
 

Dual-Stage Hybrid Learning Particle Swarm Optimization
Algorithm for Global Optimization Problems

Wei Li, Yangtao Chen, Qian Cai*, Cancan Wang, Ying Huang, and Soroosh Mahmoodi

Abstract: Particle swarm optimization (PSO) is a type of swarm intelligence algorithm that is frequently used to

resolve  specific  global  optimization  problems  due  to  its  rapid  convergence  and  ease  of  operation.  However,

PSO still has certain deficiencies, such as a poor trade-off between exploration and exploitation and premature

convergence. Hence, this paper proposes a dual-stage hybrid learning particle swarm optimization (DHLPSO).

In the algorithm, the iterative process is partitioned into two stages. The learning strategy used at each stage

emphasizes  exploration  and  exploitation,  respectively.  In  the  first  stage,  to  increase  population  variety,  a

Manhattan  distance  based  learning  strategy  is  proposed.  In  this  strategy,  each  particle  chooses  the  furthest

Manhattan  distance  particle  and  a  better  particle  for  learning.  In  the  second  stage,  an  excellent  example

learning strategy is adopted to perform local optimization operations on the population, in which each particle

learns  from  the  global  optimal  particle  and  a  better  particle.  Utilizing  the  Gaussian  mutation  strategy,  the

algorithm’s  searchability  in  particular  multimodal  functions is  significantly  enhanced.  On benchmark functions

from  CEC  2013,  DHLPSO  is  evaluated  alongside  other  PSO  variants  already  in  existence.  The  comparison

results clearly demonstrate that, compared to other cutting-edge PSO variations, DHLPSO implements highly

competitive performance in handling global optimization problems.

Key words: particle  swarm  optimization;  Manhattan  distance;  example  learning;  gaussian  mutation;  dual-stage;  global
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1    Introduction

As science  and industrial  engineering have progressed
in  tandem,  realistic  complex  optimization  problems
have  increased,  and  developing  efficient  algorithms to

address  these  optimization  problems  has  become
urgent.  Evolution  algorithms  (EAs),  inspired  by
biological  evolution  or  foraging  modes  in  nature,
realize  the  purpose  of  obtaining  a  relatively  optimal
solution  in  the  feasible  domain[1].  Therefore,  EAs,  for
instance, particle swarm optimization (PSO)[2],  genetic
algorithm  (GA)[3, 4] ,  artificial  bee  colony  (ABC)[5],
differential  evolution  (DE)[6, 7] ,  and  firefly  algorithm
(FA)[8],  due  to  their  robustness  and  versatility,  are
commonly  used  by  researchers  to  solve  certain
complicated  global  optimization  issues[9].  Among
them,  PSO is  an  ordinary  and  effective  algorithm that
learns  from  the  optimal  value  of  the  current  search
through  a  flock  of  particles  to  turn  up  the  optimal
solution.  Kennedy  and  Eberhart[10] introduced  the
initial version of PSO in 1995, which is categorized as
swarm  intelligence  and  mimics  the  foraging  behavior
of  birds[11, 12] .  PSO  is  an  iterative,  population-based
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learning  algorithm  with  some  traits  in  common  with
other evolutionary algorithms. However, PSO seeks the
global  optima  of  space  by  learning  the  flight  of  each
particle  in  the  area  and  revising  its  flight  trajectory
based  on  the  individual  historical  optima  and  global
historical  optima  of  its  neighbors  instead  of  selecting,
crossing,  and  mutating  particles  for  the  best  solution
and  more  genetic  manipulation.  For  resolving
numerous optimization problems, the PSO algorithm is
easy  to  apply  and  efficient,  but  researchers  have
discovered  that  classical  PSO  has  weak  search
capabilities  and  particles  might  prematurely  converge
around  local  optima.  In  this  scenario,  a  controversial
issue in recent years has been how to efficiently tackle
these  issues  and  further  increase  the  power  of  the
algorithm. The following categories, in particular, have
been suggested by academics as ways to increase PSO
performance.

(1) Parameter adaptive control

ω c1 c2

ω

ω

ω

Numerous  studies  have  shown  that  an  appropriate
parameter  adaptation  strategy  will  help  improve  the
optimization  performance  of  PSO.  There  are  mainly
three  parameters , ,  and ,  and  most  of  the
parameter adaptation improvements are based on [13].
For  a  large ,  the  convergence  rate  of  the  population
can  be  improved,  which  is  biased  toward  exploration.
A  small  can  improve  the  convergence  accuracy  of
the population, which is more suitable for exploitation.
Farooq  et  al.[14] proposed  a  strategy:  opposition-based
initialization  for  inertia  weight.  To maintain  a  balance
between the proportions of exploration and exploitation
capacities,  the  inertia  weight  decreases  linearly  in  two
stages.  To  improve  PSO’s  searching  capability,
Gupta  et  al.[15] employed  four  adaptive  inertia  weight
approaches.  To  improve  its  optimization  features,
Tanweer  et  al.[16] presented  a  self-adjusting  inertial
weight  to  govern  particle  dynamics.  Liu  et  al.[12]

proposed a chaos-based inertia weight, a nonlinear kind
of  value  taking  that  varies  over  the  iteration  process
and is highly volatile.

(2) Neighborhood topology
Many  scientists,  especially  when  handling

multimodal  problems,  employ  neighborhood  topology
to  steer  the  search  trajectory  of  particles  through  the
information  exchange  mechanism  and  improve  the
diversity  of  a  population.  Li  et  al.[17] developed  an
adaptive complex network architecture based on fitness
distance  correlation  to  efficiently  balance  the
population’s global and local search capabilities. Using
ring topology, the PSO algorithm proposed by Li et al.

can act as a kind of niche algorithm by forming a stable
network that retains the best positions obtained thus far
by using the local memory of individual particles while
these  particles  more  broadly  explore  the  search
space[18]. Xia et al.[19] utilized a dynamical topology for
a  multi-swarm  particle  swarm,  periodically  reducing
the  number  of  subgroups  to  enhance  exploration  and
exploitation  capabilities.  Liang  and  Suganthan[20]

adopted and explained a unique, dynamic multi-swarm
PSO  where  the  population  is  split  up  into  several
subswarms  that  frequently  reassemble  to  exchange
information.  The  strategy  is  used  to  obtain  better
performance  on  a  complex  multimodal  optimization
problem[20].

(3) Learning strategy
Many  variants  of  PSO  applied  different  types  of

learning  strategies  to  improve  their  performance[21–23].
To  better  improve  the  development  ability  of  the
population,  heterogeneous  comprehensive  learning
PSO  (HCLPSO)  is  proposed,  which  divides  the
population into two subpopulations and learns through
different comprehensive learning strategies to focus on
either  exploration  or  exploitation[24].  Zhan  and
Zhang[25] presented orthogonal learning particle swarm
optimization  (OLPSO),  which  uses  the  orthogonal
learning technique to build a promising sample to lead
the particles on a better path.

(4) Hybrid algorithm strategy
The  strengths  of  different  algorithms  are  combined

with other excellent optimization algorithms, which are
also often employed to improve the algorithm’s solving
ability[26].  By  constructing  genetic  learning  paradigms
using  genetic  operators,  Gong  et  al.[27] introduced  a
genetic  learning  PSO  (GLPSO)  that  combines  the
advantages  of  PSO  and  GA.  The  samples  created  by
crossover,  mutation,  and  selection  for  the  historical
data  of  particles  are  both  qualified  and  diversified[27].
Chen  et  al.[28] developed  bee-foraging  learning  PSO
(BFLPSO), which has three different learning phases to
strengthen  the  search  capabilities  of  the  population.
Because of  the excellent  global  search performance of
ABC, many scholars  have tried to combine ABC with
PSO,  thus  developing  the  ABC-PSO  hybrid
algorithm[29].

Although many PSO variants have greatly improved
PSO,  they  are  unable  to  successfully  compromise
between the exploration and exploitation of algorithms,
and issues like ineffective search efficiency remain for
some  challenging  global  optimization  problems.  A
dual-stage hybrid learning particle swarm optimization
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strategy was proposed in the research to increase PSO’s
effectiveness.  The  following  are  the  contributions  of
this paper:
• For  the  population  to  conduct  a  sufficient

performance for a better solution, a Manhattan distance
based learning strategy is proposed.
• An excellent example learning strategy is presented

for performing social learning of particles to reach the
global optimal solution.
• The  algorithm  breaks  the  iterative  process  down

into  two  stages,  and  the  above  two  learning  strategies
are  adopted  in  different  stages.  In  the  beginning,  the
Manhattan distance learning strategy is used, and in the
end, the excellent example learning strategy is used.
• A  Gaussian  mutation  strategy  is  used  to  quickly

release  the  globally  optimal  particle  from  a  locally
optimal  solution  to  improve  precision.  The  method
boosts  the  algorithm’s  performance  on  multimodal
functions.

Formatting  for  the  remaining  text  is  as  follows:  In
Section  2,  a  fundamental  description  of  the  PSO
concept,  social  learning  PSO  (SLPSO),  and  related
research  are  provided.  The  detailed  implementation  of
the  DHLPSO  method  is  proposed  and  examined  in
Section  3.  In  Section  4,  experimental  testing  is
conducted. Section 5 serves as the paper’s conclusion.

