×10–2/5.93×102/1.10×103+ 1.28×107/2.31×107/6.16×106/+
f4 2.41×10–59/9.04×100/1.52×101 2.24×10–7/1.03×10–3/1.18×10–3/– 1.70×10–4/3.68×10–2/3.69×10–2/– 1.88×101/3.65×101/7.79×100/+
f5 4.95×10–44/2.00×100/1.08×101 1.49×10–5/2.55×10–3/2.52×10–3/+ 2.02×10–5/1.04×10–2/9.08×10–3/+ 5.34×101/6.02×101/2.80×100/+
f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.06×104/1.61×104/2.17×103/+
f7 0.00×100/4.39×10–85/3.08×10–85 7.26×10–9/6.74×10–6/9.32×10–6/+ 4.43×10–4/1.07×10–1/1.92×10–1/+ 1.12×105/1.71×105/3.59×104/+
f8 1.83×10–92/3.97×10–14/2.14×10–13 2.75×10–4/2.47×100/4.13×100/+ 2.09×100/3.09×103/4.41×103/+ 8.10×109/1.45×1010/2.98×109/+
f9 1.63×10–6/5.01×10–4/7.13×10–4 1.85×10–4/1.96×10–3/1.35×10–3/+ 4.13×10–4/3.09×10–3/2.43×10–3/+ 4.77×100/1.14×101/3.14×100/+
f10 1.92×10–9/1.95×101/1.32×101 2.89×101/2.89×101/1.81×10–3/+ 6.81×10–4/7.48×10–1/9.26×10–1/– 9.89×108/3.3×109/1.05×109/+
f11 0.00×100/5.56×10–3/1.87×10–2 9.91×10–8/3.72×10–4/9.37×10–4/+ 1.24×10–6/1.40×10–2/2.60×10–2/+ 7.98×101/1.51×102/2.53×101/+
f12 4.44×10–16/3.11×10–11/1.55×10–10 5.67×10–5/1.22×10–3/1.07×10–3/+ 8.11×10–4/1.44×10–2/1.40×10–2/+ 1.56×101/1.71×101/6.26×10–1/+
f13 0.00×100/3.79×10–15/2.04×10–14 4.63×10–9/6.36×10–6/1.03×10–5/+ 4.23×10–8/1.99×10–5/5.83×10–5/+ 2.15×101/5.11×101/1.35×101/+
f14 0.00×100/6.33×10–4/3.41×10–3 3.23×10–2/5.87×10–1/3.73×10–1/+ 6.76×10–2/5.11×10–1/3.03×10–1/+ 2.77×101/3.22×101/1.30×100/+
f15 0.00×100/4.44×10–17/2.39×10–16 4.32×10–11/9.05×10–8/1.92×10–7+ 2.56×10–9/2.39×10–7/3.03×10–7+ 5.26×10–1/7.75×10–1/1.42×10–1/+
f16 3.53×10–54/1.47×10–44/7.80×10–45 4.76×10–6/5.16×10–4/6.58×10–4/+ 2.81×10–4/4.70×10–2/4.34×10–2/+ 9.22×100/1.31×101/1.62×100/+
f17 6.28×10–29/6.42×10–11/3.39×10–10 2.36×10–2/7.38×10–2/3.73×10–2/+ 8.24×10–8/2.27×10–4/4.42×10–4/+ 9.06×106/3.62×107/1.37×107/+
f18 2.08×10–27/5.97×10–2/1.04×10–1 2.21×10–1/6.08×10–1/2.09×10–1/+ 1.44×10–6/1.67×10–2/2.57×10–2/≈ 4.50×107/9.86×107/2.87×107/+

Statistic test
(+/≈/−)

− 16/1/1 14/2/2 18/0/0
 

 

Table 3    Comparison of QDMA and state-of-the-art QEAs on 50D problems.

