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ABSTRACT

In this paper, a multi-stage progressive learning strategy is
investigated to train classifiers for COVID-19 Diagnosis us-
ing imbalanced Chest Computed Tomography Data acquired
from patients infected with COVID-19 Pneumonia, Commu-
nity Acquired Pneumonia (CAP) and from normal healthy
subjects. In the first learning stage, pre-processed volumet-
ric CT data together with the segmented lung masks are fed
into a 3D ResNet module, and an initial classification result
can be obtained. However, due to categorical data imbalance,
we observe large differences in sensitivity between COVID-
19 and CAP cases. In the second stage, five learning models
are independently trained over data with only COVID-19 and
CAP cases, and are then ensembled to further discriminate
the two classes. The final classification results are obtained by
combining the predictions from both stages. Based on the val-
idation dataset, we have evaluated our method and compared
it with up-to-date methods in terms of overall accuracy and
sensitivity for each class. The validation results validate the
accuracy of the proposed multi-stage learning strategy. The
overall accuracy of the validation dataset is 88.8%, and the
sensitivities are 0.873, 0.789 and 1 for COVID-19, CAP and
normal cases, respectively.

Index Terms— COVID-19, computed tomography, multi-
stage learning, imbalanced data classification, 3D ResNet

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) has been spread to al-
most every corner of the world since December 2019. The re-
verse transcription-polymerase chain reaction (RT-PCR) test
is accepted as the most effective tool to examine whether a
person is carrying COVID. However, the accuracy may be
as low as 60%-70%. Thus the patients could be infected
by COVID-19 with lung abnormalities but obtain an initially
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negative RT-PCR results [1]. At the beginning of the out-
break in Wuhan, China, due to the lack of the RT-PCR test,
chest computed tomography (CT) entered the fight against
this unknown virus [2]. Subsequently, more and more coun-
tries started to use CT for COVID diagnosis as a complemen-
tary measure in addition to RT-PCR [3]. In the CT diagnosis
for COVID-19, features such as bilateral patchy shadows or
ground glass opacity in lung can be scanned and identified
by professional radiologists [4]. However, radiologists need
to analyze each slice of the 3D reconstructed lung for a large
number of patients, and it will inevitably result in lower accu-
racy and efficiency.

With the rapid development of deep learning-based arti-
ficial intelligence in medical diagnoses through the past few
years, AI-assisted CT diagnosis for lung diseases could im-
prove the diagnostic accuracy and reduce the radiologists’
overwhelming workload [5, 6]. In the ongoing fight against
the COVID-19 pandemic, various deep learning-based meth-
ods have been developed for the chest CT data analysis and
classification [7–9]. In [7], ResNet50 is used as the backbone.
The CNN features from each slice of the CT series are com-
bined by a max-pooling operation and the resulting feature
map is fed into a fully connected layer to generate a proba-
bility score for each class. In addition to supervised learning,
a weakly supervised deep learning framework was developed
using 3D CT volumes for COVID-19 classification and lesion
localization [10], but it only applies for COVID-19 and non-
COVID classes. Similarly, The proposed method in [11] can
minimize the requirements of manual labeling of CT images
but still cannot obtain accurate infection detection and distin-
guish COVID-19 from non-COVID-19 cases such as com-
munity acquired pneumonia and non-pneumonia scans. In
addition to COVID-19 diagnosis, many other attempts based
on AI have also been made to fight COVID-19 [12]. ResNet
is a widely used deep neural network for classification prob-
lems. However, for a problem with 3D data such as CT, MRI
and videos, the capacity of the 3D CNN based ResNet is
highly constrained due to the expensive computational cost
and memory demand. Thus, the full 3D ResNet with deep
depth is difficult to be leveraged.
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This paper presents a multi-stage progressive learning
strategy to train classifiers for COVID-19 Diagnosis using
imbalanced Chest Computed Tomography Data acquired
from patients infected with COVID-19 Pneumonia, CAP and
from normal healthy subjects. In Section II, the data analysis
and data preprocessings, including lung segmentation masks,
window settings, cropping and resizing, will be introduced.
In the next Section, the pre-processed volumetric CT data
together with the segmented lung masks are fed into a 3D
ResNet module, and an initial classification result can be ob-
tained. The detailed architecture of the Stem, 3D ResNet101
module, the classifier and the data augmentation will be de-
scribed. After the first learning stage, the rest learning stages
for improving the sensitivities will be introduced accordingly
in Section IV. Five learning models are independently trained
over data with only COVID-19 and CAP cases, and are then
ensembled to further discriminate the two classes. The final
classification results are obtained by combining the predic-
tions from both stages. In the last Section, we have evaluated
our method and compared it with up-to-date methods in
terms of overall accuracy and sensitivity for each class based
on the validation dataset. The experimental results validate
the accuracy of the proposed multi-stage learning strategy.