2    Related Work

2.1    Canonical PSO

For handling issues involving global optimization, PSO
has  lately  gained  popularity  due  to  its  quick
convergence  speed  and  limited  operation  parameters.
Each particle of PSO has its velocity and position, and
updates  in  the  search  region  with  each  generation  of
velocity  and  position  to  get  an  optimal  solution.
Specifically, the updating equation of canonical PSO is
expressed as
 

Vi(t+1) = ω ·Vi(t)+ c1 · r1 · (Pbesti(t)−Xi(t))+
c2 · r2 · (Gbest(t)−Xi(t))

(1)

 

Xi(t+1) = Xi(t)+Vi(t+1) (2)

Xi(t) Vi(t) t
ω c1 c2

r1 r2

i N N
Pbesti(t)

where  the  position  and  speed  of  the i -th  particle  are
 and  ,  respectively;  is  the  current  generation

number;  is  inertia  weight;  and  are acceleration
coefficients,  and   are  random  numbers  between  0
and 1; and  ranges from 1 to , where  represents the
overall  number  of  population  particles. 
denotes the historical optimum for each particle, while

Gbest(t) is the current global optimum. Canonical PSO
can  be  regarded  as  two  types  of  learning  behaviors,
namely, self-learning and social learning. Self-learning
allows  particles  to  learn  their  own  historical  optima,
and social  learning allows particles  to  learn the global
optima.  Thus,  particle  velocity  points  to  a  better
direction  in  the  search  domain.  Inertia  weights  are
typically employed to regulate the amount of  previous
generation  velocity  information  that  is  retained  for
updating. To balance PSO exploitation and exploration,
smaller weights are preferable for local search, whereas
larger weights are often better for a worldwide search.

2.2    Social learning PSO

Pbest Gbest

Social  learning  PSO  (SLPSO)  is  one  of  the  PSO
variants  with  strong  performance  and  inherits  the
advantages  of  PSO[22, 30] .  SLPSO  achieves  social
learning  by  imitating  the  sociological  concept  in  a
society  that  each  person  learns  from  someone  better
than himself. In SLPSO, each particle learns a different
goal  and  conducts  social  average  learning.  Different
from traditional  PSO,  and   are  utilized  for
learning.  As  a  result,  such  an  action  improves
population  diversity  and  is  more  conducive  to  an
algorithm  exploration  search,  resulting  in  a  better
solution  and  the  possibility  to  avoid  particles  from
falling into a local minimum.

In  addition  to  fitness  evaluation,  the  most  critical
components  in  SLPSO  are  population  sorting  and
behavior  learning.  Before  the  learning  operation,  the
population  will  be  sorted  to  facilitate  subsequent
operations.  The  updating  equations  of  SLPSO  are
presented as follows:
 

Vi, j(t+1) = r1 ·Vi, j(t)+ r1 · (Xk, j(t)−Xi, j(t))+
r2 ·ε · (X̄ j(t)−Xi, j(t))

(3)

 

ε = β · n
m

(4)

 

Xi, j =

{
Xi, j(t)+Vi, j(t+1), if rand < Pi;

Xi, j(t), otherwise (5)

t r1 r2

r3

Xk, j k
j

i

k
i ε

Pi

where  represents the current generation and , , and
 are  three  random  vectors  that  are  generated  and

evenly dispersed in (0,  1).  is  the value of  the -th
particle in the population in the -th dimension, which
has  a  better  fitness  value  than  particle .  As  the
population has been sorted in ascending order, note that
particle  is different in each dimension, whose range is
[1, ].  The  control  is  denoted  as  the  social  influence
factor. The learning probability  is used to determine
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Pi

whether  or  not  the  current  particle  should  be  updated.
The  learning  possibility  of  each  particle  is  different,
and  the  better  the  particle  is,  the  smaller  the
probability.  is calculated as
 

Pi = (i− i−1
N

)α·log(
⌈

D
M

⌉
) (6)

N
α

From Eq. (6), the population’s overall size is , and
the particle’s dimension is D.  and M are fixed values
of  0.5  and  100,  respectively.  Compared  with  PSO,
SLPSO is different in three parts. The first part replaces
the  inertia  weight  in  the  PSO  with  a  random  number,
which  improves  the  randomness  and  diversity  of  the
population. The second part replaces the self-historical
optimality  in  the  individual  cognitive  part  with  being
superior  to  the  self-individual.  The  global  optimal
solution  is  changed  to  the  global  average  in  each
dimension in the third part. In SLPSO, the performance
of  PSO  in  enhancing  exploration  and  exploitation  is
effectively improved through two learnings.

3    Proposed Algorithm

Although  SLPSO  improves  many  performances
compared  with  PSO,  it  has  certain  shortcomings  in
handling  more  complicated  global  optimization
problems.  There  are  three  main  reasons  for  these
shortcomings:  SLPSO  replaces  inertia  weights  with
random  numbers.  Random  numbers  can  improve  the
population’s exploration capabilities in the early stages
of  iteration,  and  they  can  also  affect  the  population’s
local  exploitation  and  have  an  impact  on  its
convergence  in  the  latter  stages.  The  population  then
rapidly  converges  as  each  particle  learns  toward  the

population  average  and  the  ideal  solution,  making  it
challenging  to  identify  the  genuine  global  optimum.
Additionally,  the  overall  computational  efficiency  is
impacted by the fact that there are few updates for the
population’s  best  option  in  the  iterative  process.  This
work  presents  a  dual-stage  hybrid  learning  PSO
(DHLPSO),  which  is  inspired  by  the  aforementioned
research  and  aims  to  address  some  of  PSO’s
weaknesses. The evolution process of the population is
divided  into  two  stages.  The  frame  diagram  of
DHLPSO  is  described  in Fig.  1.  The  entire  iterative
procedure is broken into two stages in this algorithm.

In  the  first  stage,  a  Manhattan  distance  based
learning  strategy  is  carried  out  mainly  for  population
exploration to obtain potential optimal solutions. In the
next  stage,  an  excellent  example  learning  strategy  is
adopted,  that  is,  the  development  operation  is
performed  near  the  current  solution  to  obtain  the
optimal  solution.  A  good  balance  of  exploration  and
exploitation is achieved through the strategic hybrid of
these  two  stages.  Additionally,  a  Gaussian  mutation
strategy for particle stagnation is performed throughout
the iterations. With an increase in the iterative process,
the  variable  asynchronous  length  will  continue  to
decrease.  The  performance  gain  between  algorithm
exploration  and  exploitation  is  achieved  using  these
three  strategies  in  two  stages.  The  following
subsections provide detailed descriptions of these three
strategies.

3.1    Manhattan distance based learning strategy

The  distance  between  two  points  is  estimated  by
comparing the absolute values of each dimension. The

 

Manhattan distance
based learning strategy

First stage Last stage

Excellent example
learning strategy

Gaussian mutation
strategy

Gaussian mutation
strategy

Initial population Final population

 
Fig. 1    Frame diagram of DHLPSO.
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(x1,y1) (x2,y2)
|x1− x2|+ |y1− y2|

Manhattan distance is a geometric phrase that describes
the  distance  as  the  product  of  the  absolute  differences
between  the  two  points’ Cartesian  coordinates[31].  For
example,  in  2D  coordinates,  the  Manhattan  distance
between  two  points  and   is

.

√
(x1− x2)2+ (y1− y2)2

Consider Fig.  2 as  an  example  to  specifically
illustrate  the  Manhattan  distance.  The  green  line’s
length  represents  the  Manhattan  distance  between  the
two  particles,  while  the  blue  circle  represents  the
particle’s position. The Euclidean distance between the
two particles is shown by the length of the red line, the
size of which is .  The Manhattan
distance reduces the amount of computation relative to
the  Euclidean  distance  and  effectively  shows  the
information of each dimension of the particle.