Function
QDMA MSIQDE EMMSIQDE HMCFQDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 4.19×10–91/5.84×10–15/0.00×100 2.64×10–10/1.17×10–6/1.53×10–6/+ 1.39×10–8/1.45×10–2/3.48×10–2/+ 3.21×104/4.64×104/4.57×103/+
f2 0.00×100/3.32×103/1.79×104 9.34×10–8/2.69×10–3/4.67×10–3/+ 9.29×10–3/7.25×100/1.38×101/+ 7.42×104/9.94×104/1.10×104/+
f3 3.46×10–99/1.72×105/9.24×105 1.26×10–9/1.99×10–3/3.96×10–3/+ 1.58×100/2.73×102/4.18×102/+ 1.64×108/2.49×108/4.54×107/+
f4 1.27×10–43/5.12×101/4.35×101 9.90×10–5/1.35×10–3/1.11×10–3/– 1.49×10–3/3.12×10–1/2.68×10–1/– 7.68×101/9.27×101/8.60×100/+
f5 5.96×10–44/6.82×10–44/2.18×10–45 6.12×10–5/1.29×10–3/1.24×10–3/+ 1.24×10–3/1.38×10–2/1.19×10–2/+ 6.70×101/7.09×101/1.66×100/+
f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 3.51×104/4.69×104/4.62×103/+
f7 0.00×100/7.42×10–21/4.00×10–20 2.66×10–10/1.34×10–5/3.06×10–5/+ 5.17×10–4/3.94×10–1/7.67×10–1/+ 7.14×105/9.82×105/1.01×105/+
f8 0.00×100/3.20×100/1.46×101 8.66×10–4/2.61×100/3.96×100/+ 9.79×100/8.22×103/9.83×103/+ 3.61×1010/4.52×1010/4.43×109/+
f9 1.28×106/6.28×10–4/9.90×10–4 1.02×10–4/1.77×10–3/1.12×10–3/+ 7.52×10–5/2.12×10–3/1.53×10–3/+ 4.66×101/8.02×101/1.30×101/+
f10 4.49×10–6/3.96×101/1.11×101 4.88×101/4.89×101/2.07×10–2/+ 5.25×10–3/4.28×100/9.14×100/– 1.17×1010/1.48×1010/1.47×109/+
f11 0.00×100/0.00×100/0.00×100 1.47×10–6/4.01×10–4/7.42×10–4/+ 8.10×10–6/8.89×10–3/1.16×10–2/+ 3.45×102/4.30×102/3.25×101/+
f12 4.44×10–16/4.44×10–16/0.00×100 2.53×10–6/4.19×10–4/6.55×10–4/+ 1.40×10–4/1.71×10–2/1.74×10–2/+ 1.83×101/1.88×101/2.23×10–1/+
f13 0.00×100/1.14×10–14/6.12×10–14 1.41×10–9/5.13×10–6/9.69×10–6/+ 3.68×10–10/4.79×10–5/7.51×10–5/+ 1.24×102/1.56×102/1.29×101/+
f14 0.00×100/0.00×100/0.00×100 7.56×10–2/8.92×10–1/6.76×10–1/+ 1.12×10–1/7.54×10–1/4.17×10–1/+ 5.67×101/6.15×101/1.66×100/+
f15 0.00×100/0.00×100/0.00×100 6.22×10–11/1.05×10–7/2.47×10–7/+ 6.56×10–10/4.45×10–7/5.67×10–7/+ 2.00×100/2.28×100/1.66×10–1/+
f16 2.04×10–44/2.56×10–44/2.52×10–45 4.26×10–7/2.58×10–4/2.32×10–4/+ 1.76×10–3/4.19×10–2/4.13×10–2/+ 2.08×101/2.25×101/8.66×10–1/+
f17 2.32×10–27/1.84×10–4/6.62×10–4 2.52×10–2/7.18×10–2/3.49×10–2/+ 1.70×10–7/1.54×10–4/2.97×10–4/+ 9.79×107/1.87×108/3.59×107/+
f18 7.54×10–25/7.79×10–4/2.81×10–2 3.36×10–1/1.07×100/3.31×10–1/+ 2.03×10–5/2.46×10–2/4.08×10–2/≈ 2.53×108/4.63×108/7.87×107/+

Statistic test
(+/≈/−)

− 16/1/1 14/2/2 18/0/0
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of-the-art  QEA  variants.  In  addition,  MSIQDE  and
EMMSIQDE  show  similar  performance,  and  their
convergence  solutions  are  also  very  competitive.

Overall,  in  terms  of  convergence  speed  and  accuracy,
the  performance  of  HMCFQDE  is  worst  in  solving
each test function.

 

Table 4    Comparison of QDMA and state-of-the-art QEAs on 100D problems.

Function
QDMA MSIQDE EMMSIQDE HMCFQDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 1.18×10–85/1.46×10–85/1.94×10–86 1.76×10–9/5.15×10–6/7.17–6/+ 1.17×10–5/2.01×10–2/4.14×10–2/+ 1.20×105/1.34×105/7.15×103/+
f2 4.05×10–86/3.65×104/9.37×104 2.43×10–9/4.33×10–3/6.22×10–3/+ 1.20×10–2/7.41×101/1.75×102/+ 2.90×105/4.29×105/6.68×104/+
f3 6.12×10–81/1.10×10–80/3.30×10–81 3.12×10–7/2.26×10–3/6.16×10–3/+ 3.39×10–1/1.06×103/1.91×103/+ 1.68×109/2.09×109/2.96×108/+
f4 2.83×10–43/7.68×104/3.15×105 1.39×10–4/2.31×10–3/2.07×10–3/– 8.69×10–3/1.13×100/1.17×100/– 1.97×102/4.46×107/1.71×108/+
f5 6.48×10–44/6.91×10–44/1.24×10–45 4.42×10–5/2.62×10–3/2.60×10–3/+ 6.24×10–7/9.11×10–3/9.32×10–3/+ 7.84×101/8.11×101/1.29×100/+
f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.15×105/1.37×105/8.49×103/+
f7 7.15×10–86/7.33×10–84/1.75×10–84 5.53×10–8/1.23×10–5/2.17×10–5/+ 1.14×10–3/1.17×100/2.61×100/+ 5.11×106/6.06×106/4.10×105/+
f8 1.12×10–79/1.45×10–79/2.00×10–80 1.07×10–2/2.37×100/4.80×100/+ 1.17×100/2.63×104/6.65×104/+ 1.22×1011/1.36×10111/5.70×109/+
f9 1.56×10–6/6.75×10–4/1.07×10–3 2.52×10–4/1.96×10–3/1.44×10–3/+ 6.79×10–4/4.56×10–3/3.64×10–3/+ 3.72×102/6.08×102/5.81×101/+
f10 6.61×10–4/8.54×101/2.79×101 9.86×101/9.89×101/5.73×10–2/+ 9.90×10–4/6.18×100/1.26×101/– 4.19×1010/5.11×1010/3.19×109/+
f11 0.00×100/0.00×100/0.00×100 7.93×10–8/1.71×10–4/2.20×10–4/+ 1.13×10–7/1.49×10–2/2.23×10–2/+ 1.08×103/1.23×103/6.73×101/+
f12 4.44×10–16/5.63×10–16/6.38×10–16 4.42×10–6/2.95×10–4/3.21×10–4/+ 1.88×10–4/1.01×10–2/1.36×10–2/+ 1.96×101/1.98×101/9.39×10–2/+
f13 0.00×100/0.00×100/0.00×100 1.28×10–9/7.31×10–6/1.18×10–5/+ 3.37×10–8/7.59×10–5/1.68×10–4/+ 4.09×102/4.50×102/1.92×101/+
f14 0.00×100/0.00×100/0.00×1000 4.60×10–2/2.09×100/1.32×100+ 2.39×10–1/1.61×100/1.02×100/+ 1.32×102/1.3×102/3.98×100/+
f15 0.00×100/0.00×100/0.00×100 7.32×10–10/2.23×10–7/4.98×10–7/+ 6.23×10–11/1.07×10–6/1.34×10–6/+ 6.21×100/6.57×100/1.96×10–1/+
f16 3.34×10–44/3.79×10–44/2.55×10–45 7.85×10–6/2.90×10–4/3.94×10–4/+ 1.98×10–4/5.61×10–2/5.18×10–2/+ 3.52×101/3.74×101/8.73×10–1/+
f17 2.13×10–22/1.24×10–4/3.01×10–4 2.94×10–2/7.87×10–2/3.17×10–2/+ 7.10×10–8/7.22×10-4/9.19×10–4/+ 5.26×108/7.74×108/9.81×107/+
f18 6.38×10–12/1.03×10–2/1.34×10–2 5.77×10–1/1.84×100/5.59×10–1/+ 2.20×10–8/1.90×10–2/2.56×10–2/+ 1.30×109/1.71×109/1.44×108/+