2. DATA PREPROCESSINGS

2.1. The Acquired CT Dataset

The dataset released by the challenge committee includes
volumetric CT scans of 171 patient positive for COVID-19,
60 Community Acquired Pneumonia (CAP), and 76 normal
cases [13]. The thickness of all the CT slices are 2 mm,
and the dimension of each slice is 512 × 512. 30% of the
data were randomly selected as the validation set by the chal-
lenge committee. In the validation dataset, the number of
the COVID-19, cap and normal cases are 55, 19 and 24, re-
spectively. It should be noted that the numbers of each class
in both training and validation dataset are not close to each
other, so the accuracy of the validation dataset should not be
the only indicator to assess the quality of the trained model.
The sensitivity is also significant to evaluate the accuracy of
each class.

2.2. Data Preprocessings

The body and the lung shapes of each patient differ from each
other. In addition, the CT settings such as dose and recon-
struction regions by the radiologist could also be different.
Thus, it is indispensable to process the acquired CT data for a
stable input of the subsequent training.

2.2.1. Window of the Hounsfield Scale

From the provided CT files in DICOM format, the volumetric
CT data in Hounsfield unit can be extracted by stacking the

(a) COVID-19 mask using [10] (b) CAP mask using [10]

(c) COVID-19 mask using [15] (d) CAP mask using [15]

Fig. 1: Comparison of the lung segmentation for COVID-19
and CAP cases using [10] and [15].

slices sorted by the z-position. The window of the Hounsfield
scale is set to [-1200, 400] HU [14]. Using this window, most
features within the lung area such as lung tissues and infec-
tions can be well persevered, while the other body parts in-
cluding bones, fat and liver can be remained as constant.

2.2.2. Lung Segmentation

In [15], it is concluded that accurate lung segmentation
does not require complex methodology and a proven deep
learning-based segmentation architecture yields state-of-the-
art results once diverse (but not necessarily larger) training
data are available. The U-net(R231CovidWeb) model [16]
is used for the lung segmentation in our preprocessing. It is
obvious that the lung segmentation from [10] is noisy and
the infectious area in the lung cannot be well segmented, as
shown in Fig. 1. Moreover, the masks in Fig. 1(a) and (b)
are noisy even in the chest fat and bone region, which will
definitely cause errors in the subsequent training. The gen-
erated mask is concatenated with the CT data as the input of
the proposed deep learning model.

2.2.3. Crop and Resize

To further reduce the computational demand for a more ef-
ficient training, the dimensions for each slice are cropped to
[224,336] based on the generated lung mask. The 3D CT data
together with the lung segmentation data can be both reduced
by cropping according to the boundaries of lung mask. To get
a constant dimension along slice dimension for each CT data,
both the CT and segmentation data are resized to [224,336]
based on spline interpolation. Note that there is no need to
implement isotropic processing based on physical dimension
because multiple interpolations will cause accuracy degrada-
tion and the infectious lung features could not be well recog-
nized by the trained model. In addition, the distance between
each slice could be up to 5 mm, and the interpolated isotropic
CT data could be totally meaningless.
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Table 1: The Structure of Classifier.