This paper utilizes the Manhattan distance difference
between  every  two  particles  for  learning  as  a  direct
consequence of this discovery. Information about every
dimension  of  the  particle  can  be  used  to  seek  a  better
solution  to  the  space  problem  using  the  Manhattan
distance.  However,  if  a  particle  only  learns  from  the
farthest Manhattan distance object, which will oscillate
erratically  and  is  hard  to  get  a  better  solution.
Therefore,  a  direction  of  learning  from  the  better
particle  is  added,  so  that  the  particles  do  not
substantially  deviate  while  exploring.  The  Manhattan
distance  based  learning  strategy’s  velocity  updating
equation is as follows:
 

Vi(t+1) = ω1 ·Vi(t)+ r1 · c1 · (Pbestr(t)−Xi(t))+
r2 · c2 · (Pbestm(t)−Xi(t))

(7)
 

ω1 = normrnd(0.4,0.5) (8)
 

c1 = 2 · FE
MaxFE

(9)
 

c2 = 2− c1 (10)

ω1

r1 r2

c1

c2

Pbestr

i

Pbestm

where  is  the  inertia  weight,  which  is  randomly
selected using a Gaussian distribution with a mean and
standard deviation of 0.4 and 0.5,  to control  the effect
of  the  speed  of  the  previous  generation  on  the  next
generation.  and  are random vectors that are evenly
distributed to each component in [0, 1]. The maximum
number  of  fitness  evaluations  is  MaxFE,  and  the
present  fitness  value  has  been  evaluated  FE  times. 
and  are two acceleration coefficients,  which change
according  to  the  iterative  process  and  can  be  used  to
control  the  parameters  of  the  learning  step.  Two
parameters  are  linearly  increased  or  decreased  to
govern  the  population’s  exploration  and  exploitation
capacity.  indicates  the  particle’s  ideal  position
relative to the current  particle  in the population.  Since
the  population  is  sorted  at  each  iteration,  the  value  of
ranges  from  1  to .  The  historical  optimal  solution  of
the  particle  with  the  largest  Manhattan  distance  from
the current particle is denoted by . The equation
for  calculating  the  Manhattan  distance  is  described
below
 

mdi, j =

D∑
d=1

|Xd
i −Xd

j | (11)

 

mi =max(mdi) (12)

md

According  to  Eq.  (11),  each  particle’s  Manhattan
distance  from  other  particles  in  the  population  is
calculated, resulting in the symmetric matrix . Next,
the  particle  with  the  largest  Manhattan  distance
corresponding to each particle in this symmetric matrix
is  identified.  Note  that  each  particle  has  the
corresponding  largest  Manhattan  distance  particle,
while  the  later  particle  corresponding  to  the  largest
Manhattan  distance  particle  is  not  necessarily  the
former.

xi xm xkAs shown in Fig. 3,  learned from  and , which
are the farthest Manhattan distance particle and a better

 

y

xo

(x2, y2)

(x1, y1)

 
Fig. 2    Illustrations of Manhattan distance.

 

 

x1 xm

xk

xi

xi′

o x0 
Fig. 3    Illustrations  of  Manhattan  distance  based  learning
strategy.
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xi
′

particle, respectively. Through the learning of the two,
,  which  is  closer  to  the  optimal  point  than  the

previous  particle,  is  obtained.  Through  this
phenomenon,  it  can  be  seen  that  the  Manhattan
distance  learning  strategy  can  guide  the  particles  to  a
promising  direction,  which  can  be  used  for  the
exploration and search of the population.

3.2    Excellent example learning strategy

Inspired  by  SLPSO,  each  particle  in  the  population
learns  from  particles  with  better  performance  than  it,
which  can  enhance  the  population’s  ability  to  be
exploited.  The  particles  can  be  dispersed  close  to  the
ideal  solution  after  Manhattan  distance  difference
learning in  the preliminary step.  An excellent  learning
strategy  would  be  to  do  a  local  search  to  improve  the
algorithm’s solution accuracy. The updated equation of
the excellent example learning strategy is presented as
 

Vi(t+1) = ω2 ·Vi(t)+ r3 · (Pbestr(t)−Xi(t))+
r4 · (Gbest(t)−Xi(t))

(13)

 

ω2 = normrnd(0.6,0.4) (14)

ω2 r3 r4

Gbest
Pbestr

Gbest

Gbest

where  is the inertia weight of the strategy.  and 
are  random  vectors  from  0  to  1.  denotes  the
current  population’s  best  global  position.  refers
to the historical optimal value of a particle with a better
fitness  value  than  the  current  particle.  In  this  strategy,
through  the  learning  of  and  random  optimal
particles,  in  the  process  of  obtaining  a  close
approximation  to  the  existing  global  best  solution,  the
particle  identifies  a  better  solution on its  path,  thereby
further  converging  to  the  global  optimal  solution.  The
difference  between  an  excellent  example  learning
strategy  and  social  learning  strategy  of  SLPSO is  that
the  mean  of  the  population  component  is  replaced  by

.

xi

xgbest xk

Figure  4 illustrates  the  excellent  example  learning
strategy.  The  current  particle  is  in  the  process  of
learning  from  and  ,  which  means  the  best

particle  of  global  and  randomly  selected  better
particles,  respectively.  Through  such  an  example
learning, a new position learned by the present particle
can enhance the exploitation ability of the algorithm so
that  the  particles  in  the  population  can  get  better
convergence.

3.3    Gaussian mutation strategy

The mutation operation is  a  widely  accepted approach
for maintaining population variety, and it is commonly
applied  in  PSO algorithms.  There  are  various  existing
mutation  strategies,  such  as  Gaussian,  Cauchy,  and
Levy.  The  Gaussian  mutation  is  typically  regarded  as
better  suited  for  local  search,  while  other  methods  as
mentioned above are employed for global optimization.
In this paper, to make it easier for stagnant particles to
escape  local  traps,  a  Gaussian  mutation  strategy  is
implemented to perturb particles in a stagnant state. Its
mathematical expression is presented as follows:
 

mGbest j(t) = Gbest j(t)+ sign(2 · r5−1)·
(xmax− xmin) ·gaussian(0,sig2)

(15)

 

sig = 1−0.9 · FE
MaxFE

(16)

j
Gbest sign()

xmax− xmin

gaussian()

sig

where  refers  to a random dimension from [1, D]  for
the  current ,  determines  the  perturbation
direction of  the particle,  and  ensures  that  it
will  not  exceed  the  constraint  range.  Through

,  a  Gaussian  distribution  random  number
within a limited range is generated, which is multiplied
by  the  size  of  the  decision  space  to  achieve  a
perturbation  purpose.  The  Gaussian  disturbance’s  size
is  governed  by  the  standard  deviation’s  size,
represented by the symbol .

The  fundamental  of  realizing  the  Gaussian  mutation
strategy is to perform a Gaussian mutation perturbation
on the global optimal particle when a particle falls into
the  local  optimum  and  reaches  a  certain  number  of
stagnation  times.  In  this  way,  the  purpose  of  locally
perturbing the stagnant particles and jumping out of the
current stagnant position is achieved. The best particle’s
fitness  value  after  the  disturbance  is  calculated  if  the
value is  better  than that  before  updating it.  Otherwise,
the population continues to use the original solution.

3.4    Proposed DHLPSO algorithm

Through the  introduction in  the  previous  part,  the  two
learning strategies of this algorithm are explained. This
research presents  a  dual-stage  hybrid  learning strategy
that  uses  early  exploration  and  late  exploitation  to

 

x1

xgbest

xk

xi

xi′

o x0 
Fig. 4    Illustrations of excellent example learning strategy.
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increase  PSO  performance  effectively.  To  make  fully
utilize  the  advantages  of  staged  learning,  different
normal distribution parameters are set in the two stages
to  generate  inertia  weights. Algorithm  1 depicts  the
DHLPSO procedure in detail.

MaxFE
In Algorithm 1, the termination criterion is when FE

is  greater  than ,  that  is,  when  the  number  of
evaluations reaches the specified maximum number of
evaluations,  the  optimal  value  given  by  the  output
algorithm. ft is set as the node of strategy transition and
the  value  of  ft  is  verified  through  experiments.  In  the
first  stage,  the  Manhattan  distance  learning  strategy  is

adopted. Each particle learns from the particle with the
farthest  Manhattan  distance  and  the  particle  that  is
better than itself. The former preserves the population’s
exploratory nature and allows it to thoroughly hunt for
the  best  value  within  the  viable  zone,  while  the  latter
ensures  that  the  particles  have  a  certain  degree  of
exploitation  and  will  not  escape  when  the  optimal
solution is obtained.

The majority of the particles are gathered close to the
ideal value after the initial learning stage. An excellent
example  learning  strategy  is  implemented  in  the  next
stage,  which  can  make  the  particles  continue  to
approach the optimal value, to reach the position of the
optimal  solution.  However,  when  solving  multimodal
problems, there are often multiple optimal solutions. At
this  time,  the  excellent  learning  strategy  may  not  be
able to obtain the optimal value, and it  may fall into a
local optimum. Therefore, about stagnant particles, the
Gaussian  mutation  strategy  is  used  to  disrupt  the
population’s global optimum particle, which can cause
particles  to  escape  from  local  optima  and  move  the
population toward a better solution.

4    Experimental Verification

In this study, experiments are conducted to evaluate the
applicability of our proposed DHLPSO. First, the paper
analyzed  the  sensitivity  of  the  parameters  by  setting
different  values  to  conduct  investigations.  Second,  to
assess  the  efficiency  of  DHLPSO  on  the  CEC  2013,
comparative  experiments  are  conducted  in  30  and  50
dimensions  with  other  state-of-the-art  PSO  variations.
We  analyze  each  DHLPSO  strategy’s  quality  and
compare  it  in  isolation  to  the  complete  algorithm  in
order  to  assess  its  efficacy.  Last,  a  comparison  with
other  algorithms  is  performed  to  test  the  convergence
of the algorithm proposed in this paper.

4.1    Experiment configurations

( f1− f5)
f6− f20

f21− f28

To  demonstrate  that  the  provided  strategies  perform
well  on  global  optimization  problems,  the  paper
selected  the  CEC2013[32–34] test  suite  for  verification,
which  includes  unimodal  functions ,  multi-
modal  functions  ( ),  and  composition  functions
( ).  The  mean,  sorting,  and  average  sorting  are
used  to  assess  the  algorithm’s  optimization
performance  in  this  work.  The  lower  the  algorithm’s
average  value  is,  the  better  its  performance  and  the
higher its ranking.