Statistic test
(+/≈/−)

− 16/1/1 15/1/2 18/0/0
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Fig. 5    Convergence graphs of QDMA and QEA variants on 50D problems.
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4.3    Comparison with different DE algorithms

Next,  the  QDMA  is  further  compared  against  three
efficient  DE  variants  SaDE[43],  SaNSDE[44],  and
SaNSDE+[45],  and  a  state-of-the-art  distributed  DE
variant  ADDE[18]. Table  5 shows the  statistical  results
between  QDMA  and  the  candidate  algorithms,  while
the  detailed  comparison  results  are  attached  from
Tables A2−A5 in the Appendix.

For the 10D problems in Table A2 in the Appendix,
we can see that QDMA performs clearly better than all
compared algorithms according to the Bev index. It can
generate  the  better  Bev  values  in  15  of  the  18
functions,  and finds 12 global optimal solutions of the
18  functions.  According  to  the  Mev  and  Std  indexes,
although QDMA clearly wins ADDE, we also see that
it  is  dominated by SaDE,  SaNSDE,  and SaNSDE+ on
almost all functions except f6, f13, and f15. These results
suggest  that  QDMA  has  efficient  global  optimization
ability  but  its  robustness  needs to  be further  improved
in solving small-scaled problems.

For the 30D problems in Table A3 in the Appendix,
the conclusion is  overall  the same as those in the 10D
problems. As the increase of problem scale, we can see
that  QDMA starts  to  perform better  in  more  Mev  and
Std indexes. For the 50D problems in Table A4 in the
Appendix,  QDMA  still  keeps  15  better  Bev  values.
However,  the  number  of  the  better  Mev  and  Std
indexes  has  increased  to  11.  This  implies  that  QDMA
is gradually improving its robustness and has the better
performance in solving more complex problems.

For the 100D problems in Table A5 in the Appendix,
QDMA  shows  a  more  obvious  dominant  position
among the compared algorithms no matter which of the
three indexes is.  In the Bev index, QDMA obtains the

better  values  in  17  of  the  18  functions,  except  that
SaDE  wins  it  on f18 .  In  the  Mev  and  Std  indexes,
QDMA  obtains  the  better  values  in  15  of  the  18
functions. It is only won by SaDE on f4 in Mev index,
SaNSDE on f4 in Std index, and SaDE on f17 and f18 in
both  Mev  and  Std  indexes.  This  fully  shows  the
superiority  of  QDMA  in  addressing  the  large-scaled
optimization problems.

The  statistic  test  in Table  5 further  confirms  the
analysis  and  conclusion  obtained  above.  Overall,
QDMA only  wins  SaDE,  SaNSDE,  and  SaNSDE+ on
3,  1,  and  2  functions,  respectively,  in  10D problems.
These  data  are  swiftly  improved  when  we  add  the
problem  scales.  For  example,  there  are  6,  5,  and  11
functions  in  30D problems,  11,  9,  and 15 functions  in
50D problems,  and  13,  13,  and  17  functions  in  100D
problems.  QDMA  performs  better  than  ADDE  in  all
benchmark  functions  and  measurement  indexes.
Therefore, QDMA shows the best performance among
the compared algorithms.

We  further  give  the  convergence  graphs  of  these
algorithms  to  analyze  the  evolutionary  process.  The
convergence  graphs  are  shown  in Fig.  6.  As  can  be
seen  from Fig.  6,  QDMA  has  the  best  convergence
speed  and  optimization  accuracy  for  all  six  test
functions. Figure  6 also  shows  that  ADDE  performs
worst  on  all  the  test  functions  except f14  shown  in
Fig. 6e. On function f14, its performance is second only
to  QDMA,  that  is,  better  than  another  three  DE
variants.  In  addition,  the  performances  of  SaDE,
SaNSDE,  and  SaNSDE+  are  very  close  and  between
QDMA  and  ADDE.  Therefore,  we  can  conclude  that
the  proposed  QDMA  outperforms  the  compared  three
effective  and  efficient  DE  algorithms  and  the
distributed DE algorithm at a considerable margin.