Stage Layers Output size

Classifier

AdaptiveMaxPool3d(8,7,11) [512, 8,7,11]
Conv3d(512,128, kernel size= [3,3,3]) [128,8,7,11]

ReLU+AdaptiveMaxPool3d(4,4,6) [128,4,4,6]
Dropout3d(p = 0.5) [128,4,4,6]

Conv3d(128,32, kernel size= [3,3,3]) [32,4,4,6]
ReLU+AdaptiveMaxPool3d(1,1,1) [32,1,1,1]

Linear(32,32)+ ReLu 32
Linear(32,3) + Relu 3

3. THE PROPOSED TRAINING METHOD

To feed the train model with segmented lung volume, the
data will be passed into the stem module and pseudo-3D
ResNet by concatenating the segmented lung mask with the
pre-processed CT data. The structure of the deep learning
based model and data augmentation will be introduced in the
following subsections.

3.1. The Architecture of the Training Model

In the Stem module, the input data size after preprocessing
is (2, T , 224, 336), where T is the number of the CT slices
for each patient. Borrowing the ideas from [10, 17, 18] , the
proposed pseudo 3D ResNet101 comprises of 2D spatial con-
volutions (1×3×3) along slice plane and (3×1×1) along z-
direction (normal to slice plane). The alternating dimensional
convolutions are used to achieve comparative performance of
3D convolution kernel. Taking advantages of the alternating
3D (two 2D spatial convolutions) kernels, deeper neural net-
work can be used for higher accuracy. 3D ResNet101 (3, 4,
23, 3) is used as the backbone of the proposed method. The
architecture of the proposed method including the stem mod-
ule and 3D ResNet101 is illustrated in Fig. 2. One layer of the
3D ResNet101 named bottleneck transform layer is shown in
this figure. 3D Instance normalization is adopted throughout
the model. After four-time expanse of the feature channels,
the output feature channel is expanded from 16 to 512.

The slice number of each CT is different because the ac-
quisition setting for each patient varies. Before the output re-
sults are fed into the classifier, adapativeMaxPool is applied
to ensure the output size, especially for the number of slices,
should remain to be equal, as illustrated in Table 1. Subse-
quently, a progressive classifier is leveraged to reduce the fea-
ture channels from 512 to 3 step by step. A dropout3d layer
is introduced here to avoid overfitting.

3.2. Data Augmentation

In practical, the CT equipment settings differ from various
hospitals and radiologists. Additionally, the different dosage
and reconstruction methods also cause variations on the ac-
quired CT data. Data augmentation [19] are adopted to avoid

overfitting during training, and take these variations into con-
siderations. The following affine transformation parameters
are utilized: brightness (50%) and contrast adjustment(30%),
rotation (10 degrees), horizontal and vertical translations
(10%), scaling (factor is from 1 to 1.2) and shearing (0.1) in
the width dimension.

4. THE PROPOSED MULTI-STAGE PROGRESSIVE
STRATEGY

In the first learning stage, as discussed in the previous section,
the preprocessed volumetric CT data together with the seg-
mented lung mask are fed into a 3D ResNet module. Thus, an
initial classified results can be obtained. As long as the output
results from the first stage belong to COVID-19 cases, further
classification in the second stage will be executed. In this sec-
tion, the subsequent stages including ensembled trained mod-
els to improve the sensitivity of imbalanced training data will
be introduced.

4.1. Ensembled Binary Classification Model

Due to the imbalanced data over the three classes (the num-
ber of the COVID-19 cases are three times more than CAP
cases) and similarity of CAP and COVID-19, most of CAP
cases would be classified as COVID-19 by mistake in the
first stage. Ensembling based on different combination of
the training data is able to improve the performance when the
training data is imbalanced [20, 21]. At the second stage, we
prepared five training datasets by sampling from the COVID-
19 cases. For the first three groups, the numbers of the train-
ing data for COVID-19 cases are all 39, which is identical
to the number of CAP cases. For the rest two groups, the
numbers of the COVID-19 are 60, with slightly larger than
the number of CAP cases. These five deep learning models
are independently trained over data with only COVID-19 and
CAP cases, and are then ensembled to further discriminate
the two classes. The structures of the five deep learning mod-
els are similar to the one shown in Table 1 except the output
size is 2. Note that cross-entropy loss is used at the first stage
for multi-class problem, and the binary cross-entropy loss is
applied for the five models at the second stage. Ensembling
via voting from each model will give the final decision for
COVID-19 and CAP cases.