The  experimental  results  achieved  by  the  DHLPSO
algorithm  at  CEC  2013  are  contrasted  with  those

 

Algorithm 1　Dual-stage hybrid learning PSO
Begin
1: Population size N; dimension D; maximum stagnation

stagmax ft　generation ; phasing point 
2: Initialize population X and velocity V;

FE = N3: Evaluate the fitness values of particles, ;
4: While termination criterion is not met do
5:　　Sort all particles based on the fitness values from the best
to worst;

k = ceil(rand · [i : NP])6:　　 ;

ft < ( FE
MaxFE )then7:　　If 

8:　　　　/*Manhattan distance based learning strategy*/
c1 c2 ω19:　　　　Calculate , , and ;

m10:　　　　　Get  according to Eqs. (11) and (12);
11:　　　　　Update particles according to Eqs. (7) and (2);
12:　Else
13:　　　　　 /*Excellent example learning strategy*/

ω214:　　　　　 Calculate ;
15:　　　　　 Update particles according to Eqs. (13) and (2);
16:　End If

F(X)17: 　Evaluate the fitness values ;
FE = FE+N18: 　 ;

19: 　/*Gaussian mutation strategy*/;
20:　Calculate the sig according to Eq. (16);

i N21:　For  = 1 to  do
st(i) > stagmax22:　　If  then

j = randi(1,D)23:　　 ;
mGbest24:　　Perturb the  according to Eq. (15);

25:　　End If
26:　　Evaluate the fitness of mGbest;

f (mGbest) < f (Gbest)27:　　If  then
Gbest =mGbest28:　　 ;
FE = FE+129:　　 ;

30:　　End If
31:　End For
32: End While
End
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MaxFE = D×10 000
MaxN = 51

gained  with  other  excellent  PSO  variants.  These
algorithms  are  relatively  classic  and  excellent
algorithms  in  recent  years,  so  they  are  comparative
and  representative. Table  1 displays  the  necessary
parameter  settings  for  various  comparison  algorithms.
To  show  fairness,  all  algorithms  in  the  experiments
adopt  the  same  parameter  settings  below  in  all  cases:

 and the number of  running for all
algorithms is .

The  evaluation  is  performed  by  comparing  the
average  of  the  algorithm  running  multiple  times  with
the  ranking  gained  by  each  algorithm.  The  ranking  is
decided  by  computing  the  difference  between  the
algorithm’s real ideal value and the theoretical optimal
value for each run on each function. Next, we compare
the average of each algorithm on the function, and the
algorithm with the lower average will receive a higher
ranking.  While  the  ranking  can  more  specifically
demonstrate  the  algorithm’s  competitive  edge,  the
average  number  can  demonstrate  the  algorithm’s
overall performance.

4.2    Sensitivity of parameters

stagmax ft

ft

stagmax
stagmax

ft stagmax

ft
stagmax

There  are  two  important  basic  parameters  for  the
proposed  DHLPSO.  The  first  parameter  is  the  staging
point  ft,  and  the  second  parameter  is  the  maximum
number  of  stalls  of  each  particle.  If  is  too
little,  the  population  may  not  be  extensive  enough  to
obtain  the  best  solution,  and  the  population  may
become bound in a local minimum. If the value of  is
too large, the population may not achieve convergence
accuracy. Similarly, if  is too large, the strategy
is unable to reach the expected effect.  If  is  too
small,  it  would  consume  too  many  function
evaluations. As a result, in this section, a series of tests
are  carried  out  to  see  how  and   affect  the
performance  of  DHLPSO.  To  adequately  examine  the
impact  of  variables,  we  set  the  to  0.55,  0.60,  0.65,
and  0.70  and  set  to  5,  10,  15,  and  20.  To
evaluate  the  effectiveness  of  these  16  DHLPSO

ft
stagmax

stagmax

stagmax

stagmax
stagmax ft

ft stagmax

versions, we use the CEC 2013 test suite. From Tables A1
and A2  in  the  Appendix,  the  average  results  of  the
compared  algorithms  are  shown,  where  the  optimal
value in each function is marked in bold. At the end of
Tables  A3 and  A4  in  the  Appendix,  it  is  also  stated
how  many  functions  each  DHLPSO  variation  uses  to
achieve the best results. As shown in Tables A1 and A2
in  the  Appendix,  when  the  stage  point  is  fixed,  the
larger  is  employed,  the  worse  the  performance
of the DHLPSO variants. However, when  is set
to  10,  the  performance  of  DHLPSO  gains  the  best.
When  is  too  small,  it  will  take  up  too  many
functional  evaluation times,  lowering the efficiency of
population optimization. Therefore,  is set to 10.
When  is fixed, we note that when stage point 
is  set  to  0.65,  the  effect  is  the  best,  and  the  best
solutions are obtained with a total of 12. The longer the
population  adopts  the  Manhattan  distance  learning
strategy  in  the  early  stage,  the  better  solution  can  be
fully  searched in  the search space.  However,  this  time
should not  be so long that  there  is  not  enough time to
converge  on  the  excellent  example  learning  strategy
and  that  the  optimal  solution  cannot  be  obtained.
Therefore, the parameters  and  are set to 0.65
and 10, respectively.

4.3    Performance comparison of the CEC2013

The research examines the optimization performance of
DHLPSO  considering  seven  advanced  PSO  variants,
which have correlations with DHLPSO, as  contrasting
algorithms.  These  comparison  algorithms  are  SLPSO,
CLPSO,  XPSO,  GLPSO,  HCLPSO,  BLPSO,  and
BFLPSO.  According  to  the  relevant  references,  these
several  comparison  algorithms  have  advantages  over
PSO  and  other  variants;  thus,  these  competitive
algorithms  were  selected.  The  experimental  DHLPSO
results and contrasting algorithms for the CEC2013 30-
dimensional  function  are  shown  in Table  A3 in  the
Appendix.  In Table  A3 in  the  Appendix,  Count  is  the
number  of  times  each algorithm has  achieved the  first

 

Table 1    Parameter settings of all the contrasted algorithms.

Algorithm Reference Parameter settings

CLPSO [23] ω = [0.4, 0.9], c1 = c2 = 1.494 45, N = 40, m = 7, pc = [0.05, 0.5]

SLPSO [22] N = 100, α = 0.5, β = 0.01

HCLPSO [35] ω = [0.2, 0.99], c1 = [0.5, 2.5], c2 = [0.5, 2.5], c = [1.5, 3]

GLPSO [27] N = 50, ω = 0.7298, c = 1.496 618, pm = 0.01, sg = 7

BLPSO [36] N = 40, ω = [0.2, 0.9], c = 1.494 45, G = 5

XPSO [26] N = 60, η = 0.2, stagmax = 5, p = 0.2

BFLPSO [28] N = 40, ω = [0.2, 0.9], c = 1.494 45, I = E = 1, G = 5
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rank in 28 functions; Fun is the number of functions.

f1 f5
f2 f4

As  shown  in Table  A3 in  the  Appendix,  for  the
metric  average  ranking  (Ave),  DHLPSO  obtains  3.18
and  ranks  the  first,  in  comparison  to  the  other  seven
algorithms. DHLPSO gains the first on  and , while
DHLPSO  can  be  ranked  the  second  on  and   on
these  unimodal  functions.  The  complexity  of  these
problems lies in the notion that their fitness landscapes
contain  smooth  local  imperfections  as  well  as  smooth
but  narrow  ridges,  as  well  as  correlations  among
variables.  The  comparison  results  show that  DHLPSO
has  a  stronger  optimization  ability  than  the  selected
contrasting algorithm. The outstanding performance of
DHLPSO  benefits  from  the  robust  development
capability in the later stage, which makes the algorithm
perform better on unimodal functions.

f6 f20

f6 f7 f9

f12 f13

f20

The  multimodal  functions −  are  among  the
functions  assessed  in Table  A2 in  the  Appendix  and
can  be  utilized  to  determine  whether  the  proposed
algorithm’s  strategy  has  increased  exploration  ability.
In  contrast  to  the  other  algorithms,  DHLPSO  still
provides  the  most  excellent  performance  on  these
multimodal  functions.  DHLPSO  achieves  the  best
results on , , and , and the other functions are also
better than different algorithms in general. The primary
reason is  that  DHLPSO’s  Manhattan  distance  learning
strategy  promotes  population  diversity  in  the  early
stages  by  learning  the  examples  with  the  maximum
Manhattan  distance,  which  enables  the  algorithm  to
better search for multimodal functions. On , , and

, BFLPSO obtains the best mean value, which is the
best algorithm, with the exception of DHLPSO.

f21 f26

f22 f26

Among  the  eight  composition  functions,  including
− , the proposed DHLPSO algorithm still  exhibits

the  best  performance.  DHLPSO  yields  the  best
performance  on  and  .  In  terms  of  the  30-
dimensional  ranking  of  CEC2013,  the  algorithm
ranking  is  DHLPSO,  BFLPSO,  BLPSO,  HCLPSO,
GLPSO,  SLPSO,  XPSO,  and  CLPSO.  This  finding
proves  that  DHLPSO  achieves  significantly  better
optimization  performance,  demonstrating  the
effectiveness of the two learning strategies of DHLPSO
performance.  A  comparison  of  these  excellent  PSO
variant  algorithms  shows  that  DHLPSO  has  a  better
ability to solve global optimization problems.