4.4    Effect of QDMA special designs

The  key  special  designs  of  QDMA  are  distributed
quantum  evolution  on  QPs,  intensified  quantum
evolution on EAR, and knowledge transfer with point-
ring  topology.  Next,  we  discuss  the  effect  of  these
special  designs on the overall  performance of QDMA.
For  this  purpose,  three  variants  of  QDMA  are  tested.
They are denoted as QDMAk, k ∈ {1, 2, 3}. QDMA1 is
a  single  QEA  obtained  by  removing  the  modules  of
distributed  quantum  evolution  on  QPs  and  intensified
quantum  evolution  on  EAR  from  QDMA.  QDMA2 is
QDMA1 plus  the  distributed  quantum  evolution
module.  QDMA3 is  QDMA2 combing  the  intensified
quantum evolution module. Overall QDMA is QDMA3
plus  the  knowledge  transfer  module.  In  addition,  the
basic  DE  algorithm  with  a  single  population  and  the

 

Table  5    Comparison  of  QDMA  and  state-of-the-art  DE
variants.

Dimension
Statistical result

QDMA SaDE SaNSDE SaNSDE+ ADDE

10D
+ 3 1 2 18
≈ 7 7 8 0
– 8 10 8 0

30D
+ 6 5 11 18
≈ 5 4 3 0
– 7 9 4 0

50D
+ 11 9 15 18
≈ 5 4 1 0
– 2 5 2 0

100D
+ 13 13 17 18
≈ 2 2 0 0
– 3 3 1 0
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DE/rand/1  mutation  operator  is  used  as  the  reference
algorithm. For the test functions, we only consider the
50D dimension.  Table  6 shows  the  computational
results.

From  the  comparison  between  QDMA1 and  DE  in

Table  6,  QDMA1 performs  better  in  each  of  three
indexes on all tested functions, except the Std index on
f5, f9 ,  and f14 .  Therefore,  it  can  be  concluded  that  the
proposed QEA is effective. This is because this QEA is
built  by  introducing  the  quantum  evolution  into  the
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Fig. 6    Convergence graphs of QDMA and DE variants on 50D problems.

 

 

Table 6    Comparison of QDMA and its special designs on 50D problems.

Function
QDMA DE QDMA1 QDMA2 QDMA3

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 4.19×10–91/5.84×10–15/0.00×100 2.64×103/2.11×104/1.24×104/+ 3.30×10–27/1.47×10–1/7.62×10–1/+ 3.20×10–12/2.33×101/1.18×102/+ 4.95×10–1/2.94×103/4.32×103/+

f2 0.00×100/3.32×103/1.79×103 5.77×104/7.29×104/7.98×103/+ 4.72×104/6.82×104/6.51×103/+ 1.42×104/5.73×104/2.00×104/+ 1.82×10–1/4.66×104/3.45×104/+

f3 3.46×10–99/1.72×105/9.24×105 1.31×107/9.82×107/8.83×107/+ 4.58×104/2.71×106/2.61×106/+ 4.33×10–12/3.19×104/5.97×104/+ 5.87×101/2.40×106/1.02×107/+

f4 1.27×10–43/5.12×101/4.35×101 1.03×102/2.80×102/8.61×102/+ 8.45×101/1.71×102/3.38×102/+ 3.83×101/9.89×101/2.30×101/+ 4.65×101/1.40×101/2.06×101/+

f5 5.96×10–44/6.82×10–44/2.18×10–45 5.96×101/6.59×101/2.33×100/+ 5.63×101/6.53×101/2.49×100/+ 1.56×101/6.09×101/1.15×101/+ 2.01×10–1/2.22×101/2.24×101/+

f6 0.00×100/0.00×100/0.00×100 6.96×103/2.20×104/1.12×104/+ 0.00×100/5.46×101/7.76×101/+ 1.20×101/7.48×102/1.56×103/+ 0.00×100/3.94×102/5.80×103/+

f7 0.00×100/7.42×10–21/4.00×10–20 7.10×104/5.43×105/2.08×105/+ 4.36×103/8.12×104/6.15×104/+ 5.24×10–2/3.98×104/8.53×104/+ 2.13×10–2/2.91×104/3.61×104/+

f8 0.00×100/3.20×100/1.46×101 3.72×109/2.73×1010/9.25×109/+ 3.07×10–21/9.08×105/3.88×106/+ 8.38×10–21/1.23×100/6.64×100/+ 3.39×101/1.59×109/2.44×109/+

f9 1.28×10–6/6.28×10–4/9.90×10–4 3.18×101/5.55×101/1.10×101/+ 1.23×101/4.35×101/1.12×101/+ 1.51×101/4.10×101/1.31×101/+ 1.04×10–1/9.94×100/1.65×101/+

f10 4.49×10–6/3.96×101/1.11×101 6.03×109/1.11×1010/1.93×109/+ 5.80×106/2.89×109/1.67×109/+ 2.19×102/3.31×109/2.43×109/+ 1.53×102/2.76×109/4.13×109/+

f11 0.00×100/0.00×100/0.00×100 8.33×101/3.05×102/6.93×101/+ 2.45×100/6.10×101/5.28×101/+ 0.00×100/2.24×10–2/4.20×10–2/+ 9.85×10–2/3.98×101/5.40×101/+

f12 4.44×10–16/4.44×10–16/0.00×100 1.20×101/1.71×101/1.49×100/+ 1.72×100/3.19×100/7.35×10–1/+ 3.10×100/8.02×100/2.68×100/+ 5.97×10–1/7.01×100/3.80×100/+

f13 0.00×100/1.14×10–14/6.12×10–14 1.68×101/6.49×101/3.09×101/+ 0.00×100/4.71×10–3/2.41×10–2/+ 2.09×10–9/3.97×10–3/2.13×10–2/+ 1.89×10–6/1.40×100/4.15×100/+