4.2. Final Combining Stage

The final classification results are obtained by combining the
predictions from both stages. The normal cases are deter-
mined directly by the results from the first stage, and the
COVID-19 cases are from the second stage via ensembling.
The CAP cases from the first stage are merged with the en-
sembled results at the second stage.
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Volumetric CT data

(T×512×512) (2×T×224×336)

Conv3d(2,16)
Stride = [1,2,2]

3D kernel
(5×7×7)

(16×T×56×84)

MaxPool3D
Stride = [1,2,2]

3D kernel
(1×3×3)

(16×T×112×168)

Stem
with data 

preproceesing
(Crop,range,

Segmentation,
etc.)

3D kernel
(1×1×1)

Stride 
(1×2×2)

3D kernel
(3×1×1)

Stride 
(3×1×1)

3D kernel
(1×3×3)

Stride 
(1×2×2)

Pre-processing

Lung 
Segmentation

3D kernel
(1×1×1)

Stride 
(1×1×1)

Concatenate

3D ResNet101
(3,4,23,3)

Upscale Downscale Remain

Bottleneck
Transform

Fig. 2: Architecture of the Stem and 3D ResNet101 (bottleneck transform) at the first learning stage.

5. EXPERIMENTAL RESULTS AND ANALYSIS

We have trained our proposed multi-stage learning method us-
ing a PC with dual Intel Xeon Gold 6240 (36 cores) CPUs and
two NVIDIA Geforce RTX 2080 Ti GPUs under Ubuntu op-
erating system. The initial learning rate is 1e-4, and it will be
decayed after 120 epochs by 0.995 for each following epoch.
Cross-entropy loss is used for the first stage for multi-class
problem, and binary cross-entropy loss is leveraged for the
five models at the second stage.

For the validation dataset chosen by the challenge com-
mittee, the number of the COVID-19, cap and normal cases
are 55, 19 and 24, respectively. It is obvious the validation
dataset is also imbalanced among the three classes, so the ac-
curacy on the validation dataset should not be the only indi-
cator to evaluate the performance of the trained model. The
sensitivities of each class is also important, especially for the
CAP cases. The accuracy and sensitivities at different stages
are given in Table 2. At the second stage where only COVID-
19 and CAP cases are involved in the training, the sensitivity
varies due to the different COVID-19 training data in these
five models. By voting from five different trained models, the
final decision on the COVID-19 and CAP cases can be deter-
mined. At the final stage, it can be seen that the sensitivity
of the CAP cases is increased from 0.632 to 0.789, while the
overall accuracy is only dropped a little from 0.897 to 0.888,
compared with the result from the first stage.

Moreover, comparing with a recent published method [10]
(altered to multi-class classification and used the data from
the challenge), the proposed method outperforms in both ac-
curacy and sensitivities of each classes. The overall accu-
racy is increased by 11.2%, and the sensitivities are increased
by 0.037, 0.368, and 0.083 for COVID-19, CAP and normal
cases, respectively.

Table 2: Overall accuracy and sensitivities of each classes at
different learning stage.

Model Accuracy
Sensitivity

COVID-19 CAP Normal
Baseline [10] 0.776 0.836 0.421 0.917

Stage1 0.897 0.945 0.632 1

Stage2

1st 0.824 0.8 0.895 -
2nd 0.703 0.655 0.842 -
3rd 0.838 0.855 0.789 -
4th 0.797 0.855 0.632 -
5th 0.784 0.782 0.789 -

Final 0.888 0.873 0.789 1

6. CONCLUSION

In this paper, a multi-stage progressive learning strategy has
been proposed to train classifiers for COVID-19 Diagnosis
using imbalanced chest CT data acquired from patients in-
fected with COVID-19, CAP and from normal cases. In
the first learning stage, pre-processed volumetric CT data
together with the segmented lung masks are fed into a 3D
ResNet module, and an initial classification result can be
obtained. In the second stage, five learning models are inde-
pendently trained over data with only COVID-19 and CAP
cases, and are then ensembled to further discriminate the two
classes. The final classification results are obtained by com-
bining the predictions from both stages. We have evaluated
our method using validation dataset and compared it with up-
to-date methods in terms of overall accuracy and sensitivity
for each class. It is promising that the proposed method can
be further applied in practical low-dose CT, CT with large
slice thickness, and for those patients with the other lung
diseases such as lung tumor.
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