As  shown  in Table  A2 in  the  Appendix,  DHLPSO
can rank the 1st seven times and can rank the 2nd eight
times.  SLPSO,  CLPSO,  XPSO,  GLPSO,  HCLPSO,
BLPSO, and BFLPSO can rank the first 5, 3, 2, 4, 1, 3,
and  4  times,  respectively.  The  results  of  DHLPSO  on

CEC  2013  are  better  than  the  results  of  other
comparison  algorithms,  as  shown  by  the  above
comparison  results  and  values.  In  general,  DHLPSO
achieved  the  most  significant  optimization
performance.  Furthermore,  DHLPSO  has  adequately
solved  some  of  its  problems  by  balancing  the
exploration and exploitation of  the  population through
staged learning. Theoretical research and actual results
show  that  the  DHLPSO  performs  much  better  than
other PSO versions.

To  further  verify  the  stability  of  DHLPSO  and  its
ability to solve higher-dimensional complex problems,
this  paper  still  chooses  the  previous  seven  algorithms
as  comparison  algorithms.  The  50-dimensional
functions  of  the  CEC  2013  are  being  tested.  The
proposed PSO variation DHLPSO demonstrates greater
performance  than  the  other  comparison  algorithms,  as
demonstrated  in Table  A3 in  the  Appendix.  For  the
metric Ave, SLPSO is ranked the seventh with a score
of  5.36.  DHLPSO  is  ranked  top  with  a  score  of  3.11,
outperforming  the  other  seven  algorithms.  This  result
proves  the  effectiveness  of  the  dual-stage  learning
strategy  and  Gaussian  mutation  strategy  proposed  in
this  paper.  Compared  with  BFLPSO,  DHLPSO  has  a
similar search ability on multimodal functions. However,
DHLPSO achieves the best performance in 8 out of 28
functions,  and  five  functions  ranks  the  second.  This
performance  is  enough  to  indicate  that  DHLPSO  has
strong optimization ability and scalability.

4.4    Strategy effectiveness analysis

( f1) ( f2)
( f3) ( f4)
f1 f2 f3

f4

Theoretically,  the  algorithms  of  the  two  learning
strategies  proposed  in  this  paper  are  divided  into  one
strategy  for  exploration,  another  strategy  for
exploitation,  and  a  stagnation-handling  strategy  for
jumping  out  of  local  optima.  Three  streamlined
versions  of  DHLPSO—DHLPSO_1,  DHLPSO_2,  and
DHLPSO_3 —are  developed  to  test  the  effects  of  the
three  strategies  in  the  paper.  DHLPSO_1 refers  to  the
PSO  variant  that  uses  only  the  Manhattan  distance
learning strategy, while DHLPSO_2 is the PSO variant
that  only uses  the excellent  example learning strategy.
DHLPSO_3  is  a  merge  of  the  first  two  strategies
without  the  PSO  variant  using  the  Gaussian  mutation
strategy. Four different types of functions are employed
for verification. For more illustrative purposes, the four
functions  include  Sphere ,  Different  Powers ,
Rastrigin ,  and Composition of CEC2013 .  The
functions  and  are unimodal,  is multimodal, and

 is composite.
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f1 f2 f4

Table  2 and  Fig.  5 demonstrate  that  DHLPSO
outperforms  DHLPSO_1  and  DHLPSO_2  on  all  four
functions.  This  finding  illustrates  the  effectiveness  of
adopting staged learning and improves the efficiency of
algorithm  exploration.  DHLPSO_1  has  good
exploratory  properties,  making  it  impossible  to  obtain
higher-precision solutions. Due to high exploitability of
DHLPSO_2, it is also simple to reach a local optimum.
The DHLPSO_3 was acquired by the staged mixing of
the two. Functions , , and  show the performance
of DHLPSO_3 is better than their individual effects.

f3
The third function demonstrates that the population’s

performance on function  is greatly improved by the
Gaussian  mutation  strategy,  which  is  a  multimodal
function.  The  Gaussian  mutation  strategy  can  take  a
solution  locked  in  a  local  optimum to  easier  jump out
and  into  the  global  space,  resulting  in  a  superior
solution.

4.5    Nonparametric test

To further  show the  differences  between DHLPSO on
the CEC2013 test set and these PSO variants, this paper
selects  the  Wilcoxon  signed-rank  test[37],  a
nonparametric statistical analysis method. The purpose
of  this  is  to  find  significant  variations  between  the
means of two samples.

i n di

The  Wilcoxon  nonparametric  test  refers  to:  A
comparison of the two algorithms’ performance ratings
for the -th problem among  problems is denoted by .
Differences  are  ordered  by  absolute  value;  in  the  case
of a tie,  the average rank is used to handle the tie (for
example,  if  there  are  two differences  when possessing
ranks  1  and  2,  distribute  a  rank  of  1.5  to  both
differences).  Due  to  its  wide  range  of  employing,
statistical  software  programs  can  be  used  to  calculate
the p -value  for  the  test.  The p -value  provides

 

Table 2    Parameter settings of all the contrasted algorithms.

Algorithm Metric f1 f2 f3 f4

DHLPSO_1
Mean ×10−144.55 ×10−131.82 ×10+07.56 ×10+22.32
Std ×10−131.02 ×10−146.23 ×10+01.51 ×10+17.01

DHLPSO_2
Mean ×10−132.27 ×10+14.24 ×10+21.26 ×10+22.63

Std ×10+00.00 ×10+19.47 ×10+16.48 ×10+18.58

DHLPSO_3
Mean ×10+00.00 ×10−131.82 ×10+11.11 ×10+22.51

Std ×10+00.00 ×10−146.23 ×10+05.04 ×10+16.98

DHLPSO
Mean ×10+00.00 ×10−131.59 ×10−23.77 ×10+22.26

Std ×10+00.00 ×10−146.23 ×10−27.00 ×10+15.75
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Fig. 5    Convergence curves of the four strategies.
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information  about  whether  a  statistical  hypothesis  test
is significant, and also indicates the significance of the
result: a smaller p-value indicates a smaller correlation
between the compared algorithms. IBM SPSS is chosen
as the calculation tool.

di = 0

Let R+ be the rank sum of the problem for which the
previous algorithm outperforms the back algorithm. R−

is  the  rank  sum of  the  algorithm inverse.  Grades  with
 are  evenly  divided  between  the  sums;  if  they

have an odd number, disregard one. Equations (17) and
(18) demonstrate how to calculate the p-values.
 

R+ =
∑
di>0

rank(di)+
1
2

∑
di=0

rank(di) (17)

 

R− =
∑
di<0

rank(di)+
1
2

∑
di=0

rank(di) (18)

The  Wilcoxon  nonparametric  test  results  of
DHLPSO  and  these  contrast  algorithms  in  the  two
groups  of  30-dimensional  and  50-dimensional
functions from the CEC2013 are shown in Tables 3 and
4.  The  formula n/w/t/l  denotes  that  there  are n  total
experimental  functions,  of  which  DHLPSO  succeeds
on w, is equal on t, and fails on l.

×10−3
The  apparent  difference  between  DHLPSO  and

SLPSO  in Table  3 is  5.00 ,  which  is  less  than
0.05.  This  value  demonstrates  that  the  DHLPSO  is
predominant  over  SLPSO.  It  can  be  seen  that  among
the  28  optimization  functions,  20  of  DHLPSO  are
better  than  SLPSO,  so  the  effect  of  DHLPSO  is

significantly better than that of SLPSO. For HCLPSO,
BLPSO,  and  BFLPSO,  their p -values  are  larger  than
0.05,  indicating  that  DHLPSO  does  not  considerably
outperform their  performance.  Nevertheless,  it  is  clear
from CEC2013 that there are more DHLPSO functions
that  are  superior  to  them than  worse  ones.  This  result
indicates  that  DHLPSO  is  still  better  than  that  of  the
remaining  PSO  variants.  Due  to  the  fact  that  the p-
values  of  them are  less  than  0.05,  DHLPSO is  clearly
superior to CLPSO, GLPSO, and XPSO.

Simultaneously, Table  4 shows  that  all  the p-value
are  less  than  the  value  of Table  3.  This  finding  also
demonstrates  that  in  50  dimensions,  DHLPSO
outperforms  the  comparison  algorithm.  The  numbers
indicate  that  DHLPSO is  superior  to  SLPSO, CLSPO,
XPSO,  GLPSO,  HCLPSO,  BLPSO,  and  BFLPSO  for
the number 23, 20, 22, 18, 17, 19 and 18, respectively,
which  demonstrates  that  DHLPSO  is  significantly
better  than  the  comparison  algorithms.  Overall,
DHLPSO significantly outperforms some PSO variants
in global optimization problems.