f14 0.00×100/0.00×100/0.00×100 4.81×101/5.88×101/3.24×100/+ 3.41×101/5.22×101/6.11×100/+ 4.12×100/8.31×100/2.43×100/+ 2.31×100/3.22×101/1.50×101/+

f15 0.00×100/0.00×100/0.00×100 7.37×10–1/1.54×100/2.80×10–1/+ 1.03×10–4/2.82×10–1/2.03×10–1/+ 7.93×10–8/9.66×10–2/1.48×10–1/+ 1.50×10–5/9.90×10–2/1.60×10–1/+

f16 2.04×10–44/2.56×10–44/2.52×10–45 8.03×100/1.67×101/3.02×100/+ 5.00×10–1/1.90×100/8.71×10–1/+ 6.00×10–1/1.91×100/1.02×100/+ 1.16×10–1/5.74×100/3.96×100/+

f17 2.32×10–27/1.84×10–4/6.62×10–4 6.56×107/1.31×108/3.21×107/+ 4.81×107/1.24×108/3.07×107/+ 4.31×100/1.05×108/2.08×107/+ 3.93×10–1/2.97×107/5.88×107/+

f18 7.54×10–25/7.79×10–4/2.81×10–2 2.16×108/3.08×108/6.00×107/+ 1.32×108/1.96×108/3.45×107/+ 1.84×102/1.59×108/2.63×107/+ 4.59×100/5.91×107/1.10×108/+
Statistic test

(+/≈/−)
− 18/0/0 18/0/0 18/0/0 18/0/0
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framework of basic DE, which can effectively enhance
the  evolutionary  diversity.  Compared  with  QDMA1,
QDMA2 achieves  the  better  performance  on  13
functions for the Bev and Mev indexes. It indicates that
the  distributed  quantum  evolution  module  is  effective
in  the  evolutionary  process  of  QDMA.  By  further
integrating  EAR-driven  intensified  quantum  evolution
and  executing  it  in  parallel  with  distributed  quantum
evolution,  QDMA3 outperforms  QDMA2 on  11
functions  in  the  Bev  index  and  on  10  functions  in  the
Mev  index.  As  a  result,  the  proposed  local  search
strategy  and  the  parallel  evolutionary  design  with  the
global  search  are  successful.  Finally,  QDMA
significantly outperforms all considered variants, which
demonstrates that the knowledge transfer strategy plays
an  important  role  for  enhancing  the  performance  of
overall QDMA.

From the above analysis, we can see that the special
designs  proposed  in  QDMA  are  effective  and  very
important  to  achieve  the  superior  overall  performance
of QDMA.

5    Conclusion

To  achieve  the  high-quality  global  optimization,  a
QDMA  metaheuristic  is  proposed  based  on  quantum
computation  and  a  novel  distributed  memetic
evolutionary  framework.  In  QDMA,  individuals  are
represented  and  evolved  by  quantum  computing
characteristics,  which  can  effectively  enhance  the
evolutionary  diversity.  Within  the  proposed
framework,  four  modules  called  distributed  quantum
evolution,  intensified  quantum  evolution,  knowledge

transfer, and evolutionary restart are cooperated, which
can  maximize  their  strengths  and  achieve  superior
global  optimality.  For  details,  distributed  quantum
evolution  explores  three  populations  independently  by
the  heterogenous  operators.  Intensified  quantum
evolution  exploits  an  external  elite  archive  to  balance
global  and  local  searches.  Knowledge  transfer  uses  a
point-ring topology to exchange successful experiences
among  all  search  agents.  Evolutionary  restart  module
uses  an  adaptive  perturbation  strategy  to  control  the
diversity  of  the  populations  reasonably.  Extensive
computational experiments are executed to evaluate the
proposed  algorithm.  The  results  demonstrate  the
effectiveness  of  each special  design and show that  the
QDMA  can  outperform  the  compared  state-of-the-art
algorithms  based  on  Wilcoxon’s  rank-sum  test.  These
superiorities  are  attributed  not  only  to  excellent
cooperative  coevolution  mechanism  from  distributed
memetic  evolutionary  framework,  but  also  to  good
designs of each special component.

Inspired by the superior performance, in future work
we will  apply the QDMA to deal  with large-scale  and
multiobjective  optimization[47] as  well  as  some
practical  applications  such  as  intelligent  optimization
for manufacturing scheduling[48].

Appendix

In this appendix, Table A1 is the test functions used in
the  experiment,  and Tables  A2−A5 are  the  detailed
comparison  results  between  our  proposed  QDMA,
SaDE, SaNSDE, SaNSDE+, and ADDE in Section 4.3.

 

Table A1    Test functions.
Function Expression Variable range Optimal value

f1 f1 (x) =
D∑

i=1
x2

i
[–100, 100] 0

f2 f2 (x) =
D∑

i=1
(

i∑
j=1

x j)2 [–100, 100] 0

f3 f3 (x) =
D∑

i=1
(106)

i−1
D−1 x2

i
[–100, 100] 0

f4 f4 (x) =
D∑

i=1
|xi |+

D∏
i=1
|xi | [–10, 10] 0

f5 f5 (x) =max {|xi |,1 ⩽ i ⩽ D} [–100, 100] 0

f6 f6 (x) =
D∑

i=1
(⌊xi +0.5⌋)2 [–100, 100] 0

f7 f7 (x) =
D∑

i=1
(ix2

i ) [–100, 100] 0

f8 f8 (x) =
D∑

i=1
[

i∑
j=1

(
i∑

k=1
xk)]2 [–100, 100] 0

f9 f9 (x) =
D∑

i=1
ix4

i + random[0,1) [–1.28, 1.28] 0

f10 f10 (x) =
D−1∑
i=1

[100(xi+1 − x2
i )2
+ (1− xi)2] [–100, 100] 0

(to be continued)
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Table A1    Test functions. (continued)

Function Expression Variable range Optimal value

f11 f11 (x) =
D∑

i=1

x2
i

4000 −
D∏

i=1
cos( xi√

i
)+1 [–600, 600] 0

f12 f12 (x) = −20exp(−0.2

√
1
D

D∑
i=1

x2
i )− exp( 1

D

D∑
i=1

cos2πxi)+20+ e [–32, 32] 0

f13 f13 (x) = 10D+
D∑

i=1
(x2

i −10cos(2πxi)) [–0.5, 0.5] 0

f14
f14 (x) =

D∑
i=1

(
kmax∑
k=0

[ak cos(2πbk(xi +0.5))])−D
kmax∑
k=0

[ak cos(2πbk ×0.5)]

a = 0.5,b = 3,kmax = 20

[–0.5, 0.5] 0

f15 f15 (x) =
D∑

i=1
(0.5+

sin2(
√

x2
i + x2

i+1)−0.5

[1+0.001(x2
i + x2

i+1)]2 ), xD+1 = x1
[–0.5, 0.5] 0

f16 f16 (x) = 1− cos(2π

√
D∑

i=1
x2

i )+0.1

√
D∑

i=1
x2

i
[–100, 100] 0

f17

f17 (x) =
π
D
{10sin2(πy1)+

D−1∑
i=1

(yi −1)2[1+10sin2(πyi+1)]+ (yD −1)2}+
D∑

i=1

u(xi,10,100,4)

yi = 1+
1
4

(xi +1),u(xi,a,k,m) =


k(xi −a)m, xi > a;

0, −a < xi < a;

k(−xi −a)m, xi < −a

[–50, 50] 0

f18

f18 (x) = 0.1{10sin2(3πx1)+
D−1∑
i=1

(xi −1)2[1+ sin2(3πxi+1)]+ (xD −1)2[1+ sin2(2πxD)]}+

D∑
i=1

u(xi,5,100,4)

[–50, 50] 0

 

 

Table A2    Comparison of QDMA and different DE variants on 10D problems.

Function
QDMA SaDE SaNSDE SaNSDE+ ADDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 0.00×100/1.80×10–26/3.55×10–26 0.00×100/1.77×10–80/7.40×10–80/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/– 1.76×10–31/6.88×10–31/5.34×10–31/+

f2 0.00×100/1.58×10–24/3.75×10–24 6.90×10–24/2.46×10–11/8.88×10–11/+ 0.00×100/2.15×10–95/1.16×10–94/– 1.45×10–71/1.81×10–63/9.30×10–63/– 6.45×102/1.49×103/4.06×102/+

f3 0.00×100/3.56×10–20/1.59×10–19 0.00×100/3.04×10–69/1.45×10–68/– 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 1.04×106/4.45×106/2.11×106/+

f4 0.00×100/1.76×10–2/7.34×10–2 4.46×10–50/2.31×10–28/9.72×10–28/– 1.05×10–53/1.61×10–47/5.90×10–47/– 4.10×10–25/3.66×10–23/4.91×10–23/– 7.21×100/1.09×101/1.31×100/+

f5 0.00×100/1.73×10–13/2.86×10–13 7.71×10–32/1.19×10–17/4.15×10–17/≈ 3.30×10–46/4.32×10–42/1.99×10–41/≈ 1.76×10–29/2.69×10–26/7.77×10–26/≈ 1.55×101/2.12×101/2.53×100/+

f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 7.09×102/1.43×103/4.55×102/+

f7 0.00×100/2.15×10–25/3.22×10–25 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/≈ 3.08×103/6.14×103/1.60×103/+

f8 0.00×100/4.90×10–20/8.67×10–20 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 2.37×10–93/1.03×10–46/1.06×10–46/– 5.66×108/1.00×109/1.84×108/+

f9 9.48×10–6/9.87×10–3/1.66×10–2 2.07×10–3/6.41×10–3/2.09×10–3/≈ 2.72×10–3/6.37×10–3/2.11×10–3/≈ 1.74×10–3/7.06×10–3/3.06×10–3/≈ 4.63×10–3/7.05×10–2/4.89×10–2/+

f10 1.59×10–28/3.99×10–1/1.20×100 9.47×10–13/1.23×10–8/3.12×10–8/+ 0.00×100/0.00×100/0.00×100/– 9.87×10–22/2.41×10–4/1.09×10–3/+ 3.19×106/2.19×107/1.14×107/+

f11 0.00×100/6.40×10–2/1.30×10–1 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 8.24×100/1.29×101/2.82×100/+

f12 4.44×10–16/1.44×10–1/4.51×10–1 4.44×10–16/3.76×10–15/8.86×10–16/– 4.00×10–15/4.00×10–15/0.00×100/– 4.00×10–15/9.40×10–11/2.91×10–10/≈ 7.98×100/1.22×101/1.64×100/+

f13 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 4.67×100/7.46×100/1.91×100/+

f14 0.00×100/5.42×10–1/8.19×10–1 1.48×100/2.96×100/6.29×10–1/+ 2.50×100/4.68×100/6.69×10–1/+ 5.17×100/8.30×100/9.89×10–1/+ 7.15×100/9.14×100/7.21×10–1/+

f15 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/1.68×10–13/9.07×10–13/≈ 2.51×10–2/5.51×10–2/1.60×10–2/+

f16 4.25×10–97/1.67×10–1/2.57×10–1 9.99×10–2/9.99×10–2/1.93×10–11/≈ 9.99×10–2/9.99×10–2/7.09×10–13/≈ 9.99×10–2/9.99×10–2/7.33×10–12/≈ 2.64×100/3.92×100/4.94×10–1/+

f17 1.01×10–31/6.02×10–1/2.16×100 4.71×10–32/4.71×10–32/1.09×10–47/– 4.71×10–32/4.71×10–32/1.09×10–47/– 1.05×10–30/1.65×10–29/1.69×10–29/– 9.37×100/1.27×102/2.69×102/+

f18 3.35×10–30/1.30×10–1/4.42×10–1 1.35×10–31/1.35×10–31/6.57×10–47/– 1.35×10–31/1.35×10–31/6.57×10–47/– 1.76×10–31/6.88×10–31/5.34×10–31/– 1.16×102/1.19×105/1.44×105/+