4.6    Convergence analysis

( f1, f6, f10, and f26)

To  more  intuitively  compare  the  convergence
performance  of  DHLPSO  and  these  comparison
algorithms,  the  comparison  algorithm  is  selected  here
to  show  the  convergence  graph  of  the  four  functions

, which is shown in Fig. 6.  The four
functions are selected in the CEC2013 test set. Among

 

Table 3    Nonparametric test results from Table A2 in the Appendix.

Comparison R+ R− p-value n / w / t / l

DHLPSO vs. SLPSO 306 73 ×10−35.00 28 / 20 / 1 / 7
DHLPSO vs. CLPSO 362 44 ×10−42.71 28 / 23 / 0 / 5
DHLPSO vs. XPSO 337 69 ×10−32.19 28 / 21 / 0 / 7

DHLPSO vs. GLPSO 310 97 ×10−21.46 28 / 19 / 0 / 9
DHLPSO vs. HCLPSO 250 157 ×10−12.84 28 / 17 / 0 / 11
DHLPSO vs. BLPSO 243 163 ×10−13.60 28 / 18 / 0 / 10

DHLPSO vs. BFLPSO 238 169 ×10−14.29 28 / 16 / 0 / 12
 

 

Table 4    Nonparametric test results from Table A3 in the Appendix.

Comparison R+ R− p-value n / w / t / l

DHLPSO vs. SLPSO 345 62 ×10−31.22 28 / 23 / 0 / 5
DHLPSO vs. CLPSO 334 73 ×10−32.86 28 / 20 / 0 / 8
DHLPSO vs. XPSO 344 62 ×10−31.25 28 / 22 / 0 / 6

DHLPSO vs. GLPSO 306 101 ×10−21.89 28 / 18 / 0 / 10
DHLPSO vs. HCLPSO 271 136 ×10−11.21 28 / 17 / 0 / 11
DHLPSO vs. BLPSO 256 150 ×10−12.24 28 / 19 / 0 / 9

DHLPSO vs. BFLPSO 248 159 ×10−13.07 28 / 18 / 0 / 10
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these  functions,  is  an  unimodal  function,  and  
are  multimodal  functions,  and  is  a  composite
function.

f1

f6 f10

From Fig.  6,  on  the  function,  although  the
convergence  speed  of  DHLPSO  is  relatively  slow
compared  with  other  comparison  algorithms,  which  is
controlled  by  the  global  exploration  of  the  Manhattan
distance learning strategy in the early stage,  DHLPSO
quickly  obtains  the  global  maximum  value  after
converging  to  half  the  number  of  iterations.  DHLPSO
convergence is slow in the early stages of iteration, but
it  is  rapid in  the later  phases  of  iteration,  according to
functions  and  from Fig. 6.

f26

Because  the  excellent  example  learning  strategy  in
the  later  stage  has  good  exploitability,  the  final
solution’s  convergence  accuracy  is  superior  to  that  of
the  other  remaining  algorithms.  It  continuously
advances  closer  to  the  ideal  value  after  initially
exploring  the  area  around  the  multimodal  function’s
optimal  value,  resulting  in  strong  optimization
performance. For function , DHLPSO’s convergence
is  superior  to  other  algorithms  in  that  it  more  quickly
reaches the ideal value. In conclusion, the convergence
performance of DHLPSO is the best.

5    Conclusion

A  novel  DHLPSO  is  presented  by  designing  a  dual-
stage hybrid learning to divide the iterative process into
two learning stages with different features in this paper.

First, the Manhattan distance learning strategy has been
proposed  to  extensively  explore  the  population  in  the
early  stages  of  iteration,  which  increases  population
variety  and  lowers  the  risk  of  being  stuck  in  local
optimums.  Second,  an  excellent  example  learning
strategy  is  employed  to  do  a  local  search  operation  in
the  later  stages  of  the  iteration.  It  learns  from  the
globally  optimal  particles  and  particles  that  are  better
than  itself  to  achieve  the  purpose  of  population
development.  Two  learning  strategies  are  employed
during  these  two  phases  to  strike  a  balance  between
exploration  and  exploitation.  Last,  employing  the
proposed  Gaussian  mutation  strategy  makes  it  easier
for  stagnant  populations  to  break  free  from  local
optima.

The  DHLPSO  algorithm  outperforms  other  seven
advanced PSO variants,  according to the results of the
CEC2013  benchmark  test  suit.  In  addition,  the  paper
also  conducts  some  comparative  experiments  to
analyze  the  effectiveness  of  these  three  strategies.  To
implement  the  trade-off  between  exploration  and
exploitation, DHLPSO employs two learning strategies
at dual-stage evolutionary stages. At the early stage, the
Manhattan  distance  learning  strategy  is  adopted  to
make  the  population  thoroughly  search  within  the
feasible  range.  The  presented  staged  learning  in  this
study is the first time that PSO has been adopted, and it
has  a  relatively  good  effect  on  the  CEC2013
benchmark  functions.  Further  investigation  into  the
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Fig. 6    Convergence curves of the eight comparison algorithms.
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appropriate improvement measures is warranted.
Although DHLPSO shows better performance, it still

has some problems that need to be improved. The first
is  that  it  exhibits  weak  performance  in  solving
composite problems. The second is that the Manhattan
distance  learning  strategy  reduces  the  overall
convergence  rate,  especially  on  unimodal  functions.
This  is  an  unavoidable  problem with  the  nature  of  the
algorithm. Finally, although there is a mutation strategy
to  adjust  the  stagnation  situation,  there  will  still  be  a
situation  of  falling  into  a  local  optimum.  Our  further
work  will  prioritize  improving  the  performance  of  the
algorithm. The other is to try to improve the algorithm
to solve more complex optimization problems.

Appendix

• ft stagmax Table  A1 and  A2 :  Parameters  and  
investigation of DHLPSO.
• Table A3: Comparison results (D = 30).
• Table A4: Comparison results (D = 50).
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Table A1    Parameters ft and stagmax (stagmax=5, 10) investigation of DHLPSO.

Fun

stagmax = 5 stagmax = 10
ft = 0.55 ft = 0.6 ft = 0.65 ft = 0.7 ft = 0.55 ft = 0.6 ft = 0.65 ft = 0.7

mean mean mean mean mean mean mean mean

f1 ×10−147.58 ×10+00.00 ×10+00.00 ×10+00.00 ×10−145.31 ×10+00.00 ×10+00.00 ×10+00.00
f2 ×10+59.25 ×10+58.98 ×10+58.35 ×10+61.16 ×10+58.23 ×10+58.67 ×10+57.55 ×10+61.11
f3 ×10+71.89 ×10+75.03 ×10+72.84 ×10+73.86 ×10+73.42 ×10+72.67 ×10+73.31 ×10+71.93
f4 ×10+31.36 ×10+31.26 ×10+31.91 ×10+31.87 ×10+31.14 ×10+31.22 ×10+29.77 ×10+31.75
f5 ×10−132.43 ×10−131.14 ×10−131.14 ×10−131.33 ×10−132.43 ×10−132.20 ×10−131.14 ×10−131.59
f6 ×10+12.33 ×10+11.70 ×10+11.77 ×10+11.63 ×10+11.95 ×10+11.86 ×10+11.95 ×10+11.68
f7 ×10+08.66 ×10+08.66 ×10+09.43 ×10+09.72 ×10+08.87 ×10+07.54 ×10+06.67 ×10+08.06
f8 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09
f9 ×10+13.09 ×10+13.08 ×10+13.20 ×10+12.89 ×10+13.11 ×10+13.17 ×10+13.09 ×10+13.08
f10 ×10−11.29 ×10−11.56 ×10−11.19 ×10−11.41 ×10−11.25 ×10−11.30 ×10−11.34 ×10−11.30
f11 ×10−31.43 ×10−34.33 ×10−31.00 ×10−34.86 ×10−23.32 ×10−132.24 ×10−131.02 ×10−11.88
f12 ×10+17.69 ×10+17.87 ×10+19.14 ×10+18.04 ×10+17.19 ×10+17.65 ×10+17.74 ×10+17.39
f13 ×10+21.13 ×10+21.13 ×10+21.13 ×10+21.09 ×10+21.10 ×10+21.05 ×10+18.26 ×10+21.05
f14 ×10+01.36 ×10+01.64 ×10+01.33 ×10+01.30 ×10+06.45 ×10+05.86 ×10+05.19 ×10+05.61
f15 ×10+34.89 ×10+34.35 ×10+34.56 ×10+34.48 ×10+34.27 ×10+34.41 ×10+33.90 ×10+34.58
f16 ×10+01.33 ×10+01.43 ×10+01.24 ×10+01.26 ×10+01.22 ×10+01.18 ×10−17.43 ×10+01.19
f17 ×10+13.08 ×10+13.08 ×10+13.08 ×10+13.08 ×10+13.04 ×10+13.13 ×10+13.14 ×10+13.15
f18 ×10+18.44 ×10+18.79 ×10+18.46 ×10+18.24 ×10+19.27 ×10+17.25 ×10+19.56 ×10+18.53
f19 ×10+01.05 ×10+01.02 ×10+01.07 ×10+01.08 ×10+01.32 ×10+01.38 ×10+01.47 ×10+01.41
f20 ×10+11.13 ×10+11.14 ×10+11.13 ×10+11.13 ×10+11.14 ×10+11.12 ×10+11.04 ×10+11.12
f21 ×10+22.64 ×10+22.57 ×10+22.44 ×10+22.75 ×10+22.77 ×10+22.83 ×10+23.00 ×10+22.83
f22 ×10+17.65 ×10+19.76 ×10+19.95 ×10+18.41 ×10+21.09 ×10+21.00 ×10+16.46 ×10+19.97
f23 ×10+34.89 ×10+34.89 ×10+34.92 ×10+34.78 ×10+34.77 ×10+34.72 ×10+34.20 ×10+34.76
f24 ×10+22.50 ×10+22.50 ×10+22.50 ×10+22.51 ×10+22.50 ×10+22.55 ×10+22.59 ×10+22.52
f25 ×10+22.59 ×10+22.63 ×10+22.62 ×10+22.61 ×10+22.63 ×10+22.66 ×10+22.60 ×10+22.60
f26 ×10+22.22 ×10+22.28 ×10+22.22 ×10+22.42 ×10+22.21 ×10+22.28 ×10+22.00 ×10+22.23
f27 ×10+27.87 ×10+28.41 ×10+27.99 ×10+27.96 ×10+28.07 ×10+28.29 ×10+26.75 ×10+27.03
f28 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00