Statistic test

(+/≈/−)
− 3/7/8 1/7/10 2/8/8 18/0/0
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Table A3    Comparison of QDMA and different DE variants on 30D problems.

Function
QDMA SaDE SaNSDE SaNSDE+ ADDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test/ Bev/Mev/Std/Test

f1 0.00×100/1.95×10–22/6.02×10–22 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 0.00×100/0.00×100/0.00×100/– 7.64×10–12/3.22×10–11/1.92×10–11/+

f2 2.58×10–88/2.02×100/9.26×100 8.19×102/2.75×103/1.03×103/+ 6.35×10–2/2.18×103/4.94×103/– 1.51×101/2.65×103/5.85×103/+ 1.52×104/2.26×104/3.62×103/+

f3 0.00×100/1.10×104/3.88×104 3.37×10–92/3.41×10–90/5.97×10–90/– 1.55×10–95/1.55×10–92/2.21×10–92/– 3.63×10–61/8.42×10–60/1.25×10–59/– 9.59×107/1.56×108/2.84×107+

f4 2.41×10–59/9.04×100/1.52×101 1.09×10–27/5.08×10–27/2.55×10–27/– 8.53×10–28/2.08×10–27/8.90×10–28/– 9.30×10–10/2.07×10–9/8.27×10–10/– 5.76×101/7.99×101/2.39×101/+

f5 4.95×10–44/2.00×100/1.08×101 1.28×10–10/3.53×10–10/1.28×10–10/+ 1.79×10–3/2.37×10–1/4.15×10–1/+ 8.62×10–5/1.35×10–1/2.22×10–1/+ 4.07×101/4.67×101/2.81×100/+

f6 0.00×100/3.33×10–2/1.80×10–1 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.19×104/1.60×104/1.68×103/+

f7 0.00×100/4.39×10–85/3.08×10–85 9.14×10–95/1.25×10–92/2.78×10–92/– 0.00×100/0.00×100/0.00×100/– 3.81×10–91/4.58×10–84/1.45×10–83/≈ 1.33×105/1.93×105/2.40×104/+

f8 1.83×10–92/3.97×10–14/2.14×10–13 1.05×10–95/1.67×10–93/3.36×10–93/– 0.00×100/0.00×100/0.00×100/– 1.39×10–27/2.17×10–25/2.64×10–25/+ 8.54×109/1.35×1010/2.12×109/+

f9 1.63×10–6/5.01×10–4/7.13×10–4 4.90×10–2/6.18×10–2/9.74×10–3/+ 5.57×10–2/8.22×10–2/1.23×10–2/+ 4.50×10–2/8.66×10–2/1.52×10–2/+ 9.66×10–1/5.41×100/1.79×100/+

f10 1.92×10–9/1.95×101/1.32×101 5.08×100/2.05×101/2.57×101/≈ 2.27×10–3/1.17×100/1.88×100/– 2.41×101/3.78×101/2.53×101/+ 9.27×108/1.83×109/4.85×108/+

f11 0.00×100/5.56×10–3/1.87×10–2 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/8.50×10–9/1.18×10–9/≈ 1.07×102/1.47×102/1.75×101/+

f12 4.44×10–16/3.11×10–11/1.55×10–10 4.00×10–15/6.01×10–15/1.76×10–15/+ 4.00×10–15/6.96×10–15/1.32×10–15/+ 2.02×10–8/1.08×10–5/2.86×10–5/+ 1.62×101/1.72×101/4.61×10–1/+

f13 0.00×100/3.79×10–15/2.04×10–14 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 6.22×10–6/2.84×10–3/6.73×10–3/+ 6.46×101/8.16×101/6.38×100/+

f14 0.00×100/6.33×10–4/3.41×10–3 2.10×101/2.52×101/1.68×100/+ 2.50×101/2.82×101/1.52×100/+ 3.41×101/3.90×101/1.87×100/+ 3.46×101/3.81×101/1.64×100/+

f15 0.00×100/4.44×10–17/2.39×10–16 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.39×10–14/9.32×10–14/9.34×10–14/+ 5.29×10–1/8.12×10–1/1.14×10–1/+

f16 3.53×10–54/1.47×10–44/7.80×10–45 9.99×10–2/1.77×10–1/4.20×10–2/+ 9.99×10–2/1.67×10–1/4.71×10–2/+ 9.99×10–2/1.67×10–1/4.71×10–2/+ 1.02×101/1.25×101/9.00×10–1/+

f17 6.28×10–29/6.42×10–11/3.39×10–10 1.57×10–32/1.57×10–32/2.74×10–48/– 6.49×10–31/1.22×10–29/1.02×10–29/– 3.64×10–11/1.39×10–10/1.00×10–10/+ 4.77×106/1.47×107/7.47×106/+

f18 2.08×10–27/5.97×10–2/1.04×10–1 1.35×10–31/1.35×10–31/6.57×10–47/– 1.35×10–31/1.72×10–31/5.35×10–32/– 7.64×10–12/3.22×10–11/1.92×10–11/– 1.17×107/5.07×107/2.26×107/+

Statistic test

(+/≈/−)
− 6/5/7 5/4/9 11/3/4 18/0/0

 

 

Table A4    Comparison of QDMA and different DE variants on 50D problems.

Function
QDMA SaDE SaNSDE SaNSDE+ ADDE

Bev/Mev/Std Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test Bev/Mev/Std/Test

f1 4.19×10–91/5.84×10–15/0.00×100 8.97×10–97/2.76×10–95/3.45×10–95/– 0.00×100/0.00×100/0.00×100/– 5.62×10–87/1.92×10–84/6.68×10–84/+ 7.64×10–12/3.22×10–11/1.92×10–11/+

f2 0.00×100/3.32×103/1.79×104 6.04×104/8.31×104/1.18×104/+ 2.74×102/1.64×104/2.59×104+ 1.31×103/3.81×104/3.85×104/+ 1.52×104/2.26×104/3.62×103/+

f3 3.46×10–99/1.72×105/9.24×105 9.32×10–71/5.91×10–69/8.57×10–69/+ 1.80×10–74/3.61×10–72/7.29×10–72/+ 8.61×10–41/1.39×10–39/1.81×10–39+ 9.59×107/1.56×108/2.84×107/+

f4 1.27×10–43/5.12×101/4.35×101 8.15×10–19/1.73×10–18/5.23×10–19/– 9.17×10–21/3.08×10–19/1.82×10–19/– 7.28×10–6/1.48×10–5/4.98×10–6/– 5.76×101/7.99×101/2.39×101/+

f5 5.96×10–44/6.82×10–44/2.18×10–45 1.07×10–4/1.08×10–1/1.88×10–1/+ 3.94×10–1/7.53×100/3.37×100/+ 7.19×10–1/6.55×100/3.40×100/+ 4.07×101/4.67×101/2.81×100/+

f6 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/00.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.19×104/1.60×104/1.68×103/+

f7 0.00×100/7.42×10–21/4.00×10–20 1.54×10–74/2.15×10–73/2.77×10–73/+ 1.34×10–87/8.63×10–84/1.16×10–83/+ 6.91×10–64/8.67×10–60/3.63×10–59/+ 1.33×105/1.93×105/2.40×104/+

f8 0.00×100/3.20×100/1.46×101 4.04×10–76/6.83×10–75/7.43×10–75/+ 5.30×10–90/2.64×10–85/9.37×10–85/– 9.76×10–42/8.34×10–16/1.18×10–15/+ 8.54×109/1.35×1010/2.12×109/+

f9 1.28×10–6/6.28×10–4/9.90×10–4 1.00×10–1/1.32×10–1/1.41×10–2/+ 1.34×10–1/1.79×10–1/2.72×10–2/+ 1.33×10–1/1.96×10–1/2.47×10–2/+ 9.66×10–1/5.41×100/1.79×100/+

f10 4.49×10–6/3.96×101/1.11×101 2.68×101/3.86×101/2.20×101/≈ 2.70×101/5.18×101/2.89×101/+ 4.27×101/1.14×102/8.85×101/+ 9.27×108/1.83×109/4.85×108/+

f11 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.80×10–7/4.16×10–5/9.19×10–5/+ 1.07×102/1.47×102/1.75×101/+

f12 4.44×10–16/4.44×10–16/0.00×100 7.55×10–15/2.73×10–16/1.76×10–15/+ 7.55×10–15/8.26×10–15/1.69×10–15/+ 3.12×10–5/4.95×10–4/5.90×10–4/+ 1.62×101/1.72×101/4.61×10–1/+

f13 0.00×100/1.14×10–14/6.12×10–14 0.00×100/0.00×100/0.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 4.89×10–1/6.49×100/4.97×100/+ 6.46×101/8.16×101/6.38×100/+

f14 0.00×100/0.00×100/0.00×100 4.55×101/5.35×101/2.76×100/+ 5.35×101/5.69×101/1.85×100/+ 6.80×101/7.26×101/1.95×100/+ 3.46×101/3.81×101/1.64×100/+

f15 0.00×100/0.00×100/0.00×100 0.00×100/0.00×100/00.00×100/≈ 0.00×100/0.00×100/0.00×100/≈ 1.93×10–9/7.18×10–9/6.26×10–9/+ 5.29×10–1/8.12×10–1/1.14×10–1+

f16 2.04×10–44/2.56×10–44/2.52×10–45 2.00×10–1/2.00×10–1/7.72×10–12/+ 2.00×10–1/2.20×10–1/4.00×10–2/+ 2.00×10–1/2.03×10–1/1.80×10–2/+ 1.02×101/1.25×101/9.00×10–1/+

f17 2.32×10–27/1.84×10–3/6.62×10–3 9.42×10–33/9.42×10–33/2.74×10–48/+ 2.39×10–21/7.38×–19/6.76×–19/– 1.11×10–5/3.64×10–5/2.34×10–5/+ 4.77×106/1.47×107/7.47×106/+

f18 7.54×10–25/7.79×10–2/2.81×10–1 1.35×10–31/1.35×10–31/6.57×10–47/+ 3.41×10–21/1.32×10–20/9.92×10–21/– 8.88×10–6/2.87×10–5/1.64×10–5/– 1.17×107/5.07×107/2.26×107/+

Statistic test

(+/≈/−)
− 11/5/2 9/4/5 15/1/2 18/0/0
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Statistic test

(+/≈/−)
− 13/2/3 13/2/3 17/0/1 18/0/0
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