Number of best results 3 6 4 3 1 3 12 2
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Table A2    Parameters ft and stagmax (stagmax=15, 20) investigation of DHLPSO.

Fun

stagmax = 15 stagmax = 20
ft = 0.55 ft = 0.6 ft = 0.65 ft = 0.7 ft = 0.55 ft = 0.6 ft = 0.65 ft = 0.7

mean mean mean mean mean mean mean mean

f1 ×10−143.79 ×10+00.00 ×10+00.00 ×10+00.00 ×10−143.79 ×10+00.00 ×10+00.00 ×10+00.00
f2 ×10+59.46 ×10+58.73 ×10+61.08 ×10+59.71 ×10+58.35 ×10+57.80 ×10+61.02 ×10+59.64
f3 ×10+72.28 ×10+72.65 ×10+72.13 ×10+72.92 ×10+72.51 ×10+72.05 ×10+72.29 ×10+72.85
f4 ×10+29.79 ×10+31.23 ×10+31.25 ×10+31.52 ×10+28.00 ×10+31.42 ×10+31.12 ×10+31.41
f5 ×10−132.31 ×10−132.16 ×10−131.82 ×10−131.55 ×10−132.16 ×10−132.08 ×10−131.82 ×10−131.52
f6 ×10+11.97 ×10+11.72 ×10+11.64 ×10+11.67 ×10+11.90 ×10+11.70 ×10+11.67 ×10+11.66
f7 ×10+07.38 ×10+08.15 ×10+08.07 ×10+07.64 ×10+07.88 ×10+09.21 ×10+07.00 ×10+06.29
f8 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09
f9 ×10+12.69 ×10+12.90 ×10+12.98 ×10+12.97 ×10+12.82 ×10+12.97 ×10+12.98 ×10+12.83
f10 ×10−11.51 ×10−11.22 ×10−11.27 ×10−11.25 ×10−11.33 ×10−11.23 ×10−11.26 ×10−11.45
f11 ×10−11.33 ×10−27.90 ×10−12.93 ×10−14.57 ×10+01.03 ×10+01.14 ×10−18.28 ×10+01.52
f12 ×10+16.94 ×10+16.29 ×10+15.74 ×10+17.63 ×10+15.97 ×10+15.78 ×10+16.33 ×10+15.62
f13 ×10+21.02 ×10+21.09 ×10+19.77 ×10+19.43 ×10+21.10 ×10+21.02 ×10+21.02 ×10+19.26
f14 ×10+12.47 ×10+13.14 ×10+11.80 ×10+12.66 ×10+16.30 ×10+14.73 ×10+14.43 ×10+14.38
f15 ×10+34.43 ×10+34.19 ×10+34.32 ×10+34.62 ×10+34.16 ×10+34.59 ×10+34.17 ×10+34.33
f16 ×10+01.30 ×10+01.22 ×10+01.14 ×10+01.30 ×10+01.15 ×10+01.22 ×10+01.22 ×10+01.35
f17 ×10+13.20 ×10+13.12 ×10+13.00 ×10+13.21 ×10+13.08 ×10+13.00 ×10+13.10 ×10+13.18
f18 ×10+18.72 ×10+17.66 ×10+18.43 ×10+18.24 ×10+17.54 ×10+17.82 ×10+18.87 ×10+19.10
f19 ×10+01.55 ×10+01.67 ×10+01.55 ×10+01.63 ×10+01.70 ×10+01.77 ×10+01.84 ×10+01.84
f20 ×10+11.12 ×10+11.13 ×10+11.13 ×10+11.12 ×10+11.11 ×10+11.13 ×10+11.12 ×10+11.11
f21 ×10+22.81 ×10+22.83 ×10+22.73 ×10+22.81 ×10+22.95 ×10+22.77 ×10+22.83 ×10+22.71
f22 ×10+21.04 ×10+21.08 ×10+21.08 ×10+21.14 ×10+21.72 ×10+21.29 ×10+21.23 ×10+21.24
f23 ×10+34.85 ×10+34.49 ×10+34.42 ×10+34.69 ×10+34.48 ×10+34.67 ×10+34.55 ×10+34.38
f24 ×10+22.51 ×10+22.50 ×10+22.54 ×10+22.54 ×10+22.50 ×10+22.51 ×10+22.51 ×10+22.50
f25 ×10+22.61 ×10+22.65 ×10+22.64 ×10+22.64 ×10+22.60 ×10+22.62 ×10+22.62 ×10+22.61
f26 ×10+22.16 ×10+22.21 ×10+22.14 ×10+22.12 ×10+22.10 ×10+22.20 ×10+22.23 ×10+22.04
f27 ×10+28.68 ×10+28.34 ×10+27.16 ×10+28.15 ×10+27.83 ×10+27.86 ×10+27.86 ×10+27.01
f28 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00 ×10+23.00

Number of best results 2 1 2 2 2 2 2 4
 

 

Table A3    Comparison results (D = 30).

Fun Metric SLPSO CLPSO XPSO GLPSO HCLPSO BLPSO BFLPSO DHLPSO

f1
Mean ×10−131.38 ×10−132.10 ×10−132.01 ×10−132.27 ×10−132.45 ×10−154.37 ×10−147.13 ×10+00.00
Rank 4 6 5 7 8 2 3 1

f2
Mean ×10+61.25 ×10+71.91 ×10+65.26 ×10+55.95 ×10+61.40 ×10+68.67 ×10+67.41 ×10+57.55
Rank 3 8 5 1 4 7 6 2

f3
Mean ×10+72.87 ×10+83.03 ×10+71.98 ×10+77.21 ×10+72.61 ×10+69.14 ×10+71.13 ×10+73.31
Rank 5 8 3 7 4 1 2 6

f4
Mean ×10+41.05 ×10+42.09 ×10+25.61 ×10+31.09 ×10+31.13 ×10+32.24 ×10+33.05 ×10+29.77
Rank 7 8 1 3 4 5 6 2

f5
Mean ×10−131.14 ×10−132.23 ×10−132.43 ×10−135.31 ×10−133.12 ×10−131.36 ×10−131.38 ×10−131.14
Rank 1 5 6 8 7 3 4 1

f6
Mean ×10+12.06 ×10+13.12 ×10+16.35 ×10+12.85 ×10+12.39 ×10+12.08 ×10+12.27 ×10+11.95
Rank 2 7 8 6 5 3 4 1

(to be continued)
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Table A3    Comparison results (D = 30). (continued)

Fun Metric SLPSO CLPSO XPSO GLPSO HCLPSO BLPSO BFLPSO DHLPSO

f7
Mean ×10+04.43 ×10+17.36 ×10+11.55 ×10+15.67 ×10+12.22 ×10+09.18 ×10+11.13 ×10+06.67
Rank 1 8 5 7 6 3 4 2

f8
Mean ×10+12.10 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09 ×10+12.09
Rank 8 6 5 3 2 7 4 1

f9
Mean ×10+09.55 ×10+12.84 ×10+11.58 ×10+11.96 ×10+12.01 ×10+12.56 ×10+12.53 ×10+13.09
Rank 1 7 2 3 4 6 5 8

f10
Mean ×10−12.89 ×10+02.99 ×10−11.29 ×10−12.94 ×10−12.29 ×10−12.85 ×10−12.85 ×10−11.34
Rank 6 8 1 7 3 4 5 2

f11
Mean ×10+11.65 ×10−145.57 ×10+12.68 ×10−23.90 ×10−11.33 ×10−15.55 ×10−11.95 ×10−131.02
Rank 7 1 8 3 4 6 5 2

f12
Mean ×10+21.65 ×10+21.22 ×10+15.00 ×10+16.28 ×10+15.24 ×10+12.99 ×10+12.70 ×10+17.74
Rank 8 7 3 5 4 2 1 6

f13
Mean ×10+21.64 ×10+21.58 ×10+21.17 ×10+21.32 ×10+21.16 ×10+15.00 ×10+14.60 ×10+18.26
Rank 8 7 5 6 4 2 1 3

f14
Mean ×10+27.10 ×10+05.38 ×10+31.19 ×10+02.22 ×10+13.59 ×10+21.14 ×10+18.52 ×10+05.19
Rank 7 3 8 1 4 6 5 2

f15
Mean ×10+35.92 ×10+34.79 ×10+34.06 ×10+33.81 ×10+33.39 ×10+33.63 ×10+33.43 ×10+33.90
Rank 8 7 6 4 1 3 2 5

f16
Mean ×10+02.63 ×10+02.02 ×10+02.41 ×10−17.84 ×10+01.20 ×10+01.75 ×10+01.58 ×10−17.43
Rank 8 6 7 2 3 5 4 1

f17
Mean ×10+21.78 ×10+13.08 ×10+16.92 ×10+13.19 ×10+13.08 ×10+13.04 ×10+13.09 ×10+13.14
Rank 8 2 7 6 3 1 4 5

f18
Mean ×10+21.99 ×10+21.99 ×10+21.79 ×10+17.18 ×10+17.86 ×10+21.01 ×10+19.61 ×10+19.56
Rank 8 7 6 1 2 5 4 3

f19
Mean ×10+03.58 ×10−15.81 ×10+03.34 ×10+01.78 ×10+01.52 ×10+01.67 ×10+01.55 ×10+01.47
Rank 8 1 7 6 3 5 4 2

f20
Mean ×10+11.39 ×10+11.36 ×10+11.17 ×10+11.10 ×10+11.07 ×10+11.05 ×10+11.01 ×10+11.04
Rank 8 7 6 5 4 3 1 2

f21
Mean ×10+22.91 ×10+22.53 ×10+23.19 ×10+23.40 ×10+22.56 ×10+23.04 ×10+23.06 ×10+23.00
Rank 3 1 7 8 2 5 6 4

f22
Mean ×10+26.41 ×10+21.01 ×10+31.19 ×10+21.14 ×10+21.14 ×10+21.57 ×10+21.60 ×10+16.46
Rank 7 2 8 3 4 5 6 1

f23
Mean ×10+34.93 ×10+35.57 ×10+33.88 ×10+33.92 ×10+34.06 ×10+33.72 ×10+33.47 ×10+34.20
Rank 7 8 3 4 5 2 1 6

f24
Mean ×10+22.21 ×10+22.74 ×10+22.49 ×10+22.50 ×10+22.29 ×10+22.14 ×10+22.16 ×10+22.59
Rank 3 8 5 6 4 1 2 7

f25
Mean ×10+22.54 ×10+22.96 ×10+22.81 ×10+22.72 ×10+22.65 ×10+22.68 ×10+22.59 ×10+22.60
Rank 1 8 7 6 4 5 2 3

f26
Mean ×10+22.55 ×10+22.02 ×10+22.86 ×10+22.45 ×10+22.03 ×10+22.03 ×10+22.11 ×10+22.00
Rank 7 2 8 6 3 4 5 1

f27
Mean ×10+24.69 ×10+27.29 ×10+27.07 ×10+27.59 ×10+25.85 ×10+25.42 ×10+25.11 ×10+26.75
Rank 1 7 6 8 4 3 2 5

f28
Mean ×10+23.20 ×10+23.00 ×10+24.13 ×10+22.80 ×10+22.96 ×10+22.94 ×10+23.00 ×10+23.00
Rank 7 6 8 1 3 2 4 5

Count 5 3 2 4 1 3 4 7
Ave 5.43 5.75 5.57 4.75 3.86 3.79 3.64 3.18
Total 6 8 7 5 4 3 2 1
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Table A4    Comparison results (D = 50).

Fun Metric SLPSO CLPSO XPSO GLPSO HCLPSO BLPSO BFLPSO DHLPSO

f1
Mean ×10−132.27 ×10−132.27 ×10−133.03 ×10−139.02 ×10−135.15 ×10−132.42 ×10−132.27 ×10−132.27
Rank 2 2 6 8 7 5 2 1

f2
Mean ×10+61.85 ×10+73.89 ×10+71.73 ×10+62.21 ×10+61.60 ×10+71.69 ×10+71.32 ×10+62.13
Rank 2 8 7 4 1 6 5 3

f3
Mean ×10+71.78 ×10+92.39 ×10+77.91 ×10+83.25 ×10+82.74 ×10+72.70 ×10+72.93 ×10+71.13
Rank 2 8 5 7 6 3 4 1

f4
Mean ×10+44.19 ×10+42.34 ×10+26.04 ×10+36.42 ×10+31.34 ×10+32.83 ×10+32.47 ×10+31.88
Rank 8 7 1 6 2 5 4 3

f5
Mean ×10−133.12 ×10−133.28 ×10−136.25 ×10−121.42 ×10−137.24 ×10−133.26 ×10−133.41 ×10−133.11
Rank 2 4 6 8 7 3 5 1

f6
Mean ×10+14.40 ×10+14.67 ×10+14.92 ×10+16.21 ×10+14.44 ×10+14.43 ×10+14.60 ×10+14.35
Rank 2 6 7 8 4 3 5 1

f7
Mean ×10+15.18 ×10+21.04 ×10+13.27 ×10+16.64 ×10+14.09 ×10+12.21 ×10+12.30 ×10+12.16
Rank 6 8 4 7 5 2 3 1

f8
Mean ×10+12.12 ×10+12.11 ×10+12.11 ×10+12.11 ×10+12.11 ×10+12.11 ×10+12.11 ×10+12.11
Rank 8 3 2 4 6 5 7 1

f9
Mean ×10+11.72 ×10+15.47 ×10+13.33 ×10+13.87 ×10+14.01 ×10+15.03 ×10+15.03 ×10+16.30
Rank 1 7 2 3 4 5 6 8

f10
Mean ×10−12.52 ×10+07.35 ×10−11.09 ×10−12.28 ×10−12.16 ×10−13.01 ×10−12.80 ×10−12.11
Rank 5 8 1 4 3 7 6 2

f11
Mean ×10+13.73 ×10−147.69 ×10+16.72 ×10−14.98 ×10+01.07 ×10+02.63 ×10−19.56 ×10−12.65
Rank 7 1 8 3 5 6 4 2

f12
Mean ×10+23.47 ×10+23.02 ×10+21.24 ×10+21.45 ×10+21.10 ×10+16.71 ×10+15.61 ×10+21.61
Rank 8 7 4 5 3 2 1 6

f13
Mean ×10+23.47 ×10+23.70 ×10+22.18 ×10+22.93 ×10+22.23 ×10+21.20 ×10+21.13 ×10+22.04
Rank 7 8 4 6 5 2 1 3

f14
Mean ×10+31.24 ×10+01.93 ×10+32.24 ×10+11.30 ×10+18.63 ×10+22.76 ×10+22.67 ×10+12.54
Rank 7 1 8 2 4 6 5 3

f15
Mean ×10+41.31 ×10+39.22 ×10+39.90 ×10+37.32 ×10+37.43 ×10+37.34 ×10+37.21 ×10+38.54
Rank 8 6 7 2 4 3 1 5

f16
Mean ×10+03.49 ×10+02.71 ×10+03.41 ×10+01.13 ×10+02.28 ×10+02.12 ×10+02.07 ×10+01.79
Rank 8 6 7 1 5 4 3 2

f17
Mean ×10+23.82 ×10+15.16 ×10+21.44 ×10+15.75 ×10+15.29 ×10+15.03 ×10+15.20 ×10+15.24
Rank 8 2 7 6 5 1 3 4

f18
Mean ×10+23.98 ×10+24.08 ×10+23.48 ×10+21.45 ×10+21.56 ×10+21.80 ×10+21.74 ×10+21.78
Rank 7 8 6 1 2 5 3 4

f19
Mean ×10+09.46 ×10+01.52 ×10+07.93 ×10+03.79 ×10+02.35 ×10+02.92 ×10+02.87 ×10+02.20
Rank 8 1 7 6 3 5 4 2

f20
Mean ×10+12.23 ×10+12.30 ×10+12.07 ×10+12.00 ×10+12.00 ×10+11.87 ×10+11.87 ×10+12.03
Rank 7 8 6 4 3 1 2 5

f21
Mean ×10+27.94 ×10+23.85 ×10+28.63 ×10+29.08 ×10+25.05 ×10+29.30 ×10+29.51 ×10+25.10
Rank 4 1 5 6 2 7 8 3

f22
Mean ×10+31.28 ×10+13.75 ×10+32.76 ×10+15.87 ×10+21.49 ×10+22.81 ×10+22.12 ×10+16.70
Rank 7 1 8 2 4 6 5 3

f23
Mean ×10+41.29 ×10+41.13 ×10+37.88 ×10+38.00 ×10+38.20 ×10+37.57 ×10+37.29 ×10+39.11
Rank 8 7 3 4 5 2 1 6

f24
Mean ×10+22.50 ×10+23.49 ×10+23.11 ×10+23.02 ×10+22.72 ×10+22.42 ×10+22.51 ×10+22.86
Rank 2 8 7 6 4 1 3 5

(to be continued)
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